tinn/Genann.h
2018-03-26 23:14:03 -07:00

362 lines
12 KiB
C

//
// GENANN - Minimal C Artificial Neural Network
//
// Copyright (c) 2015, 2016 Lewis Van Winkle
//
// http://CodePlea.com
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgement in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
//
// This software has been altered from its original state. Namely white space edits
// and formatting but most importantly the library has been moved into a single
// static inline header file.
//
// - Gustav Louw 2018
#pragma once
#include <stdio.h>
#include <assert.h>
#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef double (*genann_actfun)(double a);
typedef struct
{
// How many inputs, outputs, and hidden neurons.
int inputs;
int hidden_layers;
int hidden;
int outputs;
// Which activation function to use for hidden neurons. Default: gennann_act_sigmoid_cached.
genann_actfun activation_hidden;
// Which activation function to use for output. Default: gennann_act_sigmoid_cached.
genann_actfun activation_output;
// Total number of weights, and size of weights buffer.
int total_weights;
// Total number of neurons + inputs and size of output buffer.
int total_neurons;
// All weights (total_weights long).
double *weight;
// Stores input array and output of each neuron (total_neurons long).
double *output;
// Stores delta of each hidden and output neuron (total_neurons - inputs long).
double *delta;
}
Genann;
static inline double genann_act_sigmoid(double a)
{
return a < -45.0 ? 0 : a > 45.0 ? 1.0 : 1.0 / (1 + exp(-a));
}
static inline double genann_act_sigmoid_cached(double a)
{
// If you're optimizing for memory usage, just
// delete this entire function and replace references
// of genann_act_sigmoid_cached to genann_act_sigmoid.
const double min = -15.0;
const double max = 15.0;
static double interval;
static int initialized = 0;
static double lookup[4096];
const int lookup_size = sizeof(lookup) / sizeof(*lookup);
// Calculate entire lookup table on first run.
if(!initialized)
{
interval = (max - min) / lookup_size;
for(int i = 0; i < lookup_size; ++i)
lookup[i] = genann_act_sigmoid(min + interval * i);
// This is down here to make this thread safe.
initialized = 1;
}
const int i = (int) ((a - min) / interval + 0.5);
return i <= 0 ? lookup[0] : i >= lookup_size ? lookup[lookup_size - 1] : lookup[i];
}
static inline double genann_act_threshold(double a)
{
return a > 0;
}
static inline double genann_act_linear(double a)
{
return a;
}
// We use the following for uniform random numbers between 0 and 1.
// If you have a better function, redefine this macro.
static inline double genann_random()
{
return (double) rand() / RAND_MAX;
}
static inline void genann_randomize(Genann *ann)
{
for(int i = 0; i < ann->total_weights; ++i)
{
double r = genann_random();
// Sets weights from -0.5 to 0.5.
ann->weight[i] = r - 0.5;
}
}
static inline Genann *genann_init(int inputs, int hidden_layers, int hidden, int outputs)
{
if(hidden_layers < 0)
return 0;
if(inputs < 1)
return 0;
if(outputs < 1)
return 0;
if(hidden_layers > 0 && hidden < 1)
return 0;
const int hidden_weights = hidden_layers ? (inputs + 1) * hidden + (hidden_layers - 1) * (hidden + 1) * hidden : 0;
const int output_weights = (hidden_layers ? (hidden + 1) : (inputs + 1)) * outputs;
const int total_weights = hidden_weights + output_weights;
const int total_neurons = inputs + hidden * hidden_layers + outputs;
// Allocate extra size for weights, outputs, and deltas.
const int size = sizeof(Genann) + sizeof(double) * (total_weights + total_neurons + (total_neurons - inputs));
Genann *ret = malloc(size);
if(!ret)
return 0;
ret->inputs = inputs;
ret->hidden_layers = hidden_layers;
ret->hidden = hidden;
ret->outputs = outputs;
ret->total_weights = total_weights;
ret->total_neurons = total_neurons;
// Set pointers.
ret->weight = (double*)((char*)ret + sizeof(Genann));
ret->output = ret->weight + ret->total_weights;
ret->delta = ret->output + ret->total_neurons;
genann_randomize(ret);
ret->activation_hidden = genann_act_sigmoid_cached;
ret->activation_output = genann_act_sigmoid_cached;
return ret;
}
static inline void genann_free(Genann *ann)
{
// The weight, output, and delta pointers go to the same buffer.
free(ann);
}
static inline Genann *genann_read(FILE *in)
{
int inputs, hidden_layers, hidden, outputs;
errno = 0;
int rc = fscanf(in, "%d %d %d %d", &inputs, &hidden_layers, &hidden, &outputs);
if(rc < 4 || errno != 0)
{
perror("fscanf");
return NULL;
}
Genann *ann = genann_init(inputs, hidden_layers, hidden, outputs);
for(int i = 0; i < ann->total_weights; ++i)
{
errno = 0;
rc = fscanf(in, " %le", ann->weight + i);
if(rc < 1 || errno != 0)
{
perror("fscanf");
genann_free(ann);
return NULL;
}
}
return ann;
}
static inline Genann *genann_copy(Genann const *ann)
{
const int size = sizeof(Genann) + sizeof(double) * (ann->total_weights + ann->total_neurons + (ann->total_neurons - ann->inputs));
Genann *ret = malloc(size);
if(!ret)
return 0;
memcpy(ret, ann, size);
// Set pointers.
ret->weight = (double*)((char*)ret + sizeof(Genann));
ret->output = ret->weight + ret->total_weights;
ret->delta = ret->output + ret->total_neurons;
return ret;
}
static inline double const *genann_run(Genann const *ann, double const *inputs)
{
double const *w = ann->weight;
double *o = ann->output + ann->inputs;
double const *i = ann->output;
// Copy the inputs to the scratch area, where we also store each neuron's
// output, for consistency. This way the first layer isn't a special case.
memcpy(ann->output, inputs, sizeof(double) * ann->inputs);
const genann_actfun act = ann->activation_hidden;
const genann_actfun acto = ann->activation_output;
// Figure hidden layers, if any.
for(int h = 0; h < ann->hidden_layers; ++h)
{
for(int j = 0; j < ann->hidden; ++j)
{
double sum = *w++ * -1.0;
for(int k = 0; k < (h == 0 ? ann->inputs : ann->hidden); ++k)
{
sum += *w++ * i[k];
}
*o++ = act(sum);
}
i += (h == 0 ? ann->inputs : ann->hidden);
}
double const *ret = o;
// Figure output layer.
for(int j = 0; j < ann->outputs; ++j)
{
double sum = *w++ * -1.0;
for(int k = 0; k < (ann->hidden_layers ? ann->hidden : ann->inputs); ++k)
sum += *w++ * i[k];
*o++ = acto(sum);
}
// Sanity check that we used all weights and wrote all outputs.
assert(w - ann->weight == ann->total_weights);
assert(o - ann->output == ann->total_neurons);
return ret;
}
static inline void genann_train(Genann const *ann, double const *inputs, double const *desired_outputs, double learning_rate) {
// To begin with, we must run the network forward.
genann_run(ann, inputs);
// First set the output layer deltas.
{
// First output.
double const *o = ann->output + ann->inputs + ann->hidden * ann->hidden_layers;
// First delta.
double *d = ann->delta + ann->hidden * ann->hidden_layers;
// First desired output.
double const *t = desired_outputs;
// Set output layer deltas.
if(ann->activation_output == genann_act_linear)
{
for(int j = 0; j < ann->outputs; ++j)
{
*d++ = *t++ - *o++;
}
}
else
{
for(int j = 0; j < ann->outputs; ++j)
{
*d++ = (*t - *o) * *o * (1.0 - *o);
++o; ++t;
}
}
}
// Set hidden layer deltas, start on last layer and work backwards.
// Note that loop is skipped in the case of hidden_layers == 0.
for(int h = ann->hidden_layers - 1; h >= 0; --h)
{
// Find first output and delta in this layer.
double const *o = ann->output + ann->inputs + (h * ann->hidden);
double *d = ann->delta + (h * ann->hidden);
// Find first delta in following layer (which may be hidden or output).
double const * const dd = ann->delta + ((h+1) * ann->hidden);
// Find first weight in following layer (which may be hidden or output).
double const * const ww = ann->weight + ((ann->inputs+1) * ann->hidden) + ((ann->hidden+1) * ann->hidden * (h));
for(int j = 0; j < ann->hidden; ++j)
{
double delta = 0;
for(int k = 0; k < (h == ann->hidden_layers-1 ? ann->outputs : ann->hidden); ++k)
{
const double forward_delta = dd[k];
const int windex = k * (ann->hidden + 1) + (j + 1);
const double forward_weight = ww[windex];
delta += forward_delta * forward_weight;
}
*d = *o * (1.0-*o) * delta;
++d; ++o;
}
}
// Train the outputs.
{
// Find first output delta.
// First output delta.
double const *d = ann->delta + ann->hidden * ann->hidden_layers;
// Find first weight to first output delta.
double *w = ann->weight + (ann->hidden_layers
? ((ann->inputs+1) * ann->hidden + (ann->hidden+1) * ann->hidden * (ann->hidden_layers-1))
: (0));
// Find first output in previous layer.
double const * const i = ann->output + (ann->hidden_layers
? (ann->inputs + (ann->hidden) * (ann->hidden_layers-1))
: 0);
// Set output layer weights.
for(int j = 0; j < ann->outputs; ++j) {
for(int k = 0; k < (ann->hidden_layers ? ann->hidden : ann->inputs) + 1; ++k) {
if(k == 0)
{
*w++ += *d * learning_rate * -1.0;
}
else
{
*w++ += *d * learning_rate * i[k-1];
}
}
++d;
}
assert(w - ann->weight == ann->total_weights);
}
// Train the hidden layers.
for(int h = ann->hidden_layers - 1; h >= 0; --h)
{
// Find first delta in this layer.
double const *d = ann->delta + (h * ann->hidden);
// Find first input to this layer.
double const *i = ann->output + (h
? (ann->inputs + ann->hidden * (h-1))
: 0);
// Find first weight to this layer.
double *w = ann->weight + (h
? ((ann->inputs+1) * ann->hidden + (ann->hidden+1) * (ann->hidden) * (h-1))
: 0);
for(int j = 0; j < ann->hidden; ++j)
{
for(int k = 0; k < (h == 0 ? ann->inputs : ann->hidden) + 1; ++k)
{
if (k == 0)
{
*w++ += *d * learning_rate * -1.0;
}
else
{
*w++ += *d * learning_rate * i[k-1];
}
}
++d;
}
}
}
static inline void genann_write(Genann const *ann, FILE *out)
{
fprintf(out, "%d %d %d %d", ann->inputs, ann->hidden_layers, ann->hidden, ann->outputs);
for(int i = 0; i < ann->total_weights; ++i)
fprintf(out, " %.20e", ann->weight[i]);
}