mirror of
https://github.com/glouw/tinn
synced 2025-01-21 17:42:05 +03:00
library
This commit is contained in:
parent
756e383bb5
commit
dc8b1fecb5
113
Tinn.c
Normal file
113
Tinn.c
Normal file
@ -0,0 +1,113 @@
|
||||
#include "Tinn.h"
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
|
||||
static double error(Tinn t, double* T)
|
||||
{
|
||||
double error = 0.0;
|
||||
int i;
|
||||
for(i = 0; i < t.output; i++)
|
||||
error += 0.5 * pow(T[i] - t.O[i], 2.0);
|
||||
return error;
|
||||
}
|
||||
|
||||
static void backpass(Tinn t, double* I, double* T, double rate)
|
||||
{
|
||||
int i, j, k;
|
||||
double* X = t.W + t.hidden * t.inputs;
|
||||
for(i = 0; i < t.inputs; i++)
|
||||
{
|
||||
double sum = 0.0;
|
||||
for(k = 0; k < t.output; k++)
|
||||
{
|
||||
double a = t.O[k] - T[k];
|
||||
double b = t.O[k] * (1 - t.O[k]);
|
||||
double c = X[k * t.output + i];
|
||||
sum += a * b * c;
|
||||
}
|
||||
for(j = 0; j < t.hidden; j++)
|
||||
{
|
||||
double a = sum;
|
||||
double b = t.H[i] * (1 - t.H[i]);
|
||||
double c = I[j];
|
||||
t.W[i * t.hidden + j] -= rate * a * b * c;
|
||||
}
|
||||
}
|
||||
for(i = 0; i < t.output; i++)
|
||||
for(j = 0; j < t.hidden; j++)
|
||||
{
|
||||
double a = t.O[i] - T[i];
|
||||
double b = t.O[i] * (1 - t.O[i]);
|
||||
double c = t.H[j];
|
||||
X[t.hidden * i + j] -= rate * a * b * c;
|
||||
}
|
||||
}
|
||||
|
||||
static double act(double net)
|
||||
{
|
||||
return 1.0 / (1.0 + exp(-net));
|
||||
}
|
||||
|
||||
static void forepass(Tinn t, double* I)
|
||||
{
|
||||
int i, j;
|
||||
const double B[] = { 0.35, 0.60 };
|
||||
double* X = t.W + t.hidden * t.inputs;
|
||||
for(i = 0; i < t.hidden; i++)
|
||||
{
|
||||
double sum = 0.0;
|
||||
for(j = 0; j < t.inputs; j++)
|
||||
{
|
||||
double a = I[j];
|
||||
double b = t.W[i * t.inputs + j];
|
||||
sum += a * b;
|
||||
}
|
||||
t.H[i] = act(sum + B[0]);
|
||||
}
|
||||
for(i = 0; i < t.output; i++)
|
||||
{
|
||||
double sum = 0.0;
|
||||
for(j = 0; j < t.hidden; j++)
|
||||
{
|
||||
double a = t.H[j];
|
||||
double b = X[i * t.hidden + j];
|
||||
sum += a * b;
|
||||
}
|
||||
t.O[i] = act(sum + B[1]);
|
||||
}
|
||||
}
|
||||
|
||||
double ttrain(Tinn t, double* I, double* T, double rate)
|
||||
{
|
||||
forepass(t, I);
|
||||
backpass(t, I, T, rate);
|
||||
return error(t, T);
|
||||
}
|
||||
|
||||
Tinn tnew(int inputs, int output, int hidden)
|
||||
{
|
||||
Tinn t;
|
||||
t.inputs = inputs;
|
||||
t.output = output;
|
||||
t.hidden = hidden;
|
||||
t.H = (double*) calloc(hidden, sizeof(*t.H));
|
||||
t.O = (double*) calloc(output, sizeof(*t.O));
|
||||
t.W = (double*) calloc(hidden * (inputs + output), sizeof(*t.W));
|
||||
t.W[0] = 0.15;
|
||||
t.W[1] = 0.20;
|
||||
t.W[2] = 0.25;
|
||||
t.W[3] = 0.30;
|
||||
t.W[4] = 0.40;
|
||||
t.W[5] = 0.45;
|
||||
t.W[6] = 0.50;
|
||||
t.W[7] = 0.55;
|
||||
return t;
|
||||
}
|
||||
|
||||
void tfree(Tinn t)
|
||||
{
|
||||
free(t.W);
|
||||
free(t.H);
|
||||
free(t.O);
|
||||
}
|
26
Tinn.h
Normal file
26
Tinn.h
Normal file
@ -0,0 +1,26 @@
|
||||
#ifndef _TINN_H_
|
||||
#define _TINN_H_
|
||||
|
||||
/*
|
||||
* TINN - The tiny dependency free ANSI-C feed forward neural network
|
||||
* library with one hidden layer back propogation support.
|
||||
*/
|
||||
|
||||
typedef struct
|
||||
{
|
||||
double* O;
|
||||
double* H;
|
||||
double* W;
|
||||
int output;
|
||||
int hidden;
|
||||
int inputs;
|
||||
}
|
||||
Tinn;
|
||||
|
||||
double ttrain(Tinn, double* I, double* T, double rate);
|
||||
|
||||
Tinn tnew(int inputs, int output, int hidden);
|
||||
|
||||
void tfree(Tinn);
|
||||
|
||||
#endif
|
120
test2.c
120
test2.c
@ -1,112 +1,30 @@
|
||||
#include <stdlib.h>
|
||||
#include "Tinn.h"
|
||||
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
|
||||
static double act(double net)
|
||||
{
|
||||
return 1.0 / (1.0 + exp(-net));
|
||||
}
|
||||
|
||||
static void forepass(double* I, double* O, double* H, double* W, double* B, const int inputs, const int output, const int hidden)
|
||||
{
|
||||
double* X = W + hidden * inputs;
|
||||
for(int i = 0; i < hidden; i++) { for(int j = 0; j < inputs; j++) H[i] += I[j] * W[i * inputs + j]; H[i] = act(H[i] + B[0]); }
|
||||
for(int i = 0; i < output; i++) { for(int j = 0; j < hidden; j++) O[i] += H[j] * X[i * hidden + j]; O[i] = act(O[i] + B[1]); }
|
||||
}
|
||||
|
||||
static void backpass(double* I, double* O, double* H, double* W, double* T, const int inputs, const int output, const int hidden, const double rate)
|
||||
{
|
||||
double* X = W + hidden * inputs;
|
||||
for(int i = 0; i < output; i++)
|
||||
for(int j = 0; j < hidden; j++)
|
||||
X[2 * i + j] -= rate * ((O[i] - T[i]) * (O[i] * (1 - O[i])) * H[j]);
|
||||
|
||||
//W[4] -= rate * ((T[0] - O[0]) * (T[0] * (1 - T[0])) * H[0]);
|
||||
//W[5] -= rate * ((T[0] - O[0]) * (T[0] * (1 - T[0])) * H[1]);
|
||||
//W[6] -= rate * ((T[1] - O[1]) * (T[1] * (1 - T[1])) * H[0]);
|
||||
//W[7] -= rate * ((T[1] - O[1]) * (T[1] * (1 - T[1])) * H[1]);
|
||||
}
|
||||
|
||||
static double cerror(double *O, double* T, const int output)
|
||||
{
|
||||
double error = 0.0;
|
||||
for(int i = 0; i < output; i++)
|
||||
error += 0.5 * pow(T[i] - O[i], 2.0);
|
||||
return error;
|
||||
}
|
||||
|
||||
static double* train(double* I, double* T, const int inputs, const int output, const int hidden)
|
||||
{
|
||||
// Weights.
|
||||
double* W = (double*) calloc(hidden * (inputs + output), sizeof(*W));
|
||||
W[0] = 0.15;
|
||||
W[1] = 0.20;
|
||||
W[2] = 0.25;
|
||||
W[3] = 0.30;
|
||||
W[4] = 0.40;
|
||||
W[5] = 0.45;
|
||||
W[6] = 0.50;
|
||||
W[7] = 0.55;
|
||||
|
||||
// Fixed at single hidden layer - only two biases are needed.
|
||||
double B[] = { 0.35, 0.60 };
|
||||
|
||||
// Hidden layer.
|
||||
double* H = (double*) calloc(hidden, sizeof(*H));
|
||||
|
||||
// Output layer. Will eventually converge to output with enough iterations.
|
||||
double* O = (double*) calloc(output, sizeof(*O));
|
||||
|
||||
// Computes hidden and target nodes.
|
||||
forepass(I, O, H, W, B, inputs, output, hidden);
|
||||
|
||||
// Computes output to target error.
|
||||
double err = cerror(O, O, output);
|
||||
|
||||
printf("error: %f\n", err);
|
||||
|
||||
// Updates weights based on target error.
|
||||
backpass(I, O, H, W, T, inputs, output, hidden, 0.5);
|
||||
|
||||
printf("W5: %f\n", W[4]);
|
||||
printf("W6: %f\n", W[5]);
|
||||
printf("W7: %f\n", W[6]);
|
||||
printf("W8: %f\n", W[7]);
|
||||
|
||||
printf("%f\n", H[0]);
|
||||
printf("%f\n", H[1]);
|
||||
printf("%f\n", O[0]);
|
||||
printf("%f\n", O[1]);
|
||||
|
||||
free(H);
|
||||
|
||||
return W;
|
||||
}
|
||||
|
||||
double* predict(double* I, double* W, const int inputs, const int output)
|
||||
{
|
||||
double* O = NULL;
|
||||
|
||||
// ...
|
||||
|
||||
return O;
|
||||
}
|
||||
#include <stdlib.h>
|
||||
|
||||
int main()
|
||||
{
|
||||
const int inputs = 2, output = 2, hidden = 2;
|
||||
|
||||
// Input.
|
||||
int i;
|
||||
int inputs = 2;
|
||||
int output = 2;
|
||||
int hidden = 2;
|
||||
double* I = (double*) calloc(inputs, sizeof(*I));
|
||||
double* T = (double*) calloc(output, sizeof(*T));
|
||||
Tinn tinn = tnew(inputs, output, hidden);
|
||||
/* Input. */
|
||||
I[0] = 0.05;
|
||||
I[1] = 0.10;
|
||||
|
||||
// Target.
|
||||
double* T = (double*) calloc(output, sizeof(*I));
|
||||
/* Target. */
|
||||
T[0] = 0.01;
|
||||
T[1] = 0.99;
|
||||
|
||||
train(I, T, inputs, output, hidden);
|
||||
|
||||
for(i = 0; i < 10000; i++)
|
||||
{
|
||||
double error = ttrain(tinn, I, T, 0.5);
|
||||
printf("error: %0.13f\n", error);
|
||||
}
|
||||
tfree(tinn);
|
||||
free(I);
|
||||
free(T);
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user