mirror of
https://github.com/glouw/tinn
synced 2025-01-07 02:52:04 +03:00
update
This commit is contained in:
parent
82ea55d512
commit
171bd195e9
136
Tinn.c
136
Tinn.c
@ -4,110 +4,114 @@
|
||||
#include <math.h>
|
||||
#include <time.h>
|
||||
|
||||
static double error(Tinn t, double* tg)
|
||||
// Error function.
|
||||
static double err(double a, double b)
|
||||
{
|
||||
double error = 0.0;
|
||||
int i;
|
||||
for(i = 0; i < t.nops; i++)
|
||||
error += 0.5 * pow(tg[i] - t.o[i], 2.0);
|
||||
return error;
|
||||
return 0.5 * pow(a - b, 2.0);
|
||||
}
|
||||
|
||||
static void backwards(Tinn t, double* in, double* tg, double rate)
|
||||
// Partial derivative of error function.
|
||||
static double pderr(double a, double b)
|
||||
{
|
||||
double* x = t.w + t.nhid * t.nips;
|
||||
int i;
|
||||
for(i = 0; i < t.nhid; i++)
|
||||
{
|
||||
double sum = 0.0;
|
||||
int j;
|
||||
/* Calculate total error change with respect to output */
|
||||
for(j = 0; j < t.nops; j++)
|
||||
{
|
||||
double a = t.o[j] - tg[j];
|
||||
double b = t.o[j] * (1 - t.o[j]);
|
||||
double c = x[j * t.nhid + i];
|
||||
sum += a * b * c;
|
||||
}
|
||||
/* Correct weights in input to hidden layer */
|
||||
for(j = 0; j < t.nips; j++)
|
||||
{
|
||||
double a = sum;
|
||||
double b = t.h[i] * (1 - t.h[i]);
|
||||
double c = in[j];
|
||||
t.w[i * t.nips + j] -= rate * a * b * c;
|
||||
}
|
||||
/* Correct weights in hidden to output layer */
|
||||
for(j = 0; j < t.nops; j++)
|
||||
{
|
||||
double a = t.o[j] - tg[j];
|
||||
double b = t.o[j] * (1 - t.o[j]);
|
||||
double c = t.h[i];
|
||||
x[j * t.nhid + i] -= rate * a * b * c;
|
||||
}
|
||||
}
|
||||
return a - b;
|
||||
}
|
||||
|
||||
static double act(double net)
|
||||
// Total error.
|
||||
static double terr(const double* tg, const double* o, int size)
|
||||
{
|
||||
return 1.0 / (1.0 + exp(-net));
|
||||
double sum = 0.0;
|
||||
for(int i = 0; i < size; i++)
|
||||
sum += err(tg[i], o[i]);
|
||||
return sum;
|
||||
}
|
||||
|
||||
static double frand(void)
|
||||
// Activation function.
|
||||
static double act(double a)
|
||||
{
|
||||
return 1.0 / (1.0 + exp(-a));
|
||||
}
|
||||
|
||||
// Partial derivative of activation function.
|
||||
static double pdact(double a)
|
||||
{
|
||||
return a * (1.0 - a);
|
||||
}
|
||||
|
||||
// Floating point random from 0.0 - 1.0.
|
||||
static double frand()
|
||||
{
|
||||
return rand() / (double) RAND_MAX;
|
||||
}
|
||||
|
||||
static void forewards(Tinn t, double* in)
|
||||
// Back propagation.
|
||||
static void backwards(const Tinn t, const double* in, const double* tg, double rate)
|
||||
{
|
||||
double* x = t.w + t.nhid * t.nips;
|
||||
int i;
|
||||
/* Calculate hidden layer neuron values */
|
||||
for(i = 0; i < t.nhid; i++)
|
||||
for(int i = 0; i < t.nhid; i++)
|
||||
{
|
||||
double sum = 0.0;
|
||||
int j;
|
||||
for(j = 0; j < t.nips; j++)
|
||||
// Calculate total error change with respect to output.
|
||||
for(int j = 0; j < t.nops; j++)
|
||||
{
|
||||
double a = in[j];
|
||||
double b = t.w[i * t.nips + j];
|
||||
sum += a * b;
|
||||
double a = pderr(t.o[j], tg[j]);
|
||||
double b = pdact(t.o[j]);
|
||||
sum += a * b * x[j * t.nhid + i];
|
||||
// Correct weights in hidden to output layer.
|
||||
x[j * t.nhid + i] -= rate * a * b * t.h[i];
|
||||
}
|
||||
// Correct weights in input to hidden layer.
|
||||
for(int j = 0; j < t.nips; j++)
|
||||
t.w[i * t.nips + j] -= rate * sum * pdact(t.h[i]) * in[j];
|
||||
}
|
||||
}
|
||||
|
||||
// Forward propagation.
|
||||
static void forewards(const Tinn t, const double* in)
|
||||
{
|
||||
double* x = t.w + t.nhid * t.nips;
|
||||
// Calculate hidden layer neuron values.
|
||||
for(int i = 0; i < t.nhid; i++)
|
||||
{
|
||||
double sum = 0.0;
|
||||
for(int j = 0; j < t.nips; j++)
|
||||
sum += in[j] * t.w[i * t.nips + j];
|
||||
t.h[i] = act(sum + t.b[0]);
|
||||
}
|
||||
/* Calculate output layer neuron values */
|
||||
for(i = 0; i < t.nops; i++)
|
||||
// Calculate output layer neuron values.
|
||||
for(int i = 0; i < t.nops; i++)
|
||||
{
|
||||
double sum = 0.0;
|
||||
int j;
|
||||
for(j = 0; j < t.nhid; j++)
|
||||
{
|
||||
double a = t.h[j];
|
||||
double b = x[i * t.nhid + j];
|
||||
sum += a * b;
|
||||
}
|
||||
for(int j = 0; j < t.nhid; j++)
|
||||
sum += t.h[j] * x[i * t.nhid + j];
|
||||
t.o[i] = act(sum + t.b[1]);
|
||||
}
|
||||
}
|
||||
|
||||
static void twrand(Tinn t)
|
||||
// Randomizes weights and biases.
|
||||
static void twrand(const Tinn t)
|
||||
{
|
||||
int wgts = t.nhid * (t.nips + t.nops);
|
||||
int i;
|
||||
for(i = 0; i < wgts; i++) t.w[i] = frand();
|
||||
for(i = 0; i < t.nb; i++) t.b[i] = frand();
|
||||
for(int i = 0; i < wgts; i++) t.w[i] = frand() - 0.5;
|
||||
for(int i = 0; i < t.nb; i++) t.b[i] = frand() - 0.5;
|
||||
}
|
||||
|
||||
double xttrain(Tinn t, double* in, double* tg, double rate)
|
||||
double* xpredict(const Tinn t, const double* in)
|
||||
{
|
||||
forewards(t, in);
|
||||
return t.o;
|
||||
}
|
||||
|
||||
double xttrain(const Tinn t, const double* in, const double* tg, double rate)
|
||||
{
|
||||
forewards(t, in);
|
||||
backwards(t, in, tg, rate);
|
||||
return error(t, tg);
|
||||
return terr(tg, t.o, t.nops);
|
||||
}
|
||||
|
||||
Tinn xtbuild(int nips, int nhid, int nops)
|
||||
{
|
||||
Tinn t;
|
||||
// Tinn only supports one hidden layer so there are two biases.
|
||||
t.nb = 2;
|
||||
t.w = (double*) calloc(nhid * (nips + nops), sizeof(*t.w));
|
||||
t.b = (double*) calloc(t.nb, sizeof(*t.b));
|
||||
@ -121,7 +125,7 @@ Tinn xtbuild(int nips, int nhid, int nops)
|
||||
return t;
|
||||
}
|
||||
|
||||
void xtfree(Tinn t)
|
||||
void xtfree(const Tinn t)
|
||||
{
|
||||
free(t.w);
|
||||
free(t.h);
|
||||
|
28
Tinn.h
28
Tinn.h
@ -1,23 +1,25 @@
|
||||
#ifndef _TINN_H_
|
||||
#define _TINN_H_
|
||||
#pragma once
|
||||
|
||||
typedef struct
|
||||
{
|
||||
double* w;
|
||||
double* b;
|
||||
double* h;
|
||||
double* o;
|
||||
double* w; // Weights.
|
||||
double* b; // Biases.
|
||||
double* h; // Hidden layer.
|
||||
double* o; // Output layer.
|
||||
|
||||
// Number of biases - always two - Tinn only supports a single hidden layer.
|
||||
int nb;
|
||||
int nips;
|
||||
int nhid;
|
||||
int nops;
|
||||
|
||||
int nips; // Number of inputs.
|
||||
int nhid; // Number of hidden neurons.
|
||||
int nops; // Number of outputs.
|
||||
}
|
||||
Tinn;
|
||||
|
||||
extern double xttrain(Tinn, double* in, double* tg, double rate);
|
||||
double xttrain(const Tinn, const double* in, const double* tg, double rate);
|
||||
|
||||
extern Tinn xtbuild(int nips, int nhid, int nops);
|
||||
Tinn xtbuild(int nips, int nhid, int nops);
|
||||
|
||||
extern void xtfree(Tinn);
|
||||
void xtfree(Tinn);
|
||||
|
||||
#endif
|
||||
double* xpredict(const Tinn, const double* in);
|
||||
|
99
test.c
99
test.c
@ -1,20 +1,14 @@
|
||||
#include "Tinn.h"
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
|
||||
#define toss(t, n) ((t*) malloc((n) * sizeof(t)))
|
||||
|
||||
#define retoss(ptr, t, n) (ptr = (t*) realloc((ptr), (n) * sizeof(t)))
|
||||
|
||||
typedef struct
|
||||
{
|
||||
double** id;
|
||||
double** od;
|
||||
int icols;
|
||||
int ocols;
|
||||
double** in;
|
||||
double** tg;
|
||||
int nips;
|
||||
int nops;
|
||||
int rows;
|
||||
}
|
||||
Data;
|
||||
@ -41,12 +35,12 @@ static char* readln(FILE* const file)
|
||||
int ch = EOF;
|
||||
int reads = 0;
|
||||
int size = 128;
|
||||
char* line = toss(char, size);
|
||||
char* line = ((char*) malloc((size) * sizeof(char)));
|
||||
while((ch = getc(file)) != '\n' && ch != EOF)
|
||||
{
|
||||
line[reads++] = ch;
|
||||
if(reads + 1 == size)
|
||||
retoss(line, char, size *= 2);
|
||||
line = (char*) realloc((line), (size *= 2) * sizeof(char));
|
||||
}
|
||||
line[reads] = '\0';
|
||||
return line;
|
||||
@ -54,30 +48,30 @@ static char* readln(FILE* const file)
|
||||
|
||||
static double** new2d(const int rows, const int cols)
|
||||
{
|
||||
double** row = toss(double*, rows);
|
||||
double** row = (double**) malloc((rows) * sizeof(double*));
|
||||
for(int r = 0; r < rows; r++)
|
||||
row[r] = toss(double, cols);
|
||||
row[r] = (double*) malloc((cols) * sizeof(double));
|
||||
return row;
|
||||
}
|
||||
|
||||
static Data ndata(const int icols, const int ocols, const int rows)
|
||||
static Data ndata(const int nips, const int nops, const int rows)
|
||||
{
|
||||
const Data data = {
|
||||
new2d(rows, icols), new2d(rows, ocols), icols, ocols, rows
|
||||
new2d(rows, nips), new2d(rows, nops), nips, nops, rows
|
||||
};
|
||||
return data;
|
||||
}
|
||||
|
||||
static void parse(const Data data, char* line, const int row)
|
||||
{
|
||||
const int cols = data.icols + data.ocols;
|
||||
const int cols = data.nips + data.nops;
|
||||
for(int col = 0; col < cols; col++)
|
||||
{
|
||||
const float val = atof(strtok(col == 0 ? line : NULL, " "));
|
||||
if(col < data.icols)
|
||||
data.id[row][col] = val;
|
||||
const double val = atof(strtok(col == 0 ? line : NULL, " "));
|
||||
if(col < data.nips)
|
||||
data.in[row][col] = val;
|
||||
else
|
||||
data.od[row][col - data.icols] = val;
|
||||
data.tg[row][col - data.nips] = val;
|
||||
}
|
||||
}
|
||||
|
||||
@ -85,11 +79,11 @@ static void dfree(const Data d)
|
||||
{
|
||||
for(int row = 0; row < d.rows; row++)
|
||||
{
|
||||
free(d.id[row]);
|
||||
free(d.od[row]);
|
||||
free(d.in[row]);
|
||||
free(d.tg[row]);
|
||||
}
|
||||
free(d.id);
|
||||
free(d.od);
|
||||
free(d.in);
|
||||
free(d.tg);
|
||||
}
|
||||
|
||||
static void shuffle(const Data d)
|
||||
@ -97,28 +91,29 @@ static void shuffle(const Data d)
|
||||
for(int a = 0; a < d.rows; a++)
|
||||
{
|
||||
const int b = rand() % d.rows;
|
||||
double* ot = d.od[a];
|
||||
double* it = d.id[a];
|
||||
double* ot = d.tg[a];
|
||||
double* it = d.in[a];
|
||||
// Swap output.
|
||||
d.od[a] = d.od[b];
|
||||
d.od[b] = ot;
|
||||
d.tg[a] = d.tg[b];
|
||||
d.tg[b] = ot;
|
||||
// Swap input.
|
||||
d.id[a] = d.id[b];
|
||||
d.id[b] = it;
|
||||
d.in[a] = d.in[b];
|
||||
d.in[b] = it;
|
||||
}
|
||||
}
|
||||
|
||||
static Data build(const char* path, const int icols, const int ocols)
|
||||
static Data build(const char* path, const int nips, const int nops)
|
||||
{
|
||||
FILE* file = fopen(path, "r");
|
||||
if(file == NULL)
|
||||
{
|
||||
printf("Could not open %s\n", path);
|
||||
printf("Get the training data: \n");
|
||||
printf("Get it from the machine learning database: ");
|
||||
printf("wget http://archive.ics.uci.edu/ml/machine-learning-databases/semeion/semeion.data\n");
|
||||
exit(1);
|
||||
}
|
||||
const int rows = lns(file);
|
||||
Data data = ndata(icols, ocols, rows);
|
||||
Data data = ndata(nips, nops, rows);
|
||||
for(int row = 0; row < rows; row++)
|
||||
{
|
||||
char* line = readln(file);
|
||||
@ -129,22 +124,40 @@ static Data build(const char* path, const int icols, const int ocols)
|
||||
return data;
|
||||
}
|
||||
|
||||
int main(void)
|
||||
int main()
|
||||
{
|
||||
const Data data = build("semeion.data", 256, 10);
|
||||
shuffle(data);
|
||||
const Tinn tinn = xtbuild(data.icols, 64, data.ocols);
|
||||
for(int i = 0; i < 10000; i++)
|
||||
// Input and output size is harded coded here,
|
||||
// so make sure the training data sizes match.
|
||||
const int nips = 256;
|
||||
const int nops = 10;
|
||||
// Hyper Parameters.
|
||||
// Learning rate is annealed and thus not constant.
|
||||
const int nhid = 32;
|
||||
double rate = 0.5;
|
||||
// Load the training set.
|
||||
const Data data = build("semeion.data", nips, nops);
|
||||
// Rock and roll.
|
||||
const Tinn tinn = xtbuild(nips, nhid, nops);
|
||||
for(int i = 0; i < 100; i++)
|
||||
{
|
||||
shuffle(data);
|
||||
double error = 0.0;
|
||||
for(int j = 0; j < data.rows; j++)
|
||||
{
|
||||
double* in = data.id[j];
|
||||
double* tg = data.od[j];
|
||||
//error += xttrain(tinn, in, tg, 0.5);
|
||||
const double* const in = data.in[j];
|
||||
const double* const tg = data.tg[j];
|
||||
error += xttrain(tinn, in, tg, rate);
|
||||
}
|
||||
printf("%.12f\n", error);
|
||||
printf("error %.12f :: rate %f\n", error / data.rows, rate);
|
||||
rate *= 0.99;
|
||||
}
|
||||
// Ideally, you would load a testing set for predictions,
|
||||
// but for the sake of brevity the training set is reused.
|
||||
const double* const in = data.in[0];
|
||||
const double* const tg = data.tg[0];
|
||||
const double* const pd = xpredict(tinn, in);
|
||||
for(int i = 0; i < data.nops; i++) { printf("%f ", tg[i]); } printf("\n");
|
||||
for(int i = 0; i < data.nops; i++) { printf("%f ", pd[i]); } printf("\n");
|
||||
xtfree(tinn);
|
||||
dfree(data);
|
||||
return 0;
|
||||
|
Loading…
Reference in New Issue
Block a user