Some structs are passed in registers. When they need more than
one the implementation of __va_arg on x86-64 didn't correctly account
for this. This fixes only the cases where the structs consist of
integer types, as there the register save area is consecutive.
Fixes some tests from 73_arm64.c, but still leaves those failing
that use floating point in the large-but-regpassed structs.
__clear_cache is defined in lib-arm64.c with a single call to
__arm64_clear_cache, which is the real built-in function and is
turned into inline assembler by gen_clear_cache in arm64-gen.c
A test program:
/* result of the new version inroduced in 4ad186c5ef: t2a = 44100312 */
#include<stdio.h>
int main() {
int t1 = 176401255;
float f = 0.25f;
int t2a = (int)(t1 * f); // must be 44100313
int t2b = (int)(t1 * (float)0.25f);
printf("t2a=%d t2b=%d \n",t2a,t2b);
return 0;
}
produce a
i386-win-mingw32-tcc
i386-win-tcc
x86_64-win-mingw32-tcc
x86_64-win-tcc
arm-win-mingw32ce-tcc
arm-win-tcc
instead of the
i386-w64-mingw32-tcc
i386-win32-tcc
x86_64-w64-mingw32-tcc
x86_64-win32-tcc
arm-wince-mingw32ce-tcc
arm-win32-tcc
Replacing a *-win32 directory names with a *-win names
because this names are based on the names of the tcc
x86_64-win32-tcc, i386-win32-tcc
Prevent libtcc1.a to be compiled with -fstack-protector-strong, so that
linking with tcc doesn't fail because symbol '__stack_chk_fail_local' is
not present in libtcc1.a. This is useful only if the CFLAGS passed from
the main Makefile contain this flag.
Not able to generate ELF files on NetBSD yet (lacks the note and crt1.o
is actually named crt0.o on NetBSD), but -run works with these extra
defines:
-D__lint__ -D"__symbolrename(x)=asm(#x)" -D__NetBSD__
The -D__lint__ is an ugly hack, TCC should be able to emulate GCC just
fine, but it seems TCC doesn't support __builtin_va_list yet?
typedef __builtin_va_list __va_list;
/usr/include/sys/ansi.h:72: error: ';' expected (got "__va_list")
This provides a simple implementation of alloca for ARM (and enables
the associated testcase). As tcc for ARM doesn't contain an assembler,
we'll have to resort using gcc for compiling it.
For program manipulating argv or arge as pointer with construct such as:
(while *argv++) {
do_something_with_argv;
}
it is necessary to have argv and arge inside a region. This patch create
regions argv and arge) if main is declared with those parameters.
Prior to this commit runtime library was compiled according to the host
because of the macro used to detec what architecture to choose. This
commit fixes this by using the TARGET_* macro instead.
- tccgen: error out for cast to void, as in
void foo(void) { return 1; }
This avoids an assertion failure in x86_64-gen.c, also.
also fix tests2/03_struct.c accordingly
- Error: "memory full" - be more specific
- Makefiles: remove circular dependencies, lookup tcctest.c from VPATH
- tcc.h: cleanup lib, include, crt and libgcc search paths"
avoid duplication or trailing slashes with no CONFIG_MULTIARCHDIR
(as from 9382d6f1a0)
- tcc.h: remove ";{B}" from PE search path
in ce5e12c2f9 James Lyon wrote:
"... I'm not sure this is the right way to fix this problem."
And the answer is: No, please. (copying libtcc1.a for tests instead)
- win32/build_tcc.bat: do not move away a versioned file
Variants __fixsfdi/__fixxfdi are not needed for now because
the value is converted to double always.
Also:
- remove __tcc_fpinit for unix as it seems redundant by the
__setfpucw call in the startup code
- avoid reference to s->runtime_main in cross compilers
- configure: fix --with-libgcc help
- tcctok.h: cleanup
- fix computation of absolute value (clearing the sign bit does not
since integers are encoded in 2's complement)
- test sign of integer in a more conventional way (binary and with the
high bit does not work for long long due to a bug in gtst)
- spacing in include
- Use runtime function for conversion
- Also initialize fp with tcc -run on windows
This fixes a bug where
double x = 1.0;
double y = 1.0000000000000001;
double z = x < y ? 0 : sqrt (x*x - y*y);
caused a bad sqrt because rounding precision for the x < y comparison
was different to the one used within the sqrt function.
This also fixes a bug where
printf("%d, %d", (int)pow(10, 2), (int)pow(10, 2));
would print
100, 99
Unrelated:
win32: document relative include & lib lookup
win32: normalize_slashes: do not mirror silly gcc behavior
This reverts part of commit 8a81f9e103
winapi: add missing WINAPI decl. for some functions
long double arguments require 16-byte alignment on the stack, which
requires adjustment when the the stack offset is not an evven number of
8-byte words.
I removed the XMM6/7 registers from the register list because they are not used
on Win64 however they are necessary for parameter passing on x86-64. I have now
restored them but not marked them with RC_FLOAT so they will not be used except
for parameter passing.
Modified tcctest.c so that it uses 'double' in place of 'long double'
with MinGW since this is what TCC does, and what Visual C++ does. Added
an option -norunsrc to tcc to allow argv[0] to be set independently of
the compiled source when using tcc -run, which allows tests that rely on
the value of argv[0] to work in out-of-tree builds.
Also added Makefile rules to automatically update out-of-tree build
Makefiles when in-tree Makefiles have changed.
On some architectures, ARM for instance, the data and instruction caches
are not coherent with each other. This is a problem for the -run feature
since instructions are written in memory, and are thus written in the
data cache first and then later flushed to the main memory. If the
instructions are executed before they are pushed out of the cache, then
the processor will fetch the old content from the memory and not the
newly generated code. The solution is to flush from the data cache all
the data in the memory region containing the instructions and to
invalidate the same region in the instruction cache.
- except for CONFIG_SYSROOT and CONFIG_TCCDIR
Strictly neccessary it is only for CONFIG_MULTIARCHDIR
because otherwise if it's in config.h it is impossible to
leave it undefined.
But it is also nicer not to use these definitions for
cross-compilers.
- Also:
lib/Makefile : include ../Makefile for CFLAGS
lib/libtcc1.c : fix an issue compiling tcc with tcc on x64
tests/Makefile:
- print-search-dirs when 'hello' fails
- split off hello-run
win32/include/_mingw.h:
- fix for compatibility with mingw headers
(While our headers in win32 are from mingw-64 and don't have
the problem)
tiny_libmaker:
- don't use "dangerous" mktemp
Should fix some warnings wrt. access out of array bounds.
tccelf.c: fix "static function unused" warning
x86_64-gen.c: fix "ctype.ref uninitialzed" warning and cleanup
tcc-win32.txt: remove obsolete limitation notes.
Also:
- fix "make tcc_p" (profiling version)
- remove old gcc flags:
-mpreferred-stack-boundary=2 -march=i386 -falign-functions=0
- remove test "hello" for Darwin (cannot compile to file)
* configure (fn_dirname): New.
Use it to ensure the creation of proper symlinks to Makefiles.
(config.mak): Define top_builddir and top_srcdir.
(CPPFLAGS): Be sure to find the headers.
* Makefile, lib/Makefile, tests/Makefile, tests2/Makefile: Adjust
to set VPATH properly.
Fix confusion between top_builddir and top_srcdir.
We were calling get_page() with t2 index which is not correct, since
get_page() operate on t1 indices. The bug is here from day-1, from
60f781c4 (first version of bounds checker) and show as a crash in
__bound_delete_region() at program exit:
$ ./tcc -B. -DTCC_TARGET_I386 -DCONFIG_MULTIARCHDIR=\"i386-linux-gnu\" -b -run -DONE_SOURCE \
./tcc.c -B. -DTCC_TARGET_I386 -DCONFIG_MULTIARCHDIR=\"i386-linux-gnu\" -run -DONE_SOURCE \
./tcc.c -B. -run tests/tcctest.c
(lot's of correct output from tcctest)
Runtime error: dereferencing invalid pointer
at 0xa7c21cc4 __bound_delete_region()
by (nil) ???
Segmentation fault
The fix is simple - last page should be get through t1_end, like it is
done in __bound_new_region().
After this patch, tcc is being able to compile itself with -b, then
compile itself again and run tcctest with correct output. Tests follow.
At startup __bound_init() wants to mark malloc zone as invalid memory,
so that any access to memory on heap, not allocated through malloc be
invalid. Other pages are initialized as empty regions, access to which
is not treated as invalid by bounds-checking.
The problem is code incorrectly assumed that heap goes right after bss,
and that is not correct for two cases:
1) if we are running from `tcc -b -run`, program text data and bss
will be already in malloced memory, possibly in mmaped region
insead of heap, and marking memory as invalid from _end
will not cover heap and probably wrongly mark correct regions.
2) if address space randomization is turned on, again heap does not
start from _end, and we'll mark as invalid something else instead
of malloc area.
For example with the following diagnostic patch ...
diff --git a/tcc.c b/tcc.c
index 5dd5725..31c46e8 100644
--- a/tcc.c
+++ b/tcc.c
@@ -479,6 +479,8 @@ static int parse_args(TCCState *s, int argc, char **argv)
return optind;
}
+extern int _etext, _edata, _end;
+
int main(int argc, char **argv)
{
int i;
@@ -487,6 +489,18 @@ int main(int argc, char **argv)
int64_t start_time = 0;
const char *default_file = NULL;
+ void *brk;
+
+ brk = sbrk(0);
+
+ fprintf(stderr, "\n>>> TCC\n\n");
+ fprintf(stderr, "etext:\t%10p\n", &_etext);
+ fprintf(stderr, "edata:\t%10p\n", &_edata);
+ fprintf(stderr, "end:\t%10p\n", &_end);
+ fprintf(stderr, "brk:\t%10p\n", brk);
+ fprintf(stderr, "stack:\t%10p\n", &brk);
+
+ fprintf(stderr, "&errno: %p\n", &errno);
s = tcc_new();
output_type = TCC_OUTPUT_EXE;
diff --git a/tccrun.c b/tccrun.c
index 531f46a..25ed30a 100644
--- a/tccrun.c
+++ b/tccrun.c
@@ -91,6 +91,8 @@ LIBTCCAPI int tcc_run(TCCState *s1, int argc, char **argv)
int (*prog_main)(int, char **);
int ret;
+ fprintf(stderr, "\n\ntcc_run() ...\n\n");
+
if (tcc_relocate(s1, TCC_RELOCATE_AUTO) < 0)
return -1;
diff --git a/lib/bcheck.c b/lib/bcheck.c
index ea5b233..8b26a5f 100644
--- a/lib/bcheck.c
+++ b/lib/bcheck.c
@@ -296,6 +326,8 @@ static void mark_invalid(unsigned long addr, unsigned long size)
start = addr;
end = addr + size;
+ fprintf(stderr, "mark_invalid %10p - %10p\n", (void *)addr, (void *)end);
+
t2_start = (start + BOUND_T3_SIZE - 1) >> BOUND_T3_BITS;
if (end != 0)
t2_end = end >> BOUND_T3_BITS;
... Look how memory is laid out for `tcc -b -run ...`:
$ ./tcc -B. -b -DTCC_TARGET_I386 -DCONFIG_MULTIARCHDIR=\"i386-linux-gnu\" -run \
-DONE_SOURCE ./tcc.c -B. -c x.c
>>> TCC
etext: 0x8065477
edata: 0x8070220
end: 0x807a95c
brk: 0x807b000
stack: 0xaffff0f0
&errno: 0xa7e25688
tcc_run() ...
mark_invalid 0xfff80000 - (nil)
mark_invalid 0xa7c31d98 - 0xafc31d98
>>> TCC
etext: 0xa7c22767
edata: 0xa7c2759c
end: 0xa7c31d98
brk: 0x8211000
stack: 0xafffeff0
&errno: 0xa7e25688
Runtime error: dereferencing invalid pointer
./tccpp.c:1953: at 0xa7beebdf parse_number() (included from ./libtcc.c, ./tcc.c)
./tccpp.c:3003: by 0xa7bf0708 next() (included from ./libtcc.c, ./tcc.c)
./tccgen.c:4465: by 0xa7bfe348 block() (included from ./libtcc.c, ./tcc.c)
./tccgen.c:4440: by 0xa7bfe212 block() (included from ./libtcc.c, ./tcc.c)
./tccgen.c:5529: by 0xa7c01929 gen_function() (included from ./libtcc.c, ./tcc.c)
./tccgen.c:5767: by 0xa7c02602 decl0() (included from ./libtcc.c, ./tcc.c)
The second mark_invalid goes right after in-memory-compiled program's
_end, and oops, that's not where malloc zone is (starts from brk), and oops
again, mark_invalid covers e.g. errno. Then compiled tcc is crasshing by
bcheck on errno access:
1776 static void parse_number(const char *p)
1777 {
1778 int b, t, shift, frac_bits, s, exp_val, ch;
...
1951 *q = '\0';
1952 t = toup(ch);
1953 errno = 0;
The solution here is to use sbrk(0) as approximation for the program
break start instead of &_end:
- if we are a separately compiled program, __bound_init() runs early,
and sbrk(0) should be equal or very near to start_brk (in case other
constructors malloc something), or
- if we are running from under `tcc -b -run`, sbrk(0) will return
start of heap portion which is under this program control, and not
mark as invalid earlier allocated memory.
With this patch `tcc -b -run tcc.c ...` succeeds compiling above
small-test program (diagnostic patch is still applied too):
$ ./tcc -B. -b -DTCC_TARGET_I386 -DCONFIG_MULTIARCHDIR=\"i386-linux-gnu\" -run \
-DONE_SOURCE ./tcc.c -B. -c x.c
>>> TCC
etext: 0x8065477
edata: 0x8070220
end: 0x807a95c
brk: 0x807b000
stack: 0xaffff0f0
&errno: 0xa7e25688
tcc_run() ...
mark_invalid 0xfff80000 - (nil)
mark_invalid 0x8211000 - 0x10211000
>>> TCC
etext: 0xa7c22777
edata: 0xa7c275ac
end: 0xa7c31da8
brk: 0x8211000
stack: 0xafffeff0
&errno: 0xa7e25688
(completes ok)
but running `tcc -b -run tcc.c -run tests/tcctest.c` sigsegv's - that's
the plot for the next patch.