tiny-AES-c/aes.c

581 lines
19 KiB
C
Raw Normal View History

2014-05-29 04:19:59 +04:00
/*
2017-07-08 04:21:42 +03:00
This is an implementation of the AES algorithm, specifically ECB and CBC mode.
Block size can be chosen in aes.h - available choices are AES128, AES192, AES256.
2014-05-29 04:19:59 +04:00
The implementation is verified against the test vectors in:
2014-05-29 04:21:50 +04:00
National Institute of Standards and Technology Special Publication 800-38A 2001 ED
2014-05-29 04:19:59 +04:00
ECB-AES128
----------
2014-05-29 04:21:50 +04:00
plain-text:
6bc1bee22e409f96e93d7e117393172a
ae2d8a571e03ac9c9eb76fac45af8e51
30c81c46a35ce411e5fbc1191a0a52ef
f69f2445df4f9b17ad2b417be66c3710
2014-05-29 04:19:59 +04:00
2014-05-29 04:21:50 +04:00
key:
2b7e151628aed2a6abf7158809cf4f3c
2014-05-29 04:19:59 +04:00
2014-05-29 04:21:50 +04:00
resulting cipher
3ad77bb40d7a3660a89ecaf32466ef97
f5d3d58503b9699de785895a96fdbaaf
43b1cd7f598ece23881b00e3ed030688
7b0c785e27e8ad3f8223207104725dd4
2014-05-29 04:19:59 +04:00
2014-05-29 04:21:50 +04:00
NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0)
You should pad the end of the string with zeros if this is not the case.
2017-07-08 04:21:42 +03:00
For AES192/256 the block size is proportionally larger.
2014-05-29 04:19:59 +04:00
*/
/*****************************************************************************/
/* Includes: */
/*****************************************************************************/
#include <stdint.h>
2014-12-15 23:19:44 +03:00
#include <string.h> // CBC mode, for memset
2014-05-29 04:19:59 +04:00
#include "aes.h"
/*****************************************************************************/
/* Defines: */
/*****************************************************************************/
// The number of columns comprising a state in AES. This is a constant in AES. Value=4
#define Nb 4
2017-06-06 23:33:36 +03:00
#define BLOCKLEN 16 //Block length in bytes AES is 128b block only
2017-07-08 04:12:28 +03:00
#if defined(AES256) && (AES256 == 1)
#define Nk 8
#define KEYLEN 32
#define Nr 14
#define keyExpSize 240
2017-07-08 04:12:28 +03:00
#elif defined(AES192) && (AES192 == 1)
#define Nk 6
#define KEYLEN 24
#define Nr 12
#define keyExpSize 208
#else
#define Nk 4 // The number of 32 bit words in a key.
#define KEYLEN 16 // Key length in bytes
#define Nr 10 // The number of rounds in AES Cipher.
#define keyExpSize 176
#endif
2014-05-29 04:19:59 +04:00
// jcallan@github points out that declaring Multiply as a function
// reduces code size considerably with the Keil ARM compiler.
// See this link for more information: https://github.com/kokke/tiny-AES128-C/pull/3
2014-12-11 01:31:02 +03:00
#ifndef MULTIPLY_AS_A_FUNCTION
#define MULTIPLY_AS_A_FUNCTION 0
#endif
2014-05-29 04:19:59 +04:00
2014-12-15 23:19:44 +03:00
2014-05-29 04:19:59 +04:00
/*****************************************************************************/
/* Private variables: */
/*****************************************************************************/
// state - array holding the intermediate results during decryption.
2014-12-09 22:05:05 +03:00
typedef uint8_t state_t[4][4];
static state_t* state;
2014-05-29 04:19:59 +04:00
// The array that stores the round keys.
static uint8_t RoundKey[keyExpSize];
2014-05-29 04:19:59 +04:00
// The Key input to the AES Program
2014-12-08 11:54:58 +03:00
static const uint8_t* Key;
2014-05-29 04:19:59 +04:00
2014-12-15 23:22:17 +03:00
#if defined(CBC) && CBC
// Initial Vector used only for CBC mode
static uint8_t* Iv;
#endif
2014-12-15 23:19:44 +03:00
2014-05-30 16:59:40 +04:00
// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
2014-05-29 04:19:59 +04:00
// The numbers below can be computed dynamically trading ROM for RAM -
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
2017-07-08 04:25:16 +03:00
static const uint8_t sbox[256] = {
2014-05-29 04:21:50 +04:00
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
2014-05-29 04:19:59 +04:00
2017-07-08 04:25:16 +03:00
static const uint8_t rsbox[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
2014-11-26 02:12:07 +03:00
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
2014-07-12 04:12:22 +04:00
2014-05-29 04:19:59 +04:00
// The round constant word array, Rcon[i], contains the values given by
// x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
static const uint8_t Rcon[256] = {
2017-07-08 04:25:16 +03:00
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d };
2014-05-29 04:19:59 +04:00
/*****************************************************************************/
/* Private functions: */
/*****************************************************************************/
static uint8_t getSBoxValue(uint8_t num)
{
2014-05-29 04:21:50 +04:00
return sbox[num];
2014-05-29 04:19:59 +04:00
}
2014-07-12 04:12:22 +04:00
static uint8_t getSBoxInvert(uint8_t num)
{
return rsbox[num];
}
2014-05-29 04:19:59 +04:00
// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
static void KeyExpansion(void)
2014-05-29 04:19:59 +04:00
{
uint32_t i, k;
2014-11-26 02:12:07 +03:00
uint8_t tempa[4]; // Used for the column/row operations
2014-05-29 04:21:50 +04:00
// The first round key is the key itself.
2017-07-08 04:19:45 +03:00
for (i = 0; i < Nk; ++i)
2014-05-29 04:21:50 +04:00
{
2014-06-03 02:22:35 +04:00
RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
2014-05-29 04:21:50 +04:00
RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
}
// All other round keys are found from the previous round keys.
//i == Nk
2017-07-08 04:19:45 +03:00
for (; i < Nb * (Nr + 1); ++i)
2014-05-29 04:21:50 +04:00
{
{
tempa[0]=RoundKey[(i-1) * 4 + 0];
tempa[1]=RoundKey[(i-1) * 4 + 1];
tempa[2]=RoundKey[(i-1) * 4 + 2];
tempa[3]=RoundKey[(i-1) * 4 + 3];
2014-05-29 04:21:50 +04:00
}
2014-05-29 04:21:50 +04:00
if (i % Nk == 0)
{
// This function shifts the 4 bytes in a word to the left once.
2014-05-29 04:21:50 +04:00
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
// Function RotWord()
{
k = tempa[0];
tempa[0] = tempa[1];
tempa[1] = tempa[2];
tempa[2] = tempa[3];
tempa[3] = k;
}
// SubWord() is a function that takes a four-byte input word and
// applies the S-box to each of the four bytes to produce an output word.
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
tempa[0] = tempa[0] ^ Rcon[i/Nk];
}
2017-07-08 04:12:28 +03:00
#if defined(AES256) && (AES256 == 1)
if (i % Nk == 4)
2014-05-29 04:21:50 +04:00
{
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
}
#endif
2014-06-03 02:22:35 +04:00
RoundKey[i * 4 + 0] = RoundKey[(i - Nk) * 4 + 0] ^ tempa[0];
2014-06-03 02:08:07 +04:00
RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^ tempa[1];
RoundKey[i * 4 + 2] = RoundKey[(i - Nk) * 4 + 2] ^ tempa[2];
RoundKey[i * 4 + 3] = RoundKey[(i - Nk) * 4 + 3] ^ tempa[3];
2014-05-29 04:21:50 +04:00
}
2014-05-29 04:19:59 +04:00
}
// This function adds the round key to state.
// The round key is added to the state by an XOR function.
static void AddRoundKey(uint8_t round)
2014-05-29 04:19:59 +04:00
{
2014-05-29 04:21:50 +04:00
uint8_t i,j;
2017-07-08 04:19:45 +03:00
for (i=0;i<4;++i)
2014-05-29 04:21:50 +04:00
{
2017-07-08 04:19:45 +03:00
for (j = 0; j < 4; ++j)
2014-05-29 04:21:50 +04:00
{
2014-12-09 22:05:05 +03:00
(*state)[i][j] ^= RoundKey[round * Nb * 4 + i * Nb + j];
2014-05-29 04:21:50 +04:00
}
}
2014-05-29 04:19:59 +04:00
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void SubBytes(void)
2014-05-29 04:19:59 +04:00
{
2014-05-29 04:21:50 +04:00
uint8_t i, j;
2017-07-08 04:19:45 +03:00
for (i = 0; i < 4; ++i)
2014-05-29 04:21:50 +04:00
{
2017-07-08 04:19:45 +03:00
for (j = 0; j < 4; ++j)
2014-05-29 04:21:50 +04:00
{
2014-12-09 22:05:05 +03:00
(*state)[j][i] = getSBoxValue((*state)[j][i]);
2014-05-29 04:21:50 +04:00
}
}
2014-05-29 04:19:59 +04:00
}
// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
static void ShiftRows(void)
2014-05-29 04:19:59 +04:00
{
2014-05-29 04:21:50 +04:00
uint8_t temp;
// Rotate first row 1 columns to left
2014-12-09 22:05:05 +03:00
temp = (*state)[0][1];
(*state)[0][1] = (*state)[1][1];
(*state)[1][1] = (*state)[2][1];
(*state)[2][1] = (*state)[3][1];
(*state)[3][1] = temp;
2014-05-29 04:21:50 +04:00
// Rotate second row 2 columns to left
2014-12-09 22:05:05 +03:00
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
2014-05-29 04:21:50 +04:00
2017-07-08 04:19:45 +03:00
temp = (*state)[1][2];
2014-12-09 22:05:05 +03:00
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
2014-05-29 04:21:50 +04:00
// Rotate third row 3 columns to left
2017-07-08 04:12:28 +03:00
temp = (*state)[0][3];
2014-12-09 22:05:05 +03:00
(*state)[0][3] = (*state)[3][3];
(*state)[3][3] = (*state)[2][3];
(*state)[2][3] = (*state)[1][3];
(*state)[1][3] = temp;
2014-05-29 04:19:59 +04:00
}
static uint8_t xtime(uint8_t x)
{
2014-05-29 04:21:50 +04:00
return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
2014-05-29 04:19:59 +04:00
}
// MixColumns function mixes the columns of the state matrix
static void MixColumns(void)
2014-05-29 04:19:59 +04:00
{
2014-05-29 04:21:50 +04:00
uint8_t i;
uint8_t Tmp,Tm,t;
2017-07-08 04:19:45 +03:00
for (i = 0; i < 4; ++i)
2014-05-29 04:21:50 +04:00
{
2014-12-09 22:05:05 +03:00
t = (*state)[i][0];
Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ;
Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ;
Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ;
2017-07-08 04:12:28 +03:00
Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ;
2014-05-29 04:21:50 +04:00
}
2014-05-29 04:19:59 +04:00
}
// Multiply is used to multiply numbers in the field GF(2^8)
#if MULTIPLY_AS_A_FUNCTION
static uint8_t Multiply(uint8_t x, uint8_t y)
{
return (((y & 1) * x) ^
((y>>1 & 1) * xtime(x)) ^
((y>>2 & 1) * xtime(xtime(x))) ^
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))));
}
#else
#define Multiply(x, y) \
( ((y & 1) * x) ^ \
((y>>1 & 1) * xtime(x)) ^ \
((y>>2 & 1) * xtime(xtime(x))) ^ \
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \
#endif
2014-07-12 04:12:22 +04:00
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
static void InvMixColumns(void)
2014-07-12 04:12:22 +04:00
{
int i;
2017-07-08 04:19:45 +03:00
uint8_t a, b, c, d;
for (i = 0; i < 4; ++i)
2014-07-12 04:12:22 +04:00
{
2014-12-09 22:05:05 +03:00
a = (*state)[i][0];
b = (*state)[i][1];
c = (*state)[i][2];
d = (*state)[i][3];
2014-07-12 04:12:22 +04:00
2014-12-09 22:05:05 +03:00
(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
2014-07-12 04:12:22 +04:00
}
}
2014-12-15 23:19:44 +03:00
// The SubBytes Function Substitutes the values in the
2014-07-12 04:12:22 +04:00
// state matrix with values in an S-box.
static void InvSubBytes(void)
2014-07-12 04:12:22 +04:00
{
uint8_t i,j;
2017-07-08 04:19:45 +03:00
for (i = 0; i < 4; ++i)
2014-07-12 04:12:22 +04:00
{
2017-07-08 04:19:45 +03:00
for (j = 0; j < 4; ++j)
2014-07-12 04:12:22 +04:00
{
2014-12-09 22:05:05 +03:00
(*state)[j][i] = getSBoxInvert((*state)[j][i]);
2014-07-12 04:12:22 +04:00
}
}
}
static void InvShiftRows(void)
2014-07-12 04:12:22 +04:00
{
uint8_t temp;
// Rotate first row 1 columns to right
2017-07-08 04:19:45 +03:00
temp = (*state)[3][1];
(*state)[3][1] = (*state)[2][1];
(*state)[2][1] = (*state)[1][1];
(*state)[1][1] = (*state)[0][1];
(*state)[0][1] = temp;
2014-07-12 04:12:22 +04:00
// Rotate second row 2 columns to right
2017-07-08 04:19:45 +03:00
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
2014-07-12 04:12:22 +04:00
2017-07-08 04:19:45 +03:00
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
2014-07-12 04:12:22 +04:00
// Rotate third row 3 columns to right
2017-07-08 04:19:45 +03:00
temp = (*state)[0][3];
(*state)[0][3] = (*state)[1][3];
(*state)[1][3] = (*state)[2][3];
(*state)[2][3] = (*state)[3][3];
(*state)[3][3] = temp;
2014-07-12 04:12:22 +04:00
}
2014-05-29 04:19:59 +04:00
// Cipher is the main function that encrypts the PlainText.
static void Cipher(void)
2014-05-29 04:19:59 +04:00
{
2014-12-09 22:05:05 +03:00
uint8_t round = 0;
2014-05-29 04:21:50 +04:00
// Add the First round key to the state before starting the rounds.
AddRoundKey(0);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
2017-07-08 04:19:45 +03:00
for (round = 1; round < Nr; ++round)
2014-05-29 04:21:50 +04:00
{
SubBytes();
ShiftRows();
MixColumns();
AddRoundKey(round);
}
// The last round is given below.
// The MixColumns function is not here in the last round.
SubBytes();
ShiftRows();
AddRoundKey(Nr);
2014-05-29 04:19:59 +04:00
}
static void InvCipher(void)
2014-07-12 04:12:22 +04:00
{
2014-12-09 22:05:05 +03:00
uint8_t round=0;
2014-07-12 04:12:22 +04:00
// Add the First round key to the state before starting the rounds.
AddRoundKey(Nr);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
2017-07-08 04:19:45 +03:00
for (round = (Nr - 1); round > 0; --round)
2014-07-12 04:12:22 +04:00
{
InvShiftRows();
InvSubBytes();
AddRoundKey(round);
InvMixColumns();
}
// The last round is given below.
// The MixColumns function is not here in the last round.
InvShiftRows();
InvSubBytes();
AddRoundKey(0);
2014-12-11 01:31:02 +03:00
}
2014-07-12 04:12:22 +04:00
2014-12-11 01:31:02 +03:00
2014-05-29 04:19:59 +04:00
/*****************************************************************************/
/* Public functions: */
/*****************************************************************************/
2017-07-08 04:12:28 +03:00
#if defined(ECB) && (ECB == 1)
2014-12-15 23:19:44 +03:00
2014-05-29 04:19:59 +04:00
2017-06-06 21:10:33 +03:00
void AES_ECB_encrypt(const uint8_t* input, const uint8_t* key, uint8_t* output, const uint32_t length)
2014-05-29 04:19:59 +04:00
{
2014-12-11 01:31:02 +03:00
// Copy input to output, and work in-memory on output
2017-06-06 21:10:33 +03:00
memcpy(output, input, length);
2014-12-11 01:31:02 +03:00
state = (state_t*)output;
2014-05-29 04:19:59 +04:00
2014-12-11 01:31:02 +03:00
Key = key;
2014-05-29 04:21:50 +04:00
KeyExpansion();
2014-05-29 04:19:59 +04:00
2014-05-29 04:21:50 +04:00
// The next function call encrypts the PlainText with the Key using AES algorithm.
Cipher();
2014-05-29 04:19:59 +04:00
}
2017-06-06 21:10:33 +03:00
void AES_ECB_decrypt(const uint8_t* input, const uint8_t* key, uint8_t *output, const uint32_t length)
2014-07-12 04:12:22 +04:00
{
2014-12-11 01:31:02 +03:00
// Copy input to output, and work in-memory on output
2017-06-06 21:10:33 +03:00
memcpy(output, input, length);
2014-12-11 01:31:02 +03:00
state = (state_t*)output;
2014-07-12 04:12:22 +04:00
2014-12-15 23:19:44 +03:00
// The KeyExpansion routine must be called before encryption.
2014-12-11 01:31:02 +03:00
Key = key;
2014-07-12 04:12:22 +04:00
KeyExpansion();
InvCipher();
}
2014-05-29 04:19:59 +04:00
2014-12-15 23:19:44 +03:00
2017-07-08 04:19:45 +03:00
#endif // #if defined(ECB) && (ECB == 1)
2014-12-15 23:19:44 +03:00
2017-07-08 04:12:28 +03:00
#if defined(CBC) && (CBC == 1)
2014-12-15 23:19:44 +03:00
static void XorWithIv(uint8_t* buf)
{
uint8_t i;
2017-07-08 04:19:45 +03:00
for (i = 0; i < BLOCKLEN; ++i) //WAS for(i = 0; i < KEYLEN; ++i) but the block in AES is always 128bit so 16 bytes!
2014-12-15 23:19:44 +03:00
{
buf[i] ^= Iv[i];
}
}
void AES_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
2014-12-15 23:19:44 +03:00
{
uintptr_t i;
2017-06-06 23:33:36 +03:00
uint8_t extra = length % BLOCKLEN; /* Remaining bytes in the last non-full block */
2014-12-15 23:19:44 +03:00
// Skip the key expansion if key is passed as 0
2017-07-08 04:19:45 +03:00
if (0 != key)
2014-12-15 23:19:44 +03:00
{
Key = key;
KeyExpansion();
}
2017-07-08 04:19:45 +03:00
if (iv != 0)
2014-12-15 23:19:44 +03:00
{
Iv = (uint8_t*)iv;
}
2017-07-08 04:19:45 +03:00
for (i = 0; i < length; i += BLOCKLEN)
2014-12-15 23:19:44 +03:00
{
XorWithIv(input);
2017-06-06 23:33:36 +03:00
memcpy(output, input, BLOCKLEN);
2014-12-15 23:19:44 +03:00
state = (state_t*)output;
Cipher();
Iv = output;
2017-06-06 23:33:36 +03:00
input += BLOCKLEN;
output += BLOCKLEN;
2017-06-06 21:36:11 +03:00
//printf("Step %d - %d", i/16, i);
2014-12-15 23:19:44 +03:00
}
2017-07-08 04:19:45 +03:00
if (extra)
2014-12-15 23:19:44 +03:00
{
2017-06-06 21:36:11 +03:00
memcpy(output, input, extra);
2014-12-15 23:19:44 +03:00
state = (state_t*)output;
Cipher();
}
}
void AES_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
2014-12-15 23:19:44 +03:00
{
uintptr_t i;
2017-06-06 23:33:36 +03:00
uint8_t extra = length % BLOCKLEN; /* Remaining bytes in the last non-full block */
2014-12-15 23:19:44 +03:00
// Skip the key expansion if key is passed as 0
2017-07-08 04:19:45 +03:00
if (0 != key)
2014-12-15 23:19:44 +03:00
{
Key = key;
KeyExpansion();
}
// If iv is passed as 0, we continue to encrypt without re-setting the Iv
2017-07-08 04:19:45 +03:00
if (iv != 0)
2014-12-15 23:19:44 +03:00
{
Iv = (uint8_t*)iv;
}
2017-07-08 04:19:45 +03:00
for (i = 0; i < length; i += BLOCKLEN)
2014-12-15 23:19:44 +03:00
{
2017-06-06 23:33:36 +03:00
memcpy(output, input, BLOCKLEN);
2014-12-15 23:19:44 +03:00
state = (state_t*)output;
InvCipher();
XorWithIv(output);
Iv = input;
2017-06-06 23:33:36 +03:00
input += BLOCKLEN;
output += BLOCKLEN;
2014-12-15 23:19:44 +03:00
}
2017-07-08 04:19:45 +03:00
if (extra)
2014-12-15 23:19:44 +03:00
{
2017-06-06 21:36:11 +03:00
memcpy(output, input, extra);
2014-12-15 23:19:44 +03:00
state = (state_t*)output;
InvCipher();
}
}
2017-07-08 04:12:28 +03:00
#endif // #if defined(CBC) && (CBC == 1)