mirror of
https://github.com/glouw/tinn
synced 2024-11-21 14:01:52 +03:00
doc
This commit is contained in:
parent
396bd2bcdd
commit
c0a6cbe4be
24
test.c
24
test.c
@ -4,16 +4,23 @@
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
// Data object.
|
||||
typedef struct
|
||||
{
|
||||
// 2D floating point array of input.
|
||||
float** in;
|
||||
// 2D floating point array of target.
|
||||
float** tg;
|
||||
// Number of inputs to neural network.
|
||||
int nips;
|
||||
// Number of outputs to neural network.
|
||||
int nops;
|
||||
// Number of rows in file (number of sets for neural network).
|
||||
int rows;
|
||||
}
|
||||
Data;
|
||||
|
||||
// Returns the number of lines in a file.
|
||||
static int lns(FILE* const file)
|
||||
{
|
||||
int ch = EOF;
|
||||
@ -31,6 +38,7 @@ static int lns(FILE* const file)
|
||||
return lines;
|
||||
}
|
||||
|
||||
// Reads a line from a file.
|
||||
static char* readln(FILE* const file)
|
||||
{
|
||||
int ch = EOF;
|
||||
@ -47,6 +55,7 @@ static char* readln(FILE* const file)
|
||||
return line;
|
||||
}
|
||||
|
||||
// New 2D array of floats.
|
||||
static float** new2d(const int rows, const int cols)
|
||||
{
|
||||
float** row = (float**) malloc((rows) * sizeof(float*));
|
||||
@ -55,6 +64,7 @@ static float** new2d(const int rows, const int cols)
|
||||
return row;
|
||||
}
|
||||
|
||||
// New data object.
|
||||
static Data ndata(const int nips, const int nops, const int rows)
|
||||
{
|
||||
const Data data = {
|
||||
@ -63,6 +73,7 @@ static Data ndata(const int nips, const int nops, const int rows)
|
||||
return data;
|
||||
}
|
||||
|
||||
// Gets one row of inputs and outputs from a string.
|
||||
static void parse(const Data data, char* line, const int row)
|
||||
{
|
||||
const int cols = data.nips + data.nops;
|
||||
@ -76,6 +87,7 @@ static void parse(const Data data, char* line, const int row)
|
||||
}
|
||||
}
|
||||
|
||||
// Frees a data object from the heap.
|
||||
static void dfree(const Data d)
|
||||
{
|
||||
for(int row = 0; row < d.rows; row++)
|
||||
@ -87,6 +99,7 @@ static void dfree(const Data d)
|
||||
free(d.tg);
|
||||
}
|
||||
|
||||
// Randomly shuffles a data object.
|
||||
static void shuffle(const Data d)
|
||||
{
|
||||
for(int a = 0; a < d.rows; a++)
|
||||
@ -103,6 +116,7 @@ static void shuffle(const Data d)
|
||||
}
|
||||
}
|
||||
|
||||
// Parses file from path getting all inputs and outputs for the neural network. Returns data object.
|
||||
static Data build(const char* path, const int nips, const int nops)
|
||||
{
|
||||
FILE* file = fopen(path, "r");
|
||||
@ -170,12 +184,14 @@ int main()
|
||||
// Now we do a prediction with the neural network we loaded from disk.
|
||||
// Ideally, we would also load a testing set to make the prediction with,
|
||||
// but for the sake of brevity here we just reuse the training set from earlier.
|
||||
// One data set is picked at random.
|
||||
const int pick = rand() % data.rows;
|
||||
const float* const in = data.in[pick];
|
||||
const float* const tg = data.tg[pick];
|
||||
// One data set is picked at random (zero index of input and target arrays is enough
|
||||
// as they were both shuffled earlier).
|
||||
const float* const in = data.in[0];
|
||||
const float* const tg = data.tg[0];
|
||||
const float* const pd = xtpredict(loaded, in);
|
||||
// Prints target.
|
||||
xtprint(tg, data.nops);
|
||||
// Prints prediction.
|
||||
xtprint(pd, data.nops);
|
||||
// All done. Let's clean up.
|
||||
xtfree(loaded);
|
||||
|
Loading…
Reference in New Issue
Block a user