mirror of
https://github.com/glouw/tinn
synced 2024-11-28 17:13:08 +03:00
130 lines
2.9 KiB
C
130 lines
2.9 KiB
C
#include "Tinn.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <time.h>
|
|
|
|
static double error(Tinn t, double* tg)
|
|
{
|
|
double error = 0.0;
|
|
int i;
|
|
for(i = 0; i < t.nops; i++)
|
|
error += 0.5 * pow(tg[i] - t.o[i], 2.0);
|
|
return error;
|
|
}
|
|
|
|
static void backwards(Tinn t, double* in, double* tg, double rate)
|
|
{
|
|
double* x = t.w + t.nhid * t.nips;
|
|
int i;
|
|
for(i = 0; i < t.nhid; i++)
|
|
{
|
|
double sum = 0.0;
|
|
int j;
|
|
/* Calculate total error change with respect to output */
|
|
for(j = 0; j < t.nops; j++)
|
|
{
|
|
double a = t.o[j] - tg[j];
|
|
double b = t.o[j] * (1 - t.o[j]);
|
|
double c = x[j * t.nhid + i];
|
|
sum += a * b * c;
|
|
}
|
|
/* Correct weights in input to hidden layer */
|
|
for(j = 0; j < t.nips; j++)
|
|
{
|
|
double a = sum;
|
|
double b = t.h[i] * (1 - t.h[i]);
|
|
double c = in[j];
|
|
t.w[i * t.nips + j] -= rate * a * b * c;
|
|
}
|
|
/* Correct weights in hidden to output layer */
|
|
for(j = 0; j < t.nops; j++)
|
|
{
|
|
double a = t.o[j] - tg[j];
|
|
double b = t.o[j] * (1 - t.o[j]);
|
|
double c = t.h[i];
|
|
x[j * t.nhid + i] -= rate * a * b * c;
|
|
}
|
|
}
|
|
}
|
|
|
|
static double act(double net)
|
|
{
|
|
return 1.0 / (1.0 + exp(-net));
|
|
}
|
|
|
|
static double frand(void)
|
|
{
|
|
return rand() / (double) RAND_MAX;
|
|
}
|
|
|
|
static void forewards(Tinn t, double* in)
|
|
{
|
|
double* x = t.w + t.nhid * t.nips;
|
|
int i;
|
|
/* Calculate hidden layer neuron values */
|
|
for(i = 0; i < t.nhid; i++)
|
|
{
|
|
double sum = 0.0;
|
|
int j;
|
|
for(j = 0; j < t.nips; j++)
|
|
{
|
|
double a = in[j];
|
|
double b = t.w[i * t.nips + j];
|
|
sum += a * b;
|
|
}
|
|
t.h[i] = act(sum + t.b[0]);
|
|
}
|
|
/* Calculate output layer neuron values */
|
|
for(i = 0; i < t.nops; i++)
|
|
{
|
|
double sum = 0.0;
|
|
int j;
|
|
for(j = 0; j < t.nhid; j++)
|
|
{
|
|
double a = t.h[j];
|
|
double b = x[i * t.nhid + j];
|
|
sum += a * b;
|
|
}
|
|
t.o[i] = act(sum + t.b[1]);
|
|
}
|
|
}
|
|
|
|
static void twrand(Tinn t)
|
|
{
|
|
int wgts = t.nhid * (t.nips + t.nops);
|
|
int i;
|
|
for(i = 0; i < wgts; i++) t.w[i] = frand();
|
|
for(i = 0; i < t.nb; i++) t.b[i] = frand();
|
|
}
|
|
|
|
double xttrain(Tinn t, double* in, double* tg, double rate)
|
|
{
|
|
forewards(t, in);
|
|
backwards(t, in, tg, rate);
|
|
return error(t, tg);
|
|
}
|
|
|
|
Tinn xtbuild(int nips, int nhid, int nops)
|
|
{
|
|
Tinn t;
|
|
t.nb = 2;
|
|
t.w = (double*) calloc(nhid * (nips + nops), sizeof(*t.w));
|
|
t.b = (double*) calloc(t.nb, sizeof(*t.b));
|
|
t.h = (double*) calloc(nhid, sizeof(*t.h));
|
|
t.o = (double*) calloc(nops, sizeof(*t.o));
|
|
t.nips = nips;
|
|
t.nhid = nhid;
|
|
t.nops = nops;
|
|
srand(time(0));
|
|
twrand(t);
|
|
return t;
|
|
}
|
|
|
|
void xtfree(Tinn t)
|
|
{
|
|
free(t.w);
|
|
free(t.h);
|
|
free(t.o);
|
|
}
|