#include "Tinn.h" #include #include #include #include // Error function. static float err(const float a, const float b) { return 0.5f * powf(a - b, 2.0f); } // Partial derivative of error function. static float pderr(const float a, const float b) { return a - b; } // Total error. static float toterr(const float* const tg, const float* const o, const int size) { float sum = 0.0f; for(int i = 0; i < size; i++) sum += err(tg[i], o[i]); return sum; } // Activation function. static float act(const float a) { return 1.0f / (1.0f + expf(-a)); } // Partial derivative of activation function. static float pdact(const float a) { return a * (1.0f - a); } // Floating point random from 0.0 - 1.0. static float frand() { return rand() / (float) RAND_MAX; } // Back propagation. static void bprop(const Tinn t, const float* const in, const float* const tg, float rate) { for(int i = 0; i < t.nhid; i++) { float sum = 0.0f; // Calculate total error change with respect to output. for(int j = 0; j < t.nops; j++) { const float a = pderr(t.o[j], tg[j]); const float b = pdact(t.o[j]); sum += a * b * t.x[j * t.nhid + i]; // Correct weights in hidden to output layer. t.x[j * t.nhid + i] -= rate * a * b * t.h[i]; } // Correct weights in input to hidden layer. for(int j = 0; j < t.nips; j++) t.w[i * t.nips + j] -= rate * sum * pdact(t.h[i]) * in[j]; } } // Forward propagation. static void fprop(const Tinn t, const float* const in) { // Calculate hidden layer neuron values. for(int i = 0; i < t.nhid; i++) { float sum = 0.0f; for(int j = 0; j < t.nips; j++) sum += in[j] * t.w[i * t.nips + j]; t.h[i] = act(sum + t.b[0]); } // Calculate output layer neuron values. for(int i = 0; i < t.nops; i++) { float sum = 0.0f; for(int j = 0; j < t.nhid; j++) sum += t.h[j] * t.x[i * t.nhid + j]; t.o[i] = act(sum + t.b[1]); } } // Randomizes weights and biases. static void twrand(const Tinn t) { for(int i = 0; i < t.nw; i++) t.w[i] = frand() - 0.5f; for(int i = 0; i < t.nb; i++) t.b[i] = frand() - 0.5f; } // Prints a message and exits. static void bomb(const char* const message, ...) { va_list args; va_start(args, message); vprintf(message, args); va_end(args); exit(1); } // Fail safe file opening. static FILE* efopen(const char* const pathname, const char* const mode) { FILE* const file = fopen(pathname, mode); if(file == NULL) bomb("failure: fopen(\"%s\", \"%s\")\n", pathname, mode); return file; } // Fail safe clear allocation. static void* ecalloc(const size_t nmemb, const size_t size) { void* const mem = calloc(nmemb, size); if(mem == NULL) bomb("failure: calloc(%d, %d)\n", nmemb, size); return mem; } // Returns an output prediction given an input. float* xtpredict(const Tinn t, const float* const in) { fprop(t, in); return t.o; } // Trains a tinn with an input and target output with a learning rate. // Returns error rate of the neural network. float xttrain(const Tinn t, const float* const in, const float* const tg, float rate) { fprop(t, in); bprop(t, in, tg, rate); return toterr(tg, t.o, t.nops); } // Builds a new tinn object given number of inputs (nips), // number of hidden neurons for the hidden layer (nhid), // and number of outputs (nops). Tinn xtbuild(const int nips, const int nhid, const int nops) { Tinn t; // Tinn only supports one hidden layer so there are two biases. t.nb = 2; t.nw = nhid * (nips + nops); t.w = (float*) ecalloc(t.nw, sizeof(*t.w)); t.x = t.w + nhid * nips; t.b = (float*) ecalloc(t.nb, sizeof(*t.b)); t.h = (float*) ecalloc(nhid, sizeof(*t.h)); t.o = (float*) ecalloc(nops, sizeof(*t.o)); t.nips = nips; t.nhid = nhid; t.nops = nops; twrand(t); return t; } // Saves the tinn to disk. void xtsave(const Tinn t, const char* const path) { FILE* const file = efopen(path, "w"); // Header. fprintf(file, "%d %d %d\n", t.nips, t.nhid, t.nops); // Biases and weights. for(int i = 0; i < t.nb; i++) fprintf(file, "%a\n", (double) t.b[i]); for(int i = 0; i < t.nw; i++) fprintf(file, "%a\n", (double) t.w[i]); fclose(file); } // Loads a new tinn from disk. Tinn xtload(const char* const path) { FILE* const file = efopen(path, "r"); int nips = 0; int nhid = 0; int nops = 0; // Header. fscanf(file, "%d %d %d\n", &nips, &nhid, &nops); // A new tinn is returned. const Tinn t = xtbuild(nips, nhid, nops); // Biases and weights. for(int i = 0; i < t.nb; i++) fscanf(file, "%a\n", &t.b[i]); for(int i = 0; i < t.nw; i++) fscanf(file, "%a\n", &t.w[i]); fclose(file); return t; } // Frees a tinn from the heap. void xtfree(const Tinn t) { free(t.w); free(t.b); free(t.h); free(t.o); } void xtprint(const float* arr, const int size) { for(int i = 0; i < size; i++) printf("%f ", (double) arr[i]); printf("\n"); }