stb/stb.h
2015-08-08 10:45:26 +09:00

14087 lines
440 KiB
C

/* stb.h - v2.24 - Sean's Tool Box -- public domain -- http://nothings.org/stb.h
no warranty is offered or implied; use this code at your own risk
This is a single header file with a bunch of useful utilities
for getting stuff done in C/C++.
Documentation: http://nothings.org/stb/stb_h.html
Unit tests: http://nothings.org/stb/stb.c
============================================================================
You MUST
#define STB_DEFINE
in EXACTLY _one_ C or C++ file that includes this header, BEFORE the
include, like this:
#define STB_DEFINE
#include "stb.h"
All other files should just #include "stb.h" without the #define.
============================================================================
Version History
2.24 various warning & bugfixes
2.23 fix 2.22
2.22 64-bit fixes from '!='; fix stb_sdict_copy() to have preferred name
2.21 utf-8 decoder rejects "overlong" encodings; attempted 64-bit improvements
2.20 fix to hash "copy" function--reported by someone with handle "!="
2.19 ???
2.18 stb_readdir_subdirs_mask
2.17 stb_cfg_dir
2.16 fix stb_bgio_, add stb_bgio_stat(); begin a streaming wrapper
2.15 upgraded hash table template to allow:
- aggregate keys (explicit comparison func for EMPTY and DEL keys)
- "static" implementations (so they can be culled if unused)
2.14 stb_mprintf
2.13 reduce identifiable strings in STB_NO_STB_STRINGS
2.12 fix STB_ONLY -- lots of uint32s, TRUE/FALSE things had crept in
2.11 fix bug in stb_dirtree_get() which caused "c://path" sorts of stuff
2.10 STB_F(), STB_I() inline constants (also KI,KU,KF,KD)
2.09 stb_box_face_vertex_axis_side
2.08 bugfix stb_trimwhite()
2.07 colored printing in windows (why are we in 1985?)
2.06 comparison functions are now functions-that-return-functions and
accept a struct-offset as a parameter (not thread-safe)
2.05 compile and pass tests under Linux (but no threads); thread cleanup
2.04 stb_cubic_bezier_1d, smoothstep, avoid dependency on registry
2.03 ?
2.02 remove integrated documentation
2.01 integrate various fixes; stb_force_uniprocessor
2.00 revised stb_dupe to use multiple hashes
1.99 stb_charcmp
1.98 stb_arr_deleten, stb_arr_insertn
1.97 fix stb_newell_normal()
1.96 stb_hash_number()
1.95 hack stb__rec_max; clean up recursion code to use new functions
1.94 stb_dirtree; rename stb_extra to stb_ptrmap
1.93 stb_sem_new() API cleanup (no blockflag-starts blocked; use 'extra')
1.92 stb_threadqueue--multi reader/writer queue, fixed size or resizeable
1.91 stb_bgio_* for reading disk asynchronously
1.90 stb_mutex uses CRITICAL_REGION; new stb_sync primitive for thread
joining; workqueue supports stb_sync instead of stb_semaphore
1.89 support ';' in constant-string wildcards; stb_mutex wrapper (can
implement with EnterCriticalRegion eventually)
1.88 portable threading API (only for win32 so far); worker thread queue
1.87 fix wildcard handling in stb_readdir_recursive
1.86 support ';' in wildcards
1.85 make stb_regex work with non-constant strings;
beginnings of stb_introspect()
1.84 (forgot to make notes)
1.83 whoops, stb_keep_if_different wasn't deleting the temp file
1.82 bring back stb_compress from stb_file.h for cmirror
1.81 various bugfixes, STB_FASTMALLOC_INIT inits FASTMALLOC in release
1.80 stb_readdir returns utf8; write own utf8-utf16 because lib was wrong
1.79 stb_write
1.78 calloc() support for malloc wrapper, STB_FASTMALLOC
1.77 STB_FASTMALLOC
1.76 STB_STUA - Lua-like language; (stb_image, stb_csample, stb_bilinear)
1.75 alloc/free array of blocks; stb_hheap bug; a few stb_ps_ funcs;
hash*getkey, hash*copy; stb_bitset; stb_strnicmp; bugfix stb_bst
1.74 stb_replaceinplace; use stdlib C function to convert utf8 to UTF-16
1.73 fix performance bug & leak in stb_ischar (C++ port lost a 'static')
1.72 remove stb_block, stb_block_manager, stb_decompress (to stb_file.h)
1.71 stb_trimwhite, stb_tokens_nested, etc.
1.70 back out 1.69 because it might problemize mixed builds; stb_filec()
1.69 (stb_file returns 'char *' in C++)
1.68 add a special 'tree root' data type for stb_bst; stb_arr_end
1.67 full C++ port. (stb_block_manager)
1.66 stb_newell_normal
1.65 stb_lex_item_wild -- allow wildcard items which MUST match entirely
1.64 stb_data
1.63 stb_log_name
1.62 stb_define_sort; C++ cleanup
1.61 stb_hash_fast -- Paul Hsieh's hash function (beats Bob Jenkins'?)
1.60 stb_delete_directory_recursive
1.59 stb_readdir_recursive
1.58 stb_bst variant with parent pointer for O(1) iteration, not O(log N)
1.57 replace LCG random with Mersenne Twister (found a public domain one)
1.56 stb_perfect_hash, stb_ischar, stb_regex
1.55 new stb_bst API allows multiple BSTs per node (e.g. secondary keys)
1.54 bugfix: stb_define_hash, stb_wildmatch, regexp
1.53 stb_define_hash; recoded stb_extra, stb_sdict use it
1.52 stb_rand_define, stb_bst, stb_reverse
1.51 fix 'stb_arr_setlen(NULL, 0)'
1.50 stb_wordwrap
1.49 minor improvements to enable the scripting language
1.48 better approach for stb_arr using stb_malloc; more invasive, clearer
1.47 stb_lex (lexes stb.h at 1.5ML/s on 3Ghz P4; 60/70% of optimal/flex)
1.46 stb_wrapper_*, STB_MALLOC_WRAPPER
1.45 lightly tested DFA acceleration of regexp searching
1.44 wildcard matching & searching; regexp matching & searching
1.43 stb_temp
1.42 allow stb_arr to use stb_malloc/realloc; note this is global
1.41 make it compile in C++; (disable stb_arr in C++)
1.40 stb_dupe tweak; stb_swap; stb_substr
1.39 stb_dupe; improve stb_file_max to be less stupid
1.38 stb_sha1_file: generate sha1 for file, even > 4GB
1.37 stb_file_max; partial support for utf8 filenames in Windows
1.36 remove STB__NO_PREFIX - poor interaction with IDE, not worth it
streamline stb_arr to make it separately publishable
1.35 bugfixes for stb_sdict, stb_malloc(0), stristr
1.34 (streaming interfaces for stb_compress)
1.33 stb_alloc; bug in stb_getopt; remove stb_overflow
1.32 (stb_compress returns, smaller&faster; encode window & 64-bit len)
1.31 stb_prefix_count
1.30 (STB__NO_PREFIX - remove stb_ prefixes for personal projects)
1.29 stb_fput_varlen64, etc.
1.28 stb_sha1
1.27 ?
1.26 stb_extra
1.25 ?
1.24 stb_copyfile
1.23 stb_readdir
1.22 ?
1.21 ?
1.20 ?
1.19 ?
1.18 ?
1.17 ?
1.16 ?
1.15 stb_fixpath, stb_splitpath, stb_strchr2
1.14 stb_arr
1.13 ?stb, stb_log, stb_fatal
1.12 ?stb_hash2
1.11 miniML
1.10 stb_crc32, stb_adler32
1.09 stb_sdict
1.08 stb_bitreverse, stb_ispow2, stb_big32
stb_fopen, stb_fput_varlen, stb_fput_ranged
stb_fcmp, stb_feq
1.07 (stb_encompress)
1.06 stb_compress
1.05 stb_tokens, (stb_hheap)
1.04 stb_rand
1.03 ?(s-strings)
1.02 ?stb_filelen, stb_tokens
1.01 stb_tolower
1.00 stb_hash, stb_intcmp
stb_file, stb_stringfile, stb_fgets
stb_prefix, stb_strlower, stb_strtok
stb_image
(stb_array), (stb_arena)
Parenthesized items have since been removed.
*/
#ifndef STB__INCLUDE_STB_H
#define STB__INCLUDE_STB_H
#define STB_VERSION 1
#ifdef STB_INTROSPECT
#define STB_DEFINE
#endif
#ifdef STB_DEFINE_THREADS
#ifndef STB_DEFINE
#define STB_DEFINE
#endif
#ifndef STB_THREADS
#define STB_THREADS
#endif
#endif
#include <stdlib.h> // stdlib could have min/max
#include <stdio.h> // need FILE
#include <string.h> // stb_define_hash needs memcpy/memset
#include <time.h> // stb_dirtree
#ifdef STB_PERSONAL
typedef int Bool;
#define False 0
#define True 1
#endif
#ifdef STB_MALLOC_WRAPPER_PAGED
#define STB_MALLOC_WRAPPER_DEBUG
#endif
#ifdef STB_MALLOC_WRAPPER_DEBUG
#define STB_MALLOC_WRAPPER
#endif
#ifdef STB_MALLOC_WRAPPER_FASTMALLOC
#define STB_FASTMALLOC
#define STB_MALLOC_WRAPPER
#endif
#ifdef STB_FASTMALLOC
#ifndef _WIN32
#undef STB_FASTMALLOC
#endif
#endif
#ifdef STB_DEFINE
#include <assert.h>
#include <stdarg.h>
#include <stddef.h>
#include <ctype.h>
#include <math.h>
#ifndef _WIN32
#include <unistd.h>
#else
#include <io.h> // _mktemp
#include <direct.h> // _rmdir
#endif
#include <sys/types.h> // stat()/_stat()
#include <sys/stat.h> // stat()/_stat()
#endif
#define stb_min(a,b) ((a) < (b) ? (a) : (b))
#define stb_max(a,b) ((a) > (b) ? (a) : (b))
#ifndef STB_ONLY
#if !defined(__cplusplus) && !defined(min) && !defined(max)
#define min(x,y) stb_min(x,y)
#define max(x,y) stb_max(x,y)
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846f
#endif
#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif
#ifndef deg2rad
#define deg2rad(a) ((a)*(M_PI/180))
#endif
#ifndef rad2deg
#define rad2deg(a) ((a)*(180/M_PI))
#endif
#ifndef swap
#ifndef __cplusplus
#define swap(TYPE,a,b) \
do { TYPE stb__t; stb__t = (a); (a) = (b); (b) = stb__t; } while (0)
#endif
#endif
typedef unsigned char uint8 ;
typedef signed char int8 ;
typedef unsigned short uint16;
typedef signed short int16;
#if defined(STB_USE_LONG_FOR_32_BIT_INT) || defined(STB_LONG32)
typedef unsigned long uint32;
typedef signed long int32;
#else
typedef unsigned int uint32;
typedef signed int int32;
#endif
typedef unsigned char uchar ;
typedef unsigned short ushort;
typedef unsigned int uint ;
typedef unsigned long ulong ;
// produce compile errors if the sizes aren't right
typedef char stb__testsize16[sizeof(int16)==2];
typedef char stb__testsize32[sizeof(int32)==4];
#endif
#ifndef STB_TRUE
#define STB_TRUE 1
#define STB_FALSE 0
#endif
// if we're STB_ONLY, can't rely on uint32 or even uint, so all the
// variables we'll use herein need typenames prefixed with 'stb':
typedef unsigned char stb_uchar;
typedef unsigned char stb_uint8;
typedef unsigned int stb_uint;
typedef unsigned short stb_uint16;
typedef short stb_int16;
typedef signed char stb_int8;
#if defined(STB_USE_LONG_FOR_32_BIT_INT) || defined(STB_LONG32)
typedef unsigned long stb_uint32;
typedef long stb_int32;
#else
typedef unsigned int stb_uint32;
typedef int stb_int32;
#endif
typedef char stb__testsize2_16[sizeof(stb_uint16)==2 ? 1 : -1];
typedef char stb__testsize2_32[sizeof(stb_uint32)==4 ? 1 : -1];
#ifdef _MSC_VER
typedef unsigned __int64 stb_uint64;
typedef __int64 stb_int64;
#define STB_IMM_UINT64(literalui64) (literalui64##ui64)
#define STB_IMM_INT64(literali64) (literali64##i64)
#else
// ??
typedef unsigned long long stb_uint64;
typedef long long stb_int64;
#define STB_IMM_UINT64(literalui64) (literalui64##ULL)
#define STB_IMM_INT64(literali64) (literali64##LL)
#endif
typedef char stb__testsize2_64[sizeof(stb_uint64)==8 ? 1 : -1];
// add platform-specific ways of checking for sizeof(char*) == 8,
// and make those define STB_PTR64
#if defined(_WIN64) || defined(__x86_64__) || defined(__ia64__)
#define STB_PTR64
#endif
#ifdef STB_PTR64
typedef char stb__testsize2_ptr[sizeof(char *) == 8];
typedef stb_uint64 stb_uinta;
typedef stb_int64 stb_inta;
#else
typedef char stb__testsize2_ptr[sizeof(char *) == 4];
typedef stb_uint32 stb_uinta;
typedef stb_int32 stb_inta;
#endif
typedef char stb__testsize2_uinta[sizeof(stb_uinta)==sizeof(char*) ? 1 : -1];
// if so, we should define an int type that is the pointer size. until then,
// we'll have to make do with this (which is not the same at all!)
typedef union
{
unsigned int i;
void * p;
} stb_uintptr;
#ifdef __cplusplus
#define STB_EXTERN extern "C"
#else
#define STB_EXTERN extern
#endif
// check for well-known debug defines
#if defined(DEBUG) || defined(_DEBUG) || defined(DBG)
#ifndef NDEBUG
#define STB_DEBUG
#endif
#endif
#ifdef STB_DEBUG
#include <assert.h>
#endif
STB_EXTERN void stb_wrapper_malloc(void *newp, int sz, char *file, int line);
STB_EXTERN void stb_wrapper_free(void *oldp, char *file, int line);
STB_EXTERN void stb_wrapper_realloc(void *oldp, void *newp, int sz, char *file, int line);
STB_EXTERN void stb_wrapper_calloc(size_t num, size_t sz, char *file, int line);
STB_EXTERN void stb_wrapper_listall(void (*func)(void *ptr, int sz, char *file, int line));
STB_EXTERN void stb_wrapper_dump(char *filename);
STB_EXTERN int stb_wrapper_allocsize(void *oldp);
STB_EXTERN void stb_wrapper_check(void *oldp);
#ifdef STB_DEFINE
// this is a special function used inside malloc wrapper
// to do allocations that aren't tracked (to avoid
// reentrancy). Of course if someone _else_ wraps realloc,
// this breaks, but if they're doing that AND the malloc
// wrapper they need to explicitly check for reentrancy.
//
// only define realloc_raw() and we do realloc(NULL,sz)
// for malloc() and realloc(p,0) for free().
static void * stb__realloc_raw(void *p, int sz)
{
if (p == NULL) return malloc(sz);
if (sz == 0) { free(p); return NULL; }
return realloc(p,sz);
}
#endif
#ifdef _WIN32
STB_EXTERN void * stb_smalloc(size_t sz);
STB_EXTERN void stb_sfree(void *p);
STB_EXTERN void * stb_srealloc(void *p, size_t sz);
STB_EXTERN void * stb_scalloc(size_t n, size_t sz);
STB_EXTERN char * stb_sstrdup(char *s);
#endif
#ifdef STB_FASTMALLOC
#define malloc stb_smalloc
#define free stb_sfree
#define realloc stb_srealloc
#define strdup stb_sstrdup
#define calloc stb_scalloc
#endif
#ifndef STB_MALLOC_ALLCHECK
#define stb__check(p) 1
#else
#ifndef STB_MALLOC_WRAPPER
#error STB_MALLOC_ALLCHECK requires STB_MALLOC_WRAPPER
#else
#define stb__check(p) stb_mcheck(p)
#endif
#endif
#ifdef STB_MALLOC_WRAPPER
STB_EXTERN void * stb__malloc(int, char *, int);
STB_EXTERN void * stb__realloc(void *, int, char *, int);
STB_EXTERN void * stb__calloc(size_t n, size_t s, char *, int);
STB_EXTERN void stb__free(void *, char *file, int);
STB_EXTERN char * stb__strdup(char *s, char *file, int);
STB_EXTERN void stb_malloc_checkall(void);
STB_EXTERN void stb_malloc_check_counter(int init_delay, int rep_delay);
#ifndef STB_MALLOC_WRAPPER_DEBUG
#define stb_mcheck(p) 1
#else
STB_EXTERN int stb_mcheck(void *);
#endif
#ifdef STB_DEFINE
#ifdef STB_MALLOC_WRAPPER_DEBUG
#define STB__PAD 32
#define STB__BIAS 16
#define STB__SIG 0x51b01234
#define STB__FIXSIZE(sz) (((sz+3) & ~3) + STB__PAD)
#define STB__ptr(x,y) ((char *) (x) + (y))
#else
#define STB__ptr(x,y) (x)
#define STB__FIXSIZE(sz) (sz)
#endif
#ifdef STB_MALLOC_WRAPPER_DEBUG
int stb_mcheck(void *p)
{
unsigned int sz;
if (p == NULL) return 1;
p = ((char *) p) - STB__BIAS;
sz = * (unsigned int *) p;
assert(* (unsigned int *) STB__ptr(p,4) == STB__SIG);
assert(* (unsigned int *) STB__ptr(p,8) == STB__SIG);
assert(* (unsigned int *) STB__ptr(p,12) == STB__SIG);
assert(* (unsigned int *) STB__ptr(p,sz-4) == STB__SIG+1);
assert(* (unsigned int *) STB__ptr(p,sz-8) == STB__SIG+1);
assert(* (unsigned int *) STB__ptr(p,sz-12) == STB__SIG+1);
assert(* (unsigned int *) STB__ptr(p,sz-16) == STB__SIG+1);
stb_wrapper_check(STB__ptr(p, STB__BIAS));
return 1;
}
static void stb__check2(void *p, int sz, char *file, int line)
{
stb_mcheck(p);
}
void stb_malloc_checkall(void)
{
stb_wrapper_listall(stb__check2);
}
#else
void stb_malloc_checkall(void) { }
#endif
static int stb__malloc_wait=(1 << 30), stb__malloc_next_wait = (1 << 30), stb__malloc_iter;
void stb_malloc_check_counter(int init_delay, int rep_delay)
{
stb__malloc_wait = init_delay;
stb__malloc_next_wait = rep_delay;
}
void stb_mcheck_all(void)
{
#ifdef STB_MALLOC_WRAPPER_DEBUG
++stb__malloc_iter;
if (--stb__malloc_wait <= 0) {
stb_malloc_checkall();
stb__malloc_wait = stb__malloc_next_wait;
}
#endif
}
#ifdef STB_MALLOC_WRAPPER_PAGED
#define STB__WINDOWS_PAGE (1 << 12)
#ifndef _WINDOWS_
STB_EXTERN __declspec(dllimport) void * __stdcall VirtualAlloc(void *p, unsigned long size, unsigned long type, unsigned long protect);
STB_EXTERN __declspec(dllimport) int __stdcall VirtualFree(void *p, unsigned long size, unsigned long freetype);
#endif
#endif
static void *stb__malloc_final(int sz)
{
#ifdef STB_MALLOC_WRAPPER_PAGED
int aligned = (sz + STB__WINDOWS_PAGE - 1) & ~(STB__WINDOWS_PAGE-1);
char *p = VirtualAlloc(NULL, aligned + STB__WINDOWS_PAGE, 0x2000, 0x04); // RESERVE, READWRITE
if (p == NULL) return p;
VirtualAlloc(p, aligned, 0x1000, 0x04); // COMMIT, READWRITE
return p;
#else
return malloc(sz);
#endif
}
static void stb__free_final(void *p)
{
#ifdef STB_MALLOC_WRAPPER_PAGED
VirtualFree(p, 0, 0x8000); // RELEASE
#else
free(p);
#endif
}
int stb__malloc_failure;
static void *stb__realloc_final(void *p, int sz, int old_sz)
{
#ifdef STB_MALLOC_WRAPPER_PAGED
void *q = stb__malloc_final(sz);
if (q == NULL)
return ++stb__malloc_failure, q;
// @TODO: deal with p being smaller!
memcpy(q, p, sz < old_sz ? sz : old_sz);
stb__free_final(p);
return q;
#else
return realloc(p,sz);
#endif
}
void stb__free(void *p, char *file, int line)
{
stb_mcheck_all();
if (!p) return;
#ifdef STB_MALLOC_WRAPPER_DEBUG
stb_mcheck(p);
#endif
stb_wrapper_free(p,file,line);
#ifdef STB_MALLOC_WRAPPER_DEBUG
p = STB__ptr(p,-STB__BIAS);
* (unsigned int *) STB__ptr(p,0) = 0xdeadbeef;
* (unsigned int *) STB__ptr(p,4) = 0xdeadbeef;
* (unsigned int *) STB__ptr(p,8) = 0xdeadbeef;
* (unsigned int *) STB__ptr(p,12) = 0xdeadbeef;
#endif
stb__free_final(p);
}
void * stb__malloc(int sz, char *file, int line)
{
void *p;
stb_mcheck_all();
if (sz == 0) return NULL;
p = stb__malloc_final(STB__FIXSIZE(sz));
if (p == NULL) p = stb__malloc_final(STB__FIXSIZE(sz));
if (p == NULL) p = stb__malloc_final(STB__FIXSIZE(sz));
if (p == NULL) {
++stb__malloc_failure;
#ifdef STB_MALLOC_WRAPPER_DEBUG
stb_malloc_checkall();
#endif
return p;
}
#ifdef STB_MALLOC_WRAPPER_DEBUG
* (int *) STB__ptr(p,0) = STB__FIXSIZE(sz);
* (unsigned int *) STB__ptr(p,4) = STB__SIG;
* (unsigned int *) STB__ptr(p,8) = STB__SIG;
* (unsigned int *) STB__ptr(p,12) = STB__SIG;
* (unsigned int *) STB__ptr(p,STB__FIXSIZE(sz)-4) = STB__SIG+1;
* (unsigned int *) STB__ptr(p,STB__FIXSIZE(sz)-8) = STB__SIG+1;
* (unsigned int *) STB__ptr(p,STB__FIXSIZE(sz)-12) = STB__SIG+1;
* (unsigned int *) STB__ptr(p,STB__FIXSIZE(sz)-16) = STB__SIG+1;
p = STB__ptr(p, STB__BIAS);
#endif
stb_wrapper_malloc(p,sz,file,line);
return p;
}
void * stb__realloc(void *p, int sz, char *file, int line)
{
void *q;
stb_mcheck_all();
if (p == NULL) return stb__malloc(sz,file,line);
if (sz == 0 ) { stb__free(p,file,line); return NULL; }
#ifdef STB_MALLOC_WRAPPER_DEBUG
stb_mcheck(p);
p = STB__ptr(p,-STB__BIAS);
#endif
#ifdef STB_MALLOC_WRAPPER_PAGED
{
int n = stb_wrapper_allocsize(STB__ptr(p,STB__BIAS));
if (!n)
stb_wrapper_check(STB__ptr(p,STB__BIAS));
q = stb__realloc_final(p, STB__FIXSIZE(sz), STB__FIXSIZE(n));
}
#else
q = realloc(p, STB__FIXSIZE(sz));
#endif
if (q == NULL)
return ++stb__malloc_failure, q;
#ifdef STB_MALLOC_WRAPPER_DEBUG
* (int *) STB__ptr(q,0) = STB__FIXSIZE(sz);
* (unsigned int *) STB__ptr(q,4) = STB__SIG;
* (unsigned int *) STB__ptr(q,8) = STB__SIG;
* (unsigned int *) STB__ptr(q,12) = STB__SIG;
* (unsigned int *) STB__ptr(q,STB__FIXSIZE(sz)-4) = STB__SIG+1;
* (unsigned int *) STB__ptr(q,STB__FIXSIZE(sz)-8) = STB__SIG+1;
* (unsigned int *) STB__ptr(q,STB__FIXSIZE(sz)-12) = STB__SIG+1;
* (unsigned int *) STB__ptr(q,STB__FIXSIZE(sz)-16) = STB__SIG+1;
q = STB__ptr(q, STB__BIAS);
p = STB__ptr(p, STB__BIAS);
#endif
stb_wrapper_realloc(p,q,sz,file,line);
return q;
}
STB_EXTERN int stb_log2_ceil(unsigned int);
static void *stb__calloc(size_t n, size_t sz, char *file, int line)
{
void *q;
stb_mcheck_all();
if (n == 0 || sz == 0) return NULL;
if (stb_log2_ceil(n) + stb_log2_ceil(sz) >= 32) return NULL;
q = stb__malloc(n*sz, file, line);
if (q) memset(q, 0, n*sz);
return q;
}
char * stb__strdup(char *s, char *file, int line)
{
char *p;
stb_mcheck_all();
p = stb__malloc(strlen(s)+1, file, line);
if (!p) return p;
strcpy(p, s);
return p;
}
#endif // STB_DEFINE
#ifdef STB_FASTMALLOC
#undef malloc
#undef realloc
#undef free
#undef strdup
#undef calloc
#endif
// include everything that might define these, BEFORE making macros
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#define malloc(s) stb__malloc ( s, __FILE__, __LINE__)
#define realloc(p,s) stb__realloc(p,s, __FILE__, __LINE__)
#define calloc(n,s) stb__calloc (n,s, __FILE__, __LINE__)
#define free(p) stb__free (p, __FILE__, __LINE__)
#define strdup(p) stb__strdup (p, __FILE__, __LINE__)
#endif
//////////////////////////////////////////////////////////////////////////////
//
// Windows pretty display
//
STB_EXTERN void stbprint(const char *fmt, ...);
STB_EXTERN char *stb_sprintf(const char *fmt, ...);
STB_EXTERN char *stb_mprintf(const char *fmt, ...);
#ifdef STB_DEFINE
char *stb_sprintf(const char *fmt, ...)
{
static char buffer[1024];
va_list v;
va_start(v,fmt);
#ifdef _WIN32
_vsnprintf(buffer, 1024, fmt, v);
#else
vsnprintf(buffer, 1024, fmt, v);
#endif
va_end(v);
buffer[1023] = 0;
return buffer;
}
char *stb_mprintf(const char *fmt, ...)
{
static char buffer[1024];
va_list v;
va_start(v,fmt);
#ifdef _WIN32
_vsnprintf(buffer, 1024, fmt, v);
#else
vsnprintf(buffer, 1024, fmt, v);
#endif
va_end(v);
buffer[1023] = 0;
return strdup(buffer);
}
#ifdef _WIN32
#ifndef _WINDOWS_
STB_EXTERN __declspec(dllimport) int __stdcall WriteConsoleA(void *, const void *, unsigned int, unsigned int *, void *);
STB_EXTERN __declspec(dllimport) void * __stdcall GetStdHandle(unsigned int);
STB_EXTERN __declspec(dllimport) int __stdcall SetConsoleTextAttribute(void *, unsigned short);
#endif
static void stb__print_one(void *handle, char *s, int len)
{
if (len)
if (WriteConsoleA(handle, s, len, NULL,NULL))
fwrite(s, 1, len, stdout); // if it fails, maybe redirected, so do normal
}
static void stb__print(char *s)
{
void *handle = GetStdHandle((unsigned int) -11); // STD_OUTPUT_HANDLE
int pad=0; // number of padding characters to add
char *t = s;
while (*s) {
int lpad;
while (*s && *s != '{') {
if (pad) {
if (*s == '\r' || *s == '\n')
pad = 0;
else if (s[0] == ' ' && s[1] == ' ') {
stb__print_one(handle, t, s-t);
t = s;
while (pad) {
stb__print_one(handle, t, 1);
--pad;
}
}
}
++s;
}
if (!*s) break;
stb__print_one(handle, t, s-t);
if (s[1] == '{') {
++s;
continue;
}
if (s[1] == '#') {
t = s+3;
if (isxdigit(s[2]))
if (isdigit(s[2]))
SetConsoleTextAttribute(handle, s[2] - '0');
else
SetConsoleTextAttribute(handle, tolower(s[2]) - 'a' + 10);
else {
SetConsoleTextAttribute(handle, 0x0f);
t=s+2;
}
} else if (s[1] == '!') {
SetConsoleTextAttribute(handle, 0x0c);
t = s+2;
} else if (s[1] == '@') {
SetConsoleTextAttribute(handle, 0x09);
t = s+2;
} else if (s[1] == '$') {
SetConsoleTextAttribute(handle, 0x0a);
t = s+2;
} else {
SetConsoleTextAttribute(handle, 0x08); // 0,7,8,15 => shades of grey
t = s+1;
}
lpad = (t-s);
s = t;
while (*s && *s != '}') ++s;
if (!*s) break;
stb__print_one(handle, t, s-t);
if (s[1] == '}') {
t = s+2;
} else {
pad += 1+lpad;
t = s+1;
}
s=t;
SetConsoleTextAttribute(handle, 0x07);
}
stb__print_one(handle, t, s-t);
SetConsoleTextAttribute(handle, 0x07);
}
void stbprint(const char *fmt, ...)
{
int res;
char buffer[1024];
char *tbuf = buffer;
va_list v;
va_start(v,fmt);
res = _vsnprintf(buffer, sizeof(buffer), fmt, v);
va_end(v);
buffer[sizeof(buffer)-1] = 0;
if (res < 0) {
tbuf = (char *) malloc(16384);
va_start(v,fmt);
res = _vsnprintf(tbuf,16384, fmt, v);
va_end(v);
tbuf[16383] = 0;
}
stb__print(tbuf);
if (tbuf != buffer)
free(tbuf);
}
#else // _WIN32
void stbprint(const char *fmt, ...)
{
va_list v;
va_start(v,fmt);
vprintf(fmt,v);
va_end(v);
}
#endif // _WIN32
#endif // STB_DEFINE
//////////////////////////////////////////////////////////////////////////////
//
// Windows UTF8 filename handling
//
// Windows stupidly treats 8-bit filenames as some dopey code page,
// rather than utf-8. If we want to use utf8 filenames, we have to
// convert them to WCHAR explicitly and call WCHAR versions of the
// file functions. So, ok, we do.
#ifdef _WIN32
#define stb__fopen(x,y) _wfopen((const wchar_t *)stb__from_utf8(x), (const wchar_t *)stb__from_utf8_alt(y))
#define stb__windows(x,y) x
#else
#define stb__fopen(x,y) fopen(x,y)
#define stb__windows(x,y) y
#endif
typedef unsigned short stb__wchar;
STB_EXTERN stb__wchar * stb_from_utf8(stb__wchar *buffer, char *str, int n);
STB_EXTERN char * stb_to_utf8 (char *buffer, stb__wchar *str, int n);
STB_EXTERN stb__wchar *stb__from_utf8(char *str);
STB_EXTERN stb__wchar *stb__from_utf8_alt(char *str);
STB_EXTERN char *stb__to_utf8(stb__wchar *str);
#ifdef STB_DEFINE
stb__wchar * stb_from_utf8(stb__wchar *buffer, char *ostr, int n)
{
unsigned char *str = (unsigned char *) ostr;
stb_uint32 c;
int i=0;
--n;
while (*str) {
if (i >= n)
return NULL;
if (!(*str & 0x80))
buffer[i++] = *str++;
else if ((*str & 0xe0) == 0xc0) {
if (*str < 0xc2) return NULL;
c = (*str++ & 0x1f) << 6;
if ((*str & 0xc0) != 0x80) return NULL;
buffer[i++] = c + (*str++ & 0x3f);
} else if ((*str & 0xf0) == 0xe0) {
if (*str == 0xe0 && (str[1] < 0xa0 || str[1] > 0xbf)) return NULL;
if (*str == 0xed && str[1] > 0x9f) return NULL; // str[1] < 0x80 is checked below
c = (*str++ & 0x0f) << 12;
if ((*str & 0xc0) != 0x80) return NULL;
c += (*str++ & 0x3f) << 6;
if ((*str & 0xc0) != 0x80) return NULL;
buffer[i++] = c + (*str++ & 0x3f);
} else if ((*str & 0xf8) == 0xf0) {
if (*str > 0xf4) return NULL;
if (*str == 0xf0 && (str[1] < 0x90 || str[1] > 0xbf)) return NULL;
if (*str == 0xf4 && str[1] > 0x8f) return NULL; // str[1] < 0x80 is checked below
c = (*str++ & 0x07) << 18;
if ((*str & 0xc0) != 0x80) return NULL;
c += (*str++ & 0x3f) << 12;
if ((*str & 0xc0) != 0x80) return NULL;
c += (*str++ & 0x3f) << 6;
if ((*str & 0xc0) != 0x80) return NULL;
c += (*str++ & 0x3f);
// utf-8 encodings of values used in surrogate pairs are invalid
if ((c & 0xFFFFF800) == 0xD800) return NULL;
if (c >= 0x10000) {
c -= 0x10000;
if (i + 2 > n) return NULL;
buffer[i++] = 0xD800 | (0x3ff & (c >> 10));
buffer[i++] = 0xDC00 | (0x3ff & (c ));
}
} else
return NULL;
}
buffer[i] = 0;
return buffer;
}
char * stb_to_utf8(char *buffer, stb__wchar *str, int n)
{
int i=0;
--n;
while (*str) {
if (*str < 0x80) {
if (i+1 > n) return NULL;
buffer[i++] = (char) *str++;
} else if (*str < 0x800) {
if (i+2 > n) return NULL;
buffer[i++] = 0xc0 + (*str >> 6);
buffer[i++] = 0x80 + (*str & 0x3f);
str += 1;
} else if (*str >= 0xd800 && *str < 0xdc00) {
stb_uint32 c;
if (i+4 > n) return NULL;
c = ((str[0] - 0xd800) << 10) + ((str[1]) - 0xdc00) + 0x10000;
buffer[i++] = 0xf0 + (c >> 18);
buffer[i++] = 0x80 + ((c >> 12) & 0x3f);
buffer[i++] = 0x80 + ((c >> 6) & 0x3f);
buffer[i++] = 0x80 + ((c ) & 0x3f);
str += 2;
} else if (*str >= 0xdc00 && *str < 0xe000) {
return NULL;
} else {
if (i+3 > n) return NULL;
buffer[i++] = 0xe0 + (*str >> 12);
buffer[i++] = 0x80 + ((*str >> 6) & 0x3f);
buffer[i++] = 0x80 + ((*str ) & 0x3f);
str += 1;
}
}
buffer[i] = 0;
return buffer;
}
stb__wchar *stb__from_utf8(char *str)
{
static stb__wchar buffer[4096];
return stb_from_utf8(buffer, str, 4096);
}
stb__wchar *stb__from_utf8_alt(char *str)
{
static stb__wchar buffer[64];
return stb_from_utf8(buffer, str, 64);
}
char *stb__to_utf8(stb__wchar *str)
{
static char buffer[4096];
return stb_to_utf8(buffer, str, 4096);
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// Miscellany
//
STB_EXTERN void stb_fatal(char *fmt, ...);
STB_EXTERN void stb_(char *fmt, ...);
STB_EXTERN void stb_append_to_file(char *file, char *fmt, ...);
STB_EXTERN void stb_log(int active);
STB_EXTERN void stb_log_fileline(int active);
STB_EXTERN void stb_log_name(char *filename);
STB_EXTERN void stb_swap(void *p, void *q, size_t sz);
STB_EXTERN void *stb_copy(void *p, size_t sz);
STB_EXTERN void stb_pointer_array_free(void *p, int len);
STB_EXTERN void **stb_array_block_alloc(int count, int blocksize);
#define stb_arrcount(x) (sizeof(x)/sizeof((x)[0]))
STB_EXTERN int stb__record_fileline(char *f, int n);
#ifdef STB_DEFINE
static char *stb__file;
static int stb__line;
int stb__record_fileline(char *f, int n)
{
stb__file = f;
stb__line = n;
return 0;
}
void stb_fatal(char *s, ...)
{
va_list a;
if (stb__file)
fprintf(stderr, "[%s:%d] ", stb__file, stb__line);
va_start(a,s);
fputs("Fatal error: ", stderr);
vfprintf(stderr, s, a);
va_end(a);
fputs("\n", stderr);
#ifdef _WIN32
#ifdef STB_DEBUG
__asm int 3; // trap to debugger!
#endif
#endif
exit(1);
}
static int stb__log_active=1, stb__log_fileline=1;
void stb_log(int active)
{
stb__log_active = active;
}
void stb_log_fileline(int active)
{
stb__log_fileline = active;
}
#ifdef STB_NO_STB_STRINGS
char *stb__log_filename = "temp.log";
#else
char *stb__log_filename = "stb.log";
#endif
void stb_log_name(char *s)
{
stb__log_filename = s;
}
void stb_(char *s, ...)
{
if (stb__log_active) {
FILE *f = fopen(stb__log_filename, "a");
if (f) {
va_list a;
if (stb__log_fileline && stb__file)
fprintf(f, "[%s:%4d] ", stb__file, stb__line);
va_start(a,s);
vfprintf(f, s, a);
va_end(a);
fputs("\n", f);
fclose(f);
}
}
}
void stb_append_to_file(char *filename, char *s, ...)
{
FILE *f = fopen(filename, "a");
if (f) {
va_list a;
va_start(a,s);
vfprintf(f, s, a);
va_end(a);
fputs("\n", f);
fclose(f);
}
}
typedef struct { char d[4]; } stb__4;
typedef struct { char d[8]; } stb__8;
// optimize the small cases, though you shouldn't be calling this for those!
void stb_swap(void *p, void *q, size_t sz)
{
char buffer[256];
if (p == q) return;
if (sz == 4) {
stb__4 temp = * ( stb__4 *) p;
* (stb__4 *) p = * ( stb__4 *) q;
* (stb__4 *) q = temp;
return;
} else if (sz == 8) {
stb__8 temp = * ( stb__8 *) p;
* (stb__8 *) p = * ( stb__8 *) q;
* (stb__8 *) q = temp;
return;
}
while (sz > sizeof(buffer)) {
stb_swap(p, q, sizeof(buffer));
p = (char *) p + sizeof(buffer);
q = (char *) q + sizeof(buffer);
sz -= sizeof(buffer);
}
memcpy(buffer, p , sz);
memcpy(p , q , sz);
memcpy(q , buffer, sz);
}
void *stb_copy(void *p, size_t sz)
{
void *q = malloc(sz);
memcpy(q, p, sz);
return q;
}
void stb_pointer_array_free(void *q, int len)
{
void **p = (void **) q;
int i;
for (i=0; i < len; ++i)
free(p[i]);
}
void **stb_array_block_alloc(int count, int blocksize)
{
int i;
char *p = (char *) malloc(sizeof(void *) * count + count * blocksize);
void **q;
if (p == NULL) return NULL;
q = (void **) p;
p += sizeof(void *) * count;
for (i=0; i < count; ++i)
q[i] = p + i * blocksize;
return q;
}
#endif
#ifdef STB_DEBUG
// tricky hack to allow recording FILE,LINE even in varargs functions
#define STB__RECORD_FILE(x) (stb__record_fileline(__FILE__, __LINE__),(x))
#define stb_log STB__RECORD_FILE(stb_log)
#define stb_ STB__RECORD_FILE(stb_)
#ifndef STB_FATAL_CLEAN
#define stb_fatal STB__RECORD_FILE(stb_fatal)
#endif
#define STB__DEBUG(x) x
#else
#define STB__DEBUG(x)
#endif
//////////////////////////////////////////////////////////////////////////////
//
// stb_temp
//
#define stb_temp(block, sz) stb__temp(block, sizeof(block), (sz))
STB_EXTERN void * stb__temp(void *b, int b_sz, int want_sz);
STB_EXTERN void stb_tempfree(void *block, void *ptr);
#ifdef STB_DEFINE
void * stb__temp(void *b, int b_sz, int want_sz)
{
if (b_sz >= want_sz)
return b;
else
return malloc(want_sz);
}
void stb_tempfree(void *b, void *p)
{
if (p != b)
free(p);
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// math/sampling operations
//
#define stb_lerp(t,a,b) ( (a) + (t) * (float) ((b)-(a)) )
#define stb_unlerp(t,a,b) ( ((t) - (a)) / (float) ((b) - (a)) )
#define stb_clamp(x,xmin,xmax) ((x) < (xmin) ? (xmin) : (x) > (xmax) ? (xmax) : (x))
STB_EXTERN void stb_newell_normal(float *normal, int num_vert, float **vert, int normalize);
STB_EXTERN int stb_box_face_vertex_axis_side(int face_number, int vertex_number, int axis);
STB_EXTERN void stb_linear_controller(float *curpos, float target_pos, float acc, float deacc, float dt);
STB_EXTERN int stb_float_eq(float x, float y, float delta, int max_ulps);
STB_EXTERN int stb_is_prime(unsigned int m);
STB_EXTERN unsigned int stb_power_of_two_nearest_prime(int n);
STB_EXTERN float stb_smoothstep(float t);
STB_EXTERN float stb_cubic_bezier_1d(float t, float p0, float p1, float p2, float p3);
STB_EXTERN double stb_linear_remap(double x, double a, double b,
double c, double d);
#ifdef STB_DEFINE
float stb_smoothstep(float t)
{
return (3 - 2*t)*(t*t);
}
float stb_cubic_bezier_1d(float t, float p0, float p1, float p2, float p3)
{
float it = 1-t;
return it*it*it*p0 + 3*it*it*t*p1 + 3*it*t*t*p2 + t*t*t*p3;
}
void stb_newell_normal(float *normal, int num_vert, float **vert, int normalize)
{
int i,j;
float p;
normal[0] = normal[1] = normal[2] = 0;
for (i=num_vert-1,j=0; j < num_vert; i=j++) {
float *u = vert[i];
float *v = vert[j];
normal[0] += (u[1] - v[1]) * (u[2] + v[2]);
normal[1] += (u[2] - v[2]) * (u[0] + v[0]);
normal[2] += (u[0] - v[0]) * (u[1] + v[1]);
}
if (normalize) {
p = normal[0]*normal[0] + normal[1]*normal[1] + normal[2]*normal[2];
p = (float) (1.0 / sqrt(p));
normal[0] *= p;
normal[1] *= p;
normal[2] *= p;
}
}
int stb_box_face_vertex_axis_side(int face_number, int vertex_number, int axis)
{
static int box_vertices[6][4][3] =
{
{ { 1,1,1 }, { 1,0,1 }, { 1,0,0 }, { 1,1,0 } },
{ { 0,0,0 }, { 0,0,1 }, { 0,1,1 }, { 0,1,0 } },
{ { 0,0,0 }, { 0,1,0 }, { 1,1,0 }, { 1,0,0 } },
{ { 0,0,0 }, { 1,0,0 }, { 1,0,1 }, { 0,0,1 } },
{ { 1,1,1 }, { 0,1,1 }, { 0,0,1 }, { 1,0,1 } },
{ { 1,1,1 }, { 1,1,0 }, { 0,1,0 }, { 0,1,1 } },
};
assert(face_number >= 0 && face_number < 6);
assert(vertex_number >= 0 && vertex_number < 4);
assert(axis >= 0 && axis < 3);
return box_vertices[face_number][vertex_number][axis];
}
void stb_linear_controller(float *curpos, float target_pos, float acc, float deacc, float dt)
{
float sign = 1, p, cp = *curpos;
if (cp == target_pos) return;
if (target_pos < cp) {
target_pos = -target_pos;
cp = -cp;
sign = -1;
}
// first decelerate
if (cp < 0) {
p = cp + deacc * dt;
if (p > 0) {
p = 0;
dt = dt - cp / deacc;
if (dt < 0) dt = 0;
} else {
dt = 0;
}
cp = p;
}
// now accelerate
p = cp + acc*dt;
if (p > target_pos) p = target_pos;
*curpos = p * sign;
// @TODO: testing
}
float stb_quadratic_controller(float target_pos, float curpos, float maxvel, float maxacc, float dt, float *curvel)
{
return 0; // @TODO
}
int stb_float_eq(float x, float y, float delta, int max_ulps)
{
if (fabs(x-y) <= delta) return 1;
if (abs(*(int *)&x - *(int *)&y) <= max_ulps) return 1;
return 0;
}
int stb_is_prime(unsigned int m)
{
unsigned int i,j;
if (m < 2) return 0;
if (m == 2) return 1;
if (!(m & 1)) return 0;
if (m % 3 == 0) return (m == 3);
for (i=5; (j=i*i), j <= m && j > i; i += 6) {
if (m % i == 0) return 0;
if (m % (i+2) == 0) return 0;
}
return 1;
}
unsigned int stb_power_of_two_nearest_prime(int n)
{
static signed char tab[32] = { 0,0,0,0,1,0,-1,0,1,-1,-1,3,-1,0,-1,2,1,
0,2,0,-1,-4,-1,5,-1,18,-2,15,2,-1,2,0 };
if (!tab[0]) {
int i;
for (i=0; i < 32; ++i)
tab[i] = (1 << i) + 2*tab[i] - 1;
tab[1] = 2;
tab[0] = 1;
}
if (n >= 32) return 0xfffffffb;
return tab[n];
}
double stb_linear_remap(double x, double x_min, double x_max,
double out_min, double out_max)
{
return stb_lerp(stb_unlerp(x,x_min,x_max),out_min,out_max);
}
#endif
// create a macro so it's faster, but you can get at the function pointer
#define stb_linear_remap(t,a,b,c,d) stb_lerp(stb_unlerp(t,a,b),c,d)
//////////////////////////////////////////////////////////////////////////////
//
// bit operations
//
#define stb_big32(c) (((c)[0]<<24) + (c)[1]*65536 + (c)[2]*256 + (c)[3])
#define stb_little32(c) (((c)[3]<<24) + (c)[2]*65536 + (c)[1]*256 + (c)[0])
#define stb_big16(c) ((c)[0]*256 + (c)[1])
#define stb_little16(c) ((c)[1]*256 + (c)[0])
STB_EXTERN int stb_bitcount(unsigned int a);
STB_EXTERN unsigned int stb_bitreverse8(unsigned char n);
STB_EXTERN unsigned int stb_bitreverse(unsigned int n);
STB_EXTERN int stb_is_pow2(unsigned int n);
STB_EXTERN int stb_log2_ceil(unsigned int n);
STB_EXTERN int stb_log2_floor(unsigned int n);
STB_EXTERN int stb_lowbit8(unsigned int n);
STB_EXTERN int stb_highbit8(unsigned int n);
#ifdef STB_DEFINE
int stb_bitcount(unsigned int a)
{
a = (a & 0x55555555) + ((a >> 1) & 0x55555555); // max 2
a = (a & 0x33333333) + ((a >> 2) & 0x33333333); // max 4
a = (a + (a >> 4)) & 0x0f0f0f0f; // max 8 per 4, now 8 bits
a = (a + (a >> 8)); // max 16 per 8 bits
a = (a + (a >> 16)); // max 32 per 8 bits
return a & 0xff;
}
unsigned int stb_bitreverse8(unsigned char n)
{
n = ((n & 0xAA) >> 1) + ((n & 0x55) << 1);
n = ((n & 0xCC) >> 2) + ((n & 0x33) << 2);
return (unsigned char) ((n >> 4) + (n << 4));
}
unsigned int stb_bitreverse(unsigned int n)
{
n = ((n & 0xAAAAAAAA) >> 1) | ((n & 0x55555555) << 1);
n = ((n & 0xCCCCCCCC) >> 2) | ((n & 0x33333333) << 2);
n = ((n & 0xF0F0F0F0) >> 4) | ((n & 0x0F0F0F0F) << 4);
n = ((n & 0xFF00FF00) >> 8) | ((n & 0x00FF00FF) << 8);
return (n >> 16) | (n << 16);
}
int stb_is_pow2(unsigned int n)
{
return (n & (n-1)) == 0;
}
// tricky use of 4-bit table to identify 5 bit positions (note the '-1')
// 3-bit table would require another tree level; 5-bit table wouldn't save one
#ifdef _WIN32
#pragma warning(push)
#pragma warning(disable: 4035) // disable warning about no return value
int stb_log2_floor(unsigned int n)
{
#if _MSC_VER > 1700
DWORD i;
_BitScanReverse(&i, n);
return i != 0 ? i : -1;
#else
__asm {
bsr eax,n
jnz done
mov eax,-1
}
done:;
#endif
}
#pragma warning(pop)
#else
int stb_log2_floor(unsigned int n)
{
static signed char log2_4[16] = { -1,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3 };
// 2 compares if n < 16, 3 compares otherwise
if (n < (1U << 14))
if (n < (1U << 4)) return 0 + log2_4[n ];
else if (n < (1U << 9)) return 5 + log2_4[n >> 5];
else return 10 + log2_4[n >> 10];
else if (n < (1U << 24))
if (n < (1U << 19)) return 15 + log2_4[n >> 15];
else return 20 + log2_4[n >> 20];
else if (n < (1U << 29)) return 25 + log2_4[n >> 25];
else return 30 + log2_4[n >> 30];
}
#endif
// define ceil from floor
int stb_log2_ceil(unsigned int n)
{
if (stb_is_pow2(n)) return stb_log2_floor(n);
else return 1 + stb_log2_floor(n);
}
int stb_highbit8(unsigned int n)
{
return stb_log2_ceil(n&255);
}
int stb_lowbit8(unsigned int n)
{
static signed char lowbit4[16] = { -1,0,1,0, 2,0,1,0, 3,0,1,0, 2,0,1,0 };
int k = lowbit4[n & 15];
if (k >= 0) return k;
k = lowbit4[(n >> 4) & 15];
if (k >= 0) return k+4;
return k;
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// qsort Compare Routines
//
#ifdef _WIN32
#define stb_stricmp(a,b) stricmp(a,b)
#define stb_strnicmp(a,b,n) strnicmp(a,b,n)
#else
#define stb_stricmp(a,b) strcasecmp(a,b)
#define stb_strnicmp(a,b,n) strncasecmp(a,b,n)
#endif
STB_EXTERN int (*stb_intcmp(int offset))(const void *a, const void *b);
STB_EXTERN int (*stb_qsort_strcmp(int offset))(const void *a, const void *b);
STB_EXTERN int (*stb_qsort_stricmp(int offset))(const void *a, const void *b);
STB_EXTERN int (*stb_floatcmp(int offset))(const void *a, const void *b);
STB_EXTERN int (*stb_doublecmp(int offset))(const void *a, const void *b);
STB_EXTERN int (*stb_charcmp(int offset))(const void *a, const void *b);
#ifdef STB_DEFINE
static int stb__intcmpoffset, stb__charcmpoffset, stb__strcmpoffset;
static int stb__floatcmpoffset, stb__doublecmpoffset;
int stb__intcmp(const void *a, const void *b)
{
const int p = *(const int *) ((const char *) a + stb__intcmpoffset);
const int q = *(const int *) ((const char *) b + stb__intcmpoffset);
return p < q ? -1 : p > q;
}
int stb__charcmp(const void *a, const void *b)
{
const int p = *(const unsigned char *) ((const char *) a + stb__charcmpoffset);
const int q = *(const unsigned char *) ((const char *) b + stb__charcmpoffset);
return p < q ? -1 : p > q;
}
int stb__floatcmp(const void *a, const void *b)
{
const float p = *(const float *) ((const char *) a + stb__floatcmpoffset);
const float q = *(const float *) ((const char *) b + stb__floatcmpoffset);
return p < q ? -1 : p > q;
}
int stb__doublecmp(const void *a, const void *b)
{
const double p = *(const double *) ((const char *) a + stb__doublecmpoffset);
const double q = *(const double *) ((const char *) b + stb__doublecmpoffset);
return p < q ? -1 : p > q;
}
int stb__qsort_strcmp(const void *a, const void *b)
{
const char *p = *(const char **) ((const char *) a + stb__strcmpoffset);
const char *q = *(const char **) ((const char *) b + stb__strcmpoffset);
return strcmp(p,q);
}
int stb__qsort_stricmp(const void *a, const void *b)
{
const char *p = *(const char **) ((const char *) a + stb__strcmpoffset);
const char *q = *(const char **) ((const char *) b + stb__strcmpoffset);
return stb_stricmp(p,q);
}
int (*stb_intcmp(int offset))(const void *, const void *)
{
stb__intcmpoffset = offset;
return &stb__intcmp;
}
int (*stb_charcmp(int offset))(const void *, const void *)
{
stb__charcmpoffset = offset;
return &stb__charcmp;
}
int (*stb_qsort_strcmp(int offset))(const void *, const void *)
{
stb__strcmpoffset = offset;
return &stb__qsort_strcmp;
}
int (*stb_qsort_stricmp(int offset))(const void *, const void *)
{
stb__strcmpoffset = offset;
return &stb__qsort_stricmp;
}
int (*stb_floatcmp(int offset))(const void *, const void *)
{
stb__floatcmpoffset = offset;
return &stb__floatcmp;
}
int (*stb_doublecmp(int offset))(const void *, const void *)
{
stb__doublecmpoffset = offset;
return &stb__doublecmp;
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// Binary Search Toolkit
//
typedef struct
{
int minval, maxval, guess;
int mode, step;
} stb_search;
STB_EXTERN int stb_search_binary(stb_search *s, int minv, int maxv, int find_smallest);
STB_EXTERN int stb_search_open(stb_search *s, int minv, int find_smallest);
STB_EXTERN int stb_probe(stb_search *s, int compare, int *result); // return 0 when done
#ifdef STB_DEFINE
enum
{
STB_probe_binary_smallest,
STB_probe_binary_largest,
STB_probe_open_smallest,
STB_probe_open_largest,
};
static int stb_probe_guess(stb_search *s, int *result)
{
switch(s->mode) {
case STB_probe_binary_largest:
if (s->minval == s->maxval) {
*result = s->minval;
return 0;
}
assert(s->minval < s->maxval);
// if a < b, then a < p <= b
s->guess = s->minval + (((unsigned) s->maxval - s->minval + 1) >> 1);
break;
case STB_probe_binary_smallest:
if (s->minval == s->maxval) {
*result = s->minval;
return 0;
}
assert(s->minval < s->maxval);
// if a < b, then a <= p < b
s->guess = s->minval + (((unsigned) s->maxval - s->minval) >> 1);
break;
case STB_probe_open_smallest:
case STB_probe_open_largest:
s->guess = s->maxval; // guess the current maxval
break;
}
*result = s->guess;
return 1;
}
int stb_probe(stb_search *s, int compare, int *result)
{
switch(s->mode) {
case STB_probe_open_smallest:
case STB_probe_open_largest: {
if (compare <= 0) {
// then it lies within minval & maxval
if (s->mode == STB_probe_open_smallest)
s->mode = STB_probe_binary_smallest;
else
s->mode = STB_probe_binary_largest;
} else {
// otherwise, we need to probe larger
s->minval = s->maxval + 1;
s->maxval = s->minval + s->step;
s->step += s->step;
}
break;
}
case STB_probe_binary_smallest: {
// if compare < 0, then s->minval <= a < p
// if compare = 0, then s->minval <= a <= p
// if compare > 0, then p < a <= s->maxval
if (compare <= 0)
s->maxval = s->guess;
else
s->minval = s->guess+1;
break;
}
case STB_probe_binary_largest: {
// if compare < 0, then s->minval <= a < p
// if compare = 0, then p <= a <= s->maxval
// if compare > 0, then p < a <= s->maxval
if (compare < 0)
s->maxval = s->guess-1;
else
s->minval = s->guess;
break;
}
}
return stb_probe_guess(s, result);
}
int stb_search_binary(stb_search *s, int minv, int maxv, int find_smallest)
{
int r;
if (maxv < minv) return minv-1;
s->minval = minv;
s->maxval = maxv;
s->mode = find_smallest ? STB_probe_binary_smallest : STB_probe_binary_largest;
stb_probe_guess(s, &r);
return r;
}
int stb_search_open(stb_search *s, int minv, int find_smallest)
{
int r;
s->step = 4;
s->minval = minv;
s->maxval = minv+s->step;
s->mode = find_smallest ? STB_probe_open_smallest : STB_probe_open_largest;
stb_probe_guess(s, &r);
return r;
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// String Processing
//
#define stb_prefixi(s,t) (0==stb_strnicmp((s),(t),strlen(t)))
enum stb_splitpath_flag
{
STB_PATH = 1,
STB_FILE = 2,
STB_EXT = 4,
STB_PATH_FILE = STB_PATH + STB_FILE,
STB_FILE_EXT = STB_FILE + STB_EXT,
STB_EXT_NO_PERIOD = 8,
};
STB_EXTERN char * stb_skipwhite(char *s);
STB_EXTERN char * stb_trimwhite(char *s);
STB_EXTERN char * stb_skipnewline(char *s);
STB_EXTERN char * stb_strncpy(char *s, char *t, int n);
STB_EXTERN char * stb_substr(char *t, int n);
STB_EXTERN char * stb_duplower(char *s);
STB_EXTERN void stb_tolower (char *s);
STB_EXTERN char * stb_strchr2 (char *s, char p1, char p2);
STB_EXTERN char * stb_strrchr2(char *s, char p1, char p2);
STB_EXTERN char * stb_strtok(char *output, char *src, char *delimit);
STB_EXTERN char * stb_strtok_keep(char *output, char *src, char *delimit);
STB_EXTERN char * stb_strtok_invert(char *output, char *src, char *allowed);
STB_EXTERN char * stb_dupreplace(char *s, char *find, char *replace);
STB_EXTERN void stb_replaceinplace(char *s, char *find, char *replace);
STB_EXTERN char * stb_splitpath(char *output, char *src, int flag);
STB_EXTERN char * stb_splitpathdup(char *src, int flag);
STB_EXTERN char * stb_replacedir(char *output, char *src, char *dir);
STB_EXTERN char * stb_replaceext(char *output, char *src, char *ext);
STB_EXTERN void stb_fixpath(char *path);
STB_EXTERN char * stb_shorten_path_readable(char *path, int max_len);
STB_EXTERN int stb_suffix (char *s, char *t);
STB_EXTERN int stb_suffixi(char *s, char *t);
STB_EXTERN int stb_prefix (char *s, char *t);
STB_EXTERN char * stb_strichr(char *s, char t);
STB_EXTERN char * stb_stristr(char *s, char *t);
STB_EXTERN int stb_prefix_count(char *s, char *t);
STB_EXTERN char * stb_plural(int n); // "s" or ""
STB_EXTERN char **stb_tokens(char *src, char *delimit, int *count);
STB_EXTERN char **stb_tokens_nested(char *src, char *delimit, int *count, char *nest_in, char *nest_out);
STB_EXTERN char **stb_tokens_nested_empty(char *src, char *delimit, int *count, char *nest_in, char *nest_out);
STB_EXTERN char **stb_tokens_allowempty(char *src, char *delimit, int *count);
STB_EXTERN char **stb_tokens_stripwhite(char *src, char *delimit, int *count);
STB_EXTERN char **stb_tokens_withdelim(char *src, char *delimit, int *count);
STB_EXTERN char **stb_tokens_quoted(char *src, char *delimit, int *count);
// with 'quoted', allow delimiters to appear inside quotation marks, and don't
// strip whitespace inside them (and we delete the quotation marks unless they
// appear back to back, in which case they're considered escaped)
#ifdef STB_DEFINE
char *stb_plural(int n)
{
return n == 1 ? "" : "s";
}
int stb_prefix(char *s, char *t)
{
while (*t)
if (*s++ != *t++)
return STB_FALSE;
return STB_TRUE;
}
int stb_prefix_count(char *s, char *t)
{
int c=0;
while (*t) {
if (*s++ != *t++)
break;
++c;
}
return c;
}
int stb_suffix(char *s, char *t)
{
size_t n = strlen(s);
size_t m = strlen(t);
if (m <= n)
return 0 == strcmp(s+n-m, t);
else
return 0;
}
int stb_suffixi(char *s, char *t)
{
size_t n = strlen(s);
size_t m = strlen(t);
if (m <= n)
return 0 == stb_stricmp(s+n-m, t);
else
return 0;
}
// originally I was using this table so that I could create known sentinel
// values--e.g. change whitetable[0] to be true if I was scanning for whitespace,
// and false if I was scanning for nonwhite. I don't appear to be using that
// functionality anymore (I do for tokentable, though), so just replace it
// with isspace()
char *stb_skipwhite(char *s)
{
while (isspace((unsigned char) *s)) ++s;
return s;
}
char *stb_skipnewline(char *s)
{
if (s[0] == '\r' || s[0] == '\n') {
if (s[0]+s[1] == '\r' + '\n') ++s;
++s;
}
return s;
}
char *stb_trimwhite(char *s)
{
int i,n;
s = stb_skipwhite(s);
n = (int) strlen(s);
for (i=n-1; i >= 0; --i)
if (!isspace(s[i]))
break;
s[i+1] = 0;
return s;
}
char *stb_strncpy(char *s, char *t, int n)
{
strncpy(s,t,n);
s[n-1] = 0;
return s;
}
char *stb_substr(char *t, int n)
{
char *a;
int z = (int) strlen(t);
if (z < n) n = z;
a = (char *) malloc(n+1);
strncpy(a,t,n);
a[n] = 0;
return a;
}
char *stb_duplower(char *s)
{
char *p = strdup(s), *q = p;
while (*q) {
*q = tolower(*q);
++q;
}
return p;
}
void stb_tolower(char *s)
{
while (*s) {
*s = tolower(*s);
++s;
}
}
char *stb_strchr2(char *s, char x, char y)
{
for(; *s; ++s)
if (*s == x || *s == y)
return s;
return NULL;
}
char *stb_strrchr2(char *s, char x, char y)
{
char *r = NULL;
for(; *s; ++s)
if (*s == x || *s == y)
r = s;
return r;
}
char *stb_strichr(char *s, char t)
{
if (tolower(t) == toupper(t))
return strchr(s,t);
return stb_strchr2(s, (char) tolower(t), (char) toupper(t));
}
char *stb_stristr(char *s, char *t)
{
size_t n = strlen(t);
char *z;
if (n==0) return s;
while ((z = stb_strichr(s, *t)) != NULL) {
if (0==stb_strnicmp(z, t, n))
return z;
s = z+1;
}
return NULL;
}
static char *stb_strtok_raw(char *output, char *src, char *delimit, int keep, int invert)
{
if (invert) {
while (*src && strchr(delimit, *src) != NULL) {
*output++ = *src++;
}
} else {
while (*src && strchr(delimit, *src) == NULL) {
*output++ = *src++;
}
}
*output = 0;
if (keep)
return src;
else
return *src ? src+1 : src;
}
char *stb_strtok(char *output, char *src, char *delimit)
{
return stb_strtok_raw(output, src, delimit, 0, 0);
}
char *stb_strtok_keep(char *output, char *src, char *delimit)
{
return stb_strtok_raw(output, src, delimit, 1, 0);
}
char *stb_strtok_invert(char *output, char *src, char *delimit)
{
return stb_strtok_raw(output, src, delimit, 1,1);
}
static char **stb_tokens_raw(char *src_, char *delimit, int *count,
int stripwhite, int allow_empty, char *start, char *end)
{
int nested = 0;
unsigned char *src = (unsigned char *) src_;
static char stb_tokentable[256]; // rely on static initializion to 0
static char stable[256],etable[256];
char *out;
char **result;
int num=0;
unsigned char *s;
s = (unsigned char *) delimit; while (*s) stb_tokentable[*s++] = 1;
if (start) {
s = (unsigned char *) start; while (*s) stable[*s++] = 1;
s = (unsigned char *) end; if (s) while (*s) stable[*s++] = 1;
s = (unsigned char *) end; if (s) while (*s) etable[*s++] = 1;
}
stable[0] = 1;
// two passes through: the first time, counting how many
s = (unsigned char *) src;
while (*s) {
// state: just found delimiter
// skip further delimiters
if (!allow_empty) {
stb_tokentable[0] = 0;
while (stb_tokentable[*s])
++s;
if (!*s) break;
}
++num;
// skip further non-delimiters
stb_tokentable[0] = 1;
if (stripwhite == 2) { // quoted strings
while (!stb_tokentable[*s]) {
if (*s != '"')
++s;
else {
++s;
if (*s == '"')
++s; // "" -> ", not start a string
else {
// begin a string
while (*s) {
if (s[0] == '"') {
if (s[1] == '"') s += 2; // "" -> "
else { ++s; break; } // terminating "
} else
++s;
}
}
}
}
} else
while (nested || !stb_tokentable[*s]) {
if (stable[*s]) {
if (!*s) break;
if (end ? etable[*s] : nested)
--nested;
else
++nested;
}
++s;
}
if (allow_empty) {
if (*s) ++s;
}
}
// now num has the actual count... malloc our output structure
// need space for all the strings: strings won't be any longer than
// original input, since for every '\0' there's at least one delimiter
result = (char **) malloc(sizeof(*result) * (num+1) + (s-src+1));
if (result == NULL) return result;
out = (char *) (result + (num+1));
// second pass: copy out the data
s = (unsigned char *) src;
num = 0;
nested = 0;
while (*s) {
char *last_nonwhite;
// state: just found delimiter
// skip further delimiters
if (!allow_empty) {
stb_tokentable[0] = 0;
if (stripwhite)
while (stb_tokentable[*s] || isspace(*s))
++s;
else
while (stb_tokentable[*s])
++s;
} else if (stripwhite) {
while (isspace(*s)) ++s;
}
if (!*s) break;
// we're past any leading delimiters and whitespace
result[num] = out;
++num;
// copy non-delimiters
stb_tokentable[0] = 1;
last_nonwhite = out-1;
if (stripwhite == 2) {
while (!stb_tokentable[*s]) {
if (*s != '"') {
if (!isspace(*s)) last_nonwhite = out;
*out++ = *s++;
} else {
++s;
if (*s == '"') {
if (!isspace(*s)) last_nonwhite = out;
*out++ = *s++; // "" -> ", not start string
} else {
// begin a quoted string
while (*s) {
if (s[0] == '"') {
if (s[1] == '"') { *out++ = *s; s += 2; }
else { ++s; break; } // terminating "
} else
*out++ = *s++;
}
last_nonwhite = out-1; // all in quotes counts as non-white
}
}
}
} else {
while (nested || !stb_tokentable[*s]) {
if (!isspace(*s)) last_nonwhite = out;
if (stable[*s]) {
if (!*s) break;
if (end ? etable[*s] : nested)
--nested;
else
++nested;
}
*out++ = *s++;
}
}
if (stripwhite) // rewind to last non-whitespace char
out = last_nonwhite+1;
*out++ = '\0';
if (*s) ++s; // skip delimiter
}
s = (unsigned char *) delimit; while (*s) stb_tokentable[*s++] = 0;
if (start) {
s = (unsigned char *) start; while (*s) stable[*s++] = 1;
s = (unsigned char *) end; if (s) while (*s) stable[*s++] = 1;
s = (unsigned char *) end; if (s) while (*s) etable[*s++] = 1;
}
if (count != NULL) *count = num;
result[num] = 0;
return result;
}
char **stb_tokens(char *src, char *delimit, int *count)
{
return stb_tokens_raw(src,delimit,count,0,0,0,0);
}
char **stb_tokens_nested(char *src, char *delimit, int *count, char *nest_in, char *nest_out)
{
return stb_tokens_raw(src,delimit,count,0,0,nest_in,nest_out);
}
char **stb_tokens_nested_empty(char *src, char *delimit, int *count, char *nest_in, char *nest_out)
{
return stb_tokens_raw(src,delimit,count,0,1,nest_in,nest_out);
}
char **stb_tokens_allowempty(char *src, char *delimit, int *count)
{
return stb_tokens_raw(src,delimit,count,0,1,0,0);
}
char **stb_tokens_stripwhite(char *src, char *delimit, int *count)
{
return stb_tokens_raw(src,delimit,count,1,1,0,0);
}
char **stb_tokens_quoted(char *src, char *delimit, int *count)
{
return stb_tokens_raw(src,delimit,count,2,1,0,0);
}
char *stb_dupreplace(char *src, char *find, char *replace)
{
size_t len_find = strlen(find);
size_t len_replace = strlen(replace);
int count = 0;
char *s,*p,*q;
s = strstr(src, find);
if (s == NULL) return strdup(src);
do {
++count;
s = strstr(s + len_find, find);
} while (s != NULL);
p = (char *) malloc(strlen(src) + count * (len_replace - len_find) + 1);
if (p == NULL) return p;
q = p;
s = src;
for (;;) {
char *t = strstr(s, find);
if (t == NULL) {
strcpy(q,s);
assert(strlen(p) == strlen(src) + count*(len_replace-len_find));
return p;
}
memcpy(q, s, t-s);
q += t-s;
memcpy(q, replace, len_replace);
q += len_replace;
s = t + len_find;
}
}
void stb_replaceinplace(char *src, char *find, char *replace)
{
size_t len_find = strlen(find);
size_t len_replace = strlen(replace);
int delta;
char *s,*p,*q;
delta = len_replace - len_find;
assert(delta <= 0);
if (delta > 0) return;
p = strstr(src, find);
if (p == NULL) return;
s = q = p;
while (*s) {
memcpy(q, replace, len_replace);
p += len_find;
q += len_replace;
s = strstr(p, find);
if (s == NULL) s = p + strlen(p);
memmove(q, p, s-p);
q += s-p;
p = s;
}
*q = 0;
}
void stb_fixpath(char *path)
{
for(; *path; ++path)
if (*path == '\\')
*path = '/';
}
void stb__add_section(char *buffer, char *data, int curlen, int newlen)
{
if (newlen < curlen) {
int z1 = newlen >> 1, z2 = newlen-z1;
memcpy(buffer, data, z1-1);
buffer[z1-1] = '.';
buffer[z1-0] = '.';
memcpy(buffer+z1+1, data+curlen-z2+1, z2-1);
} else
memcpy(buffer, data, curlen);
}
char * stb_shorten_path_readable(char *path, int len)
{
static char buffer[1024];
int n = strlen(path),n1,n2,r1,r2;
char *s;
if (n <= len) return path;
if (len > 1024) return path;
s = stb_strrchr2(path, '/', '\\');
if (s) {
n1 = s - path + 1;
n2 = n - n1;
++s;
} else {
n1 = 0;
n2 = n;
s = path;
}
// now we need to reduce r1 and r2 so that they fit in len
if (n1 < len>>1) {
r1 = n1;
r2 = len - r1;
} else if (n2 < len >> 1) {
r2 = n2;
r1 = len - r2;
} else {
r1 = n1 * len / n;
r2 = n2 * len / n;
if (r1 < len>>2) r1 = len>>2, r2 = len-r1;
if (r2 < len>>2) r2 = len>>2, r1 = len-r2;
}
assert(r1 <= n1 && r2 <= n2);
if (n1)
stb__add_section(buffer, path, n1, r1);
stb__add_section(buffer+r1, s, n2, r2);
buffer[len] = 0;
return buffer;
}
static char *stb__splitpath_raw(char *buffer, char *path, int flag)
{
int len=0,x,y, n = (int) strlen(path), f1,f2;
char *s = stb_strrchr2(path, '/', '\\');
char *t = strrchr(path, '.');
if (s && t && t < s) t = NULL;
if (s) ++s;
if (flag == STB_EXT_NO_PERIOD)
flag |= STB_EXT;
if (!(flag & (STB_PATH | STB_FILE | STB_EXT))) return NULL;
f1 = s == NULL ? 0 : s-path; // start of filename
f2 = t == NULL ? n : t-path; // just past end of filename
if (flag & STB_PATH) {
x = 0; if (f1 == 0 && flag == STB_PATH) len=2;
} else if (flag & STB_FILE) {
x = f1;
} else {
x = f2;
if (flag & STB_EXT_NO_PERIOD)
if (buffer[x] == '.')
++x;
}
if (flag & STB_EXT)
y = n;
else if (flag & STB_FILE)
y = f2;
else
y = f1;
if (buffer == NULL) {
buffer = (char *) malloc(y-x + len + 1);
if (!buffer) return NULL;
}
if (len) { strcpy(buffer, "./"); return buffer; }
strncpy(buffer, path+x, y-x);
buffer[y-x] = 0;
return buffer;
}
char *stb_splitpath(char *output, char *src, int flag)
{
return stb__splitpath_raw(output, src, flag);
}
char *stb_splitpathdup(char *src, int flag)
{
return stb__splitpath_raw(NULL, src, flag);
}
char *stb_replacedir(char *output, char *src, char *dir)
{
char buffer[4096];
stb_splitpath(buffer, src, STB_FILE | STB_EXT);
if (dir)
sprintf(output, "%s/%s", dir, buffer);
else
strcpy(output, buffer);
return output;
}
char *stb_replaceext(char *output, char *src, char *ext)
{
char buffer[4096];
stb_splitpath(buffer, src, STB_PATH | STB_FILE);
if (ext)
sprintf(output, "%s.%s", buffer, ext[0] == '.' ? ext+1 : ext);
else
strcpy(output, buffer);
return output;
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// stb_alloc - hierarchical allocator
//
// inspired by http://swapped.cc/halloc
//
//
// When you alloc a given block through stb_alloc, you have these choices:
//
// 1. does it have a parent?
// 2. can it have children?
// 3. can it be freed directly?
// 4. is it transferrable?
// 5. what is its alignment?
//
// Here are interesting combinations of those:
//
// children free transfer alignment
// arena Y Y N n/a
// no-overhead, chunked N N N normal
// string pool alloc N N N 1
// parent-ptr, chunked Y N N normal
// low-overhead, unchunked N Y Y normal
// general purpose alloc Y Y Y normal
//
// Unchunked allocations will probably return 16-aligned pointers. If
// we 16-align the results, we have room for 4 pointers. For smaller
// allocations that allow finer alignment, we can reduce the pointers.
//
// The strategy is that given a pointer, assuming it has a header (only
// the no-overhead allocations have no header), we can determine the
// type of the header fields, and the number of them, by stepping backwards
// through memory and looking at the tags in the bottom bits.
//
// Implementation strategy:
// chunked allocations come from the middle of chunks, and can't
// be freed. thefore they do not need to be on a sibling chain.
// they may need child pointers if they have children.
//
// chunked, with-children
// void *parent;
//
// unchunked, no-children -- reduced storage
// void *next_sibling;
// void *prev_sibling_nextp;
//
// unchunked, general
// void *first_child;
// void *next_sibling;
// void *prev_sibling_nextp;
// void *chunks;
//
// so, if we code each of these fields with different bit patterns
// (actually same one for next/prev/child), then we can identify which
// each one is from the last field.
STB_EXTERN void stb_free(void *p);
STB_EXTERN void *stb_malloc_global(size_t size);
STB_EXTERN void *stb_malloc(void *context, size_t size);
STB_EXTERN void *stb_malloc_nofree(void *context, size_t size);
STB_EXTERN void *stb_malloc_leaf(void *context, size_t size);
STB_EXTERN void *stb_malloc_raw(void *context, size_t size);
STB_EXTERN void *stb_realloc(void *ptr, size_t newsize);
STB_EXTERN void stb_reassign(void *new_context, void *ptr);
STB_EXTERN void stb_malloc_validate(void *p, void *parent);
extern int stb_alloc_chunk_size ;
extern int stb_alloc_count_free ;
extern int stb_alloc_count_alloc;
extern int stb_alloc_alignment ;
#ifdef STB_DEFINE
int stb_alloc_chunk_size = 65536;
int stb_alloc_count_free = 0;
int stb_alloc_count_alloc = 0;
int stb_alloc_alignment = -16;
typedef struct stb__chunk
{
struct stb__chunk *next;
int data_left;
int alloc;
} stb__chunk;
typedef struct
{
void * next;
void ** prevn;
} stb__nochildren;
typedef struct
{
void ** prevn;
void * child;
void * next;
stb__chunk *chunks;
} stb__alloc;
typedef struct
{
stb__alloc *parent;
} stb__chunked;
#define STB__PARENT 1
#define STB__CHUNKS 2
typedef enum
{
STB__nochildren = 0,
STB__chunked = STB__PARENT,
STB__alloc = STB__CHUNKS,
STB__chunk_raw = 4,
} stb__alloc_type;
// these functions set the bottom bits of a pointer efficiently
#define STB__DECODE(x,v) ((void *) ((char *) (x) - (v)))
#define STB__ENCODE(x,v) ((void *) ((char *) (x) + (v)))
#define stb__parent(z) (stb__alloc *) STB__DECODE((z)->parent, STB__PARENT)
#define stb__chunks(z) (stb__chunk *) STB__DECODE((z)->chunks, STB__CHUNKS)
#define stb__setparent(z,p) (z)->parent = (stb__alloc *) STB__ENCODE((p), STB__PARENT)
#define stb__setchunks(z,c) (z)->chunks = (stb__chunk *) STB__ENCODE((c), STB__CHUNKS)
static stb__alloc stb__alloc_global =
{
NULL,
NULL,
NULL,
(stb__chunk *) STB__ENCODE(NULL, STB__CHUNKS)
};
static stb__alloc_type stb__identify(void *p)
{
void **q = (void **) p;
return (stb__alloc_type) ((stb_uinta) q[-1] & 3);
}
static void *** stb__prevn(void *p)
{
if (stb__identify(p) == STB__alloc) {
stb__alloc *s = (stb__alloc *) p - 1;
return &s->prevn;
} else {
stb__nochildren *s = (stb__nochildren *) p - 1;
return &s->prevn;
}
}
void stb_free(void *p)
{
if (p == NULL) return;
// count frees so that unit tests can see what's happening
++stb_alloc_count_free;
switch(stb__identify(p)) {
case STB__chunked:
// freeing a chunked-block with children does nothing;
// they only get freed when the parent does
// surely this is wrong, and it should free them immediately?
// otherwise how are they getting put on the right chain?
return;
case STB__nochildren: {
stb__nochildren *s = (stb__nochildren *) p - 1;
// unlink from sibling chain
*(s->prevn) = s->next;
if (s->next)
*stb__prevn(s->next) = s->prevn;
free(s);
return;
}
case STB__alloc: {
stb__alloc *s = (stb__alloc *) p - 1;
stb__chunk *c, *n;
void *q;
// unlink from sibling chain, if any
*(s->prevn) = s->next;
if (s->next)
*stb__prevn(s->next) = s->prevn;
// first free chunks
c = (stb__chunk *) stb__chunks(s);
while (c != NULL) {
n = c->next;
stb_alloc_count_free += c->alloc;
free(c);
c = n;
}
// validating
stb__setchunks(s,NULL);
s->prevn = NULL;
s->next = NULL;
// now free children
while ((q = s->child) != NULL) {
stb_free(q);
}
// now free self
free(s);
return;
}
default:
assert(0); /* NOTREACHED */
}
}
void stb_malloc_validate(void *p, void *parent)
{
if (p == NULL) return;
switch(stb__identify(p)) {
case STB__chunked:
return;
case STB__nochildren: {
stb__nochildren *n = (stb__nochildren *) p - 1;
if (n->prevn)
assert(*n->prevn == p);
if (n->next) {
assert(*stb__prevn(n->next) == &n->next);
stb_malloc_validate(n, parent);
}
return;
}
case STB__alloc: {
stb__alloc *s = (stb__alloc *) p - 1;
if (s->prevn)
assert(*s->prevn == p);
if (s->child) {
assert(*stb__prevn(s->child) == &s->child);
stb_malloc_validate(s->child, p);
}
if (s->next) {
assert(*stb__prevn(s->next) == &s->next);
stb_malloc_validate(s->next, parent);
}
return;
}
default:
assert(0); /* NOTREACHED */
}
}
static void * stb__try_chunk(stb__chunk *c, int size, int align, int pre_align)
{
char *memblock = (char *) (c+1), *q;
int iq, start_offset;
// we going to allocate at the end of the chunk, not the start. confusing,
// but it means we don't need both a 'limit' and a 'cur', just a 'cur'.
// the block ends at: p + c->data_left
// then we move back by size
start_offset = c->data_left - size;
// now we need to check the alignment of that
q = memblock + start_offset;
iq = (stb_inta) q;
assert(sizeof(q) == sizeof(iq));
// suppose align = 2
// then we need to retreat iq far enough that (iq & (2-1)) == 0
// to get (iq & (align-1)) = 0 requires subtracting (iq & (align-1))
start_offset -= iq & (align-1);
assert(((stb_uinta) (memblock+start_offset) & (align-1)) == 0);
// now, if that + pre_align works, go for it!
start_offset -= pre_align;
if (start_offset >= 0) {
c->data_left = start_offset;
return memblock + start_offset;
}
return NULL;
}
static void stb__sort_chunks(stb__alloc *src)
{
// of the first two chunks, put the chunk with more data left in it first
stb__chunk *c = stb__chunks(src), *d;
if (c == NULL) return;
d = c->next;
if (d == NULL) return;
if (c->data_left > d->data_left) return;
c->next = d->next;
d->next = c;
stb__setchunks(src, d);
}
static void * stb__alloc_chunk(stb__alloc *src, int size, int align, int pre_align)
{
void *p;
stb__chunk *c = stb__chunks(src);
if (c && size <= stb_alloc_chunk_size) {
p = stb__try_chunk(c, size, align, pre_align);
if (p) { ++c->alloc; return p; }
// try a second chunk to reduce wastage
if (c->next) {
p = stb__try_chunk(c->next, size, align, pre_align);
if (p) { ++c->alloc; return p; }
// put the bigger chunk first, since the second will get buried
// the upshot of this is that, until it gets allocated from, chunk #2
// is always the largest remaining chunk. (could formalize
// this with a heap!)
stb__sort_chunks(src);
c = stb__chunks(src);
}
}
// allocate a new chunk
{
stb__chunk *n;
int chunk_size = stb_alloc_chunk_size;
// we're going to allocate a new chunk to put this in
if (size > chunk_size)
chunk_size = size;
assert(sizeof(*n) + pre_align <= 16);
// loop trying to allocate a large enough chunk
// the loop is because the alignment may cause problems if it's big...
// and we don't know what our chunk alignment is going to be
while (1) {
n = (stb__chunk *) malloc(16 + chunk_size);
if (n == NULL) return NULL;
n->data_left = chunk_size - sizeof(*n);
p = stb__try_chunk(n, size, align, pre_align);
if (p != NULL) {
n->next = c;
stb__setchunks(src, n);
// if we just used up the whole block immediately,
// move the following chunk up
n->alloc = 1;
if (size == chunk_size)
stb__sort_chunks(src);
return p;
}
free(n);
chunk_size += 16+align;
}
}
}
static stb__alloc * stb__get_context(void *context)
{
if (context == NULL) {
return &stb__alloc_global;
} else {
int u = stb__identify(context);
// if context is chunked, grab parent
if (u == STB__chunked) {
stb__chunked *s = (stb__chunked *) context - 1;
return stb__parent(s);
} else {
return (stb__alloc *) context - 1;
}
}
}
static void stb__insert_alloc(stb__alloc *src, stb__alloc *s)
{
s->prevn = &src->child;
s->next = src->child;
src->child = s+1;
if (s->next)
*stb__prevn(s->next) = &s->next;
}
static void stb__insert_nochild(stb__alloc *src, stb__nochildren *s)
{
s->prevn = &src->child;
s->next = src->child;
src->child = s+1;
if (s->next)
*stb__prevn(s->next) = &s->next;
}
static void * malloc_base(void *context, size_t size, stb__alloc_type t, int align)
{
void *p;
stb__alloc *src = stb__get_context(context);
if (align <= 0) {
// compute worst-case C packed alignment
// e.g. a 24-byte struct is 8-aligned
int align_proposed = 1 << stb_lowbit8(size);
if (align_proposed < 0)
align_proposed = 4;
if (align_proposed == 0) {
if (size == 0)
align_proposed = 1;
else
align_proposed = 256;
}
// a negative alignment means 'don't align any larger
// than this'; so -16 means we align 1,2,4,8, or 16
if (align < 0) {
if (align_proposed > -align)
align_proposed = -align;
}
align = align_proposed;
}
assert(stb_is_pow2(align));
// don't cause misalignment when allocating nochildren
if (t == STB__nochildren && align > 8)
t = STB__alloc;
switch (t) {
case STB__alloc: {
stb__alloc *s = (stb__alloc *) malloc(size + sizeof(*s));
if (s == NULL) return NULL;
p = s+1;
s->child = NULL;
stb__insert_alloc(src, s);
stb__setchunks(s,NULL);
break;
}
case STB__nochildren: {
stb__nochildren *s = (stb__nochildren *) malloc(size + sizeof(*s));
if (s == NULL) return NULL;
p = s+1;
stb__insert_nochild(src, s);
break;
}
case STB__chunk_raw: {
p = stb__alloc_chunk(src, size, align, 0);
if (p == NULL) return NULL;
break;
}
case STB__chunked: {
stb__chunked *s;
if (align < sizeof(stb_uintptr)) align = sizeof(stb_uintptr);
s = (stb__chunked *) stb__alloc_chunk(src, size, align, sizeof(*s));
if (s == NULL) return NULL;
stb__setparent(s, src);
p = s+1;
break;
}
default: p = NULL; assert(0); /* NOTREACHED */
}
++stb_alloc_count_alloc;
return p;
}
void *stb_malloc_global(size_t size)
{
return malloc_base(NULL, size, STB__alloc, stb_alloc_alignment);
}
void *stb_malloc(void *context, size_t size)
{
return malloc_base(context, size, STB__alloc, stb_alloc_alignment);
}
void *stb_malloc_nofree(void *context, size_t size)
{
return malloc_base(context, size, STB__chunked, stb_alloc_alignment);
}
void *stb_malloc_leaf(void *context, size_t size)
{
return malloc_base(context, size, STB__nochildren, stb_alloc_alignment);
}
void *stb_malloc_raw(void *context, size_t size)
{
return malloc_base(context, size, STB__chunk_raw, stb_alloc_alignment);
}
char *stb_malloc_string(void *context, size_t size)
{
return (char *) malloc_base(context, size, STB__chunk_raw, 1);
}
void *stb_realloc(void *ptr, size_t newsize)
{
stb__alloc_type t;
if (ptr == NULL) return stb_malloc(NULL, newsize);
if (newsize == 0) { stb_free(ptr); return NULL; }
t = stb__identify(ptr);
assert(t == STB__alloc || t == STB__nochildren);
if (t == STB__alloc) {
stb__alloc *s = (stb__alloc *) ptr - 1;
s = (stb__alloc *) realloc(s, newsize + sizeof(*s));
if (s == NULL) return NULL;
ptr = s+1;
// update pointers
(*s->prevn) = ptr;
if (s->next)
*stb__prevn(s->next) = &s->next;
if (s->child)
*stb__prevn(s->child) = &s->child;
return ptr;
} else {
stb__nochildren *s = (stb__nochildren *) ptr - 1;
s = (stb__nochildren *) realloc(ptr, newsize + sizeof(s));
if (s == NULL) return NULL;
// update pointers
(*s->prevn) = s+1;
if (s->next)
*stb__prevn(s->next) = &s->next;
return s+1;
}
}
void *stb_realloc_c(void *context, void *ptr, size_t newsize)
{
if (ptr == NULL) return stb_malloc(context, newsize);
if (newsize == 0) { stb_free(ptr); return NULL; }
// @TODO: verify you haven't changed contexts
return stb_realloc(ptr, newsize);
}
void stb_reassign(void *new_context, void *ptr)
{
stb__alloc *src = stb__get_context(new_context);
stb__alloc_type t = stb__identify(ptr);
assert(t == STB__alloc || t == STB__nochildren);
if (t == STB__alloc) {
stb__alloc *s = (stb__alloc *) ptr - 1;
// unlink from old
*(s->prevn) = s->next;
if (s->next)
*stb__prevn(s->next) = s->prevn;
stb__insert_alloc(src, s);
} else {
stb__nochildren *s = (stb__nochildren *) ptr - 1;
// unlink from old
*(s->prevn) = s->next;
if (s->next)
*stb__prevn(s->next) = s->prevn;
stb__insert_nochild(src, s);
}
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// stb_arr
//
// An stb_arr is directly useable as a pointer (use the actual type in your
// definition), but when it resizes, it returns a new pointer and you can't
// use the old one, so you have to be careful to copy-in-out as necessary.
//
// Use a NULL pointer as a 0-length array.
//
// float *my_array = NULL, *temp;
//
// // add elements on the end one at a time
// stb_arr_push(my_array, 0.0f);
// stb_arr_push(my_array, 1.0f);
// stb_arr_push(my_array, 2.0f);
//
// assert(my_array[1] == 2.0f);
//
// // add an uninitialized element at the end, then assign it
// *stb_arr_add(my_array) = 3.0f;
//
// // add three uninitialized elements at the end
// temp = stb_arr_addn(my_array,3);
// temp[0] = 4.0f;
// temp[1] = 5.0f;
// temp[2] = 6.0f;
//
// assert(my_array[5] == 5.0f);
//
// // remove the last one
// stb_arr_pop(my_array);
//
// assert(stb_arr_len(my_array) == 6);
#ifdef STB_MALLOC_WRAPPER
#define STB__PARAMS , char *file, int line
#define STB__ARGS , file, line
#else
#define STB__PARAMS
#define STB__ARGS
#endif
// calling this function allocates an empty stb_arr attached to p
// (whereas NULL isn't attached to anything)
STB_EXTERN void stb_arr_malloc(void **target, void *context);
// call this function with a non-NULL value to have all successive
// stbs that are created be attached to the associated parent. Note
// that once a given stb_arr is non-empty, it stays attached to its
// current parent, even if you call this function again.
// it turns the previous value, so you can restore it
STB_EXTERN void* stb_arr_malloc_parent(void *p);
// simple functions written on top of other functions
#define stb_arr_empty(a) ( stb_arr_len(a) == 0 )
#define stb_arr_add(a) ( stb_arr_addn((a),1) )
#define stb_arr_push(a,v) ( *stb_arr_add(a)=(v) )
typedef struct
{
int len, limit;
int stb_malloc;
unsigned int signature;
} stb__arr;
#define stb_arr_signature 0x51bada7b // ends with 0123 in decimal
// access the header block stored before the data
#define stb_arrhead(a) /*lint --e(826)*/ (((stb__arr *) (a)) - 1)
#define stb_arrhead2(a) /*lint --e(826)*/ (((stb__arr *) (a)) - 1)
#ifdef STB_DEBUG
#define stb_arr_check(a) assert(!a || stb_arrhead(a)->signature == stb_arr_signature)
#define stb_arr_check2(a) assert(!a || stb_arrhead2(a)->signature == stb_arr_signature)
#else
#define stb_arr_check(a) ((void) 0)
#define stb_arr_check2(a) ((void) 0)
#endif
// ARRAY LENGTH
// get the array length; special case if pointer is NULL
#define stb_arr_len(a) (a ? stb_arrhead(a)->len : 0)
#define stb_arr_len2(a) ((stb__arr *) (a) ? stb_arrhead2(a)->len : 0)
#define stb_arr_lastn(a) (stb_arr_len(a)-1)
// check whether a given index is valid -- tests 0 <= i < stb_arr_len(a)
#define stb_arr_valid(a,i) (a ? (int) (i) < stb_arrhead(a)->len : 0)
// change the array length so is is exactly N entries long, creating
// uninitialized entries as needed
#define stb_arr_setlen(a,n) \
(stb__arr_setlen((void **) &(a), sizeof(a[0]), (n)))
// change the array length so that N is a valid index (that is, so
// it is at least N entries long), creating uninitialized entries as needed
#define stb_arr_makevalid(a,n) \
(stb_arr_len(a) < (n)+1 ? stb_arr_setlen(a,(n)+1),(a) : (a))
// remove the last element of the array, returning it
#define stb_arr_pop(a) ((stb_arr_check(a), (a))[--stb_arrhead(a)->len])
// access the last element in the array
#define stb_arr_last(a) ((stb_arr_check(a), (a))[stb_arr_len(a)-1])
// is iterator at end of list?
#define stb_arr_end(a,i) ((i) >= &(a)[stb_arr_len(a)])
// (internal) change the allocated length of the array
#define stb_arr__grow(a,n) (stb_arr_check(a), stb_arrhead(a)->len += (n))
// add N new unitialized elements to the end of the array
#define stb_arr__addn(a,n) /*lint --e(826)*/ \
((stb_arr_len(a)+(n) > stb_arrcurmax(a)) \
? (stb__arr_addlen((void **) &(a),sizeof(*a),(n)),0) \
: ((stb_arr__grow(a,n), 0)))
// add N new unitialized elements to the end of the array, and return
// a pointer to the first new one
#define stb_arr_addn(a,n) (stb_arr__addn((a),n),(a)+stb_arr_len(a)-(n))
// add N new uninitialized elements starting at index 'i'
#define stb_arr_insertn(a,i,n) (stb__arr_insertn((void **) &(a), sizeof(*a), i, n))
// insert an element at i
#define stb_arr_insert(a,i,v) (stb__arr_insertn((void **) &(a), sizeof(*a), i, n), ((a)[i] = v))
// delete N elements from the middle starting at index 'i'
#define stb_arr_deleten(a,i,n) (stb__arr_deleten((void **) &(a), sizeof(*a), i, n))
// delete the i'th element
#define stb_arr_delete(a,i) stb_arr_deleten(a,i,1)
// delete the i'th element, swapping down from the end
#define stb_arr_fastdelete(a,i) \
(stb_swap(&a[i], &a[stb_arrhead(a)->len-1], sizeof(*a)), stb_arr_pop(a))
// ARRAY STORAGE
// get the array maximum storage; special case if NULL
#define stb_arrcurmax(a) (a ? stb_arrhead(a)->limit : 0)
#define stb_arrcurmax2(a) (a ? stb_arrhead2(a)->limit : 0)
// set the maxlength of the array to n in anticipation of further growth
#define stb_arr_setsize(a,n) (stb_arr_check(a), stb__arr_setsize((void **) &(a),sizeof((a)[0]),n))
// make sure maxlength is large enough for at least N new allocations
#define stb_arr_atleast(a,n) (stb_arr_len(a)+(n) > stb_arrcurmax(a) \
? stb_arr_setsize((a), (n)) : 0)
// make a copy of a given array (copies contents via 'memcpy'!)
#define stb_arr_copy(a) stb__arr_copy(a, sizeof((a)[0]))
// compute the storage needed to store all the elements of the array
#define stb_arr_storage(a) (stb_arr_len(a) * sizeof((a)[0]))
#define stb_arr_for(v,arr) for((v)=(arr); (v) < (arr)+stb_arr_len(arr); ++(v))
// IMPLEMENTATION
STB_EXTERN void stb_arr_free_(void **p);
STB_EXTERN void *stb__arr_copy_(void *p, int elem_size);
STB_EXTERN void stb__arr_setsize_(void **p, int size, int limit STB__PARAMS);
STB_EXTERN void stb__arr_setlen_(void **p, int size, int newlen STB__PARAMS);
STB_EXTERN void stb__arr_addlen_(void **p, int size, int addlen STB__PARAMS);
STB_EXTERN void stb__arr_deleten_(void **p, int size, int loc, int n STB__PARAMS);
STB_EXTERN void stb__arr_insertn_(void **p, int size, int loc, int n STB__PARAMS);
#define stb_arr_free(p) stb_arr_free_((void **) &(p))
#define stb__arr_copy stb__arr_copy_
#ifndef STB_MALLOC_WRAPPER
#define stb__arr_setsize stb__arr_setsize_
#define stb__arr_setlen stb__arr_setlen_
#define stb__arr_addlen stb__arr_addlen_
#define stb__arr_deleten stb__arr_deleten_
#define stb__arr_insertn stb__arr_insertn_
#else
#define stb__arr_addlen(p,s,n) stb__arr_addlen_(p,s,n,__FILE__,__LINE__)
#define stb__arr_setlen(p,s,n) stb__arr_setlen_(p,s,n,__FILE__,__LINE__)
#define stb__arr_setsize(p,s,n) stb__arr_setsize_(p,s,n,__FILE__,__LINE__)
#define stb__arr_deleten(p,s,i,n) stb__arr_deleten_(p,s,i,n,__FILE__,__LINE__)
#define stb__arr_insertn(p,s,i,n) stb__arr_insertn_(p,s,i,n,__FILE__,__LINE__)
#endif
#ifdef STB_DEFINE
static void *stb__arr_context;
void *stb_arr_malloc_parent(void *p)
{
void *q = stb__arr_context;
stb__arr_context = p;
return q;
}
void stb_arr_malloc(void **target, void *context)
{
stb__arr *q = (stb__arr *) stb_malloc(context, sizeof(*q));
q->len = q->limit = 0;
q->stb_malloc = 1;
q->signature = stb_arr_signature;
*target = (void *) (q+1);
}
static void * stb__arr_malloc(int size)
{
if (stb__arr_context)
return stb_malloc(stb__arr_context, size);
return malloc(size);
}
void * stb__arr_copy_(void *p, int elem_size)
{
stb__arr *q;
if (p == NULL) return p;
q = (stb__arr *) stb__arr_malloc(sizeof(*q) + elem_size * stb_arrhead2(p)->limit);
stb_arr_check2(p);
memcpy(q, stb_arrhead2(p), sizeof(*q) + elem_size * stb_arrhead2(p)->len);
q->stb_malloc = !!stb__arr_context;
return q+1;
}
void stb_arr_free_(void **pp)
{
void *p = *pp;
stb_arr_check2(p);
if (p) {
stb__arr *q = stb_arrhead2(p);
if (q->stb_malloc)
stb_free(q);
else
free(q);
}
*pp = NULL;
}
static void stb__arrsize_(void **pp, int size, int limit, int len STB__PARAMS)
{
void *p = *pp;
stb__arr *a;
stb_arr_check2(p);
if (p == NULL) {
if (len == 0 && size == 0) return;
a = (stb__arr *) stb__arr_malloc(sizeof(*a) + size*limit);
a->limit = limit;
a->len = len;
a->stb_malloc = !!stb__arr_context;
a->signature = stb_arr_signature;
} else {
a = stb_arrhead2(p);
a->len = len;
if (a->limit < limit) {
void *p;
if (a->limit >= 4 && limit < a->limit * 2)
limit = a->limit * 2;
if (a->stb_malloc)
p = stb_realloc(a, sizeof(*a) + limit*size);
else
#ifdef STB_MALLOC_WRAPPER
p = stb__realloc(a, sizeof(*a) + limit*size, file, line);
#else
p = realloc(a, sizeof(*a) + limit*size);
#endif
if (p) {
a = (stb__arr *) p;
a->limit = limit;
} else {
// throw an error!
}
}
}
a->len = stb_min(a->len, a->limit);
*pp = a+1;
}
void stb__arr_setsize_(void **pp, int size, int limit STB__PARAMS)
{
void *p = *pp;
stb_arr_check2(p);
stb__arrsize_(pp, size, limit, stb_arr_len2(p) STB__ARGS);
}
void stb__arr_setlen_(void **pp, int size, int newlen STB__PARAMS)
{
void *p = *pp;
stb_arr_check2(p);
if (stb_arrcurmax2(p) < newlen || p == NULL) {
stb__arrsize_(pp, size, newlen, newlen STB__ARGS);
} else {
stb_arrhead2(p)->len = newlen;
}
}
void stb__arr_addlen_(void **p, int size, int addlen STB__PARAMS)
{
stb__arr_setlen_(p, size, stb_arr_len2(*p) + addlen STB__ARGS);
}
void stb__arr_insertn_(void **pp, int size, int i, int n STB__PARAMS)
{
void *p = *pp;
if (n) {
int z;
if (p == NULL) {
stb__arr_addlen_(pp, size, n STB__ARGS);
return;
}
z = stb_arr_len2(p);
stb__arr_addlen_(&p, size, i STB__ARGS);
memmove((char *) p + (i+n)*size, (char *) p + i*size, size * (z-i));
}
*pp = p;
}
void stb__arr_deleten_(void **pp, int size, int i, int n STB__PARAMS)
{
void *p = *pp;
if (n) {
memmove((char *) p + i*size, (char *) p + (i+n)*size, size * (stb_arr_len2(p)-i));
stb_arrhead2(p)->len -= n;
}
*pp = p;
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// Hashing
//
// typical use for this is to make a power-of-two hash table.
//
// let N = size of table (2^n)
// let H = stb_hash(str)
// let S = stb_rehash(H) | 1
//
// then hash probe sequence P(i) for i=0..N-1
// P(i) = (H + S*i) & (N-1)
//
// the idea is that H has 32 bits of hash information, but the
// table has only, say, 2^20 entries so only uses 20 of the bits.
// then by rehashing the original H we get 2^12 different probe
// sequences for a given initial probe location. (So it's optimal
// for 64K tables and its optimality decreases past that.)
//
// ok, so I've added something that generates _two separate_
// 32-bit hashes simultaneously which should scale better to
// very large tables.
STB_EXTERN unsigned int stb_hash(char *str);
STB_EXTERN unsigned int stb_hashptr(void *p);
STB_EXTERN unsigned int stb_hashlen(char *str, int len);
STB_EXTERN unsigned int stb_rehash_improved(unsigned int v);
STB_EXTERN unsigned int stb_hash_fast(void *p, int len);
STB_EXTERN unsigned int stb_hash2(char *str, unsigned int *hash2_ptr);
STB_EXTERN unsigned int stb_hash_number(unsigned int hash);
#define stb_rehash(x) ((x) + ((x) >> 6) + ((x) >> 19))
#ifdef STB_DEFINE
unsigned int stb_hash(char *str)
{
unsigned int hash = 0;
while (*str)
hash = (hash << 7) + (hash >> 25) + *str++;
return hash + (hash >> 16);
}
unsigned int stb_hashlen(char *str, int len)
{
unsigned int hash = 0;
while (len-- > 0 && *str)
hash = (hash << 7) + (hash >> 25) + *str++;
return hash + (hash >> 16);
}
unsigned int stb_hashptr(void *p)
{
unsigned int x = (unsigned int) p;
// typically lacking in low bits and high bits
x = stb_rehash(x);
x += x << 16;
// pearson's shuffle
x ^= x << 3;
x += x >> 5;
x ^= x << 2;
x += x >> 15;
x ^= x << 10;
return stb_rehash(x);
}
unsigned int stb_rehash_improved(unsigned int v)
{
return stb_hashptr((void *)(size_t) v);
}
unsigned int stb_hash2(char *str, unsigned int *hash2_ptr)
{
unsigned int hash1 = 0x3141592c;
unsigned int hash2 = 0x77f044ed;
while (*str) {
hash1 = (hash1 << 7) + (hash1 >> 25) + *str;
hash2 = (hash2 << 11) + (hash2 >> 21) + *str;
++str;
}
*hash2_ptr = hash2 + (hash1 >> 16);
return hash1 + (hash2 >> 16);
}
// Paul Hsieh hash
#define stb__get16_slow(p) ((p)[0] + ((p)[1] << 8))
#if defined(_MSC_VER)
#define stb__get16(p) (*((unsigned short *) (p)))
#else
#define stb__get16(p) stb__get16_slow(p)
#endif
unsigned int stb_hash_fast(void *p, int len)
{
unsigned char *q = (unsigned char *) p;
unsigned int hash = len;
if (len <= 0 || q == NULL) return 0;
/* Main loop */
if (((int) q & 1) == 0) {
for (;len > 3; len -= 4) {
unsigned int val;
hash += stb__get16(q);
val = (stb__get16(q+2) << 11);
hash = (hash << 16) ^ hash ^ val;
q += 4;
hash += hash >> 11;
}
} else {
for (;len > 3; len -= 4) {
unsigned int val;
hash += stb__get16_slow(q);
val = (stb__get16_slow(q+2) << 11);
hash = (hash << 16) ^ hash ^ val;
q += 4;
hash += hash >> 11;
}
}
/* Handle end cases */
switch (len) {
case 3: hash += stb__get16_slow(q);
hash ^= hash << 16;
hash ^= q[2] << 18;
hash += hash >> 11;
break;
case 2: hash += stb__get16_slow(q);
hash ^= hash << 11;
hash += hash >> 17;
break;
case 1: hash += q[0];
hash ^= hash << 10;
hash += hash >> 1;
break;
case 0: break;
}
/* Force "avalanching" of final 127 bits */
hash ^= hash << 3;
hash += hash >> 5;
hash ^= hash << 4;
hash += hash >> 17;
hash ^= hash << 25;
hash += hash >> 6;
return hash;
}
unsigned int stb_hash_number(unsigned int hash)
{
hash ^= hash << 3;
hash += hash >> 5;
hash ^= hash << 4;
hash += hash >> 17;
hash ^= hash << 25;
hash += hash >> 6;
return hash;
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// Perfect hashing for ints/pointers
//
// This is mainly useful for making faster pointer-indexed tables
// that don't change frequently. E.g. for stb_ischar().
//
typedef struct
{
stb_uint32 addend;
stb_uint multiplicand;
stb_uint b_mask;
stb_uint8 small_bmap[16];
stb_uint16 *large_bmap;
stb_uint table_mask;
stb_uint32 *table;
} stb_perfect;
STB_EXTERN int stb_perfect_create(stb_perfect *,unsigned int*,int n);
STB_EXTERN void stb_perfect_destroy(stb_perfect *);
STB_EXTERN int stb_perfect_hash(stb_perfect *, unsigned int x);
extern int stb_perfect_hash_max_failures;
#ifdef STB_DEFINE
int stb_perfect_hash_max_failures;
int stb_perfect_hash(stb_perfect *p, unsigned int x)
{
stb_uint m = x * p->multiplicand;
stb_uint y = x >> 16;
stb_uint bv = (m >> 24) + y;
stb_uint av = (m + y) >> 12;
if (p->table == NULL) return -1; // uninitialized table fails
bv &= p->b_mask;
av &= p->table_mask;
if (p->large_bmap)
av ^= p->large_bmap[bv];
else
av ^= p->small_bmap[bv];
return p->table[av] == x ? av : -1;
}
static void stb__perfect_prehash(stb_perfect *p, stb_uint x, stb_uint16 *a, stb_uint16 *b)
{
stb_uint m = x * p->multiplicand;
stb_uint y = x >> 16;
stb_uint bv = (m >> 24) + y;
stb_uint av = (m + y) >> 12;
bv &= p->b_mask;
av &= p->table_mask;
*b = bv;
*a = av;
}
static unsigned long stb__perfect_rand(void)
{
static unsigned long stb__rand;
stb__rand = stb__rand * 2147001325 + 715136305;
return 0x31415926 ^ ((stb__rand >> 16) + (stb__rand << 16));
}
typedef struct {
unsigned short count;
unsigned short b;
unsigned short map;
unsigned short *entries;
} stb__slot;
static int stb__slot_compare(const void *p, const void *q)
{
stb__slot *a = (stb__slot *) p;
stb__slot *b = (stb__slot *) q;
return a->count > b->count ? -1 : a->count < b->count; // sort large to small
}
int stb_perfect_create(stb_perfect *p, unsigned int *v, int n)
{
unsigned int buffer1[64], buffer2[64], buffer3[64], buffer4[64], buffer5[32];
unsigned short *as = (unsigned short *) stb_temp(buffer1, sizeof(*v)*n);
unsigned short *bs = (unsigned short *) stb_temp(buffer2, sizeof(*v)*n);
unsigned short *entries = (unsigned short *) stb_temp(buffer4, sizeof(*entries) * n);
int size = 1 << stb_log2_ceil(n), bsize=8;
int failure = 0,i,j,k;
assert(n <= 32768);
p->large_bmap = NULL;
for(;;) {
stb__slot *bcount = (stb__slot *) stb_temp(buffer3, sizeof(*bcount) * bsize);
unsigned short *bloc = (unsigned short *) stb_temp(buffer5, sizeof(*bloc) * bsize);
unsigned short *e;
int bad=0;
p->addend = stb__perfect_rand();
p->multiplicand = stb__perfect_rand() | 1;
p->table_mask = size-1;
p->b_mask = bsize-1;
p->table = (stb_uint32 *) malloc(size * sizeof(*p->table));
for (i=0; i < bsize; ++i) {
bcount[i].b = i;
bcount[i].count = 0;
bcount[i].map = 0;
}
for (i=0; i < n; ++i) {
stb__perfect_prehash(p, v[i], as+i, bs+i);
++bcount[bs[i]].count;
}
qsort(bcount, bsize, sizeof(*bcount), stb__slot_compare);
e = entries; // now setup up their entries index
for (i=0; i < bsize; ++i) {
bcount[i].entries = e;
e += bcount[i].count;
bcount[i].count = 0;
bloc[bcount[i].b] = i;
}
// now fill them out
for (i=0; i < n; ++i) {
int b = bs[i];
int w = bloc[b];
bcount[w].entries[bcount[w].count++] = i;
}
stb_tempfree(buffer5,bloc);
// verify
for (i=0; i < bsize; ++i)
for (j=0; j < bcount[i].count; ++j)
assert(bs[bcount[i].entries[j]] == bcount[i].b);
memset(p->table, 0, size*sizeof(*p->table));
// check if any b has duplicate a
for (i=0; i < bsize; ++i) {
if (bcount[i].count > 1) {
for (j=0; j < bcount[i].count; ++j) {
if (p->table[as[bcount[i].entries[j]]])
bad = 1;
p->table[as[bcount[i].entries[j]]] = 1;
}
for (j=0; j < bcount[i].count; ++j) {
p->table[as[bcount[i].entries[j]]] = 0;
}
if (bad) break;
}
}
if (!bad) {
// go through the bs and populate the table, first fit
for (i=0; i < bsize; ++i) {
if (bcount[i].count) {
// go through the candidate table[b] values
for (j=0; j < size; ++j) {
// go through the a values and see if they fit
for (k=0; k < bcount[i].count; ++k) {
int a = as[bcount[i].entries[k]];
if (p->table[(a^j)&p->table_mask]) {
break; // fails
}
}
// if succeeded, accept
if (k == bcount[i].count) {
bcount[i].map = j;
for (k=0; k < bcount[i].count; ++k) {
int a = as[bcount[i].entries[k]];
p->table[(a^j)&p->table_mask] = 1;
}
break;
}
}
if (j == size)
break; // no match for i'th entry, so break out in failure
}
}
if (i == bsize) {
// success... fill out map
if (bsize <= 16 && size <= 256) {
p->large_bmap = NULL;
for (i=0; i < bsize; ++i)
p->small_bmap[bcount[i].b] = (stb_uint8) bcount[i].map;
} else {
p->large_bmap = (unsigned short *) malloc(sizeof(*p->large_bmap) * bsize);
for (i=0; i < bsize; ++i)
p->large_bmap[bcount[i].b] = bcount[i].map;
}
// initialize table to v[0], so empty slots will fail
for (i=0; i < size; ++i)
p->table[i] = v[0];
for (i=0; i < n; ++i)
if (p->large_bmap)
p->table[as[i] ^ p->large_bmap[bs[i]]] = v[i];
else
p->table[as[i] ^ p->small_bmap[bs[i]]] = v[i];
// and now validate that none of them collided
for (i=0; i < n; ++i)
assert(stb_perfect_hash(p, v[i]) >= 0);
stb_tempfree(buffer3, bcount);
break;
}
}
free(p->table);
p->table = NULL;
stb_tempfree(buffer3, bcount);
++failure;
if (failure >= 4 && bsize < size) bsize *= 2;
if (failure >= 8 && (failure & 3) == 0 && size < 4*n) {
size *= 2;
bsize *= 2;
}
if (failure == 6) {
// make sure the input data is unique, so we don't infinite loop
unsigned int *data = (unsigned int *) stb_temp(buffer3, n * sizeof(*data));
memcpy(data, v, sizeof(*data) * n);
qsort(data, n, sizeof(*data), stb_intcmp(0));
for (i=1; i < n; ++i) {
if (data[i] == data[i-1])
size = 0; // size is return value, so 0 it
}
stb_tempfree(buffer3, data);
if (!size) break;
}
}
if (failure > stb_perfect_hash_max_failures)
stb_perfect_hash_max_failures = failure;
stb_tempfree(buffer1, as);
stb_tempfree(buffer2, bs);
stb_tempfree(buffer4, entries);
return size;
}
void stb_perfect_destroy(stb_perfect *p)
{
if (p->large_bmap) free(p->large_bmap);
if (p->table ) free(p->table);
p->large_bmap = NULL;
p->table = NULL;
p->b_mask = 0;
p->table_mask = 0;
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// Perfect hash clients
STB_EXTERN int stb_ischar(char s, char *set);
#ifdef STB_DEFINE
int stb_ischar(char c, char *set)
{
static unsigned char bit[8] = { 1,2,4,8,16,32,64,128 };
static stb_perfect p;
static unsigned char (*tables)[256];
static char ** sets = NULL;
int z = stb_perfect_hash(&p, (int) set);
if (z < 0) {
int i,k,n,j,f;
// special code that means free all existing data
if (set == NULL) {
stb_arr_free(sets);
free(tables);
tables = NULL;
stb_perfect_destroy(&p);
return 0;
}
stb_arr_push(sets, set);
stb_perfect_destroy(&p);
n = stb_perfect_create(&p, (unsigned int *) (char **) sets, stb_arr_len(sets));
assert(n != 0);
k = (n+7) >> 3;
tables = (unsigned char (*)[256]) realloc(tables, sizeof(*tables) * k);
memset(tables, 0, sizeof(*tables) * k);
for (i=0; i < stb_arr_len(sets); ++i) {
k = stb_perfect_hash(&p, (int) sets[i]);
assert(k >= 0);
n = k >> 3;
f = bit[k&7];
for (j=0; !j || sets[i][j]; ++j) {
tables[n][(unsigned char) sets[i][j]] |= f;
}
}
z = stb_perfect_hash(&p, (int) set);
}
return tables[z >> 3][(unsigned char) c] & bit[z & 7];
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// Instantiated data structures
//
// This is an attempt to implement a templated data structure.
//
// Hash table: call stb_define_hash(TYPE,N,KEY,K1,K2,HASH,VALUE)
// TYPE -- will define a structure type containing the hash table
// N -- the name, will prefix functions named:
// N create
// N destroy
// N get
// N set, N add, N update,
// N remove
// KEY -- the type of the key. 'x == y' must be valid
// K1,K2 -- keys never used by the app, used as flags in the hashtable
// HASH -- a piece of code ending with 'return' that hashes key 'k'
// VALUE -- the type of the value. 'x = y' must be valid
//
// Note that stb_define_hash_base can be used to define more sophisticated
// hash tables, e.g. those that make copies of the key or use special
// comparisons (e.g. strcmp).
#define STB_(prefix,name) stb__##prefix##name
#define STB__(prefix,name) prefix##name
#define STB__use(x) x
#define STB__skip(x)
#define stb_declare_hash(PREFIX,TYPE,N,KEY,VALUE) \
typedef struct stb__st_##TYPE TYPE;\
PREFIX int STB__(N, init)(TYPE *h, int count);\
PREFIX int STB__(N, memory_usage)(TYPE *h);\
PREFIX TYPE * STB__(N, create)(void);\
PREFIX TYPE * STB__(N, copy)(TYPE *h);\
PREFIX void STB__(N, destroy)(TYPE *h);\
PREFIX int STB__(N,get_flag)(TYPE *a, KEY k, VALUE *v);\
PREFIX VALUE STB__(N,get)(TYPE *a, KEY k);\
PREFIX int STB__(N, set)(TYPE *a, KEY k, VALUE v);\
PREFIX int STB__(N, add)(TYPE *a, KEY k, VALUE v);\
PREFIX int STB__(N, update)(TYPE*a,KEY k,VALUE v);\
PREFIX int STB__(N, remove)(TYPE *a, KEY k, VALUE *v);
#define STB_nocopy(x) (x)
#define STB_nodelete(x) 0
#define STB_nofields
#define STB_nonullvalue(x)
#define STB_nullvalue(x) x
#define STB_safecompare(x) x
#define STB_nosafe(x)
#define STB_noprefix
#ifdef __GNUC__
#define STB__nogcc(x)
#else
#define STB__nogcc(x) x
#endif
#define stb_define_hash_base(PREFIX,TYPE,FIELDS,N,NC,LOAD_FACTOR, \
KEY,EMPTY,DEL,COPY,DISPOSE,SAFE, \
VCOMPARE,CCOMPARE,HASH, \
VALUE,HASVNULL,VNULL) \
\
typedef struct \
{ \
KEY k; \
VALUE v; \
} STB_(N,_hashpair); \
\
STB__nogcc( typedef struct stb__st_##TYPE TYPE; ) \
struct stb__st_##TYPE { \
FIELDS \
STB_(N,_hashpair) *table; \
unsigned int mask; \
int count, limit; \
int deleted; \
\
int delete_threshhold; \
int grow_threshhold; \
int shrink_threshhold; \
unsigned char alloced, has_empty, has_del; \
VALUE ev; VALUE dv; \
}; \
\
static unsigned int STB_(N, hash)(KEY k) \
{ \
HASH \
} \
\
PREFIX int STB__(N, init)(TYPE *h, int count) \
{ \
int i; \
if (count < 4) count = 4; \
h->limit = count; \
h->count = 0; \
h->mask = count-1; \
h->deleted = 0; \
h->grow_threshhold = (int) (count * LOAD_FACTOR); \
h->has_empty = h->has_del = 0; \
h->alloced = 0; \
if (count <= 64) \
h->shrink_threshhold = 0; \
else \
h->shrink_threshhold = (int) (count * (LOAD_FACTOR/2.25)); \
h->delete_threshhold = (int) (count * (1-LOAD_FACTOR)/2); \
h->table = (STB_(N,_hashpair)*) malloc(sizeof(h->table[0]) * count); \
if (h->table == NULL) return 0; \
/* ideally this gets turned into a memset32 automatically */ \
for (i=0; i < count; ++i) \
h->table[i].k = EMPTY; \
return 1; \
} \
\
PREFIX int STB__(N, memory_usage)(TYPE *h) \
{ \
return sizeof(*h) + h->limit * sizeof(h->table[0]); \
} \
\
PREFIX TYPE * STB__(N, create)(void) \
{ \
TYPE *h = (TYPE *) malloc(sizeof(*h)); \
if (h) { \
if (STB__(N, init)(h, 16)) \
h->alloced = 1; \
else { free(h); h=NULL; } \
} \
return h; \
} \
\
PREFIX void STB__(N, destroy)(TYPE *a) \
{ \
int i; \
for (i=0; i < a->limit; ++i) \
if (!CCOMPARE(a->table[i].k,EMPTY) && !CCOMPARE(a->table[i].k, DEL)) \
DISPOSE(a->table[i].k); \
free(a->table); \
if (a->alloced) \
free(a); \
} \
\
static void STB_(N, rehash)(TYPE *a, int count); \
\
PREFIX int STB__(N,get_flag)(TYPE *a, KEY k, VALUE *v) \
{ \
unsigned int h = STB_(N, hash)(k); \
unsigned int n = h & a->mask, s; \
if (CCOMPARE(k,EMPTY)){ if (a->has_empty) *v = a->ev; return a->has_empty;}\
if (CCOMPARE(k,DEL)) { if (a->has_del ) *v = a->dv; return a->has_del; }\
if (CCOMPARE(a->table[n].k,EMPTY)) return 0; \
SAFE(if (!CCOMPARE(a->table[n].k,DEL))) \
if (VCOMPARE(a->table[n].k,k)) { *v = a->table[n].v; return 1; } \
s = stb_rehash(h) | 1; \
for(;;) { \
n = (n + s) & a->mask; \
if (CCOMPARE(a->table[n].k,EMPTY)) return 0; \
SAFE(if (CCOMPARE(a->table[n].k,DEL)) continue;) \
if (VCOMPARE(a->table[n].k,k)) \
{ *v = a->table[n].v; return 1; } \
} \
} \
\
HASVNULL( \
PREFIX VALUE STB__(N,get)(TYPE *a, KEY k) \
{ \
VALUE v; \
if (STB__(N,get_flag)(a,k,&v)) return v; \
else return VNULL; \
} \
) \
\
PREFIX int STB__(N,getkey)(TYPE *a, KEY k, KEY *kout) \
{ \
unsigned int h = STB_(N, hash)(k); \
unsigned int n = h & a->mask, s; \
if (CCOMPARE(k,EMPTY)||CCOMPARE(k,DEL)) return 0; \
if (CCOMPARE(a->table[n].k,EMPTY)) return 0; \
SAFE(if (!CCOMPARE(a->table[n].k,DEL))) \
if (VCOMPARE(a->table[n].k,k)) { *kout = a->table[n].k; return 1; } \
s = stb_rehash(h) | 1; \
for(;;) { \
n = (n + s) & a->mask; \
if (CCOMPARE(a->table[n].k,EMPTY)) return 0; \
SAFE(if (CCOMPARE(a->table[n].k,DEL)) continue;) \
if (VCOMPARE(a->table[n].k,k)) \
{ *kout = a->table[n].k; return 1; } \
} \
} \
\
static int STB_(N,addset)(TYPE *a, KEY k, VALUE v, \
int allow_new, int allow_old, int copy) \
{ \
unsigned int h = STB_(N, hash)(k); \
unsigned int n = h & a->mask; \
int b = -1; \
if (CCOMPARE(k,EMPTY)) { \
if (a->has_empty ? allow_old : allow_new) { \
n=a->has_empty; a->ev = v; a->has_empty = 1; return !n; \
} else return 0; \
} \
if (CCOMPARE(k,DEL)) { \
if (a->has_del ? allow_old : allow_new) { \
n=a->has_del; a->dv = v; a->has_del = 1; return !n; \
} else return 0; \
} \
if (!CCOMPARE(a->table[n].k, EMPTY)) { \
unsigned int s; \
if (CCOMPARE(a->table[n].k, DEL)) \
b = n; \
else if (VCOMPARE(a->table[n].k,k)) { \
if (allow_old) \
a->table[n].v = v; \
return !allow_new; \
} \
s = stb_rehash(h) | 1; \
for(;;) { \
n = (n + s) & a->mask; \
if (CCOMPARE(a->table[n].k, EMPTY)) break; \
if (CCOMPARE(a->table[n].k, DEL)) { \
if (b < 0) b = n; \
} else if (VCOMPARE(a->table[n].k,k)) { \
if (allow_old) \
a->table[n].v = v; \
return !allow_new; \
} \
} \
} \
if (!allow_new) return 0; \
if (b < 0) b = n; else --a->deleted; \
a->table[b].k = copy ? COPY(k) : k; \
a->table[b].v = v; \
++a->count; \
if (a->count > a->grow_threshhold) \
STB_(N,rehash)(a, a->limit*2); \
return 1; \
} \
\
PREFIX int STB__(N, set)(TYPE *a, KEY k, VALUE v){return STB_(N,addset)(a,k,v,1,1,1);}\
PREFIX int STB__(N, add)(TYPE *a, KEY k, VALUE v){return STB_(N,addset)(a,k,v,1,0,1);}\
PREFIX int STB__(N, update)(TYPE*a,KEY k,VALUE v){return STB_(N,addset)(a,k,v,0,1,1);}\
\
PREFIX int STB__(N, remove)(TYPE *a, KEY k, VALUE *v) \
{ \
unsigned int h = STB_(N, hash)(k); \
unsigned int n = h & a->mask, s; \
if (CCOMPARE(k,EMPTY)) { if (a->has_empty) { if(v)*v = a->ev; a->has_empty=0; return 1; } return 0; } \
if (CCOMPARE(k,DEL)) { if (a->has_del ) { if(v)*v = a->dv; a->has_del =0; return 1; } return 0; } \
if (CCOMPARE(a->table[n].k,EMPTY)) return 0; \
if (SAFE(CCOMPARE(a->table[n].k,DEL) || ) !VCOMPARE(a->table[n].k,k)) { \
s = stb_rehash(h) | 1; \
for(;;) { \
n = (n + s) & a->mask; \
if (CCOMPARE(a->table[n].k,EMPTY)) return 0; \
SAFE(if (CCOMPARE(a->table[n].k, DEL)) continue;) \
if (VCOMPARE(a->table[n].k,k)) break; \
} \
} \
DISPOSE(a->table[n].k); \
a->table[n].k = DEL; \
--a->count; \
++a->deleted; \
if (v != NULL) \
*v = a->table[n].v; \
if (a->count < a->shrink_threshhold) \
STB_(N, rehash)(a, a->limit >> 1); \
else if (a->deleted > a->delete_threshhold) \
STB_(N, rehash)(a, a->limit); \
return 1; \
} \
\
PREFIX TYPE * STB__(NC, copy)(TYPE *a) \
{ \
int i; \
TYPE *h = (TYPE *) malloc(sizeof(*h)); \
if (!h) return NULL; \
if (!STB__(N, init)(h, a->limit)) { free(h); return NULL; } \
h->count = a->count; \
h->deleted = a->deleted; \
h->alloced = 1; \
h->ev = a->ev; h->dv = a->dv; \
h->has_empty = a->has_empty; h->has_del = a->has_del; \
memcpy(h->table, a->table, h->limit * sizeof(h->table[0])); \
for (i=0; i < a->limit; ++i) \
if (!CCOMPARE(h->table[i].k,EMPTY) && !CCOMPARE(h->table[i].k,DEL)) \
h->table[i].k = COPY(h->table[i].k); \
return h; \
} \
\
static void STB_(N, rehash)(TYPE *a, int count) \
{ \
int i; \
TYPE b; \
STB__(N, init)(&b, count); \
for (i=0; i < a->limit; ++i) \
if (!CCOMPARE(a->table[i].k,EMPTY) && !CCOMPARE(a->table[i].k,DEL)) \
STB_(N,addset)(&b, a->table[i].k, a->table[i].v,1,1,0); \
free(a->table); \
a->table = b.table; \
a->mask = b.mask; \
a->count = b.count; \
a->limit = b.limit; \
a->deleted = b.deleted; \
a->delete_threshhold = b.delete_threshhold; \
a->grow_threshhold = b.grow_threshhold; \
a->shrink_threshhold = b.shrink_threshhold; \
}
#define STB_equal(a,b) ((a) == (b))
#define stb_define_hash(TYPE,N,KEY,EMPTY,DEL,HASH,VALUE) \
stb_define_hash_base(STB_noprefix, TYPE,STB_nofields,N,NC,0.85f, \
KEY,EMPTY,DEL,STB_nocopy,STB_nodelete,STB_nosafe, \
STB_equal,STB_equal,HASH, \
VALUE,STB_nonullvalue,0)
#define stb_define_hash_vnull(TYPE,N,KEY,EMPTY,DEL,HASH,VALUE,VNULL) \
stb_define_hash_base(STB_noprefix, TYPE,STB_nofields,N,NC,0.85f, \
KEY,EMPTY,DEL,STB_nocopy,STB_nodelete,STB_nosafe, \
STB_equal,STB_equal,HASH, \
VALUE,STB_nullvalue,VNULL)
//////////////////////////////////////////////////////////////////////////////
//
// stb_ptrmap
//
// An stb_ptrmap data structure is an O(1) hash table between pointers. One
// application is to let you store "extra" data associated with pointers,
// which is why it was originally called stb_extra.
stb_declare_hash(STB_EXTERN, stb_ptrmap, stb_ptrmap_, void *, void *)
stb_declare_hash(STB_EXTERN, stb_idict, stb_idict_, stb_int32, stb_int32)
STB_EXTERN void stb_ptrmap_delete(stb_ptrmap *e, void (*free_func)(void *));
STB_EXTERN stb_ptrmap *stb_ptrmap_new(void);
STB_EXTERN stb_idict * stb_idict_new_size(int size);
STB_EXTERN void stb_idict_remove_all(stb_idict *e);
#ifdef STB_DEFINE
#define STB_EMPTY ((void *) 2)
#define STB_EDEL ((void *) 6)
stb_define_hash_base(STB_noprefix,stb_ptrmap, STB_nofields, stb_ptrmap_,stb_ptrmap_,0.85f,
void *,STB_EMPTY,STB_EDEL,STB_nocopy,STB_nodelete,STB_nosafe,
STB_equal,STB_equal,return stb_hashptr(k);,
void *,STB_nullvalue,NULL)
stb_ptrmap *stb_ptrmap_new(void)
{
return stb_ptrmap_create();
}
void stb_ptrmap_delete(stb_ptrmap *e, void (*free_func)(void *))
{
int i;
if (free_func)
for (i=0; i < e->limit; ++i)
if (e->table[i].k != STB_EMPTY && e->table[i].k != STB_EDEL) {
if (free_func == free)
free(e->table[i].v); // allow STB_MALLOC_WRAPPER to operate
else
free_func(e->table[i].v);
}
stb_ptrmap_destroy(e);
}
// extra fields needed for stua_dict
#define STB_IEMPTY ((int) 1)
#define STB_IDEL ((int) 3)
stb_define_hash_base(STB_noprefix, stb_idict, short type; short gc; STB_nofields, stb_idict_,stb_idict_,0.85f,
stb_int32,STB_IEMPTY,STB_IDEL,STB_nocopy,STB_nodelete,STB_nosafe,
STB_equal,STB_equal,
return stb_rehash_improved(k);,stb_int32,STB_nonullvalue,0)
stb_idict * stb_idict_new_size(int size)
{
stb_idict *e = (stb_idict *) malloc(sizeof(*e));
if (e) {
if (!stb_is_pow2(size))
size = 1 << stb_log2_ceil(size);
stb_idict_init(e, size);
e->alloced = 1;
}
return e;
}
void stb_idict_remove_all(stb_idict *e)
{
int n;
for (n=0; n < e->limit; ++n)
e->table[n].k = STB_IEMPTY;
e->has_empty = e->has_del = 0;
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// stb_sparse_ptr_matrix
//
// An stb_ptrmap data structure is an O(1) hash table storing an arbitrary
// block of data for a given pair of pointers.
//
// If create=0, returns
typedef struct stb__st_stb_spmatrix stb_spmatrix;
STB_EXTERN stb_spmatrix * stb_sparse_ptr_matrix_new(int val_size);
STB_EXTERN void stb_sparse_ptr_matrix_free(stb_spmatrix *z);
STB_EXTERN void * stb_sparse_ptr_matrix_get(stb_spmatrix *z, void *a, void *b, int create);
#ifdef STB_DEFINE
typedef struct
{
void *a;
void *b;
} stb__ptrpair;
static stb__ptrpair stb__ptrpair_empty = { (void *) 1, (void *) 1 };
static stb__ptrpair stb__ptrpair_del = { (void *) 2, (void *) 2 };
#define STB__equal_ptrpair(x,y) ((x).a == (y).a && (x).b == (y).b)
stb_define_hash_base(static, stb_spmatrix, int val_size; void *arena;, stb__spmatrix_,stb__spmatrix_, 0.85,
stb__ptrpair, stb__ptrpair_empty, stb__ptrpair_del,
STB_nocopy, STB_nodelete, STB_nosafe,
STB__equal_ptrpair, STB__equal_ptrpair, return stb_rehash(stb_hashptr(k.a))+stb_hashptr(k.b);,
void *, STB_nullvalue, 0)
stb_spmatrix *stb_sparse_ptr_matrix_new(int val_size)
{
stb_spmatrix *m = stb__spmatrix_create();
if (m) m->val_size = val_size;
if (m) m->arena = stb_malloc_global(1);
return m;
}
void stb_sparse_ptr_matrix_free(stb_spmatrix *z)
{
if (z->arena) stb_free(z->arena);
stb__spmatrix_destroy(z);
}
void *stb_sparse_ptr_matrix_get(stb_spmatrix *z, void *a, void *b, int create)
{
stb__ptrpair t = { a,b };
void *data = stb__spmatrix_get(z, t);
if (!data && create) {
data = stb_malloc_raw(z->arena, z->val_size);
if (!data) return NULL;
memset(data, 0, z->val_size);
stb__spmatrix_add(z, t, data);
}
return data;
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// SDICT: Hash Table for Strings (symbol table)
//
// if "use_arena=1", then strings will be copied
// into blocks and never freed until the sdict is freed;
// otherwise they're malloc()ed and free()d on the fly.
// (specify use_arena=1 if you never stb_sdict_remove)
stb_declare_hash(STB_EXTERN, stb_sdict, stb_sdict_, char *, void *)
STB_EXTERN stb_sdict * stb_sdict_new(int use_arena);
STB_EXTERN stb_sdict * stb_sdict_copy(stb_sdict*);
STB_EXTERN void stb_sdict_delete(stb_sdict *);
STB_EXTERN void * stb_sdict_change(stb_sdict *, char *str, void *p);
STB_EXTERN int stb_sdict_count(stb_sdict *d);
#define stb_sdict_for(d,i,q,z) \
for(i=0; i < (d)->limit ? q=(d)->table[i].k,z=(d)->table[i].v,1 : 0; ++i) \
if (q==NULL||q==(void *) 1);else // reversed makes macro friendly
#ifdef STB_DEFINE
#define STB_DEL ((void *) 1)
#define STB_SDEL ((char *) 1)
#define stb_sdict__copy(x) \
strcpy(a->arena ? stb_malloc_string(a->arena, strlen(x)+1) \
: (char *) malloc(strlen(x)+1), x)
#define stb_sdict__dispose(x) if (!a->arena) free(x)
stb_define_hash_base(STB_noprefix, stb_sdict, void*arena;, stb_sdict_,stb_sdictinternal_, 0.85f,
char *, NULL, STB_SDEL, stb_sdict__copy, stb_sdict__dispose,
STB_safecompare, !strcmp, STB_equal, return stb_hash(k);,
void *, STB_nullvalue, NULL)
int stb_sdict_count(stb_sdict *a)
{
return a->count;
}
stb_sdict * stb_sdict_new(int use_arena)
{
stb_sdict *d = stb_sdict_create();
if (d == NULL) return NULL;
d->arena = use_arena ? stb_malloc_global(1) : NULL;
return d;
}
stb_sdict* stb_sdict_copy(stb_sdict *old)
{
stb_sdict *n;
void *old_arena = old->arena;
void *new_arena = old_arena ? stb_malloc_global(1) : NULL;
old->arena = new_arena;
n = stb_sdictinternal_copy(old);
old->arena = old_arena;
if (n)
n->arena = new_arena;
else if (new_arena)
stb_free(new_arena);
return n;
}
void stb_sdict_delete(stb_sdict *d)
{
if (d->arena)
stb_free(d->arena);
stb_sdict_destroy(d);
}
void * stb_sdict_change(stb_sdict *d, char *str, void *p)
{
void *q = stb_sdict_get(d, str);
stb_sdict_set(d, str, p);
return q;
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// Instantiated data structures
//
// This is an attempt to implement a templated data structure.
// What you do is define a struct foo, and then include several
// pointer fields to struct foo in your struct. Then you call
// the instantiator, which creates the functions that implement
// the data structure. This requires massive undebuggable #defines,
// so we limit the cases where we do this.
//
// AA tree is an encoding of a 2-3 tree whereas RB trees encode a 2-3-4 tree;
// much simpler code due to fewer cases.
#define stb__bst_parent(x) x
#define stb__bst_noparent(x)
#define stb_bst_fields(N) \
*STB_(N,left), *STB_(N,right); \
unsigned char STB_(N,level)
#define stb_bst_fields_parent(N) \
*STB_(N,left), *STB_(N,right), *STB_(N,parent); \
unsigned char STB_(N,level)
#define STB__level(N,x) ((x) ? (x)->STB_(N,level) : 0)
#define stb_bst_base(TYPE, N, TREE, M, compare, PAR) \
\
static int STB_(N,_compare)(TYPE *p, TYPE *q) \
{ \
compare \
} \
\
static void STB_(N,setleft)(TYPE *q, TYPE *v) \
{ \
q->STB_(N,left) = v; \
PAR(if (v) v->STB_(N,parent) = q;) \
} \
\
static void STB_(N,setright)(TYPE *q, TYPE *v) \
{ \
q->STB_(N,right) = v; \
PAR(if (v) v->STB_(N,parent) = q;) \
} \
\
static TYPE *STB_(N,skew)(TYPE *q) \
{ \
if (q == NULL) return q; \
if (q->STB_(N,left) \
&& q->STB_(N,left)->STB_(N,level) == q->STB_(N,level)) { \
TYPE *p = q->STB_(N,left); \
STB_(N,setleft)(q, p->STB_(N,right)); \
STB_(N,setright)(p, q); \
return p; \
} \
return q; \
} \
\
static TYPE *STB_(N,split)(TYPE *p) \
{ \
TYPE *q = p->STB_(N,right); \
if (q && q->STB_(N,right) \
&& q->STB_(N,right)->STB_(N,level) == p->STB_(N,level)) { \
STB_(N,setright)(p, q->STB_(N,left)); \
STB_(N,setleft)(q,p); \
++q->STB_(N,level); \
return q; \
} \
return p; \
} \
\
TYPE *STB__(N,insert)(TYPE *tree, TYPE *item) \
{ \
int c; \
if (tree == NULL) { \
item->STB_(N,left) = NULL; \
item->STB_(N,right) = NULL; \
item->STB_(N,level) = 1; \
PAR(item->STB_(N,parent) = NULL;) \
return item; \
} \
c = STB_(N,_compare)(item,tree); \
if (c == 0) { \
if (item != tree) { \
STB_(N,setleft)(item, tree->STB_(N,left)); \
STB_(N,setright)(item, tree->STB_(N,right)); \
item->STB_(N,level) = tree->STB_(N,level); \
PAR(item->STB_(N,parent) = NULL;) \
} \
return item; \
} \
if (c < 0) \
STB_(N,setleft )(tree, STB__(N,insert)(tree->STB_(N,left), item)); \
else \
STB_(N,setright)(tree, STB__(N,insert)(tree->STB_(N,right), item)); \
tree = STB_(N,skew)(tree); \
tree = STB_(N,split)(tree); \
PAR(tree->STB_(N,parent) = NULL;) \
return tree; \
} \
\
TYPE *STB__(N,remove)(TYPE *tree, TYPE *item) \
{ \
static TYPE *delnode, *leaf, *restore; \
if (tree == NULL) return NULL; \
leaf = tree; \
if (STB_(N,_compare)(item, tree) < 0) { \
STB_(N,setleft)(tree, STB__(N,remove)(tree->STB_(N,left), item)); \
} else { \
TYPE *r; \
delnode = tree; \
r = STB__(N,remove)(tree->STB_(N,right), item); \
/* maybe move 'leaf' up to this location */ \
if (restore == tree) { tree = leaf; leaf = restore = NULL; } \
STB_(N,setright)(tree,r); \
assert(tree->STB_(N,right) != tree); \
} \
if (tree == leaf) { \
if (delnode == item) { \
tree = tree->STB_(N,right); \
assert(leaf->STB_(N,left) == NULL); \
/* move leaf (the right sibling) up to delnode */ \
STB_(N,setleft )(leaf, item->STB_(N,left )); \
STB_(N,setright)(leaf, item->STB_(N,right)); \
leaf->STB_(N,level) = item->STB_(N,level); \
if (leaf != item) \
restore = delnode; \
} \
delnode = NULL; \
} else { \
if (STB__level(N,tree->STB_(N,left) ) < tree->STB_(N,level)-1 || \
STB__level(N,tree->STB_(N,right)) < tree->STB_(N,level)-1) { \
--tree->STB_(N,level); \
if (STB__level(N,tree->STB_(N,right)) > tree->STB_(N,level)) \
tree->STB_(N,right)->STB_(N,level) = tree->STB_(N,level); \
tree = STB_(N,skew)(tree); \
STB_(N,setright)(tree, STB_(N,skew)(tree->STB_(N,right))); \
if (tree->STB_(N,right)) \
STB_(N,setright)(tree->STB_(N,right), \
STB_(N,skew)(tree->STB_(N,right)->STB_(N,right))); \
tree = STB_(N,split)(tree); \
if (tree->STB_(N,right)) \
STB_(N,setright)(tree, STB_(N,split)(tree->STB_(N,right))); \
} \
} \
PAR(if (tree) tree->STB_(N,parent) = NULL;) \
return tree; \
} \
\
TYPE *STB__(N,last)(TYPE *tree) \
{ \
if (tree) \
while (tree->STB_(N,right)) tree = tree->STB_(N,right); \
return tree; \
} \
\
TYPE *STB__(N,first)(TYPE *tree) \
{ \
if (tree) \
while (tree->STB_(N,left)) tree = tree->STB_(N,left); \
return tree; \
} \
\
TYPE *STB__(N,next)(TYPE *tree, TYPE *item) \
{ \
TYPE *next = NULL; \
if (item->STB_(N,right)) \
return STB__(N,first)(item->STB_(N,right)); \
PAR( \
while(item->STB_(N,parent)) { \
TYPE *up = item->STB_(N,parent); \
if (up->STB_(N,left) == item) return up; \
item = up; \
} \
return NULL; \
) \
while (tree != item) { \
if (STB_(N,_compare)(item, tree) < 0) { \
next = tree; \
tree = tree->STB_(N,left); \
} else { \
tree = tree->STB_(N,right); \
} \
} \
return next; \
} \
\
TYPE *STB__(N,prev)(TYPE *tree, TYPE *item) \
{ \
TYPE *next = NULL; \
if (item->STB_(N,left)) \
return STB__(N,last)(item->STB_(N,left)); \
PAR( \
while(item->STB_(N,parent)) { \
TYPE *up = item->STB_(N,parent); \
if (up->STB_(N,right) == item) return up; \
item = up; \
} \
return NULL; \
) \
while (tree != item) { \
if (STB_(N,_compare)(item, tree) < 0) { \
tree = tree->STB_(N,left); \
} else { \
next = tree; \
tree = tree->STB_(N,right); \
} \
} \
return next; \
} \
\
STB__DEBUG( \
void STB__(N,_validate)(TYPE *tree, int root) \
{ \
if (tree == NULL) return; \
PAR(if(root) assert(tree->STB_(N,parent) == NULL);) \
assert(STB__level(N,tree->STB_(N,left) ) == tree->STB_(N,level)-1); \
assert(STB__level(N,tree->STB_(N,right)) <= tree->STB_(N,level)); \
assert(STB__level(N,tree->STB_(N,right)) >= tree->STB_(N,level)-1); \
if (tree->STB_(N,right)) { \
assert(STB__level(N,tree->STB_(N,right)->STB_(N,right)) \
!= tree->STB_(N,level)); \
PAR(assert(tree->STB_(N,right)->STB_(N,parent) == tree);) \
} \
PAR(if(tree->STB_(N,left)) assert(tree->STB_(N,left)->STB_(N,parent) == tree);) \
STB__(N,_validate)(tree->STB_(N,left) ,0); \
STB__(N,_validate)(tree->STB_(N,right),0); \
} \
) \
\
typedef struct \
{ \
TYPE *root; \
} TREE; \
\
void STB__(M,Insert)(TREE *tree, TYPE *item) \
{ tree->root = STB__(N,insert)(tree->root, item); } \
void STB__(M,Remove)(TREE *tree, TYPE *item) \
{ tree->root = STB__(N,remove)(tree->root, item); } \
TYPE *STB__(M,Next)(TREE *tree, TYPE *item) \
{ return STB__(N,next)(tree->root, item); } \
TYPE *STB__(M,Prev)(TREE *tree, TYPE *item) \
{ return STB__(N,prev)(tree->root, item); } \
TYPE *STB__(M,First)(TREE *tree) { return STB__(N,first)(tree->root); } \
TYPE *STB__(M,Last) (TREE *tree) { return STB__(N,last) (tree->root); } \
void STB__(M,Init)(TREE *tree) { tree->root = NULL; }
#define stb_bst_find(N,tree,fcompare) \
{ \
int c; \
while (tree != NULL) { \
fcompare \
if (c == 0) return tree; \
if (c < 0) tree = tree->STB_(N,left); \
else tree = tree->STB_(N,right); \
} \
return NULL; \
}
#define stb_bst_raw(TYPE,N,TREE,M,vfield,VTYPE,compare,PAR) \
stb_bst_base(TYPE,N,TREE,M, \
VTYPE a = p->vfield; VTYPE b = q->vfield; return (compare);, PAR ) \
\
TYPE *STB__(N,find)(TYPE *tree, VTYPE a) \
stb_bst_find(N,tree,VTYPE b = tree->vfield; c = (compare);) \
TYPE *STB__(M,Find)(TREE *tree, VTYPE a) \
{ return STB__(N,find)(tree->root, a); }
#define stb_bst(TYPE,N,TREE,M,vfield,VTYPE,compare) \
stb_bst_raw(TYPE,N,TREE,M,vfield,VTYPE,compare,stb__bst_noparent)
#define stb_bst_parent(TYPE,N,TREE,M,vfield,VTYPE,compare) \
stb_bst_raw(TYPE,N,TREE,M,vfield,VTYPE,compare,stb__bst_parent)
//////////////////////////////////////////////////////////////////////////////
//
// Pointer Nulling
//
// This lets you automatically NULL dangling pointers to "registered"
// objects. Note that you have to make sure you call the appropriate
// functions when you free or realloc blocks of memory that contain
// pointers or pointer targets. stb.h can automatically do this for
// stb_arr, or for all frees/reallocs if it's wrapping them.
//
#ifdef STB_NPTR
STB_EXTERN void stb_nptr_set(void *address_of_pointer, void *value_to_write);
STB_EXTERN void stb_nptr_didset(void *address_of_pointer);
STB_EXTERN void stb_nptr_didfree(void *address_being_freed, int len);
STB_EXTERN void stb_nptr_free(void *address_being_freed, int len);
STB_EXTERN void stb_nptr_didrealloc(void *new_address, void *old_address, int len);
STB_EXTERN void stb_nptr_recache(void); // recache all known pointers
// do this after pointer sets outside your control, slow
#ifdef STB_DEFINE
// for fast updating on free/realloc, we need to be able to find
// all the objects (pointers and targets) within a given block;
// this precludes hashing
// we use a three-level hierarchy of memory to minimize storage:
// level 1: 65536 pointers to stb__memory_node (always uses 256 KB)
// level 2: each stb__memory_node represents a 64K block of memory
// with 256 stb__memory_leafs (worst case 64MB)
// level 3: each stb__memory_leaf represents 256 bytes of memory
// using a list of target locations and a list of pointers
// (which are hopefully fairly short normally!)
// this approach won't work in 64-bit, which has a much larger address
// space. need to redesign
#define STB__NPTR_ROOT_LOG2 16
#define STB__NPTR_ROOT_NUM (1 << STB__NPTR_ROOT_LOG2)
#define STB__NPTR_ROOT_SHIFT (32 - STB__NPTR_ROOT_LOG2)
#define STB__NPTR_NODE_LOG2 5
#define STB__NPTR_NODE_NUM (1 << STB__NPTR_NODE_LOG2)
#define STB__NPTR_NODE_MASK (STB__NPTR_NODE_NUM-1)
#define STB__NPTR_NODE_SHIFT (STB__NPTR_ROOT_SHIFT - STB__NPTR_NODE_LOG2)
#define STB__NPTR_NODE_OFFSET(x) (((x) >> STB__NPTR_NODE_SHIFT) & STB__NPTR_NODE_MASK)
typedef struct stb__st_nptr
{
void *ptr; // address of actual pointer
struct stb__st_nptr *next; // next pointer with same target
struct stb__st_nptr **prev; // prev pointer with same target, address of 'next' field (or first)
struct stb__st_nptr *next_in_block;
} stb__nptr;
typedef struct stb__st_nptr_target
{
void *ptr; // address of target
stb__nptr *first; // address of first nptr pointing to this
struct stb__st_nptr_target *next_in_block;
} stb__nptr_target;
typedef struct
{
stb__nptr *pointers;
stb__nptr_target *targets;
} stb__memory_leaf;
typedef struct
{
stb__memory_leaf *children[STB__NPTR_NODE_NUM];
} stb__memory_node;
stb__memory_node *stb__memtab_root[STB__NPTR_ROOT_NUM];
static stb__memory_leaf *stb__nptr_find_leaf(void *mem)
{
stb_uint32 address = (stb_uint32) mem;
stb__memory_node *z = stb__memtab_root[address >> STB__NPTR_ROOT_SHIFT];
if (z)
return z->children[STB__NPTR_NODE_OFFSET(address)];
else
return NULL;
}
static void * stb__nptr_alloc(int size)
{
return stb__realloc_raw(0,size);
}
static void stb__nptr_free(void *p)
{
stb__realloc_raw(p,0);
}
static stb__memory_leaf *stb__nptr_make_leaf(void *mem)
{
stb_uint32 address = (stb_uint32) mem;
stb__memory_node *z = stb__memtab_root[address >> STB__NPTR_ROOT_SHIFT];
stb__memory_leaf *f;
if (!z) {
int i;
z = (stb__memory_node *) stb__nptr_alloc(sizeof(*stb__memtab_root[0]));
stb__memtab_root[address >> STB__NPTR_ROOT_SHIFT] = z;
for (i=0; i < 256; ++i)
z->children[i] = 0;
}
f = (stb__memory_leaf *) stb__nptr_alloc(sizeof(*f));
z->children[STB__NPTR_NODE_OFFSET(address)] = f;
f->pointers = NULL;
f->targets = NULL;
return f;
}
static stb__nptr_target *stb__nptr_find_target(void *target, int force)
{
stb__memory_leaf *p = stb__nptr_find_leaf(target);
if (p) {
stb__nptr_target *t = p->targets;
while (t) {
if (t->ptr == target)
return t;
t = t->next_in_block;
}
}
if (force) {
stb__nptr_target *t = (stb__nptr_target*) stb__nptr_alloc(sizeof(*t));
if (!p) p = stb__nptr_make_leaf(target);
t->ptr = target;
t->first = NULL;
t->next_in_block = p->targets;
p->targets = t;
return t;
} else
return NULL;
}
static stb__nptr *stb__nptr_find_pointer(void *ptr, int force)
{
stb__memory_leaf *p = stb__nptr_find_leaf(ptr);
if (p) {
stb__nptr *t = p->pointers;
while (t) {
if (t->ptr == ptr)
return t;
t = t->next_in_block;
}
}
if (force) {
stb__nptr *t = (stb__nptr *) stb__nptr_alloc(sizeof(*t));
if (!p) p = stb__nptr_make_leaf(ptr);
t->ptr = ptr;
t->next = NULL;
t->prev = NULL;
t->next_in_block = p->pointers;
p->pointers = t;
return t;
} else
return NULL;
}
void stb_nptr_set(void *address_of_pointer, void *value_to_write)
{
if (*(void **)address_of_pointer != value_to_write) {
*(void **) address_of_pointer = value_to_write;
stb_nptr_didset(address_of_pointer);
}
}
void stb_nptr_didset(void *address_of_pointer)
{
// first unlink from old chain
void *new_address;
stb__nptr *p = stb__nptr_find_pointer(address_of_pointer, 1); // force building if doesn't exist
if (p->prev) { // if p->prev is NULL, we just built it, or it was NULL
*(p->prev) = p->next;
if (p->next) p->next->prev = p->prev;
}
// now add to new chain
new_address = *(void **)address_of_pointer;
if (new_address != NULL) {
stb__nptr_target *t = stb__nptr_find_target(new_address, 1);
p->next = t->first;
if (p->next) p->next->prev = &p->next;
p->prev = &t->first;
t->first = p;
} else {
p->prev = NULL;
p->next = NULL;
}
}
void stb__nptr_block(void *address, int len, void (*function)(stb__memory_leaf *f, int datum, void *start, void *end), int datum)
{
void *end_address = (void *) ((char *) address + len - 1);
stb__memory_node *n;
stb_uint32 start = (stb_uint32) address;
stb_uint32 end = start + len - 1;
int b0 = start >> STB__NPTR_ROOT_SHIFT;
int b1 = end >> STB__NPTR_ROOT_SHIFT;
int b=b0,i,e0,e1;
e0 = STB__NPTR_NODE_OFFSET(start);
if (datum <= 0) {
// first block
n = stb__memtab_root[b0];
if (n) {
if (b0 != b1)
e1 = STB__NPTR_NODE_NUM-1;
else
e1 = STB__NPTR_NODE_OFFSET(end);
for (i=e0; i <= e1; ++i)
if (n->children[i])
function(n->children[i], datum, address, end_address);
}
if (b1 > b0) {
// blocks other than the first and last block
for (b=b0+1; b < b1; ++b) {
n = stb__memtab_root[b];
if (n)
for (i=0; i <= STB__NPTR_NODE_NUM-1; ++i)
if (n->children[i])
function(n->children[i], datum, address, end_address);
}
// last block
n = stb__memtab_root[b1];
if (n) {
e1 = STB__NPTR_NODE_OFFSET(end);
for (i=0; i <= e1; ++i)
if (n->children[i])
function(n->children[i], datum, address, end_address);
}
}
} else {
if (b1 > b0) {
// last block
n = stb__memtab_root[b1];
if (n) {
e1 = STB__NPTR_NODE_OFFSET(end);
for (i=e1; i >= 0; --i)
if (n->children[i])
function(n->children[i], datum, address, end_address);
}
// blocks other than the first and last block
for (b=b1-1; b > b0; --b) {
n = stb__memtab_root[b];
if (n)
for (i=STB__NPTR_NODE_NUM-1; i >= 0; --i)
if (n->children[i])
function(n->children[i], datum, address, end_address);
}
}
// first block
n = stb__memtab_root[b0];
if (n) {
if (b0 != b1)
e1 = STB__NPTR_NODE_NUM-1;
else
e1 = STB__NPTR_NODE_OFFSET(end);
for (i=e1; i >= e0; --i)
if (n->children[i])
function(n->children[i], datum, address, end_address);
}
}
}
static void stb__nptr_delete_pointers(stb__memory_leaf *f, int offset, void *start, void *end)
{
stb__nptr **p = &f->pointers;
while (*p) {
stb__nptr *n = *p;
if (n->ptr >= start && n->ptr <= end) {
// unlink
if (n->prev) {
*(n->prev) = n->next;
if (n->next) n->next->prev = n->prev;
}
*p = n->next_in_block;
stb__nptr_free(n);
} else
p = &(n->next_in_block);
}
}
static void stb__nptr_delete_targets(stb__memory_leaf *f, int offset, void *start, void *end)
{
stb__nptr_target **p = &f->targets;
while (*p) {
stb__nptr_target *n = *p;
if (n->ptr >= start && n->ptr <= end) {
// null pointers
stb__nptr *z = n->first;
while (z) {
stb__nptr *y = z->next;
z->prev = NULL;
z->next = NULL;
*(void **) z->ptr = NULL;
z = y;
}
// unlink this target
*p = n->next_in_block;
stb__nptr_free(n);
} else
p = &(n->next_in_block);
}
}
void stb_nptr_didfree(void *address_being_freed, int len)
{
// step one: delete all pointers in this block
stb__nptr_block(address_being_freed, len, stb__nptr_delete_pointers, 0);
// step two: NULL all pointers to this block; do this second to avoid NULLing deleted pointers
stb__nptr_block(address_being_freed, len, stb__nptr_delete_targets, 0);
}
void stb_nptr_free(void *address_being_freed, int len)
{
free(address_being_freed);
stb_nptr_didfree(address_being_freed, len);
}
static void stb__nptr_move_targets(stb__memory_leaf *f, int offset, void *start, void *end)
{
stb__nptr_target **t = &f->targets;
while (*t) {
stb__nptr_target *n = *t;
if (n->ptr >= start && n->ptr <= end) {
stb__nptr *z;
stb__memory_leaf *f;
// unlink n
*t = n->next_in_block;
// update n to new address
n->ptr = (void *) ((char *) n->ptr + offset);
f = stb__nptr_find_leaf(n->ptr);
if (!f) f = stb__nptr_make_leaf(n->ptr);
n->next_in_block = f->targets;
f->targets = n;
// now go through all pointers and make them point here
z = n->first;
while (z) {
*(void**) z->ptr = n->ptr;
z = z->next;
}
} else
t = &(n->next_in_block);
}
}
static void stb__nptr_move_pointers(stb__memory_leaf *f, int offset, void *start, void *end)
{
stb__nptr **p = &f->pointers;
while (*p) {
stb__nptr *n = *p;
if (n->ptr >= start && n->ptr <= end) {
// unlink
*p = n->next_in_block;
n->ptr = (void *) ((int) n->ptr + offset);
// move to new block
f = stb__nptr_find_leaf(n->ptr);
if (!f) f = stb__nptr_make_leaf(n->ptr);
n->next_in_block = f->pointers;
f->pointers = n;
} else
p = &(n->next_in_block);
}
}
void stb_nptr_realloc(void *new_address, void *old_address, int len)
{
if (new_address == old_address) return;
// have to move the pointers first, because moving the targets
// requires writing to the pointers-to-the-targets, and if some of those moved too,
// we need to make sure we don't write to the old memory
// step one: move all pointers within the block
stb__nptr_block(old_address, len, stb__nptr_move_pointers, (char *) new_address - (char *) old_address);
// step two: move all targets within the block
stb__nptr_block(old_address, len, stb__nptr_move_targets, (char *) new_address - (char *) old_address);
}
void stb_nptr_move(void *new_address, void *old_address)
{
stb_nptr_realloc(new_address, old_address, 1);
}
void stb_nptr_recache(void)
{
int i,j;
for (i=0; i < STB__NPTR_ROOT_NUM; ++i)
if (stb__memtab_root[i])
for (j=0; j < STB__NPTR_NODE_NUM; ++j)
if (stb__memtab_root[i]->children[j]) {
stb__nptr *p = stb__memtab_root[i]->children[j]->pointers;
while (p) {
stb_nptr_didset(p->ptr);
p = p->next_in_block;
}
}
}
#endif // STB_DEFINE
#endif // STB_NPTR
//////////////////////////////////////////////////////////////////////////////
//
// File Processing
//
#ifdef _MSC_VER
#define stb_rename(x,y) _wrename((const wchar_t *)stb__from_utf8(x), (const wchar_t *)stb__from_utf8_alt(y))
#define stb_mktemp _mktemp
#else
#define stb_mktemp mktemp
#define stb_rename rename
#endif
STB_EXTERN void stb_fput_varlen64(FILE *f, stb_uint64 v);
STB_EXTERN stb_uint64 stb_fget_varlen64(FILE *f);
STB_EXTERN int stb_size_varlen64(stb_uint64 v);
#define stb_filec (char *) stb_file
#define stb_fileu (unsigned char *) stb_file
STB_EXTERN void * stb_file(char *filename, size_t *length);
STB_EXTERN void * stb_file_max(char *filename, size_t *length);
STB_EXTERN size_t stb_filelen(FILE *f);
STB_EXTERN int stb_filewrite(char *filename, void *data, size_t length);
STB_EXTERN int stb_filewritestr(char *filename, char *data);
STB_EXTERN char ** stb_stringfile(char *filename, int *len);
STB_EXTERN char ** stb_stringfile_trimmed(char *name, int *len, char comm);
STB_EXTERN char * stb_fgets(char *buffer, int buflen, FILE *f);
STB_EXTERN char * stb_fgets_malloc(FILE *f);
STB_EXTERN int stb_fexists(char *filename);
STB_EXTERN int stb_fcmp(char *s1, char *s2);
STB_EXTERN int stb_feq(char *s1, char *s2);
STB_EXTERN time_t stb_ftimestamp(char *filename);
STB_EXTERN int stb_fullpath(char *abs, int abs_size, char *rel);
STB_EXTERN FILE * stb_fopen(char *filename, char *mode);
STB_EXTERN int stb_fclose(FILE *f, int keep);
enum
{
stb_keep_no = 0,
stb_keep_yes = 1,
stb_keep_if_different = 2,
};
STB_EXTERN int stb_copyfile(char *src, char *dest);
STB_EXTERN void stb_fput_varlen64(FILE *f, stb_uint64 v);
STB_EXTERN stb_uint64 stb_fget_varlen64(FILE *f);
STB_EXTERN int stb_size_varlen64(stb_uint64 v);
STB_EXTERN void stb_fwrite32(FILE *f, stb_uint32 datum);
STB_EXTERN void stb_fput_varlen (FILE *f, int v);
STB_EXTERN void stb_fput_varlenu(FILE *f, unsigned int v);
STB_EXTERN int stb_fget_varlen (FILE *f);
STB_EXTERN stb_uint stb_fget_varlenu(FILE *f);
STB_EXTERN void stb_fput_ranged (FILE *f, int v, int b, stb_uint n);
STB_EXTERN int stb_fget_ranged (FILE *f, int b, stb_uint n);
STB_EXTERN int stb_size_varlen (int v);
STB_EXTERN int stb_size_varlenu(unsigned int v);
STB_EXTERN int stb_size_ranged (int b, stb_uint n);
STB_EXTERN int stb_fread(void *data, size_t len, size_t count, void *f);
STB_EXTERN int stb_fwrite(void *data, size_t len, size_t count, void *f);
#if 0
typedef struct
{
FILE *base_file;
char *buffer;
int buffer_size;
int buffer_off;
int buffer_left;
} STBF;
STB_EXTERN STBF *stb_tfopen(char *filename, char *mode);
STB_EXTERN int stb_tfread(void *data, size_t len, size_t count, STBF *f);
STB_EXTERN int stb_tfwrite(void *data, size_t len, size_t count, STBF *f);
#endif
#ifdef STB_DEFINE
#if 0
STBF *stb_tfopen(char *filename, char *mode)
{
STBF *z;
FILE *f = fopen(filename, mode);
if (!f) return NULL;
z = (STBF *) malloc(sizeof(*z));
if (!z) { fclose(f); return NULL; }
z->base_file = f;
if (!strcmp(mode, "rb") || !strcmp(mode, "wb")) {
z->buffer_size = 4096;
z->buffer_off = z->buffer_size;
z->buffer_left = 0;
z->buffer = malloc(z->buffer_size);
if (!z->buffer) { free(z); fclose(f); return NULL; }
} else {
z->buffer = 0;
z->buffer_size = 0;
z->buffer_left = 0;
}
return z;
}
int stb_tfread(void *data, size_t len, size_t count, STBF *f)
{
int total = len*count, done=0;
if (!total) return 0;
if (total <= z->buffer_left) {
memcpy(data, z->buffer + z->buffer_off, total);
z->buffer_off += total;
z->buffer_left -= total;
return count;
} else {
char *out = (char *) data;
// consume all buffered data
memcpy(data, z->buffer + z->buffer_off, z->buffer_left);
done = z->buffer_left;
out += z->buffer_left;
z->buffer_left=0;
if (total-done > (z->buffer_size >> 1)) {
done += fread(out
}
}
}
#endif
void stb_fwrite32(FILE *f, stb_uint32 x)
{
fwrite(&x, 4, 1, f);
}
#ifdef _MSC_VER
#define stb__stat _stat
#else
#define stb__stat stat
#endif
int stb_fexists(char *filename)
{
struct stb__stat buf;
return stb__windows(
_wstat((const wchar_t *)stb__from_utf8(filename), &buf),
stat(filename,&buf)
) == 0;
}
time_t stb_ftimestamp(char *filename)
{
struct stb__stat buf;
if (stb__windows(
_wstat((const wchar_t *)stb__from_utf8(filename), &buf),
stat(filename,&buf)
) == 0)
{
return buf.st_mtime;
} else {
return 0;
}
}
size_t stb_filelen(FILE *f)
{
size_t len, pos;
pos = ftell(f);
fseek(f, 0, SEEK_END);
len = ftell(f);
fseek(f, pos, SEEK_SET);
return len;
}
void *stb_file(char *filename, size_t *length)
{
FILE *f = stb__fopen(filename, "rb");
char *buffer;
size_t len, len2;
if (!f) return NULL;
len = stb_filelen(f);
buffer = (char *) malloc(len+2); // nul + extra
len2 = fread(buffer, 1, len, f);
if (len2 == len) {
if (length) *length = len;
buffer[len] = 0;
} else {
free(buffer);
buffer = NULL;
}
fclose(f);
return buffer;
}
int stb_filewrite(char *filename, void *data, size_t length)
{
FILE *f = stb_fopen(filename, "wb");
if (f) {
fwrite(data, 1, length, f);
stb_fclose(f, stb_keep_if_different);
}
return f != NULL;
}
int stb_filewritestr(char *filename, char *data)
{
return stb_filewrite(filename, data, strlen(data));
}
void * stb_file_max(char *filename, size_t *length)
{
FILE *f = stb__fopen(filename, "rb");
char *buffer;
size_t len, maxlen;
if (!f) return NULL;
maxlen = *length;
buffer = (char *) malloc(maxlen+1);
len = fread(buffer, 1, maxlen, f);
buffer[len] = 0;
fclose(f);
*length = len;
return buffer;
}
char ** stb_stringfile(char *filename, int *plen)
{
FILE *f = stb__fopen(filename, "rb");
char *buffer, **list=NULL, *s;
size_t len, count, i;
if (!f) return NULL;
len = stb_filelen(f);
buffer = (char *) malloc(len+1);
len = fread(buffer, 1, len, f);
buffer[len] = 0;
fclose(f);
// two passes through: first time count lines, second time set them
for (i=0; i < 2; ++i) {
s = buffer;
if (i == 1)
list[0] = s;
count = 1;
while (*s) {
if (*s == '\n' || *s == '\r') {
// detect if both cr & lf are together
int crlf = (s[0] + s[1]) == ('\n' + '\r');
if (i == 1) *s = 0;
if (crlf) ++s;
if (s[1]) { // it's not over yet
if (i == 1) list[count] = s+1;
++count;
}
}
++s;
}
if (i == 0) {
list = (char **) malloc(sizeof(*list) * (count+1) + len+1);
if (!list) return NULL;
list[count] = 0;
// recopy the file so there's just a single allocation to free
memcpy(&list[count+1], buffer, len+1);
free(buffer);
buffer = (char *) &list[count+1];
if (plen) *plen = count;
}
}
return list;
}
char ** stb_stringfile_trimmed(char *name, int *len, char comment)
{
int i,n,o=0;
char **s = stb_stringfile(name, &n);
if (s == NULL) return NULL;
for (i=0; i < n; ++i) {
char *p = stb_skipwhite(s[i]);
if (*p && *p != comment)
s[o++] = p;
}
s[o] = NULL;
if (len) *len = o;
return s;
}
char * stb_fgets(char *buffer, int buflen, FILE *f)
{
char *p;
buffer[0] = 0;
p = fgets(buffer, buflen, f);
if (p) {
int n = strlen(p)-1;
if (n >= 0)
if (p[n] == '\n')
p[n] = 0;
}
return p;
}
char * stb_fgets_malloc(FILE *f)
{
// avoid reallocing for small strings
char quick_buffer[800];
quick_buffer[sizeof(quick_buffer)-2] = 0;
if (!fgets(quick_buffer, sizeof(quick_buffer), f))
return NULL;
if (quick_buffer[sizeof(quick_buffer)-2] == 0) {
int n = strlen(quick_buffer);
if (n > 0 && quick_buffer[n-1] == '\n')
quick_buffer[n-1] = 0;
return strdup(quick_buffer);
} else {
char *p;
char *a = strdup(quick_buffer);
int len = sizeof(quick_buffer)-1;
while (!feof(f)) {
if (a[len-1] == '\n') break;
a = (char *) realloc(a, len*2);
p = &a[len];
p[len-2] = 0;
if (!fgets(p, len, f))
break;
if (p[len-2] == 0) {
len += strlen(p);
break;
}
len = len + (len-1);
}
if (a[len-1] == '\n')
a[len-1] = 0;
return a;
}
}
int stb_fullpath(char *abs, int abs_size, char *rel)
{
#ifdef _MSC_VER
return _fullpath(abs, rel, abs_size) != NULL;
#else
if (rel[0] == '/' || rel[0] == '~') {
if ((int) strlen(rel) >= abs_size)
return 0;
strcpy(abs,rel);
return STB_TRUE;
} else {
int n;
getcwd(abs, abs_size);
n = strlen(abs);
if (n+(int) strlen(rel)+2 <= abs_size) {
abs[n] = '/';
strcpy(abs+n+1, rel);
return STB_TRUE;
} else {
return STB_FALSE;
}
}
#endif
}
static int stb_fcmp_core(FILE *f, FILE *g)
{
char buf1[1024],buf2[1024];
int n1,n2, res=0;
while (1) {
n1 = fread(buf1, 1, sizeof(buf1), f);
n2 = fread(buf2, 1, sizeof(buf2), g);
res = memcmp(buf1,buf2,stb_min(n1,n2));
if (res)
break;
if (n1 != n2) {
res = n1 < n2 ? -1 : 1;
break;
}
if (n1 == 0)
break;
}
fclose(f);
fclose(g);
return res;
}
int stb_fcmp(char *s1, char *s2)
{
FILE *f = stb__fopen(s1, "rb");
FILE *g = stb__fopen(s2, "rb");
if (f == NULL || g == NULL) {
if (f) fclose(f);
if (g) {
fclose(g);
return STB_TRUE;
}
return f != NULL;
}
return stb_fcmp_core(f,g);
}
int stb_feq(char *s1, char *s2)
{
FILE *f = stb__fopen(s1, "rb");
FILE *g = stb__fopen(s2, "rb");
if (f == NULL || g == NULL) {
if (f) fclose(f);
if (g) fclose(g);
return f == g;
}
// feq is faster because it shortcuts if they're different length
if (stb_filelen(f) != stb_filelen(g)) {
fclose(f);
fclose(g);
return 0;
}
return !stb_fcmp_core(f,g);
}
static stb_ptrmap *stb__files;
typedef struct
{
char *temp_name;
char *name;
int errors;
} stb__file_data;
FILE * stb_fopen(char *filename, char *mode)
{
FILE *f;
char name_full[4096];
char temp_full[sizeof(name_full) + 12];
int p;
#ifdef _MSC_VER
int j;
#endif
if (mode[0] != 'w' && !strchr(mode, '+'))
return stb__fopen(filename, mode);
// save away the full path to the file so if the program
// changes the cwd everything still works right! unix has
// better ways to do this, but we have to work in windows
name_full[0] = '\0'; // stb_fullpath reads name_full[0]
if (stb_fullpath(name_full, sizeof(name_full), filename)==0)
return 0;
// try to generate a temporary file in the same directory
p = strlen(name_full)-1;
while (p > 0 && name_full[p] != '/' && name_full[p] != '\\'
&& name_full[p] != ':' && name_full[p] != '~')
--p;
++p;
memcpy(temp_full, name_full, p);
#ifdef _MSC_VER
// try multiple times to make a temp file... just in
// case some other process makes the name first
for (j=0; j < 32; ++j) {
strcpy(temp_full+p, "stmpXXXXXX");
if (stb_mktemp(temp_full) == NULL)
return 0;
f = fopen(temp_full, mode);
if (f != NULL)
break;
}
#else
{
strcpy(temp_full+p, "stmpXXXXXX");
int fd = mkstemp(temp_full);
if (fd == -1) return NULL;
f = fdopen(fd, mode);
if (f == NULL) {
unlink(temp_full);
close(fd);
return NULL;
}
}
#endif
if (f != NULL) {
stb__file_data *d = (stb__file_data *) malloc(sizeof(*d));
if (!d) { assert(0); /* NOTREACHED */fclose(f); return NULL; }
if (stb__files == NULL) stb__files = stb_ptrmap_create();
d->temp_name = strdup(temp_full);
d->name = strdup(name_full);
d->errors = 0;
stb_ptrmap_add(stb__files, f, d);
return f;
}
return NULL;
}
int stb_fclose(FILE *f, int keep)
{
stb__file_data *d;
int ok = STB_FALSE;
if (f == NULL) return 0;
if (ferror(f))
keep = stb_keep_no;
fclose(f);
if (stb__files && stb_ptrmap_remove(stb__files, f, (void **) &d)) {
if (stb__files->count == 0) {
stb_ptrmap_destroy(stb__files);
stb__files = NULL;
}
} else
return STB_TRUE; // not special
if (keep == stb_keep_if_different) {
// check if the files are identical
if (stb_feq(d->name, d->temp_name)) {
keep = stb_keep_no;
ok = STB_TRUE; // report success if no change
}
}
if (keep != stb_keep_no) {
if (stb_fexists(d->name) && remove(d->name)) {
// failed to delete old, so don't keep new
keep = stb_keep_no;
} else {
if (!stb_rename(d->temp_name, d->name))
ok = STB_TRUE;
else
keep=stb_keep_no;
}
}
if (keep == stb_keep_no)
remove(d->temp_name);
free(d->temp_name);
free(d->name);
free(d);
return ok;
}
int stb_copyfile(char *src, char *dest)
{
char raw_buffer[1024];
char *buffer;
int buf_size = 65536;
FILE *f, *g;
// if file already exists at destination, do nothing
if (stb_feq(src, dest)) return STB_TRUE;
// open file
f = stb__fopen(src, "rb");
if (f == NULL) return STB_FALSE;
// open file for writing
g = stb__fopen(dest, "wb");
if (g == NULL) {
fclose(f);
return STB_FALSE;
}
buffer = (char *) malloc(buf_size);
if (buffer == NULL) {
buffer = raw_buffer;
buf_size = sizeof(raw_buffer);
}
while (!feof(f)) {
int n = fread(buffer, 1, buf_size, f);
if (n != 0)
fwrite(buffer, 1, n, g);
}
fclose(f);
if (buffer != raw_buffer)
free(buffer);
fclose(g);
return STB_TRUE;
}
// varlen:
// v' = (v >> 31) + (v < 0 ? ~v : v)<<1; // small abs(v) => small v'
// output v as big endian v'+k for v' <= k:
// 1 byte : v' <= 0x00000080 ( -64 <= v < 64) 7 bits
// 2 bytes: v' <= 0x00004000 (-8192 <= v < 8192) 14 bits
// 3 bytes: v' <= 0x00200000 21 bits
// 4 bytes: v' <= 0x10000000 28 bits
// the number of most significant 1-bits in the first byte
// equals the number of bytes after the first
#define stb__varlen_xform(v) (v<0 ? (~v << 1)+1 : (v << 1))
int stb_size_varlen(int v) { return stb_size_varlenu(stb__varlen_xform(v)); }
int stb_size_varlenu(unsigned int v)
{
if (v < 0x00000080) return 1;
if (v < 0x00004000) return 2;
if (v < 0x00200000) return 3;
if (v < 0x10000000) return 4;
return 5;
}
void stb_fput_varlen(FILE *f, int v) { stb_fput_varlenu(f, stb__varlen_xform(v)); }
void stb_fput_varlenu(FILE *f, unsigned int z)
{
if (z >= 0x10000000) fputc(0xF0,f);
if (z >= 0x00200000) fputc((z < 0x10000000 ? 0xE0 : 0)+(z>>24),f);
if (z >= 0x00004000) fputc((z < 0x00200000 ? 0xC0 : 0)+(z>>16),f);
if (z >= 0x00000080) fputc((z < 0x00004000 ? 0x80 : 0)+(z>> 8),f);
fputc(z,f);
}
#define stb_fgetc(f) ((unsigned char) fgetc(f))
int stb_fget_varlen(FILE *f)
{
unsigned int z = stb_fget_varlenu(f);
return (z & 1) ? ~(z>>1) : (z>>1);
}
unsigned int stb_fget_varlenu(FILE *f)
{
unsigned int z;
unsigned char d;
d = stb_fgetc(f);
if (d >= 0x80) {
if (d >= 0xc0) {
if (d >= 0xe0) {
if (d == 0xf0) z = stb_fgetc(f) << 24;
else z = (d - 0xe0) << 24;
z += stb_fgetc(f) << 16;
}
else
z = (d - 0xc0) << 16;
z += stb_fgetc(f) << 8;
} else
z = (d - 0x80) << 8;
z += stb_fgetc(f);
} else
z = d;
return z;
}
stb_uint64 stb_fget_varlen64(FILE *f)
{
stb_uint64 z;
unsigned char d;
d = stb_fgetc(f);
if (d >= 0x80) {
if (d >= 0xc0) {
if (d >= 0xe0) {
if (d >= 0xf0) {
if (d >= 0xf8) {
if (d >= 0xfc) {
if (d >= 0xfe) {
if (d >= 0xff)
z = (stb_uint64) stb_fgetc(f) << 56;
else
z = (stb_uint64) (d - 0xfe) << 56;
z |= (stb_uint64) stb_fgetc(f) << 48;
} else z = (stb_uint64) (d - 0xfc) << 48;
z |= (stb_uint64) stb_fgetc(f) << 40;
} else z = (stb_uint64) (d - 0xf8) << 40;
z |= (stb_uint64) stb_fgetc(f) << 32;
} else z = (stb_uint64) (d - 0xf0) << 32;
z |= (stb_uint) stb_fgetc(f) << 24;
} else z = (stb_uint) (d - 0xe0) << 24;
z |= (stb_uint) stb_fgetc(f) << 16;
} else z = (stb_uint) (d - 0xc0) << 16;
z |= (stb_uint) stb_fgetc(f) << 8;
} else z = (stb_uint) (d - 0x80) << 8;
z |= stb_fgetc(f);
} else
z = d;
return (z & 1) ? ~(z >> 1) : (z >> 1);
}
int stb_size_varlen64(stb_uint64 v)
{
if (v < 0x00000080) return 1;
if (v < 0x00004000) return 2;
if (v < 0x00200000) return 3;
if (v < 0x10000000) return 4;
if (v < STB_IMM_UINT64(0x0000000800000000)) return 5;
if (v < STB_IMM_UINT64(0x0000040000000000)) return 6;
if (v < STB_IMM_UINT64(0x0002000000000000)) return 7;
if (v < STB_IMM_UINT64(0x0100000000000000)) return 8;
return 9;
}
void stb_fput_varlen64(FILE *f, stb_uint64 v)
{
stb_uint64 z = stb__varlen_xform(v);
int first=1;
if (z >= STB_IMM_UINT64(0x100000000000000)) {
fputc(0xff,f);
first=0;
}
if (z >= STB_IMM_UINT64(0x02000000000000)) fputc((first ? 0xFE : 0)+(char)(z>>56),f), first=0;
if (z >= STB_IMM_UINT64(0x00040000000000)) fputc((first ? 0xFC : 0)+(char)(z>>48),f), first=0;
if (z >= STB_IMM_UINT64(0x00000800000000)) fputc((first ? 0xF8 : 0)+(char)(z>>40),f), first=0;
if (z >= STB_IMM_UINT64(0x00000010000000)) fputc((first ? 0xF0 : 0)+(char)(z>>32),f), first=0;
if (z >= STB_IMM_UINT64(0x00000000200000)) fputc((first ? 0xE0 : 0)+(char)(z>>24),f), first=0;
if (z >= STB_IMM_UINT64(0x00000000004000)) fputc((first ? 0xC0 : 0)+(char)(z>>16),f), first=0;
if (z >= STB_IMM_UINT64(0x00000000000080)) fputc((first ? 0x80 : 0)+(char)(z>> 8),f), first=0;
fputc((char)z,f);
}
void stb_fput_ranged(FILE *f, int v, int b, stb_uint n)
{
v -= b;
if (n <= (1 << 31))
assert((stb_uint) v < n);
if (n > (1 << 24)) fputc(v >> 24, f);
if (n > (1 << 16)) fputc(v >> 16, f);
if (n > (1 << 8)) fputc(v >> 8, f);
fputc(v,f);
}
int stb_fget_ranged(FILE *f, int b, stb_uint n)
{
unsigned int v=0;
if (n > (1 << 24)) v += stb_fgetc(f) << 24;
if (n > (1 << 16)) v += stb_fgetc(f) << 16;
if (n > (1 << 8)) v += stb_fgetc(f) << 8;
v += stb_fgetc(f);
return b+v;
}
int stb_size_ranged(int b, stb_uint n)
{
if (n > (1 << 24)) return 4;
if (n > (1 << 16)) return 3;
if (n > (1 << 8)) return 2;
return 1;
}
void stb_fput_string(FILE *f, char *s)
{
int len = strlen(s);
stb_fput_varlenu(f, len);
fwrite(s, 1, len, f);
}
// inverse of the above algorithm
char *stb_fget_string(FILE *f, void *p)
{
char *s;
int len = stb_fget_varlenu(f);
if (len > 4096) return NULL;
s = p ? stb_malloc_string(p, len+1) : (char *) malloc(len+1);
fread(s, 1, len, f);
s[len] = 0;
return s;
}
char *stb_strdup(char *str, void *pool)
{
int len = strlen(str);
char *p = stb_malloc_string(pool, len+1);
strcpy(p, str);
return p;
}
// strip the trailing '/' or '\\' from a directory so we can refer to it
// as a file for _stat()
char *stb_strip_final_slash(char *t)
{
if (t[0]) {
char *z = t + strlen(t) - 1;
// *z is the last character
if (*z == '\\' || *z == '/')
if (z != t+2 || t[1] != ':') // but don't strip it if it's e.g. "c:/"
*z = 0;
if (*z == '\\')
*z = '/'; // canonicalize to make sure it matches db
}
return t;
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// Options parsing
//
STB_EXTERN char **stb_getopt_param(int *argc, char **argv, char *param);
STB_EXTERN char **stb_getopt(int *argc, char **argv);
STB_EXTERN void stb_getopt_free(char **opts);
#ifdef STB_DEFINE
void stb_getopt_free(char **opts)
{
int i;
char ** o2 = opts;
for (i=0; i < stb_arr_len(o2); ++i)
free(o2[i]);
stb_arr_free(o2);
}
char **stb_getopt(int *argc, char **argv)
{
return stb_getopt_param(argc, argv, "");
}
char **stb_getopt_param(int *argc, char **argv, char *param)
{
char ** opts=NULL;
int i,j=1;
for (i=1; i < *argc; ++i) {
if (argv[i][0] != '-') {
argv[j++] = argv[i];
} else {
if (argv[i][1] == 0) { // plain - == don't parse further options
++i;
while (i < *argc)
argv[j++] = argv[i++];
break;
} else {
int k;
char *q = argv[i]; // traverse options list
for (k=1; q[k]; ++k) {
char *s;
if (strchr(param, q[k])) { // does it take a parameter?
char *t = &q[k+1], z = q[k];
int len=0;
if (*t == 0) {
if (i == *argc-1) { // takes a parameter, but none found
*argc = 0;
stb_getopt_free(opts);
return NULL;
}
t = argv[++i];
} else
k += strlen(t);
len = strlen(t);
s = (char *) malloc(len+2);
if (!s) return NULL;
s[0] = z;
strcpy(s+1, t);
} else {
// no parameter
s = (char *) malloc(2);
if (!s) return NULL;
s[0] = q[k];
s[1] = 0;
}
stb_arr_push(opts, s);
}
}
}
}
stb_arr_push(opts, NULL);
*argc = j;
return opts;
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// Portable directory reading
//
STB_EXTERN char **stb_readdir_files (char *dir);
STB_EXTERN char **stb_readdir_files_mask(char *dir, char *wild);
STB_EXTERN char **stb_readdir_subdirs(char *dir);
STB_EXTERN char **stb_readdir_subdirs_mask(char *dir, char *wild);
STB_EXTERN void stb_readdir_free (char **files);
STB_EXTERN char **stb_readdir_recursive(char *dir, char *filespec);
STB_EXTERN void stb_delete_directory_recursive(char *dir);
#ifdef STB_DEFINE
#ifdef _MSC_VER
#include <io.h>
#else
#include <unistd.h>
#include <dirent.h>
#endif
void stb_readdir_free(char **files)
{
char **f2 = files;
int i;
for (i=0; i < stb_arr_len(f2); ++i)
free(f2[i]);
stb_arr_free(f2);
}
STB_EXTERN int stb_wildmatchi(char *expr, char *candidate);
static char **readdir_raw(char *dir, int return_subdirs, char *mask)
{
char **results = NULL;
char buffer[512], with_slash[512];
int n;
#ifdef _MSC_VER
stb__wchar *ws;
struct _wfinddata_t data;
const long none = -1;
long z;
#else
const DIR *none = NULL;
DIR *z;
#endif
strcpy(buffer,dir);
stb_fixpath(buffer);
n = strlen(buffer);
if (n > 0 && (buffer[n-1] != '/')) {
buffer[n++] = '/';
}
buffer[n] = 0;
strcpy(with_slash, buffer);
#ifdef _MSC_VER
strcpy(buffer+n, "*.*");
ws = stb__from_utf8(buffer);
z = _wfindfirst((const wchar_t *)ws, &data);
#else
z = opendir(dir);
#endif
if (z != none) {
int nonempty = STB_TRUE;
#ifndef _MSC_VER
struct dirent *data = readdir(z);
nonempty = (data != NULL);
#endif
if (nonempty) {
do {
int is_subdir;
#ifdef _MSC_VER
char *name = stb__to_utf8((stb__wchar *)data.name);
if (name == NULL) {
fprintf(stderr, "%s to convert '%S' to %s!\n", "Unable", data.name, "utf8");
continue;
}
is_subdir = !!(data.attrib & _A_SUBDIR);
#else
char *name = data->d_name;
strcpy(buffer+n,name);
DIR *y = opendir(buffer);
is_subdir = (y != NULL);
if (y != NULL) closedir(y);
#endif
if (is_subdir == return_subdirs) {
if (!is_subdir || name[0] != '.') {
if (!mask || stb_wildmatchi(mask, name)) {
char buffer[512],*p=buffer;
sprintf(buffer, "%s%s", with_slash, name);
if (buffer[0] == '.' && buffer[1] == '/')
p = buffer+2;
stb_arr_push(results, strdup(p));
}
}
}
}
#ifdef _MSC_VER
while (0 == _wfindnext(z, &data));
#else
while ((data = readdir(z)) != NULL);
#endif
}
#ifdef _MSC_VER
_findclose(z);
#else
closedir(z);
#endif
}
return results;
}
char **stb_readdir_files (char *dir) { return readdir_raw(dir, 0, NULL); }
char **stb_readdir_subdirs(char *dir) { return readdir_raw(dir, 1, NULL); }
char **stb_readdir_files_mask(char *dir, char *wild) { return readdir_raw(dir, 0, wild); }
char **stb_readdir_subdirs_mask(char *dir, char *wild) { return readdir_raw(dir, 1, wild); }
int stb__rec_max=0x7fffffff;
static char **stb_readdir_rec(char **sofar, char *dir, char *filespec)
{
char **files;
char ** dirs;
char **p;
if (stb_arr_len(sofar) >= stb__rec_max) return sofar;
files = stb_readdir_files_mask(dir, filespec);
stb_arr_for(p, files) {
stb_arr_push(sofar, strdup(*p));
if (stb_arr_len(sofar) >= stb__rec_max) break;
}
stb_readdir_free(files);
if (stb_arr_len(sofar) >= stb__rec_max) return sofar;
dirs = stb_readdir_subdirs(dir);
stb_arr_for(p, dirs)
sofar = stb_readdir_rec(sofar, *p, filespec);
stb_readdir_free(dirs);
return sofar;
}
char **stb_readdir_recursive(char *dir, char *filespec)
{
return stb_readdir_rec(NULL, dir, filespec);
}
void stb_delete_directory_recursive(char *dir)
{
char **list = stb_readdir_subdirs(dir);
int i;
for (i=0; i < stb_arr_len(list); ++i)
stb_delete_directory_recursive(list[i]);
stb_arr_free(list);
list = stb_readdir_files(dir);
for (i=0; i < stb_arr_len(list); ++i)
if (!remove(list[i])) {
// on windows, try again after making it writeable; don't ALWAYS
// do this first since that would be slow in the normal case
#ifdef _MSC_VER
_chmod(list[i], _S_IWRITE);
remove(list[i]);
#endif
}
stb_arr_free(list);
stb__windows(_rmdir,rmdir)(dir);
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// construct trees from filenames; useful for cmirror summaries
typedef struct stb_dirtree2 stb_dirtree2;
struct stb_dirtree2
{
stb_dirtree2 **subdirs;
// make convenient for stb_summarize_tree
int num_subdir;
float weight;
// actual data
char *fullpath;
char *relpath;
char **files;
};
STB_EXTERN stb_dirtree2 *stb_dirtree2_from_files_relative(char *src, char **filelist, int count);
STB_EXTERN stb_dirtree2 *stb_dirtree2_from_files(char **filelist, int count);
STB_EXTERN int stb_dir_is_prefix(char *dir, int dirlen, char *file);
#ifdef STB_DEFINE
int stb_dir_is_prefix(char *dir, int dirlen, char *file)
{
if (dirlen == 0) return STB_TRUE;
if (stb_strnicmp(dir, file, dirlen)) return STB_FALSE;
if (file[dirlen] == '/' || file[dirlen] == '\\') return STB_TRUE;
return STB_FALSE;
}
stb_dirtree2 *stb_dirtree2_from_files_relative(char *src, char **filelist, int count)
{
char buffer1[1024];
int i;
int dlen = strlen(src), elen;
stb_dirtree2 *d;
char ** descendents = NULL;
char ** files = NULL;
char *s;
if (!count) return NULL;
// first find all the ones that belong here... note this is will take O(NM) with N files and M subdirs
for (i=0; i < count; ++i) {
if (stb_dir_is_prefix(src, dlen, filelist[i])) {
stb_arr_push(descendents, filelist[i]);
}
}
if (descendents == NULL)
return NULL;
elen = dlen;
// skip a leading slash
if (elen == 0 && (descendents[0][0] == '/' || descendents[0][0] == '\\'))
++elen;
else if (elen)
++elen;
// now extract all the ones that have their root here
for (i=0; i < stb_arr_len(descendents);) {
if (!stb_strchr2(descendents[i]+elen, '/', '\\')) {
stb_arr_push(files, descendents[i]);
descendents[i] = descendents[stb_arr_len(descendents)-1];
stb_arr_pop(descendents);
} else
++i;
}
// now create a record
d = (stb_dirtree2 *) malloc(sizeof(*d));
d->files = files;
d->subdirs = NULL;
d->fullpath = strdup(src);
s = stb_strrchr2(d->fullpath, '/', '\\');
if (s)
++s;
else
s = d->fullpath;
d->relpath = s;
// now create the children
qsort(descendents, stb_arr_len(descendents), sizeof(char *), stb_qsort_stricmp(0));
buffer1[0] = 0;
for (i=0; i < stb_arr_len(descendents); ++i) {
char buffer2[1024];
char *s = descendents[i] + elen, *t;
t = stb_strchr2(s, '/', '\\');
assert(t);
stb_strncpy(buffer2, descendents[i], t-descendents[i]+1);
if (stb_stricmp(buffer1, buffer2)) {
stb_dirtree2 *t = stb_dirtree2_from_files_relative(buffer2, descendents, stb_arr_len(descendents));
assert(t != NULL);
strcpy(buffer1, buffer2);
stb_arr_push(d->subdirs, t);
}
}
d->num_subdir = stb_arr_len(d->subdirs);
d->weight = 0;
return d;
}
stb_dirtree2 *stb_dirtree2_from_files(char **filelist, int count)
{
return stb_dirtree2_from_files_relative("", filelist, count);
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// Checksums: CRC-32, ADLER32, SHA-1
//
// CRC-32 and ADLER32 allow streaming blocks
// SHA-1 requires either a complete buffer, max size 2^32 - 73
// or it can checksum directly from a file, max 2^61
#define STB_ADLER32_SEED 1
#define STB_CRC32_SEED 0 // note that we logical NOT this in the code
STB_EXTERN stb_uint
stb_adler32(stb_uint adler32, stb_uchar *buffer, stb_uint buflen);
STB_EXTERN stb_uint
stb_crc32_block(stb_uint crc32, stb_uchar *buffer, stb_uint len);
STB_EXTERN stb_uint stb_crc32(unsigned char *buffer, stb_uint len);
STB_EXTERN void stb_sha1(
unsigned char output[20], unsigned char *buffer, unsigned int len);
STB_EXTERN int stb_sha1_file(unsigned char output[20], char *file);
STB_EXTERN void stb_sha1_readable(char display[27], unsigned char sha[20]);
#ifdef STB_DEFINE
stb_uint stb_crc32_block(stb_uint crc, unsigned char *buffer, stb_uint len)
{
static stb_uint crc_table[256];
stb_uint i,j,s;
crc = ~crc;
if (crc_table[1] == 0)
for(i=0; i < 256; i++) {
for (s=i, j=0; j < 8; ++j)
s = (s >> 1) ^ (s & 1 ? 0xedb88320 : 0);
crc_table[i] = s;
}
for (i=0; i < len; ++i)
crc = (crc >> 8) ^ crc_table[buffer[i] ^ (crc & 0xff)];
return ~crc;
}
stb_uint stb_crc32(unsigned char *buffer, stb_uint len)
{
return stb_crc32_block(0, buffer, len);
}
stb_uint stb_adler32(stb_uint adler32, stb_uchar *buffer, stb_uint buflen)
{
const unsigned long ADLER_MOD = 65521;
unsigned long s1 = adler32 & 0xffff, s2 = adler32 >> 16;
unsigned long blocklen, i;
blocklen = buflen % 5552;
while (buflen) {
for (i=0; i + 7 < blocklen; i += 8) {
s1 += buffer[0], s2 += s1;
s1 += buffer[1], s2 += s1;
s1 += buffer[2], s2 += s1;
s1 += buffer[3], s2 += s1;
s1 += buffer[4], s2 += s1;
s1 += buffer[5], s2 += s1;
s1 += buffer[6], s2 += s1;
s1 += buffer[7], s2 += s1;
buffer += 8;
}
for (; i < blocklen; ++i)
s1 += *buffer++, s2 += s1;
s1 %= ADLER_MOD, s2 %= ADLER_MOD;
buflen -= blocklen;
blocklen = 5552;
}
return (s2 << 16) + s1;
}
static void stb__sha1(stb_uchar *chunk, stb_uint h[5])
{
int i;
stb_uint a,b,c,d,e;
stb_uint w[80];
for (i=0; i < 16; ++i)
w[i] = stb_big32(&chunk[i*4]);
for (i=16; i < 80; ++i) {
stb_uint t;
t = w[i-3] ^ w[i-8] ^ w[i-14] ^ w[i-16];
w[i] = (t + t) | (t >> 31);
}
a = h[0];
b = h[1];
c = h[2];
d = h[3];
e = h[4];
#define STB__SHA1(k,f) \
{ \
stb_uint temp = (a << 5) + (a >> 27) + (f) + e + (k) + w[i]; \
e = d; \
d = c; \
c = (b << 30) + (b >> 2); \
b = a; \
a = temp; \
}
i=0;
for (; i < 20; ++i) STB__SHA1(0x5a827999, d ^ (b & (c ^ d)) );
for (; i < 40; ++i) STB__SHA1(0x6ed9eba1, b ^ c ^ d );
for (; i < 60; ++i) STB__SHA1(0x8f1bbcdc, (b & c) + (d & (b ^ c)) );
for (; i < 80; ++i) STB__SHA1(0xca62c1d6, b ^ c ^ d );
#undef STB__SHA1
h[0] += a;
h[1] += b;
h[2] += c;
h[3] += d;
h[4] += e;
}
void stb_sha1(stb_uchar output[20], stb_uchar *buffer, stb_uint len)
{
unsigned char final_block[128];
stb_uint end_start, final_len, j;
int i;
stb_uint h[5];
h[0] = 0x67452301;
h[1] = 0xefcdab89;
h[2] = 0x98badcfe;
h[3] = 0x10325476;
h[4] = 0xc3d2e1f0;
// we need to write padding to the last one or two
// blocks, so build those first into 'final_block'
// we have to write one special byte, plus the 8-byte length
// compute the block where the data runs out
end_start = len & ~63;
// compute the earliest we can encode the length
if (((len+9) & ~63) == end_start) {
// it all fits in one block, so fill a second-to-last block
end_start -= 64;
}
final_len = end_start + 128;
// now we need to copy the data in
assert(end_start + 128 >= len+9);
assert(end_start < len || len < 64-9);
j = 0;
if (end_start > len)
j = (stb_uint) - (int) end_start;
for (; end_start + j < len; ++j)
final_block[j] = buffer[end_start + j];
final_block[j++] = 0x80;
while (j < 128-5) // 5 byte length, so write 4 extra padding bytes
final_block[j++] = 0;
// big-endian size
final_block[j++] = len >> 29;
final_block[j++] = len >> 21;
final_block[j++] = len >> 13;
final_block[j++] = len >> 5;
final_block[j++] = len << 3;
assert(j == 128 && end_start + j == final_len);
for (j=0; j < final_len; j += 64) { // 512-bit chunks
if (j+64 >= end_start+64)
stb__sha1(&final_block[j - end_start], h);
else
stb__sha1(&buffer[j], h);
}
for (i=0; i < 5; ++i) {
output[i*4 + 0] = h[i] >> 24;
output[i*4 + 1] = h[i] >> 16;
output[i*4 + 2] = h[i] >> 8;
output[i*4 + 3] = h[i] >> 0;
}
}
#ifdef _MSC_VER
int stb_sha1_file(stb_uchar output[20], char *file)
{
int i;
stb_uint64 length=0;
unsigned char buffer[128];
FILE *f = stb__fopen(file, "rb");
stb_uint h[5];
if (f == NULL) return 0; // file not found
h[0] = 0x67452301;
h[1] = 0xefcdab89;
h[2] = 0x98badcfe;
h[3] = 0x10325476;
h[4] = 0xc3d2e1f0;
for(;;) {
int n = fread(buffer, 1, 64, f);
if (n == 64) {
stb__sha1(buffer, h);
length += n;
} else {
int block = 64;
length += n;
buffer[n++] = 0x80;
// if there isn't enough room for the length, double the block
if (n + 8 > 64)
block = 128;
// pad to end
memset(buffer+n, 0, block-8-n);
i = block - 8;
buffer[i++] = (stb_uchar) (length >> 53);
buffer[i++] = (stb_uchar) (length >> 45);
buffer[i++] = (stb_uchar) (length >> 37);
buffer[i++] = (stb_uchar) (length >> 29);
buffer[i++] = (stb_uchar) (length >> 21);
buffer[i++] = (stb_uchar) (length >> 13);
buffer[i++] = (stb_uchar) (length >> 5);
buffer[i++] = (stb_uchar) (length << 3);
assert(i == block);
stb__sha1(buffer, h);
if (block == 128)
stb__sha1(buffer+64, h);
else
assert(block == 64);
break;
}
}
fclose(f);
for (i=0; i < 5; ++i) {
output[i*4 + 0] = h[i] >> 24;
output[i*4 + 1] = h[i] >> 16;
output[i*4 + 2] = h[i] >> 8;
output[i*4 + 3] = h[i] >> 0;
}
return 1;
}
#endif // _MSC_VER
// client can truncate this wherever they like
void stb_sha1_readable(char display[27], unsigned char sha[20])
{
char encoding[65] = "0123456789abcdefghijklmnopqrstuv"
"wxyzABCDEFGHIJKLMNOPQRSTUVWXYZ%$";
int num_bits = 0, acc=0;
int i=0,o=0;
while (o < 26) {
int v;
// expand the accumulator
if (num_bits < 6) {
assert(i != 20);
acc += sha[i++] << num_bits;
num_bits += 8;
}
v = acc & ((1 << 6) - 1);
display[o++] = encoding[v];
acc >>= 6;
num_bits -= 6;
}
assert(num_bits == 20*8 - 26*6);
display[o++] = encoding[acc];
}
#endif // STB_DEFINE
///////////////////////////////////////////////////////////
//
// simplified WINDOWS registry interface... hopefully
// we'll never actually use this?
#if defined(_WIN32)
STB_EXTERN void * stb_reg_open(char *mode, char *where); // mode: "rHKLM" or "rHKCU" or "w.."
STB_EXTERN void stb_reg_close(void *reg);
STB_EXTERN int stb_reg_read(void *zreg, char *str, void *data, unsigned long len);
STB_EXTERN int stb_reg_read_string(void *zreg, char *str, char *data, int len);
STB_EXTERN void stb_reg_write(void *zreg, char *str, void *data, unsigned long len);
STB_EXTERN void stb_reg_write_string(void *zreg, char *str, char *data);
#if defined(STB_DEFINE) && !defined(STB_NO_REGISTRY)
#define STB_HAS_REGISTRY
#ifndef _WINDOWS_
#define HKEY void *
STB_EXTERN __declspec(dllimport) long __stdcall RegCloseKey ( HKEY hKey );
STB_EXTERN __declspec(dllimport) long __stdcall RegCreateKeyExA ( HKEY hKey, const char * lpSubKey,
int Reserved, char * lpClass, int dwOptions,
int samDesired, void *lpSecurityAttributes, HKEY * phkResult, int * lpdwDisposition );
STB_EXTERN __declspec(dllimport) long __stdcall RegDeleteKeyA ( HKEY hKey, const char * lpSubKey );
STB_EXTERN __declspec(dllimport) long __stdcall RegQueryValueExA ( HKEY hKey, const char * lpValueName,
int * lpReserved, unsigned long * lpType, unsigned char * lpData, unsigned long * lpcbData );
STB_EXTERN __declspec(dllimport) long __stdcall RegSetValueExA ( HKEY hKey, const char * lpValueName,
int Reserved, int dwType, const unsigned char* lpData, int cbData );
STB_EXTERN __declspec(dllimport) long __stdcall RegOpenKeyExA ( HKEY hKey, const char * lpSubKey,
int ulOptions, int samDesired, HKEY * phkResult );
#endif // _WINDOWS_
#define STB__REG_OPTION_NON_VOLATILE 0
#define STB__REG_KEY_ALL_ACCESS 0x000f003f
#define STB__REG_KEY_READ 0x00020019
void *stb_reg_open(char *mode, char *where)
{
long res;
HKEY base;
HKEY zreg;
if (!stb_stricmp(mode+1, "cu") || !stb_stricmp(mode+1, "hkcu"))
base = (HKEY) 0x80000001; // HKCU
else if (!stb_stricmp(mode+1, "lm") || !stb_stricmp(mode+1, "hklm"))
base = (HKEY) 0x80000002; // HKLM
else
return NULL;
if (mode[0] == 'r')
res = RegOpenKeyExA(base, where, 0, STB__REG_KEY_READ, &zreg);
else if (mode[0] == 'w')
res = RegCreateKeyExA(base, where, 0, NULL, STB__REG_OPTION_NON_VOLATILE, STB__REG_KEY_ALL_ACCESS, NULL, &zreg, NULL);
else
return NULL;
return res ? NULL : zreg;
}
void stb_reg_close(void *reg)
{
RegCloseKey((HKEY) reg);
}
#define STB__REG_SZ 1
#define STB__REG_BINARY 3
#define STB__REG_DWORD 4
int stb_reg_read(void *zreg, char *str, void *data, unsigned long len)
{
unsigned long type;
unsigned long alen = len;
if (0 == RegQueryValueExA((HKEY) zreg, str, 0, &type, (unsigned char *) data, &len))
if (type == STB__REG_BINARY || type == STB__REG_SZ || type == STB__REG_DWORD) {
if (len < alen)
*((char *) data + len) = 0;
return 1;
}
return 0;
}
void stb_reg_write(void *zreg, char *str, void *data, unsigned long len)
{
if (zreg)
RegSetValueExA((HKEY) zreg, str, 0, STB__REG_BINARY, (const unsigned char *) data, len);
}
int stb_reg_read_string(void *zreg, char *str, char *data, int len)
{
if (!stb_reg_read(zreg, str, data, len)) return 0;
data[len-1] = 0; // force a 0 at the end of the string no matter what
return 1;
}
void stb_reg_write_string(void *zreg, char *str, char *data)
{
if (zreg)
RegSetValueExA((HKEY) zreg, str, 0, STB__REG_SZ, (const unsigned char *) data, strlen(data)+1);
}
#endif // STB_DEFINE
#endif // _WIN32
//////////////////////////////////////////////////////////////////////////////
//
// stb_cfg - This is like the registry, but the config info
// is all stored in plain old files where we can
// backup and restore them easily. The LOCATION of
// the config files is gotten from... the registry!
#ifndef STB_NO_STB_STRINGS
typedef struct stb_cfg_st stb_cfg;
STB_EXTERN stb_cfg * stb_cfg_open(char *config, char *mode); // mode = "r", "w"
STB_EXTERN void stb_cfg_close(stb_cfg *cfg);
STB_EXTERN int stb_cfg_read(stb_cfg *cfg, char *key, void *value, int len);
STB_EXTERN void stb_cfg_write(stb_cfg *cfg, char *key, void *value, int len);
STB_EXTERN int stb_cfg_read_string(stb_cfg *cfg, char *key, char *value, int len);
STB_EXTERN void stb_cfg_write_string(stb_cfg *cfg, char *key, char *value);
STB_EXTERN int stb_cfg_delete(stb_cfg *cfg, char *key);
STB_EXTERN void stb_cfg_set_directory(char *dir);
#ifdef STB_DEFINE
typedef struct
{
char *key;
void *value;
int value_len;
} stb__cfg_item;
struct stb_cfg_st
{
stb__cfg_item *data;
char *loaded_file; // this needs to be freed
FILE *f; // write the data to this file on close
};
static char *stb__cfg_sig = "sTbCoNfIg!\0\0";
static char stb__cfg_dir[512];
STB_EXTERN void stb_cfg_set_directory(char *dir)
{
strcpy(stb__cfg_dir, dir);
}
STB_EXTERN stb_cfg * stb_cfg_open(char *config, char *mode)
{
size_t len;
stb_cfg *z;
char file[512];
if (mode[0] != 'r' && mode[0] != 'w') return NULL;
if (!stb__cfg_dir[0]) {
#ifdef _WIN32
strcpy(stb__cfg_dir, "c:/stb");
#else
strcpy(stb__cfg_dir, "~/.stbconfig");
#endif
#ifdef STB_HAS_REGISTRY
{
void *reg = stb_reg_open("rHKLM", "Software\\SilverSpaceship\\stb");
if (reg) {
stb_reg_read_string(reg, "config_dir", stb__cfg_dir, sizeof(stb__cfg_dir));
stb_reg_close(reg);
}
}
#endif
}
sprintf(file, "%s/%s.cfg", stb__cfg_dir, config);
z = (stb_cfg *) stb_malloc(0, sizeof(*z));
z->data = NULL;
z->loaded_file = stb_filec(file, &len);
if (z->loaded_file) {
char *s = z->loaded_file;
if (!memcmp(s, stb__cfg_sig, 12)) {
char *s = z->loaded_file + 12;
while (s < z->loaded_file + len) {
stb__cfg_item a;
int n = *(stb_int16 *) s;
a.key = s+2;
s = s+2 + n;
a.value_len = *(int *) s;
s += 4;
a.value = s;
s += a.value_len;
stb_arr_push(z->data, a);
}
assert(s == z->loaded_file + len);
}
}
if (mode[0] == 'w')
z->f = fopen(file, "wb");
else
z->f = NULL;
return z;
}
void stb_cfg_close(stb_cfg *z)
{
if (z->f) {
int i;
// write the file out
fwrite(stb__cfg_sig, 12, 1, z->f);
for (i=0; i < stb_arr_len(z->data); ++i) {
stb_int16 n = strlen(z->data[i].key)+1;
fwrite(&n, 2, 1, z->f);
fwrite(z->data[i].key, n, 1, z->f);
fwrite(&z->data[i].value_len, 4, 1, z->f);
fwrite(z->data[i].value, z->data[i].value_len, 1, z->f);
}
fclose(z->f);
}
stb_arr_free(z->data);
stb_free(z);
}
int stb_cfg_read(stb_cfg *z, char *key, void *value, int len)
{
int i;
for (i=0; i < stb_arr_len(z->data); ++i) {
if (!stb_stricmp(z->data[i].key, key)) {
int n = stb_min(len, z->data[i].value_len);
memcpy(value, z->data[i].value, n);
if (n < len)
*((char *) value + n) = 0;
return 1;
}
}
return 0;
}
void stb_cfg_write(stb_cfg *z, char *key, void *value, int len)
{
int i;
for (i=0; i < stb_arr_len(z->data); ++i)
if (!stb_stricmp(z->data[i].key, key))
break;
if (i == stb_arr_len(z->data)) {
stb__cfg_item p;
p.key = stb_strdup(key, z);
p.value = NULL;
p.value_len = 0;
stb_arr_push(z->data, p);
}
z->data[i].value = stb_malloc(z, len);
z->data[i].value_len = len;
memcpy(z->data[i].value, value, len);
}
int stb_cfg_delete(stb_cfg *z, char *key)
{
int i;
for (i=0; i < stb_arr_len(z->data); ++i)
if (!stb_stricmp(z->data[i].key, key)) {
stb_arr_fastdelete(z->data, i);
return 1;
}
return 0;
}
int stb_cfg_read_string(stb_cfg *z, char *key, char *value, int len)
{
if (!stb_cfg_read(z, key, value, len)) return 0;
value[len-1] = 0;
return 1;
}
void stb_cfg_write_string(stb_cfg *z, char *key, char *value)
{
stb_cfg_write(z, key, value, strlen(value)+1);
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// stb_dirtree - load a description of a directory tree
// uses a cache and stat()s the directories for changes
// MUCH faster on NTFS, _wrong_ on FAT32, so should
// ignore the db on FAT32
#ifdef _WIN32
typedef struct
{
char * path; // full path from passed-in root
time_t last_modified;
int num_files;
} stb_dirtree_dir;
typedef struct
{
char *name; // name relative to path
int dir; // index into dirs[] array
unsigned long size; // size, max 4GB
time_t last_modified;
} stb_dirtree_file;
typedef struct
{
stb_dirtree_dir *dirs;
stb_dirtree_file *files;
// internal use
void * string_pool; // used to free data en masse
} stb_dirtree;
extern void stb_dirtree_free ( stb_dirtree *d );
extern stb_dirtree *stb_dirtree_get ( char *dir);
extern stb_dirtree *stb_dirtree_get_dir ( char *dir, char *cache_dir);
extern stb_dirtree *stb_dirtree_get_with_file ( char *dir, char *cache_file);
// get a list of all the files recursively underneath 'dir'
//
// cache_file is used to store a copy of the directory tree to speed up
// later calls. It must be unique to 'dir' and the current working
// directory! Otherwise who knows what will happen (a good solution
// is to put it _in_ dir, but this API doesn't force that).
//
// Also, it might be possible to break this if you have two different processes
// do a call to stb_dirtree_get() with the same cache file at about the same
// time, but I _think_ it might just work.
#ifdef STB_DEFINE
static void stb__dirtree_add_dir(char *path, time_t last, stb_dirtree *active)
{
stb_dirtree_dir d;
d.last_modified = last;
d.num_files = 0;
d.path = stb_strdup(path, active->string_pool);
stb_arr_push(active->dirs, d);
}
static void stb__dirtree_add_file(char *name, int dir, unsigned long size, time_t last, stb_dirtree *active)
{
stb_dirtree_file f;
f.dir = dir;
f.size = size;
f.last_modified = last;
f.name = stb_strdup(name, active->string_pool);
++active->dirs[dir].num_files;
stb_arr_push(active->files, f);
}
static char stb__signature[12] = { 's', 'T', 'b', 'D', 'i', 'R', 't', 'R', 'e', 'E', '0', '1' };
static void stb__dirtree_save_db(char *filename, stb_dirtree *data, char *root)
{
int i, num_dirs_final=0, num_files_final;
int *remap;
FILE *f = fopen(filename, "wb");
if (!f) return;
fwrite(stb__signature, sizeof(stb__signature), 1, f);
fwrite(root, strlen(root)+1, 1, f);
// need to be slightly tricky and not write out NULLed directories, nor the root
// build remapping table of all dirs we'll be writing out
remap = (int *) malloc(sizeof(remap[0]) * stb_arr_len(data->dirs));
for (i=0; i < stb_arr_len(data->dirs); ++i) {
if (data->dirs[i].path == NULL || 0==stb_stricmp(data->dirs[i].path, root)) {
remap[i] = -1;
} else {
remap[i] = num_dirs_final++;
}
}
fwrite(&num_dirs_final, 4, 1, f);
for (i=0; i < stb_arr_len(data->dirs); ++i) {
if (remap[i] >= 0) {
fwrite(&data->dirs[i].last_modified, 4, 1, f);
stb_fput_string(f, data->dirs[i].path);
}
}
num_files_final = 0;
for (i=0; i < stb_arr_len(data->files); ++i)
if (remap[data->files[i].dir] >= 0)
++num_files_final;
fwrite(&num_files_final, 4, 1, f);
for (i=0; i < stb_arr_len(data->files); ++i) {
if (remap[data->files[i].dir] >= 0) {
stb_fput_ranged(f, remap[data->files[i].dir], 0, num_dirs_final);
stb_fput_varlenu(f, data->files[i].size);
fwrite(&data->files[i].last_modified, 4, 1, f);
stb_fput_string(f, data->files[i].name);
}
}
fclose(f);
}
// note: stomps any existing data, rather than appending
static void stb__dirtree_load_db(char *filename, stb_dirtree *data, char *dir)
{
char sig[2048];
int i,n;
FILE *f = fopen(filename, "rb");
if (!f) return;
data->string_pool = stb_malloc(0,1);
fread(sig, sizeof(stb__signature), 1, f);
if (memcmp(stb__signature, sig, sizeof(stb__signature))) { fclose(f); return; }
if (!fread(sig, strlen(dir)+1, 1, f)) { fclose(f); return; }
if (stb_stricmp(sig,dir)) { fclose(f); return; }
// we can just read them straight in, because they're guaranteed to be valid
fread(&n, 4, 1, f);
stb_arr_setlen(data->dirs, n);
for(i=0; i < stb_arr_len(data->dirs); ++i) {
fread(&data->dirs[i].last_modified, 4, 1, f);
data->dirs[i].path = stb_fget_string(f, data->string_pool);
if (data->dirs[i].path == NULL) goto bail;
}
fread(&n, 4, 1, f);
stb_arr_setlen(data->files, n);
for (i=0; i < stb_arr_len(data->files); ++i) {
data->files[i].dir = stb_fget_ranged(f, 0, stb_arr_len(data->dirs));
data->files[i].size = stb_fget_varlenu(f);
fread(&data->files[i].last_modified, 4, 1, f);
data->files[i].name = stb_fget_string(f, data->string_pool);
if (data->files[i].name == NULL) goto bail;
}
if (0) {
bail:
stb_arr_free(data->dirs);
stb_arr_free(data->files);
}
fclose(f);
}
static void stb__dirtree_scandir(char *path, time_t last_time, stb_dirtree *active)
{
// this is dumb depth first; theoretically it might be faster
// to fully traverse each directory before visiting its children,
// but it's complicated and didn't seem like a gain in the test app
int n;
struct _wfinddata_t c_file;
long hFile;
stb__wchar full_path[1024];
int has_slash;
has_slash = (path[0] && path[strlen(path)-1] == '/');
if (has_slash)
swprintf((wchar_t *)full_path, L"%s*", stb__from_utf8(path));
else
swprintf((wchar_t *)full_path, L"%s/*", stb__from_utf8(path));
// it's possible this directory is already present: that means it was in the
// cache, but its parent wasn't... in that case, we're done with it
for (n=0; n < stb_arr_len(active->dirs); ++n)
if (0 == stb_stricmp(active->dirs[n].path, path))
return;
// otherwise, we need to add it
stb__dirtree_add_dir(path, last_time, active);
n = stb_arr_lastn(active->dirs);
if( (hFile = _wfindfirst((const wchar_t *)full_path, &c_file )) != -1L ) {
do {
if (c_file.attrib & _A_SUBDIR) {
// ignore subdirectories starting with '.', e.g. "." and ".."
if (c_file.name[0] != '.') {
char *new_path = (char *) full_path;
char *temp = stb__to_utf8((stb__wchar *)c_file.name);
if (has_slash)
sprintf(new_path, "%s%s", path, temp);
else
sprintf(new_path, "%s/%s", path, temp);
stb__dirtree_scandir(new_path, c_file.time_write, active);
}
} else {
char *temp = stb__to_utf8((stb__wchar *)c_file.name);
stb__dirtree_add_file(temp, n, c_file.size, c_file.time_write, active);
}
} while( _wfindnext( hFile, &c_file ) == 0 );
_findclose( hFile );
}
}
// scan the database and see if it's all valid
static int stb__dirtree_update_db(stb_dirtree *db, stb_dirtree *active)
{
int changes_detected = STB_FALSE;
int i;
int *remap;
int *rescan=NULL;
remap = (int *) malloc(sizeof(remap[0]) * stb_arr_len(db->dirs));
memset(remap, 0, sizeof(remap[0]) * stb_arr_len(db->dirs));
rescan = NULL;
for (i=0; i < stb_arr_len(db->dirs); ++i) {
struct _stat info;
if (0 == _stat(db->dirs[i].path, &info)) {
if (info.st_mode & _S_IFDIR) {
// it's still a directory, as expected
if (info.st_mtime > db->dirs[i].last_modified) {
// it's changed! force a rescan
// we don't want to scan it until we've stat()d its
// subdirs, though, so we queue it
stb_arr_push(rescan, i);
// update the last_mod time
db->dirs[i].last_modified = info.st_mtime;
// ignore existing files in this dir
remap[i] = -1;
changes_detected = STB_TRUE;
} else {
// it hasn't changed, just copy it through unchanged
stb__dirtree_add_dir(db->dirs[i].path, db->dirs[i].last_modified, active);
remap[i] = stb_arr_lastn(active->dirs);
}
} else {
// this path used to refer to a directory, but now it's a file!
// assume that the parent directory is going to be forced to rescan anyway
goto delete_entry;
}
} else {
delete_entry:
// directory no longer exists, so don't copy it
// we don't free it because it's in the string pool now
db->dirs[i].path = NULL;
remap[i] = -1;
changes_detected = STB_TRUE;
}
}
// at this point, we have:
//
// <rescan> holds a list of directory indices that need to be scanned due to being out of date
// <remap> holds the directory index in <active> for each dir in <db>, if it exists; -1 if not
// directories in <rescan> are not in <active> yet
// so we can go ahead and remap all the known files right now
for (i=0; i < stb_arr_len(db->files); ++i) {
int dir = db->files[i].dir;
if (remap[dir] >= 0) {
stb__dirtree_add_file(db->files[i].name, remap[dir], db->files[i].size, db->files[i].last_modified, active);
}
}
// at this point we're done with db->files, and done with remap
free(remap);
// now scan those directories using the standard scan
for (i=0; i < stb_arr_len(rescan); ++i) {
int z = rescan[i];
stb__dirtree_scandir(db->dirs[z].path, db->dirs[z].last_modified, active);
}
stb_arr_free(rescan);
return changes_detected;
}
static void stb__dirtree_free_raw(stb_dirtree *d)
{
stb_free(d->string_pool);
stb_arr_free(d->dirs);
stb_arr_free(d->files);
}
stb_dirtree *stb_dirtree_get_with_file(char *dir, char *cache_file)
{
stb_dirtree *output = (stb_dirtree *) malloc(sizeof(*output));
stb_dirtree db,active;
int prev_dir_count, cache_mismatch;
char *stripped_dir; // store the directory name without a trailing '/' or '\\'
// load the database of last-known state on disk
db.string_pool = NULL;
db.files = NULL;
db.dirs = NULL;
stripped_dir = stb_strip_final_slash(strdup(dir));
if (cache_file != NULL)
stb__dirtree_load_db(cache_file, &db, stripped_dir);
active.files = NULL;
active.dirs = NULL;
active.string_pool = stb_malloc(0,1); // @TODO: share string pools between both?
// check all the directories in the database; make note if
// anything we scanned had changed, and rescan those things
cache_mismatch = stb__dirtree_update_db(&db, &active);
// check the root tree
prev_dir_count = stb_arr_len(active.dirs); // record how many directories we've seen
stb__dirtree_scandir(stripped_dir, 0, &active); // no last_modified time available for root
// done with the DB; write it back out if any changes, i.e. either
// 1. any inconsistency found between cached information and actual disk
// or 2. if scanning the root found any new directories--which we detect because
// more than one directory got added to the active db during that scan
if (cache_mismatch || stb_arr_len(active.dirs) > prev_dir_count+1)
stb__dirtree_save_db(cache_file, &active, stripped_dir);
free(stripped_dir);
stb__dirtree_free_raw(&db);
*output = active;
return output;
}
stb_dirtree *stb_dirtree_get_dir(char *dir, char *cache_dir)
{
int i;
stb_uint8 sha[20];
char dir_lower[1024];
char cache_file[1024],*s;
if (cache_dir == NULL)
return stb_dirtree_get_with_file(dir, NULL);
strcpy(dir_lower, dir);
stb_tolower(dir_lower);
stb_sha1(sha, (unsigned char *) dir_lower, strlen(dir_lower));
strcpy(cache_file, cache_dir);
s = cache_file + strlen(cache_file);
if (s[-1] != '//' && s[-1] != '\\') *s++ = '/';
strcpy(s, "dirtree_");
s += strlen(s);
for (i=0; i < 8; ++i) {
char *hex = "0123456789abcdef";
stb_uint z = sha[i];
*s++ = hex[z >> 4];
*s++ = hex[z & 15];
}
strcpy(s, ".bin");
return stb_dirtree_get_with_file(dir, cache_file);
}
stb_dirtree *stb_dirtree_get(char *dir)
{
char cache_dir[256];
strcpy(cache_dir, "c:/stb");
#ifdef STB_HAS_REGISTRY
{
void *reg = stb_reg_open("rHKLM", "Software\\SilverSpaceship\\stb");
if (reg) {
stb_reg_read(reg, "dirtree", cache_dir, sizeof(cache_dir));
stb_reg_close(reg);
}
}
#endif
return stb_dirtree_get_dir(dir, cache_dir);
}
void stb_dirtree_free(stb_dirtree *d)
{
stb__dirtree_free_raw(d);
free(d);
}
#endif // STB_DEFINE
#endif // _WIN32
#endif // STB_NO_STB_STRINGS
//////////////////////////////////////////////////////////////////////////////
//
// STB_MALLOC_WRAPPER
//
// you can use the wrapper functions with your own malloc wrapper,
// or define STB_MALLOC_WRAPPER project-wide to have
// malloc/free/realloc/strdup all get vectored to it
// this has too many very specific error messages you could google for and find in stb.h,
// so don't use it if they don't want any stb.h-identifiable strings
#if defined(STB_DEFINE) && !defined(STB_NO_STB_STRINGS)
typedef struct
{
void *p;
char *file;
int line;
int size;
} stb_malloc_record;
#ifndef STB_MALLOC_HISTORY_COUNT
#define STB_MALLOC_HISTORY_COUNT 50 // 800 bytes
#endif
stb_malloc_record *stb__allocations;
static int stb__alloc_size, stb__alloc_limit, stb__alloc_mask;
int stb__alloc_count;
stb_malloc_record stb__alloc_history[STB_MALLOC_HISTORY_COUNT];
int stb__history_pos;
static int stb__hashfind(void *p)
{
stb_uint32 h = stb_hashptr(p);
int s,n = h & stb__alloc_mask;
if (stb__allocations[n].p == p)
return n;
s = stb_rehash(h)|1;
for(;;) {
if (stb__allocations[n].p == NULL)
return -1;
n = (n+s) & stb__alloc_mask;
if (stb__allocations[n].p == p)
return n;
}
}
int stb_wrapper_allocsize(void *p)
{
int n = stb__hashfind(p);
if (n < 0) return 0;
return stb__allocations[n].size;
}
static int stb__historyfind(void *p)
{
int n = stb__history_pos;
int i;
for (i=0; i < STB_MALLOC_HISTORY_COUNT; ++i) {
if (--n < 0) n = STB_MALLOC_HISTORY_COUNT-1;
if (stb__alloc_history[n].p == p)
return n;
}
return -1;
}
static void stb__add_alloc(void *p, int sz, char *file, int line);
static void stb__grow_alloc(void)
{
int i,old_num = stb__alloc_size;
stb_malloc_record *old = stb__allocations;
if (stb__alloc_size == 0)
stb__alloc_size = 64;
else
stb__alloc_size *= 2;
stb__allocations = (stb_malloc_record *) stb__realloc_raw(NULL, stb__alloc_size * sizeof(stb__allocations[0]));
if (stb__allocations == NULL)
stb_fatal("Internal error: couldn't grow malloc wrapper table");
memset(stb__allocations, 0, stb__alloc_size * sizeof(stb__allocations[0]));
stb__alloc_limit = (stb__alloc_size*3)>>2;
stb__alloc_mask = stb__alloc_size-1;
stb__alloc_count = 0;
for (i=0; i < old_num; ++i)
if (old[i].p > STB_DEL) {
stb__add_alloc(old[i].p, old[i].size, old[i].file, old[i].line);
assert(stb__hashfind(old[i].p) >= 0);
}
for (i=0; i < old_num; ++i)
if (old[i].p > STB_DEL)
assert(stb__hashfind(old[i].p) >= 0);
stb__realloc_raw(old, 0);
}
static void stb__add_alloc(void *p, int sz, char *file, int line)
{
stb_uint32 h;
int n;
if (stb__alloc_count >= stb__alloc_limit)
stb__grow_alloc();
h = stb_hashptr(p);
n = h & stb__alloc_mask;
if (stb__allocations[n].p > STB_DEL) {
int s = stb_rehash(h)|1;
do {
n = (n+s) & stb__alloc_mask;
} while (stb__allocations[n].p > STB_DEL);
}
assert(stb__allocations[n].p == NULL || stb__allocations[n].p == STB_DEL);
stb__allocations[n].p = p;
stb__allocations[n].size = sz;
stb__allocations[n].line = line;
stb__allocations[n].file = file;
++stb__alloc_count;
}
static void stb__remove_alloc(int n, char *file, int line)
{
stb__alloc_history[stb__history_pos] = stb__allocations[n];
stb__alloc_history[stb__history_pos].file = file;
stb__alloc_history[stb__history_pos].line = line;
if (++stb__history_pos == STB_MALLOC_HISTORY_COUNT)
stb__history_pos = 0;
stb__allocations[n].p = STB_DEL;
--stb__alloc_count;
}
void stb_wrapper_malloc(void *p, int sz, char *file, int line)
{
if (!p) return;
stb__add_alloc(p,sz,file,line);
}
void stb_wrapper_free(void *p, char *file, int line)
{
int n;
if (p == NULL) return;
n = stb__hashfind(p);
if (n >= 0)
stb__remove_alloc(n, file, line);
else {
// tried to free something we hadn't allocated!
n = stb__historyfind(p);
assert(0); /* NOTREACHED */
if (n >= 0)
stb_fatal("Attempted to free %d-byte block %p at %s:%d previously freed/realloced at %s:%d",
stb__alloc_history[n].size, p,
file, line,
stb__alloc_history[n].file, stb__alloc_history[n].line);
else
stb_fatal("Attempted to free unknown block %p at %s:%d", p, file,line);
}
}
void stb_wrapper_check(void *p)
{
int n;
if (p == NULL) return;
n = stb__hashfind(p);
if (n >= 0) return;
for (n=0; n < stb__alloc_size; ++n)
if (stb__allocations[n].p == p)
stb_fatal("Internal error: pointer %p was allocated, but hash search failed", p);
// tried to free something that wasn't allocated!
n = stb__historyfind(p);
if (n >= 0)
stb_fatal("Checked %d-byte block %p previously freed/realloced at %s:%d",
stb__alloc_history[n].size, p,
stb__alloc_history[n].file, stb__alloc_history[n].line);
stb_fatal("Checked unknown block %p");
}
void stb_wrapper_realloc(void *p, void *q, int sz, char *file, int line)
{
int n;
if (p == NULL) { stb_wrapper_malloc(q, sz, file, line); return; }
if (q == NULL) return; // nothing happened
n = stb__hashfind(p);
if (n == -1) {
// tried to free something we hadn't allocated!
// this is weird, though, because we got past the realloc!
n = stb__historyfind(p);
assert(0); /* NOTREACHED */
if (n >= 0)
stb_fatal("Attempted to realloc %d-byte block %p at %s:%d previously freed/realloced at %s:%d",
stb__alloc_history[n].size, p,
file, line,
stb__alloc_history[n].file, stb__alloc_history[n].line);
else
stb_fatal("Attempted to realloc unknown block %p at %s:%d", p, file,line);
} else {
if (q == p) {
stb__allocations[n].size = sz;
stb__allocations[n].file = file;
stb__allocations[n].line = line;
} else {
stb__remove_alloc(n, file, line);
stb__add_alloc(q,sz,file,line);
}
}
}
void stb_wrapper_listall(void (*func)(void *ptr, int sz, char *file, int line))
{
int i;
for (i=0; i < stb__alloc_size; ++i)
if (stb__allocations[i].p > STB_DEL)
func(stb__allocations[i].p , stb__allocations[i].size,
stb__allocations[i].file, stb__allocations[i].line);
}
void stb_wrapper_dump(char *filename)
{
int i;
FILE *f = fopen(filename, "w");
if (!f) return;
for (i=0; i < stb__alloc_size; ++i)
if (stb__allocations[i].p > STB_DEL)
fprintf(f, "%p %7d - %4d %s\n",
stb__allocations[i].p , stb__allocations[i].size,
stb__allocations[i].line, stb__allocations[i].file);
}
#endif // STB_DEFINE
//////////////////////////////////////////////////////////////////////////////
//
// stb_pointer_set
//
//
// For data structures that support querying by key, data structure
// classes always hand-wave away the issue of what to do if two entries
// have the same key: basically, store a linked list of all the nodes
// which have the same key (a LISP-style list).
//
// The thing is, it's not that trivial. If you have an O(log n)
// lookup data structure, but then n/4 items have the same value,
// you don't want to spend O(n) time scanning that list when
// deleting an item if you already have a pointer to the item.
// (You have to spend O(n) time enumerating all the items with
// a given key, sure, and you can't accelerate deleting a particular
// item if you only have the key, not a pointer to the item.)
//
// I'm going to call this data structure, whatever it turns out to
// be, a "pointer set", because we don't store any associated data for
// items in this data structure, we just answer the question of
// whether an item is in it or not (it's effectively one bit per pointer).
// Technically they don't have to be pointers; you could cast ints
// to (void *) if you want, but you can't store 0 or 1 because of the
// hash table.
//
// Since the fastest data structure we might want to add support for
// identical-keys to is a hash table with O(1)-ish lookup time,
// that means that the conceptual "linked list of all items with
// the same indexed value" that we build needs to have the same
// performance; that way when we index a table we think is arbitrary
// ints, but in fact half of them are 0, we don't get screwed.
//
// Therefore, it needs to be a hash table, at least when it gets
// large. On the other hand, when the data has totally arbitrary ints
// or floats, there won't be many collisions, and we'll have tons of
// 1-item bitmaps. That will be grossly inefficient as hash tables;
// trade-off; the hash table is reasonably efficient per-item when
// it's large, but not when it's small. So we need to do something
// Judy-like and use different strategies depending on the size.
//
// Like Judy, we'll use the bottom bit to encode the strategy:
//
// bottom bits:
// 00 - direct pointer
// 01 - 4-item bucket (16 bytes, no length, NULLs)
// 10 - N-item array
// 11 - hash table
typedef struct stb_ps stb_ps;
STB_EXTERN int stb_ps_find (stb_ps *ps, void *value);
STB_EXTERN stb_ps * stb_ps_add (stb_ps *ps, void *value);
STB_EXTERN stb_ps * stb_ps_remove(stb_ps *ps, void *value);
STB_EXTERN stb_ps * stb_ps_remove_any(stb_ps *ps, void **value);
STB_EXTERN void stb_ps_delete(stb_ps *ps);
STB_EXTERN int stb_ps_count (stb_ps *ps);
STB_EXTERN stb_ps * stb_ps_copy (stb_ps *ps);
STB_EXTERN int stb_ps_subset(stb_ps *bigger, stb_ps *smaller);
STB_EXTERN int stb_ps_eq (stb_ps *p0, stb_ps *p1);
STB_EXTERN void ** stb_ps_getlist (stb_ps *ps, int *count);
STB_EXTERN int stb_ps_writelist(stb_ps *ps, void **list, int size );
// enum and fastlist don't allocate storage, but you must consume the
// list before there's any chance the data structure gets screwed up;
STB_EXTERN int stb_ps_enum (stb_ps *ps, void *data,
int (*func)(void *value, void*data) );
STB_EXTERN void ** stb_ps_fastlist(stb_ps *ps, int *count);
// result:
// returns a list, *count is the length of that list,
// but some entries of the list may be invalid;
// test with 'stb_ps_fastlist_valid(x)'
#define stb_ps_fastlist_valid(x) ((unsigned int) (x) > 1)
#ifdef STB_DEFINE
enum
{
STB_ps_direct = 0,
STB_ps_bucket = 1,
STB_ps_array = 2,
STB_ps_hash = 3,
};
#define STB_BUCKET_SIZE 4
typedef struct
{
void *p[STB_BUCKET_SIZE];
} stb_ps_bucket;
#define GetBucket(p) ((stb_ps_bucket *) ((char *) (p) - STB_ps_bucket))
#define EncodeBucket(p) ((stb_ps *) ((char *) (p) + STB_ps_bucket))
typedef char stb__verify_bucket_heap_size[sizeof(stb_ps_bucket) == 16];
static void stb_bucket_free(stb_ps_bucket *b)
{
free(b);
}
static stb_ps_bucket *stb_bucket_create2(void *v0, void *v1)
{
stb_ps_bucket *b = (stb_ps_bucket*) malloc(sizeof(*b));
b->p[0] = v0;
b->p[1] = v1;
b->p[2] = NULL;
b->p[3] = NULL;
return b;
}
static stb_ps_bucket * stb_bucket_create3(void **v)
{
stb_ps_bucket *b = (stb_ps_bucket*) malloc(sizeof(*b));
b->p[0] = v[0];
b->p[1] = v[1];
b->p[2] = v[2];
b->p[3] = NULL;
return b;
}
// could use stb_arr, but this will save us memory
typedef struct
{
int count;
void *p[1];
} stb_ps_array;
#define GetArray(p) ((stb_ps_array *) ((char *) (p) - STB_ps_array))
#define EncodeArray(p) ((stb_ps *) ((char *) (p) + STB_ps_array))
static int stb_ps_array_max = 13;
typedef struct
{
int size, mask;
int count, count_deletes;
int grow_threshhold;
int shrink_threshhold;
int rehash_threshhold;
int any_offset;
void *table[1];
} stb_ps_hash;
#define GetHash(p) ((stb_ps_hash *) ((char *) (p) - STB_ps_hash))
#define EncodeHash(p) ((stb_ps *) ((char *) (p) + STB_ps_hash))
#define stb_ps_empty(v) (((stb_uint32) v) <= 1)
static stb_ps_hash *stb_ps_makehash(int size, int old_size, void **old_data)
{
int i;
stb_ps_hash *h = (stb_ps_hash *) malloc(sizeof(*h) + (size-1) * sizeof(h->table[0]));
assert(stb_is_pow2(size));
h->size = size;
h->mask = size-1;
h->shrink_threshhold = (int) (0.3f * size);
h-> grow_threshhold = (int) (0.8f * size);
h->rehash_threshhold = (int) (0.9f * size);
h->count = 0;
h->count_deletes = 0;
h->any_offset = 0;
memset(h->table, 0, size * sizeof(h->table[0]));
for (i=0; i < old_size; ++i)
if (!stb_ps_empty(old_data[i]))
stb_ps_add(EncodeHash(h), old_data[i]);
return h;
}
void stb_ps_delete(stb_ps *ps)
{
switch (3 & (int) ps) {
case STB_ps_direct: break;
case STB_ps_bucket: stb_bucket_free(GetBucket(ps)); break;
case STB_ps_array : free(GetArray(ps)); break;
case STB_ps_hash : free(GetHash(ps)); break;
}
}
stb_ps *stb_ps_copy(stb_ps *ps)
{
int i;
// not a switch: order based on expected performance/power-law distribution
switch (3 & (int) ps) {
case STB_ps_direct: return ps;
case STB_ps_bucket: {
stb_ps_bucket *n = (stb_ps_bucket *) malloc(sizeof(*n));
*n = *GetBucket(ps);
return EncodeBucket(n);
}
case STB_ps_array: {
stb_ps_array *a = GetArray(ps);
stb_ps_array *n = (stb_ps_array *) malloc(sizeof(*n) + stb_ps_array_max * sizeof(n->p[0]));
n->count = a->count;
for (i=0; i < a->count; ++i)
n->p[i] = a->p[i];
return EncodeArray(n);
}
case STB_ps_hash: {
stb_ps_hash *h = GetHash(ps);
stb_ps_hash *n = stb_ps_makehash(h->size, h->size, h->table);
return EncodeHash(n);
}
}
assert(0); /* NOTREACHED */
return NULL;
}
int stb_ps_find(stb_ps *ps, void *value)
{
int i, code = 3 & (int) ps;
assert((3 & (int) value) == STB_ps_direct);
assert(stb_ps_fastlist_valid(value));
// not a switch: order based on expected performance/power-law distribution
if (code == STB_ps_direct)
return value == ps;
if (code == STB_ps_bucket) {
stb_ps_bucket *b = GetBucket(ps);
assert(STB_BUCKET_SIZE == 4);
if (b->p[0] == value || b->p[1] == value ||
b->p[2] == value || b->p[3] == value)
return STB_TRUE;
return STB_FALSE;
}
if (code == STB_ps_array) {
stb_ps_array *a = GetArray(ps);
for (i=0; i < a->count; ++i)
if (a->p[i] == value)
return STB_TRUE;
return STB_FALSE;
} else {
stb_ps_hash *h = GetHash(ps);
stb_uint32 hash = stb_hashptr(value);
stb_uint32 s, n = hash & h->mask;
void **t = h->table;
if (t[n] == value) return STB_TRUE;
if (t[n] == NULL) return STB_FALSE;
s = stb_rehash(hash) | 1;
do {
n = (n + s) & h->mask;
if (t[n] == value) return STB_TRUE;
} while (t[n] != NULL);
return STB_FALSE;
}
}
stb_ps * stb_ps_add (stb_ps *ps, void *value)
{
#ifdef STB_DEBUG
assert(!stb_ps_find(ps,value));
#endif
if (value == NULL) return ps; // ignore NULL adds to avoid bad breakage
assert((3 & (int) value) == STB_ps_direct);
assert(stb_ps_fastlist_valid(value));
assert(value != STB_DEL); // STB_DEL is less likely
switch (3 & (int) ps) {
case STB_ps_direct:
if (ps == NULL) return (stb_ps *) value;
return EncodeBucket(stb_bucket_create2(ps,value));
case STB_ps_bucket: {
stb_ps_bucket *b = GetBucket(ps);
stb_ps_array *a;
assert(STB_BUCKET_SIZE == 4);
if (b->p[0] == NULL) { b->p[0] = value; return ps; }
if (b->p[1] == NULL) { b->p[1] = value; return ps; }
if (b->p[2] == NULL) { b->p[2] = value; return ps; }
if (b->p[3] == NULL) { b->p[3] = value; return ps; }
a = (stb_ps_array *) malloc(sizeof(*a) + 7 * sizeof(a->p[0])); // 8 slots, must be 2^k
memcpy(a->p, b, sizeof(*b));
a->p[4] = value;
a->count = 5;
stb_bucket_free(b);
return EncodeArray(a);
}
case STB_ps_array: {
stb_ps_array *a = GetArray(ps);
if (a->count == stb_ps_array_max) {
// promote from array to hash
stb_ps_hash *h = stb_ps_makehash(2 << stb_log2_ceil(a->count), a->count, a->p);
free(a);
return stb_ps_add(EncodeHash(h), value);
}
// do we need to resize the array? the array doubles in size when it
// crosses a power-of-two
if ((a->count & (a->count-1))==0) {
int newsize = a->count*2;
// clamp newsize to max if:
// 1. it's larger than max
// 2. newsize*1.5 is larger than max (to avoid extra resizing)
if (newsize + a->count > stb_ps_array_max)
newsize = stb_ps_array_max;
a = (stb_ps_array *) realloc(a, sizeof(*a) + (newsize-1) * sizeof(a->p[0]));
}
a->p[a->count++] = value;
return EncodeArray(a);
}
case STB_ps_hash: {
stb_ps_hash *h = GetHash(ps);
stb_uint32 hash = stb_hashptr(value);
stb_uint32 n = hash & h->mask;
void **t = h->table;
// find first NULL or STB_DEL entry
if (!stb_ps_empty(t[n])) {
stb_uint32 s = stb_rehash(hash) | 1;
do {
n = (n + s) & h->mask;
} while (!stb_ps_empty(t[n]));
}
if (t[n] == STB_DEL)
-- h->count_deletes;
t[n] = value;
++ h->count;
if (h->count == h->grow_threshhold) {
stb_ps_hash *h2 = stb_ps_makehash(h->size*2, h->size, t);
free(h);
return EncodeHash(h2);
}
if (h->count + h->count_deletes == h->rehash_threshhold) {
stb_ps_hash *h2 = stb_ps_makehash(h->size, h->size, t);
free(h);
return EncodeHash(h2);
}
return ps;
}
}
return NULL; /* NOTREACHED */
}
stb_ps *stb_ps_remove(stb_ps *ps, void *value)
{
#ifdef STB_DEBUG
assert(stb_ps_find(ps, value));
#endif
assert((3 & (int) value) == STB_ps_direct);
if (value == NULL) return ps; // ignore NULL removes to avoid bad breakage
switch (3 & (int) ps) {
case STB_ps_direct:
return ps == value ? NULL : ps;
case STB_ps_bucket: {
stb_ps_bucket *b = GetBucket(ps);
int count=0;
assert(STB_BUCKET_SIZE == 4);
if (b->p[0] == value) b->p[0] = NULL; else count += (b->p[0] != NULL);
if (b->p[1] == value) b->p[1] = NULL; else count += (b->p[1] != NULL);
if (b->p[2] == value) b->p[2] = NULL; else count += (b->p[2] != NULL);
if (b->p[3] == value) b->p[3] = NULL; else count += (b->p[3] != NULL);
if (count == 1) { // shrink bucket at size 1
value = b->p[0];
if (value == NULL) value = b->p[1];
if (value == NULL) value = b->p[2];
if (value == NULL) value = b->p[3];
assert(value != NULL);
stb_bucket_free(b);
return (stb_ps *) value; // return STB_ps_direct of value
}
return ps;
}
case STB_ps_array: {
stb_ps_array *a = GetArray(ps);
int i;
for (i=0; i < a->count; ++i) {
if (a->p[i] == value) {
a->p[i] = a->p[--a->count];
if (a->count == 3) { // shrink to bucket!
stb_ps_bucket *b = stb_bucket_create3(a->p);
free(a);
return EncodeBucket(b);
}
return ps;
}
}
return ps;
}
case STB_ps_hash: {
stb_ps_hash *h = GetHash(ps);
stb_uint32 hash = stb_hashptr(value);
stb_uint32 s, n = hash & h->mask;
void **t = h->table;
if (t[n] != value) {
s = stb_rehash(hash) | 1;
do {
n = (n + s) & h->mask;
} while (t[n] != value);
}
t[n] = STB_DEL;
-- h->count;
++ h->count_deletes;
// should we shrink down to an array?
if (h->count < stb_ps_array_max) {
int n = 1 << stb_log2_floor(stb_ps_array_max);
if (h->count < n) {
stb_ps_array *a = (stb_ps_array *) malloc(sizeof(*a) + (n-1) * sizeof(a->p[0]));
int i,j=0;
for (i=0; i < h->size; ++i)
if (!stb_ps_empty(t[i]))
a->p[j++] = t[i];
assert(j == h->count);
a->count = j;
free(h);
return EncodeArray(a);
}
}
if (h->count == h->shrink_threshhold) {
stb_ps_hash *h2 = stb_ps_makehash(h->size >> 1, h->size, t);
free(h);
return EncodeHash(h2);
}
return ps;
}
}
return ps; /* NOTREACHED */
}
stb_ps *stb_ps_remove_any(stb_ps *ps, void **value)
{
assert(ps != NULL);
switch (3 & (int) ps) {
case STB_ps_direct:
*value = ps;
return NULL;
case STB_ps_bucket: {
stb_ps_bucket *b = GetBucket(ps);
int count=0, slast=0, last=0;
assert(STB_BUCKET_SIZE == 4);
if (b->p[0]) { ++count; last = 0; }
if (b->p[1]) { ++count; slast = last; last = 1; }
if (b->p[2]) { ++count; slast = last; last = 2; }
if (b->p[3]) { ++count; slast = last; last = 3; }
*value = b->p[last];
b->p[last] = 0;
if (count == 2) {
void *leftover = b->p[slast]; // second to last
stb_bucket_free(b);
return (stb_ps *) leftover;
}
return ps;
}
case STB_ps_array: {
stb_ps_array *a = GetArray(ps);
*value = a->p[a->count-1];
if (a->count == 4)
return stb_ps_remove(ps, *value);
--a->count;
return ps;
}
case STB_ps_hash: {
stb_ps_hash *h = GetHash(ps);
void **t = h->table;
stb_uint32 n = h->any_offset;
while (stb_ps_empty(t[n]))
n = (n + 1) & h->mask;
*value = t[n];
h->any_offset = (n+1) & h->mask;
// check if we need to skip down to the previous type
if (h->count-1 < stb_ps_array_max || h->count-1 == h->shrink_threshhold)
return stb_ps_remove(ps, *value);
t[n] = STB_DEL;
-- h->count;
++ h->count_deletes;
return ps;
}
}
return ps; /* NOTREACHED */
}
void ** stb_ps_getlist(stb_ps *ps, int *count)
{
int i,n=0;
void **p;
switch (3 & (int) ps) {
case STB_ps_direct:
if (ps == NULL) { *count = 0; return NULL; }
p = (void **) malloc(sizeof(*p) * 1);
p[0] = ps;
*count = 1;
return p;
case STB_ps_bucket: {
stb_ps_bucket *b = GetBucket(ps);
p = (void **) malloc(sizeof(*p) * STB_BUCKET_SIZE);
for (i=0; i < STB_BUCKET_SIZE; ++i)
if (b->p[i] != NULL)
p[n++] = b->p[i];
break;
}
case STB_ps_array: {
stb_ps_array *a = GetArray(ps);
p = (void **) malloc(sizeof(*p) * a->count);
memcpy(p, a->p, sizeof(*p) * a->count);
*count = a->count;
return p;
}
case STB_ps_hash: {
stb_ps_hash *h = GetHash(ps);
p = (void **) malloc(sizeof(*p) * h->count);
for (i=0; i < h->size; ++i)
if (!stb_ps_empty(h->table[i]))
p[n++] = h->table[i];
break;
}
}
*count = n;
return p;
}
int stb_ps_writelist(stb_ps *ps, void **list, int size )
{
int i,n=0;
switch (3 & (int) ps) {
case STB_ps_direct:
if (ps == NULL || size <= 0) return 0;
list[0] = ps;
return 1;
case STB_ps_bucket: {
stb_ps_bucket *b = GetBucket(ps);
for (i=0; i < STB_BUCKET_SIZE; ++i)
if (b->p[i] != NULL && n < size)
list[n++] = b->p[i];
return n;
}
case STB_ps_array: {
stb_ps_array *a = GetArray(ps);
n = stb_min(size, a->count);
memcpy(list, a->p, sizeof(*list) * n);
return n;
}
case STB_ps_hash: {
stb_ps_hash *h = GetHash(ps);
if (size <= 0) return 0;
for (i=0; i < h->count; ++i) {
if (!stb_ps_empty(h->table[i])) {
list[n++] = h->table[i];
if (n == size) break;
}
}
return n;
}
}
return 0; /* NOTREACHED */
}
int stb_ps_enum(stb_ps *ps, void *data, int (*func)(void *value, void *data))
{
int i;
switch (3 & (int) ps) {
case STB_ps_direct:
if (ps == NULL) return STB_TRUE;
return func(ps, data);
case STB_ps_bucket: {
stb_ps_bucket *b = GetBucket(ps);
for (i=0; i < STB_BUCKET_SIZE; ++i)
if (b->p[i] != NULL)
if (!func(b->p[i], data))
return STB_FALSE;
return STB_TRUE;
}
case STB_ps_array: {
stb_ps_array *a = GetArray(ps);
for (i=0; i < a->count; ++i)
if (!func(a->p[i], data))
return STB_FALSE;
return STB_TRUE;
}
case STB_ps_hash: {
stb_ps_hash *h = GetHash(ps);
for (i=0; i < h->count; ++i)
if (!stb_ps_empty(h->table[i]))
if (!func(h->table[i], data))
return STB_FALSE;
return STB_TRUE;
}
}
return STB_TRUE; /* NOTREACHED */
}
int stb_ps_count (stb_ps *ps)
{
switch (3 & (int) ps) {
case STB_ps_direct:
return ps != NULL;
case STB_ps_bucket: {
stb_ps_bucket *b = GetBucket(ps);
return (b->p[0] != NULL) + (b->p[1] != NULL) +
(b->p[2] != NULL) + (b->p[3] != NULL);
}
case STB_ps_array: {
stb_ps_array *a = GetArray(ps);
return a->count;
}
case STB_ps_hash: {
stb_ps_hash *h = GetHash(ps);
return h->count;
}
}
return 0;
}
void ** stb_ps_fastlist(stb_ps *ps, int *count)
{
static void *storage;
switch (3 & (int) ps) {
case STB_ps_direct:
if (ps == NULL) { *count = 0; return NULL; }
storage = ps;
*count = 1;
return &storage;
case STB_ps_bucket: {
stb_ps_bucket *b = GetBucket(ps);
*count = STB_BUCKET_SIZE;
return b->p;
}
case STB_ps_array: {
stb_ps_array *a = GetArray(ps);
*count = a->count;
return a->p;
}
case STB_ps_hash: {
stb_ps_hash *h = GetHash(ps);
*count = h->size;
return h->table;
}
}
return NULL; /* NOTREACHED */
}
int stb_ps_subset(stb_ps *bigger, stb_ps *smaller)
{
int i, listlen;
void **list = stb_ps_fastlist(smaller, &listlen);
for(i=0; i < listlen; ++i)
if (stb_ps_fastlist_valid(list[i]))
if (!stb_ps_find(bigger, list[i]))
return 0;
return 1;
}
int stb_ps_eq(stb_ps *p0, stb_ps *p1)
{
if (stb_ps_count(p0) != stb_ps_count(p1))
return 0;
return stb_ps_subset(p0, p1);
}
#undef GetBucket
#undef GetArray
#undef GetHash
#undef EncodeBucket
#undef EncodeArray
#undef EncodeHash
#endif
//////////////////////////////////////////////////////////////////////////////
//
// Random Numbers via Meresenne Twister or LCG
//
STB_EXTERN unsigned long stb_srandLCG(unsigned long seed);
STB_EXTERN unsigned long stb_randLCG(void);
STB_EXTERN double stb_frandLCG(void);
STB_EXTERN void stb_srand(unsigned long seed);
STB_EXTERN unsigned long stb_rand(void);
STB_EXTERN double stb_frand(void);
STB_EXTERN void stb_shuffle(void *p, size_t n, size_t sz,
unsigned long seed);
STB_EXTERN void stb_reverse(void *p, size_t n, size_t sz);
STB_EXTERN unsigned long stb_randLCG_explicit(unsigned long seed);
#define stb_rand_define(x,y) \
\
unsigned long x(void) \
{ \
static unsigned long stb__rand = y; \
stb__rand = stb__rand * 2147001325 + 715136305; /* BCPL */ \
return 0x31415926 ^ ((stb__rand >> 16) + (stb__rand << 16)); \
}
#ifdef STB_DEFINE
unsigned long stb_randLCG_explicit(unsigned long seed)
{
return seed * 2147001325 + 715136305;
}
static unsigned long stb__rand_seed=0;
unsigned long stb_srandLCG(unsigned long seed)
{
unsigned long previous = stb__rand_seed;
stb__rand_seed = seed;
return previous;
}
unsigned long stb_randLCG(void)
{
stb__rand_seed = stb__rand_seed * 2147001325 + 715136305; // BCPL generator
// shuffle non-random bits to the middle, and xor to decorrelate with seed
return 0x31415926 ^ ((stb__rand_seed >> 16) + (stb__rand_seed << 16));
}
double stb_frandLCG(void)
{
return stb_randLCG() / ((double) (1 << 16) * (1 << 16));
}
void stb_shuffle(void *p, size_t n, size_t sz, unsigned long seed)
{
char *a;
unsigned long old_seed;
int i;
if (seed)
old_seed = stb_srandLCG(seed);
a = (char *) p + (n-1) * sz;
for (i=n; i > 1; --i) {
int j = stb_randLCG() % i;
stb_swap(a, (char *) p + j * sz, sz);
a -= sz;
}
if (seed)
stb_srandLCG(old_seed);
}
void stb_reverse(void *p, size_t n, size_t sz)
{
int i,j = n-1;
for (i=0; i < j; ++i,--j) {
stb_swap((char *) p + i * sz, (char *) p + j * sz, sz);
}
}
// public domain Mersenne Twister by Michael Brundage
#define STB__MT_LEN 624
int stb__mt_index = STB__MT_LEN*sizeof(unsigned long)+1;
unsigned long stb__mt_buffer[STB__MT_LEN];
void stb_srand(unsigned long seed)
{
int i;
unsigned long old = stb_srandLCG(seed);
for (i = 0; i < STB__MT_LEN; i++)
stb__mt_buffer[i] = stb_randLCG();
stb_srandLCG(old);
stb__mt_index = STB__MT_LEN*sizeof(unsigned long);
}
#define STB__MT_IA 397
#define STB__MT_IB (STB__MT_LEN - STB__MT_IA)
#define STB__UPPER_MASK 0x80000000
#define STB__LOWER_MASK 0x7FFFFFFF
#define STB__MATRIX_A 0x9908B0DF
#define STB__TWIST(b,i,j) ((b)[i] & STB__UPPER_MASK) | ((b)[j] & STB__LOWER_MASK)
#define STB__MAGIC(s) (((s)&1)*STB__MATRIX_A)
unsigned long stb_rand()
{
unsigned long * b = stb__mt_buffer;
int idx = stb__mt_index;
unsigned long s,r;
int i;
if (idx >= STB__MT_LEN*sizeof(unsigned long)) {
if (idx > STB__MT_LEN*sizeof(unsigned long))
stb_srand(0);
idx = 0;
i = 0;
for (; i < STB__MT_IB; i++) {
s = STB__TWIST(b, i, i+1);
b[i] = b[i + STB__MT_IA] ^ (s >> 1) ^ STB__MAGIC(s);
}
for (; i < STB__MT_LEN-1; i++) {
s = STB__TWIST(b, i, i+1);
b[i] = b[i - STB__MT_IB] ^ (s >> 1) ^ STB__MAGIC(s);
}
s = STB__TWIST(b, STB__MT_LEN-1, 0);
b[STB__MT_LEN-1] = b[STB__MT_IA-1] ^ (s >> 1) ^ STB__MAGIC(s);
}
stb__mt_index = idx + sizeof(unsigned long);
r = *(unsigned long *)((unsigned char *)b + idx);
r ^= (r >> 11);
r ^= (r << 7) & 0x9D2C5680;
r ^= (r << 15) & 0xEFC60000;
r ^= (r >> 18);
return r;
}
double stb_frand(void)
{
return stb_rand() / ((double) (1 << 16) * (1 << 16));
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// stb_dupe
//
// stb_dupe is a duplicate-finding system for very, very large data
// structures--large enough that sorting is too slow, but not so large
// that we can't keep all the data in memory. using it works as follows:
//
// 1. create an stb_dupe:
// provide a hash function
// provide an equality function
// provide an estimate for the size
// optionally provide a comparison function
//
// 2. traverse your data, 'adding' pointers to the stb_dupe
//
// 3. finish and ask for duplicates
//
// the stb_dupe will discard its intermediate data and build
// a collection of sorted lists of duplicates, with non-duplicate
// entries omitted entirely
//
//
// Implementation strategy:
//
// while collecting the N items, we keep a hash table of approximate
// size sqrt(N). (if you tell use the N up front, the hash table is
// just that size exactly)
//
// each entry in the hash table is just an stb__arr of pointers (no need
// to use stb_ps, because we don't need to delete from these)
//
// for step 3, for each entry in the hash table, we apply stb_dupe to it
// recursively. once the size gets small enough (or doesn't decrease
// significantly), we switch to either using qsort() on the comparison
// function, or else we just do the icky N^2 gather
typedef struct stb_dupe stb_dupe;
typedef int (*stb_compare_func)(void *a, void *b);
typedef int (*stb_hash_func)(void *a, unsigned int seed);
STB_EXTERN void stb_dupe_free(stb_dupe *sd);
STB_EXTERN stb_dupe *stb_dupe_create(stb_hash_func hash,
stb_compare_func eq, int size, stb_compare_func ineq);
STB_EXTERN void stb_dupe_add(stb_dupe *sd, void *item);
STB_EXTERN void stb_dupe_finish(stb_dupe *sd);
STB_EXTERN int stb_dupe_numsets(stb_dupe *sd);
STB_EXTERN void **stb_dupe_set(stb_dupe *sd, int num);
STB_EXTERN int stb_dupe_set_count(stb_dupe *sd, int num);
struct stb_dupe
{
void ***hash_table;
int hash_size;
int size_log2;
int population;
int hash_shift;
stb_hash_func hash;
stb_compare_func eq;
stb_compare_func ineq;
void ***dupes;
};
#ifdef STB_DEFINE
int stb_dupe_numsets(stb_dupe *sd)
{
assert(sd->hash_table == NULL);
return stb_arr_len(sd->dupes);
}
void **stb_dupe_set(stb_dupe *sd, int num)
{
assert(sd->hash_table == NULL);
return sd->dupes[num];
}
int stb_dupe_set_count(stb_dupe *sd, int num)
{
assert(sd->hash_table == NULL);
return stb_arr_len(sd->dupes[num]);
}
stb_dupe *stb_dupe_create(stb_hash_func hash, stb_compare_func eq, int size,
stb_compare_func ineq)
{
int i, hsize;
stb_dupe *sd = (stb_dupe *) malloc(sizeof(*sd));
sd->size_log2 = 4;
hsize = 1 << sd->size_log2;
while (hsize * hsize < size) {
++sd->size_log2;
hsize *= 2;
}
sd->hash = hash;
sd->eq = eq;
sd->ineq = ineq;
sd->hash_shift = 0;
sd->population = 0;
sd->hash_size = hsize;
sd->hash_table = (void ***) malloc(sizeof(*sd->hash_table) * hsize);
for (i=0; i < hsize; ++i)
sd->hash_table[i] = NULL;
sd->dupes = NULL;
return sd;
}
void stb_dupe_add(stb_dupe *sd, void *item)
{
stb_uint32 hash = sd->hash(item, sd->hash_shift);
int z = hash & (sd->hash_size-1);
stb_arr_push(sd->hash_table[z], item);
++sd->population;
}
void stb_dupe_free(stb_dupe *sd)
{
int i;
for (i=0; i < stb_arr_len(sd->dupes); ++i)
if (sd->dupes[i])
stb_arr_free(sd->dupes[i]);
stb_arr_free(sd->dupes);
free(sd);
}
static stb_compare_func stb__compare;
static int stb__dupe_compare(const void *a, const void *b)
{
void *p = *(void **) a;
void *q = *(void **) b;
return stb__compare(p,q);
}
void stb_dupe_finish(stb_dupe *sd)
{
int i,j,k;
assert(sd->dupes == NULL);
for (i=0; i < sd->hash_size; ++i) {
void ** list = sd->hash_table[i];
if (list != NULL) {
int n = stb_arr_len(list);
// @TODO: measure to find good numbers instead of just making them up!
int thresh = (sd->ineq ? 200 : 20);
// if n is large enough to be worth it, and n is smaller than
// before (so we can guarantee we'll use a smaller hash table);
// and there are enough hash bits left, assuming full 32-bit hash
if (n > thresh && n < (sd->population >> 3) && sd->hash_shift + sd->size_log2*2 < 32) {
// recursively process this row using stb_dupe, O(N log log N)
stb_dupe *d = stb_dupe_create(sd->hash, sd->eq, n, sd->ineq);
d->hash_shift = stb_randLCG_explicit(sd->hash_shift);
for (j=0; j < n; ++j)
stb_dupe_add(d, list[j]);
stb_arr_free(sd->hash_table[i]);
stb_dupe_finish(d);
for (j=0; j < stb_arr_len(d->dupes); ++j) {
stb_arr_push(sd->dupes, d->dupes[j]);
d->dupes[j] = NULL; // take over ownership
}
stb_dupe_free(d);
} else if (sd->ineq) {
// process this row using qsort(), O(N log N)
stb__compare = sd->ineq;
qsort(list, n, sizeof(list[0]), stb__dupe_compare);
// find equal subsequences of the list
for (j=0; j < n-1; ) {
// find a subsequence from j..k
for (k=j; k < n; ++k)
// only use ineq so eq can be left undefined
if (sd->ineq(list[j], list[k]))
break;
// k is the first one not in the subsequence
if (k-j > 1) {
void **mylist = NULL;
stb_arr_setlen(mylist, k-j);
memcpy(mylist, list+j, sizeof(list[j]) * (k-j));
stb_arr_push(sd->dupes, mylist);
}
j = k;
}
stb_arr_free(sd->hash_table[i]);
} else {
// process this row using eq(), O(N^2)
for (j=0; j < n; ++j) {
if (list[j] != NULL) {
void **output = NULL;
for (k=j+1; k < n; ++k) {
if (sd->eq(list[j], list[k])) {
if (output == NULL)
stb_arr_push(output, list[j]);
stb_arr_push(output, list[k]);
list[k] = NULL;
}
}
list[j] = NULL;
if (output)
stb_arr_push(sd->dupes, output);
}
}
stb_arr_free(sd->hash_table[i]);
}
}
}
free(sd->hash_table);
sd->hash_table = NULL;
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// templatized Sort routine
//
// This is an attempt to implement a templated sorting algorithm.
// To use it, you have to explicitly instantiate it as a _function_,
// then you call that function. This allows the comparison to be inlined,
// giving the sort similar performance to C++ sorts.
//
// It implements quicksort with three-way-median partitioning (generally
// well-behaved), with a final insertion sort pass.
//
// When you define the compare expression, you should assume you have
// elements of your array pointed to by 'a' and 'b', and perform the comparison
// on those. OR you can use one or more statements; first say '0;', then
// write whatever code you want, and compute the result into a variable 'c'.
#define stb_declare_sort(FUNCNAME, TYPE) \
void FUNCNAME(TYPE *p, int n)
#define stb_define_sort(FUNCNAME,TYPE,COMPARE) \
stb__define_sort( void, FUNCNAME,TYPE,COMPARE)
#define stb_define_sort_static(FUNCNAME,TYPE,COMPARE) \
stb__define_sort(static void, FUNCNAME,TYPE,COMPARE)
#define stb__define_sort(MODE, FUNCNAME, TYPE, COMPARE) \
\
static void STB_(FUNCNAME,_ins_sort)(TYPE *p, int n) \
{ \
int i,j; \
for (i=1; i < n; ++i) { \
TYPE t = p[i], *a = &t; \
j = i; \
while (j > 0) { \
TYPE *b = &p[j-1]; \
int c = COMPARE; \
if (!c) break; \
p[j] = p[j-1]; \
--j; \
} \
if (i != j) \
p[j] = t; \
} \
} \
\
static void STB_(FUNCNAME,_quicksort)(TYPE *p, int n) \
{ \
/* threshhold for transitioning to insertion sort */ \
while (n > 12) { \
TYPE *a,*b,t; \
int c01,c12,c,m,i,j; \
\
/* compute median of three */ \
m = n >> 1; \
a = &p[0]; \
b = &p[m]; \
c = COMPARE; \
c01 = c; \
a = &p[m]; \
b = &p[n-1]; \
c = COMPARE; \
c12 = c; \
/* if 0 >= mid >= end, or 0 < mid < end, then use mid */ \
if (c01 != c12) { \
/* otherwise, we'll need to swap something else to middle */ \
int z; \
a = &p[0]; \
b = &p[n-1]; \
c = COMPARE; \
/* 0>mid && mid<n: 0>n => n; 0<n => 0 */ \
/* 0<mid && mid>n: 0>n => 0; 0<n => n */ \
z = (c == c12) ? 0 : n-1; \
t = p[z]; \
p[z] = p[m]; \
p[m] = t; \
} \
/* now p[m] is the median-of-three */ \
/* swap it to the beginning so it won't move around */ \
t = p[0]; \
p[0] = p[m]; \
p[m] = t; \
\
/* partition loop */ \
i=1; \
j=n-1; \
for(;;) { \
/* handling of equality is crucial here */ \
/* for sentinels & efficiency with duplicates */ \
b = &p[0]; \
for (;;++i) { \
a=&p[i]; \
c = COMPARE; \
if (!c) break; \
} \
a = &p[0]; \
for (;;--j) { \
b=&p[j]; \
c = COMPARE; \
if (!c) break; \
} \
/* make sure we haven't crossed */ \
if (i >= j) break; \
t = p[i]; \
p[i] = p[j]; \
p[j] = t; \
\
++i; \
--j; \
} \
/* recurse on smaller side, iterate on larger */ \
if (j < (n-i)) { \
STB_(FUNCNAME,_quicksort)(p,j); \
p = p+i; \
n = n-i; \
} else { \
STB_(FUNCNAME,_quicksort)(p+i, n-i); \
n = j; \
} \
} \
} \
\
MODE FUNCNAME(TYPE *p, int n) \
{ \
STB_(FUNCNAME, _quicksort)(p, n); \
STB_(FUNCNAME, _ins_sort)(p, n); \
} \
//////////////////////////////////////////////////////////////////////////////
//
// stb_bitset an array of booleans indexed by integers
//
typedef stb_uint32 stb_bitset;
STB_EXTERN stb_bitset *stb_bitset_new(int value, int len);
#define stb_bitset_clearall(arr,len) (memset(arr, 0, 4 * (len)))
#define stb_bitset_setall(arr,len) (memset(arr, 255, 4 * (len)))
#define stb_bitset_setbit(arr,n) ((arr)[(n) >> 5] |= (1 << (n & 31)))
#define stb_bitset_clearbit(arr,n) ((arr)[(n) >> 5] &= ~(1 << (n & 31)))
#define stb_bitset_testbit(arr,n) ((arr)[(n) >> 5] & (1 << (n & 31)))
STB_EXTERN stb_bitset *stb_bitset_union(stb_bitset *p0, stb_bitset *p1, int len);
STB_EXTERN int *stb_bitset_getlist(stb_bitset *out, int start, int end);
STB_EXTERN int stb_bitset_eq(stb_bitset *p0, stb_bitset *p1, int len);
STB_EXTERN int stb_bitset_disjoint(stb_bitset *p0, stb_bitset *p1, int len);
STB_EXTERN int stb_bitset_disjoint_0(stb_bitset *p0, stb_bitset *p1, int len);
STB_EXTERN int stb_bitset_subset(stb_bitset *bigger, stb_bitset *smaller, int len);
STB_EXTERN int stb_bitset_unioneq_changed(stb_bitset *p0, stb_bitset *p1, int len);
#ifdef STB_DEFINE
int stb_bitset_eq(stb_bitset *p0, stb_bitset *p1, int len)
{
int i;
for (i=0; i < len; ++i)
if (p0[i] != p1[i]) return 0;
return 1;
}
int stb_bitset_disjoint(stb_bitset *p0, stb_bitset *p1, int len)
{
int i;
for (i=0; i < len; ++i)
if (p0[i] & p1[i]) return 0;
return 1;
}
int stb_bitset_disjoint_0(stb_bitset *p0, stb_bitset *p1, int len)
{
int i;
for (i=0; i < len; ++i)
if ((p0[i] | p1[i]) != 0xffffffff) return 0;
return 1;
}
int stb_bitset_subset(stb_bitset *bigger, stb_bitset *smaller, int len)
{
int i;
for (i=0; i < len; ++i)
if ((bigger[i] & smaller[i]) != smaller[i]) return 0;
return 1;
}
stb_bitset *stb_bitset_union(stb_bitset *p0, stb_bitset *p1, int len)
{
int i;
stb_bitset *d = (stb_bitset *) malloc(sizeof(*d) * len);
for (i=0; i < len; ++i) d[i] = p0[i] | p1[i];
return d;
}
int stb_bitset_unioneq_changed(stb_bitset *p0, stb_bitset *p1, int len)
{
int i, changed=0;
for (i=0; i < len; ++i) {
stb_bitset d = p0[i] | p1[i];
if (d != p0[i]) {
p0[i] = d;
changed = 1;
}
}
return changed;
}
stb_bitset *stb_bitset_new(int value, int len)
{
int i;
stb_bitset *d = (stb_bitset *) malloc(sizeof(*d) * len);
if (value) value = 0xffffffff;
for (i=0; i < len; ++i) d[i] = value;
return d;
}
int *stb_bitset_getlist(stb_bitset *out, int start, int end)
{
int *list = NULL;
int i;
for (i=start; i < end; ++i)
if (stb_bitset_testbit(out, i))
stb_arr_push(list, i);
return list;
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// stb_wordwrap quality word-wrapping for fixed-width fonts
//
STB_EXTERN int stb_wordwrap(int *pairs, int pair_max, int count, char *str);
STB_EXTERN int *stb_wordwrapalloc(int count, char *str);
#ifdef STB_DEFINE
int stb_wordwrap(int *pairs, int pair_max, int count, char *str)
{
int n=0,i=0, start=0,nonwhite=0;
if (pairs == NULL) pair_max = 0x7ffffff0;
else pair_max *= 2;
// parse
for(;;) {
int s=i; // first whitespace char; last nonwhite+1
int w; // word start
// accept whitespace
while (isspace(str[i])) {
if (str[i] == '\n' || str[i] == '\r') {
if (str[i] + str[i+1] == '\n' + '\r') ++i;
if (n >= pair_max) return -1;
if (pairs) pairs[n] = start, pairs[n+1] = s-start;
n += 2;
nonwhite=0;
start = i+1;
s = start;
}
++i;
}
if (i >= start+count) {
// we've gone off the end using whitespace
if (nonwhite) {
if (n >= pair_max) return -1;
if (pairs) pairs[n] = start, pairs[n+1] = s-start;
n += 2;
start = s = i;
nonwhite=0;
} else {
// output all the whitespace
while (i >= start+count) {
if (n >= pair_max) return -1;
if (pairs) pairs[n] = start, pairs[n+1] = count;
n += 2;
start += count;
}
s = start;
}
}
if (str[i] == 0) break;
// now scan out a word and see if it fits
w = i;
while (str[i] && !isspace(str[i])) {
++i;
}
// wrapped?
if (i > start + count) {
// huge?
if (i-s <= count) {
if (n >= pair_max) return -1;
if (pairs) pairs[n] = start, pairs[n+1] = s-start;
n += 2;
start = w;
} else {
// This word is longer than one line. If we wrap it onto N lines
// there are leftover chars. do those chars fit on the cur line?
// But if we have leading whitespace, we force it to start here.
if ((w-start) + ((i-w) % count) <= count || !nonwhite) {
// output a full line
if (n >= pair_max) return -1;
if (pairs) pairs[n] = start, pairs[n+1] = count;
n += 2;
start += count;
w = start;
} else {
// output a partial line, trimming trailing whitespace
if (s != start) {
if (n >= pair_max) return -1;
if (pairs) pairs[n] = start, pairs[n+1] = s-start;
n += 2;
start = w;
}
}
// now output full lines as needed
while (start + count <= i) {
if (n >= pair_max) return -1;
if (pairs) pairs[n] = start, pairs[n+1] = count;
n += 2;
start += count;
}
}
}
nonwhite=1;
}
if (start < i) {
if (n >= pair_max) return -1;
if (pairs) pairs[n] = start, pairs[n+1] = i-start;
n += 2;
}
return n>>1;
}
int *stb_wordwrapalloc(int count, char *str)
{
int n = stb_wordwrap(NULL,0,count,str);
int *z = NULL;
stb_arr_setlen(z, n*2);
stb_wordwrap(z, n, count, str);
return z;
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// stb_match: wildcards and regexping
//
STB_EXTERN int stb_wildmatch (char *expr, char *candidate);
STB_EXTERN int stb_wildmatchi(char *expr, char *candidate);
STB_EXTERN int stb_wildfind (char *expr, char *candidate);
STB_EXTERN int stb_wildfindi (char *expr, char *candidate);
STB_EXTERN int stb_regex(char *regex, char *candidate);
typedef struct stb_matcher stb_matcher;
STB_EXTERN stb_matcher *stb_regex_matcher(char *regex);
STB_EXTERN int stb_matcher_match(stb_matcher *m, char *str);
STB_EXTERN int stb_matcher_find(stb_matcher *m, char *str);
STB_EXTERN void stb_matcher_free(stb_matcher *f);
STB_EXTERN stb_matcher *stb_lex_matcher(void);
STB_EXTERN int stb_lex_item(stb_matcher *m, char *str, int result);
STB_EXTERN int stb_lex_item_wild(stb_matcher *matcher, char *regex, int result);
STB_EXTERN int stb_lex(stb_matcher *m, char *str, int *len);
#ifdef STB_DEFINE
static int stb__match_qstring(char *candidate, char *qstring, int qlen, int insensitive)
{
int i;
if (insensitive) {
for (i=0; i < qlen; ++i)
if (qstring[i] == '?') {
if (!candidate[i]) return 0;
} else
if (tolower(qstring[i]) != tolower(candidate[i]))
return 0;
} else {
for (i=0; i < qlen; ++i)
if (qstring[i] == '?') {
if (!candidate[i]) return 0;
} else
if (qstring[i] != candidate[i])
return 0;
}
return 1;
}
static int stb__find_qstring(char *candidate, char *qstring, int qlen, int insensitive)
{
char c;
int offset=0;
while (*qstring == '?') {
++qstring;
--qlen;
++candidate;
if (qlen == 0) return 0;
if (*candidate == 0) return -1;
}
c = *qstring++;
--qlen;
if (insensitive) c = tolower(c);
while (candidate[offset]) {
if (c == (insensitive ? tolower(candidate[offset]) : candidate[offset]))
if (stb__match_qstring(candidate+offset+1, qstring, qlen, insensitive))
return offset;
++offset;
}
return -1;
}
int stb__wildmatch_raw2(char *expr, char *candidate, int search, int insensitive)
{
int where=0;
int start = -1;
if (!search) {
// parse to first '*'
if (*expr != '*')
start = 0;
while (*expr != '*') {
if (!*expr)
return *candidate == 0 ? 0 : -1;
if (*expr == '?') {
if (!*candidate) return -1;
} else {
if (insensitive) {
if (tolower(*candidate) != tolower(*expr))
return -1;
} else
if (*candidate != *expr)
return -1;
}
++candidate, ++expr, ++where;
}
} else {
// 0-length search string
if (!*expr)
return 0;
}
assert(search || *expr == '*');
if (!search)
++expr;
// implicit '*' at this point
while (*expr) {
int o=0;
// combine redundant * characters
while (expr[0] == '*') ++expr;
// ok, at this point, expr[-1] == '*',
// and expr[0] != '*'
if (!expr[0]) return start >= 0 ? start : 0;
// now find next '*'
o = 0;
while (expr[o] != '*') {
if (expr[o] == 0)
break;
++o;
}
// if no '*', scan to end, then match at end
if (expr[o] == 0 && !search) {
int z;
for (z=0; z < o; ++z)
if (candidate[z] == 0)
return -1;
while (candidate[z])
++z;
// ok, now check if they match
if (stb__match_qstring(candidate+z-o, expr, o, insensitive))
return start >= 0 ? start : 0;
return -1;
} else {
// if yes '*', then do stb__find_qmatch on the intervening chars
int n = stb__find_qstring(candidate, expr, o, insensitive);
if (n < 0)
return -1;
if (start < 0)
start = where + n;
expr += o;
candidate += n+o;
}
if (*expr == 0) {
assert(search);
return start;
}
assert(*expr == '*');
++expr;
}
return start >= 0 ? start : 0;
}
int stb__wildmatch_raw(char *expr, char *candidate, int search, int insensitive)
{
char buffer[256];
// handle multiple search strings
char *s = strchr(expr, ';');
char *last = expr;
while (s) {
int z;
// need to allow for non-writeable strings... assume they're small
if (s - last < 256) {
stb_strncpy(buffer, last, s-last+1);
z = stb__wildmatch_raw2(buffer, candidate, search, insensitive);
} else {
*s = 0;
z = stb__wildmatch_raw2(last, candidate, search, insensitive);
*s = ';';
}
if (z >= 0) return z;
last = s+1;
s = strchr(last, ';');
}
return stb__wildmatch_raw2(last, candidate, search, insensitive);
}
int stb_wildmatch(char *expr, char *candidate)
{
return stb__wildmatch_raw(expr, candidate, 0,0) >= 0;
}
int stb_wildmatchi(char *expr, char *candidate)
{
return stb__wildmatch_raw(expr, candidate, 0,1) >= 0;
}
int stb_wildfind(char *expr, char *candidate)
{
return stb__wildmatch_raw(expr, candidate, 1,0);
}
int stb_wildfindi(char *expr, char *candidate)
{
return stb__wildmatch_raw(expr, candidate, 1,1);
}
typedef struct
{
stb_int16 transition[256];
} stb_dfa;
// an NFA node represents a state you're in; it then has
// an arbitrary number of edges dangling off of it
// note this isn't utf8-y
typedef struct
{
stb_int16 match; // character/set to match
stb_uint16 node; // output node to go to
} stb_nfa_edge;
typedef struct
{
stb_int16 goal; // does reaching this win the prize?
stb_uint8 active; // is this in the active list
stb_nfa_edge *out;
stb_uint16 *eps; // list of epsilon closures
} stb_nfa_node;
#define STB__DFA_UNDEF -1
#define STB__DFA_GOAL -2
#define STB__DFA_END -3
#define STB__DFA_MGOAL -4
#define STB__DFA_VALID 0
#define STB__NFA_STOP_GOAL -1
// compiled regexp
struct stb_matcher
{
stb_uint16 start_node;
stb_int16 dfa_start;
stb_uint32 *charset;
int num_charset;
int match_start;
stb_nfa_node *nodes;
int does_lex;
// dfa matcher
stb_dfa * dfa;
stb_uint32 * dfa_mapping;
stb_int16 * dfa_result;
int num_words_per_dfa;
};
static int stb__add_node(stb_matcher *matcher)
{
stb_nfa_node z;
z.active = 0;
z.eps = 0;
z.goal = 0;
z.out = 0;
stb_arr_push(matcher->nodes, z);
return stb_arr_len(matcher->nodes)-1;
}
static void stb__add_epsilon(stb_matcher *matcher, int from, int to)
{
assert(from != to);
if (matcher->nodes[from].eps == NULL)
stb_arr_malloc((void **) &matcher->nodes[from].eps, matcher);
stb_arr_push(matcher->nodes[from].eps, to);
}
static void stb__add_edge(stb_matcher *matcher, int from, int to, int type)
{
stb_nfa_edge z = { type, to };
if (matcher->nodes[from].out == NULL)
stb_arr_malloc((void **) &matcher->nodes[from].out, matcher);
stb_arr_push(matcher->nodes[from].out, z);
}
static char *stb__reg_parse_alt(stb_matcher *m, int s, char *r, stb_uint16 *e);
static char *stb__reg_parse(stb_matcher *matcher, int start, char *regex, stb_uint16 *end)
{
int n;
int last_start = -1;
stb_uint16 last_end = start;
while (*regex) {
switch (*regex) {
case '(':
last_start = last_end;
regex = stb__reg_parse_alt(matcher, last_end, regex+1, &last_end);
if (regex == NULL || *regex != ')')
return NULL;
++regex;
break;
case '|':
case ')':
*end = last_end;
return regex;
case '?':
if (last_start < 0) return NULL;
stb__add_epsilon(matcher, last_start, last_end);
++regex;
break;
case '*':
if (last_start < 0) return NULL;
stb__add_epsilon(matcher, last_start, last_end);
// fall through
case '+':
if (last_start < 0) return NULL;
stb__add_epsilon(matcher, last_end, last_start);
// prevent links back to last_end from chaining to last_start
n = stb__add_node(matcher);
stb__add_epsilon(matcher, last_end, n);
last_end = n;
++regex;
break;
case '{': // not supported!
// @TODO: given {n,m}, clone last_start to last_end m times,
// and include epsilons from start to first m-n blocks
return NULL;
case '\\':
++regex;
if (!*regex) return NULL;
// fallthrough
default: // match exactly this character
n = stb__add_node(matcher);
stb__add_edge(matcher, last_end, n, *regex);
last_start = last_end;
last_end = n;
++regex;
break;
case '$':
n = stb__add_node(matcher);
stb__add_edge(matcher, last_end, n, '\n');
last_start = last_end;
last_end = n;
++regex;
break;
case '.':
n = stb__add_node(matcher);
stb__add_edge(matcher, last_end, n, -1);
last_start = last_end;
last_end = n;
++regex;
break;
case '[': {
stb_uint8 flags[256];
int invert = 0,z;
++regex;
if (matcher->num_charset == 0) {
matcher->charset = (stb_uint *) stb_malloc(matcher, sizeof(*matcher->charset) * 256);
memset(matcher->charset, 0, sizeof(*matcher->charset) * 256);
}
memset(flags,0,sizeof(flags));
// leading ^ is special
if (*regex == '^')
++regex, invert = 1;
// leading ] is special
if (*regex == ']') {
flags[']'] = 1;
++regex;
}
while (*regex != ']') {
stb_uint a;
if (!*regex) return NULL;
a = *regex++;
if (regex[0] == '-' && regex[1] != ']') {
stb_uint i,b = regex[1];
regex += 2;
if (b == 0) return NULL;
if (a > b) return NULL;
for (i=a; i <= b; ++i)
flags[i] = 1;
} else
flags[a] = 1;
}
++regex;
if (invert) {
int i;
for (i=0; i < 256; ++i)
flags[i] = 1-flags[i];
}
// now check if any existing charset matches
for (z=0; z < matcher->num_charset; ++z) {
int i, k[2] = { 0, 1 << z};
for (i=0; i < 256; ++i) {
unsigned int f = k[flags[i]];
if ((matcher->charset[i] & k[1]) != f)
break;
}
if (i == 256) break;
}
if (z == matcher->num_charset) {
int i;
++matcher->num_charset;
if (matcher->num_charset > 32) {
assert(0); /* NOTREACHED */
return NULL; // too many charsets, oops
}
for (i=0; i < 256; ++i)
if (flags[i])
matcher->charset[i] |= (1 << z);
}
n = stb__add_node(matcher);
stb__add_edge(matcher, last_end, n, -2 - z);
last_start = last_end;
last_end = n;
break;
}
}
}
*end = last_end;
return regex;
}
static char *stb__reg_parse_alt(stb_matcher *matcher, int start, char *regex, stb_uint16 *end)
{
stb_uint16 last_end = start;
stb_uint16 main_end;
int head, tail;
head = stb__add_node(matcher);
stb__add_epsilon(matcher, start, head);
regex = stb__reg_parse(matcher, head, regex, &last_end);
if (regex == NULL) return NULL;
if (*regex == 0 || *regex == ')') {
*end = last_end;
return regex;
}
main_end = last_end;
tail = stb__add_node(matcher);
stb__add_epsilon(matcher, last_end, tail);
// start alternatives from the same starting node; use epsilon
// transitions to combine their endings
while(*regex && *regex != ')') {
assert(*regex == '|');
head = stb__add_node(matcher);
stb__add_epsilon(matcher, start, head);
regex = stb__reg_parse(matcher, head, regex+1, &last_end);
if (regex == NULL)
return NULL;
stb__add_epsilon(matcher, last_end, tail);
}
*end = tail;
return regex;
}
static char *stb__wild_parse(stb_matcher *matcher, int start, char *str, stb_uint16 *end)
{
int n;
stb_uint16 last_end;
last_end = stb__add_node(matcher);
stb__add_epsilon(matcher, start, last_end);
while (*str) {
switch (*str) {
// fallthrough
default: // match exactly this character
n = stb__add_node(matcher);
if (toupper(*str) == tolower(*str)) {
stb__add_edge(matcher, last_end, n, *str);
} else {
stb__add_edge(matcher, last_end, n, tolower(*str));
stb__add_edge(matcher, last_end, n, toupper(*str));
}
last_end = n;
++str;
break;
case '?':
n = stb__add_node(matcher);
stb__add_edge(matcher, last_end, n, -1);
last_end = n;
++str;
break;
case '*':
n = stb__add_node(matcher);
stb__add_edge(matcher, last_end, n, -1);
stb__add_epsilon(matcher, last_end, n);
stb__add_epsilon(matcher, n, last_end);
last_end = n;
++str;
break;
}
}
// now require end of string to match
n = stb__add_node(matcher);
stb__add_edge(matcher, last_end, n, 0);
last_end = n;
*end = last_end;
return str;
}
static int stb__opt(stb_matcher *m, int n)
{
for(;;) {
stb_nfa_node *p = &m->nodes[n];
if (p->goal) return n;
if (stb_arr_len(p->out)) return n;
if (stb_arr_len(p->eps) != 1) return n;
n = p->eps[0];
}
}
static void stb__optimize(stb_matcher *m)
{
// if the target of any edge is a node with exactly
// one out-epsilon, shorten it
int i,j;
for (i=0; i < stb_arr_len(m->nodes); ++i) {
stb_nfa_node *p = &m->nodes[i];
for (j=0; j < stb_arr_len(p->out); ++j)
p->out[j].node = stb__opt(m,p->out[j].node);
for (j=0; j < stb_arr_len(p->eps); ++j)
p->eps[j] = stb__opt(m,p->eps[j] );
}
m->start_node = stb__opt(m,m->start_node);
}
void stb_matcher_free(stb_matcher *f)
{
stb_free(f);
}
static stb_matcher *stb__alloc_matcher(void)
{
stb_matcher *matcher = (stb_matcher *) stb_malloc(0,sizeof(*matcher));
matcher->start_node = 0;
stb_arr_malloc((void **) &matcher->nodes, matcher);
matcher->num_charset = 0;
matcher->match_start = 0;
matcher->does_lex = 0;
matcher->dfa_start = STB__DFA_UNDEF;
stb_arr_malloc((void **) &matcher->dfa, matcher);
stb_arr_malloc((void **) &matcher->dfa_mapping, matcher);
stb_arr_malloc((void **) &matcher->dfa_result, matcher);
stb__add_node(matcher);
return matcher;
}
static void stb__lex_reset(stb_matcher *matcher)
{
// flush cached dfa data
stb_arr_setlen(matcher->dfa, 0);
stb_arr_setlen(matcher->dfa_mapping, 0);
stb_arr_setlen(matcher->dfa_result, 0);
matcher->dfa_start = STB__DFA_UNDEF;
}
stb_matcher *stb_regex_matcher(char *regex)
{
char *z;
stb_uint16 end;
stb_matcher *matcher = stb__alloc_matcher();
if (*regex == '^') {
matcher->match_start = 1;
++regex;
}
z = stb__reg_parse_alt(matcher, matcher->start_node, regex, &end);
if (!z || *z) {
stb_free(matcher);
return NULL;
}
((matcher->nodes)[(int) end]).goal = STB__NFA_STOP_GOAL;
return matcher;
}
stb_matcher *stb_lex_matcher(void)
{
stb_matcher *matcher = stb__alloc_matcher();
matcher->match_start = 1;
matcher->does_lex = 1;
return matcher;
}
int stb_lex_item(stb_matcher *matcher, char *regex, int result)
{
char *z;
stb_uint16 end;
z = stb__reg_parse_alt(matcher, matcher->start_node, regex, &end);
if (z == NULL)
return 0;
stb__lex_reset(matcher);
matcher->nodes[(int) end].goal = result;
return 1;
}
int stb_lex_item_wild(stb_matcher *matcher, char *regex, int result)
{
char *z;
stb_uint16 end;
z = stb__wild_parse(matcher, matcher->start_node, regex, &end);
if (z == NULL)
return 0;
stb__lex_reset(matcher);
matcher->nodes[(int) end].goal = result;
return 1;
}
static void stb__clear(stb_matcher *m, stb_uint16 *list)
{
int i;
for (i=0; i < stb_arr_len(list); ++i)
m->nodes[(int) list[i]].active = 0;
}
static int stb__clear_goalcheck(stb_matcher *m, stb_uint16 *list)
{
int i, t=0;
for (i=0; i < stb_arr_len(list); ++i) {
t += m->nodes[(int) list[i]].goal;
m->nodes[(int) list[i]].active = 0;
}
return t;
}
static stb_uint16 * stb__add_if_inactive(stb_matcher *m, stb_uint16 *list, int n)
{
if (!m->nodes[n].active) {
stb_arr_push(list, n);
m->nodes[n].active = 1;
}
return list;
}
static stb_uint16 * stb__eps_closure(stb_matcher *m, stb_uint16 *list)
{
int i,n = stb_arr_len(list);
for(i=0; i < n; ++i) {
stb_uint16 *e = m->nodes[(int) list[i]].eps;
if (e) {
int j,k = stb_arr_len(e);
for (j=0; j < k; ++j)
list = stb__add_if_inactive(m, list, e[j]);
n = stb_arr_len(list);
}
}
return list;
}
int stb_matcher_match(stb_matcher *m, char *str)
{
int result = 0;
int i,j,y,z;
stb_uint16 *previous = NULL;
stb_uint16 *current = NULL;
stb_uint16 *temp;
stb_arr_setsize(previous, 4);
stb_arr_setsize(current, 4);
previous = stb__add_if_inactive(m, previous, m->start_node);
previous = stb__eps_closure(m,previous);
stb__clear(m, previous);
while (*str && stb_arr_len(previous)) {
y = stb_arr_len(previous);
for (i=0; i < y; ++i) {
stb_nfa_node *n = &m->nodes[(int) previous[i]];
z = stb_arr_len(n->out);
for (j=0; j < z; ++j) {
if (n->out[j].match >= 0) {
if (n->out[j].match == *str)
current = stb__add_if_inactive(m, current, n->out[j].node);
} else if (n->out[j].match == -1) {
if (*str != '\n')
current = stb__add_if_inactive(m, current, n->out[j].node);
} else if (n->out[j].match < -1) {
int z = -n->out[j].match - 2;
if (m->charset[(stb_uint8) *str] & (1 << z))
current = stb__add_if_inactive(m, current, n->out[j].node);
}
}
}
stb_arr_setlen(previous, 0);
temp = previous;
previous = current;
current = temp;
previous = stb__eps_closure(m,previous);
stb__clear(m, previous);
++str;
}
// transition to pick up a '$' at the end
y = stb_arr_len(previous);
for (i=0; i < y; ++i)
m->nodes[(int) previous[i]].active = 1;
for (i=0; i < y; ++i) {
stb_nfa_node *n = &m->nodes[(int) previous[i]];
z = stb_arr_len(n->out);
for (j=0; j < z; ++j) {
if (n->out[j].match == '\n')
current = stb__add_if_inactive(m, current, n->out[j].node);
}
}
previous = stb__eps_closure(m,previous);
stb__clear(m, previous);
y = stb_arr_len(previous);
for (i=0; i < y; ++i)
if (m->nodes[(int) previous[i]].goal)
result = 1;
stb_arr_free(previous);
stb_arr_free(current);
return result && *str == 0;
}
stb_int16 stb__get_dfa_node(stb_matcher *m, stb_uint16 *list)
{
stb_uint16 node;
stb_uint32 data[8], *state, *newstate;
int i,j,n;
state = (stb_uint32 *) stb_temp(data, m->num_words_per_dfa * 4);
memset(state, 0, m->num_words_per_dfa*4);
n = stb_arr_len(list);
for (i=0; i < n; ++i) {
int x = list[i];
state[x >> 5] |= 1 << (x & 31);
}
// @TODO use a hash table
n = stb_arr_len(m->dfa_mapping);
i=j=0;
for(; j < n; ++i, j += m->num_words_per_dfa) {
// @TODO special case for <= 32
if (!memcmp(state, m->dfa_mapping + j, m->num_words_per_dfa*4)) {
node = i;
goto done;
}
}
assert(stb_arr_len(m->dfa) == i);
node = i;
newstate = stb_arr_addn(m->dfa_mapping, m->num_words_per_dfa);
memcpy(newstate, state, m->num_words_per_dfa*4);
// set all transitions to 'unknown'
stb_arr_add(m->dfa);
memset(m->dfa[i].transition, -1, sizeof(m->dfa[i].transition));
if (m->does_lex) {
int result = -1;
n = stb_arr_len(list);
for (i=0; i < n; ++i) {
if (m->nodes[(int) list[i]].goal > result)
result = m->nodes[(int) list[i]].goal;
}
stb_arr_push(m->dfa_result, result);
}
done:
stb_tempfree(data, state);
return node;
}
static int stb__matcher_dfa(stb_matcher *m, char *str_c, int *len)
{
stb_uint8 *str = (stb_uint8 *) str_c;
stb_int16 node,prevnode;
stb_dfa *trans;
int match_length = 0;
stb_int16 match_result=0;
if (m->dfa_start == STB__DFA_UNDEF) {
stb_uint16 *list;
m->num_words_per_dfa = (stb_arr_len(m->nodes)+31) >> 5;
stb__optimize(m);
list = stb__add_if_inactive(m, NULL, m->start_node);
list = stb__eps_closure(m,list);
if (m->does_lex) {
m->dfa_start = stb__get_dfa_node(m,list);
stb__clear(m, list);
// DON'T allow start state to be a goal state!
// this allows people to specify regexes that can match 0
// characters without them actually matching (also we don't
// check _before_ advancing anyway
if (m->dfa_start <= STB__DFA_MGOAL)
m->dfa_start = -(m->dfa_start - STB__DFA_MGOAL);
} else {
if (stb__clear_goalcheck(m, list))
m->dfa_start = STB__DFA_GOAL;
else
m->dfa_start = stb__get_dfa_node(m,list);
}
stb_arr_free(list);
}
prevnode = STB__DFA_UNDEF;
node = m->dfa_start;
trans = m->dfa;
if (m->dfa_start == STB__DFA_GOAL)
return 1;
for(;;) {
assert(node >= STB__DFA_VALID);
// fast inner DFA loop; especially if STB__DFA_VALID is 0
do {
prevnode = node;
node = trans[node].transition[*str++];
} while (node >= STB__DFA_VALID);
assert(node >= STB__DFA_MGOAL - stb_arr_len(m->dfa));
assert(node < stb_arr_len(m->dfa));
// special case for lex: need _longest_ match, so notice goal
// state without stopping
if (node <= STB__DFA_MGOAL) {
match_length = str - (stb_uint8 *) str_c;
node = -(node - STB__DFA_MGOAL);
match_result = node;
continue;
}
// slow NFA->DFA conversion
// or we hit the goal or the end of the string, but those
// can only happen once per search...
if (node == STB__DFA_UNDEF) {
// build a list -- @TODO special case <= 32 states
// heck, use a more compact data structure for <= 16 and <= 8 ?!
// @TODO keep states/newstates around instead of reallocating them
stb_uint16 *states = NULL;
stb_uint16 *newstates = NULL;
int i,j,y,z;
stb_uint32 *flags = &m->dfa_mapping[prevnode * m->num_words_per_dfa];
assert(prevnode != STB__DFA_UNDEF);
stb_arr_setsize(states, 4);
stb_arr_setsize(newstates,4);
for (j=0; j < m->num_words_per_dfa; ++j) {
for (i=0; i < 32; ++i) {
if (*flags & (1 << i))
stb_arr_push(states, j*32+i);
}
++flags;
}
// states is now the states we were in in the previous node;
// so now we can compute what node it transitions to on str[-1]
y = stb_arr_len(states);
for (i=0; i < y; ++i) {
stb_nfa_node *n = &m->nodes[(int) states[i]];
z = stb_arr_len(n->out);
for (j=0; j < z; ++j) {
if (n->out[j].match >= 0) {
if (n->out[j].match == str[-1] || (str[-1] == 0 && n->out[j].match == '\n'))
newstates = stb__add_if_inactive(m, newstates, n->out[j].node);
} else if (n->out[j].match == -1) {
if (str[-1] != '\n' && str[-1])
newstates = stb__add_if_inactive(m, newstates, n->out[j].node);
} else if (n->out[j].match < -1) {
int z = -n->out[j].match - 2;
if (m->charset[str[-1]] & (1 << z))
newstates = stb__add_if_inactive(m, newstates, n->out[j].node);
}
}
}
// AND add in the start state!
if (!m->match_start || (str[-1] == '\n' && !m->does_lex))
newstates = stb__add_if_inactive(m, newstates, m->start_node);
// AND epsilon close it
newstates = stb__eps_closure(m, newstates);
// if it's a goal state, then that's all there is to it
if (stb__clear_goalcheck(m, newstates)) {
if (m->does_lex) {
match_length = str - (stb_uint8 *) str_c;
node = stb__get_dfa_node(m,newstates);
match_result = node;
node = -node + STB__DFA_MGOAL;
trans = m->dfa; // could have gotten realloc()ed
} else
node = STB__DFA_GOAL;
} else if (str[-1] == 0 || stb_arr_len(newstates) == 0) {
node = STB__DFA_END;
} else {
node = stb__get_dfa_node(m,newstates);
trans = m->dfa; // could have gotten realloc()ed
}
trans[prevnode].transition[str[-1]] = node;
if (node <= STB__DFA_MGOAL)
node = -(node - STB__DFA_MGOAL);
stb_arr_free(newstates);
stb_arr_free(states);
}
if (node == STB__DFA_GOAL) {
return 1;
}
if (node == STB__DFA_END) {
if (m->does_lex) {
if (match_result) {
if (len) *len = match_length;
return m->dfa_result[(int) match_result];
}
}
return 0;
}
assert(node != STB__DFA_UNDEF);
}
}
int stb_matcher_find(stb_matcher *m, char *str)
{
assert(m->does_lex == 0);
return stb__matcher_dfa(m, str, NULL);
}
int stb_lex(stb_matcher *m, char *str, int *len)
{
assert(m->does_lex);
return stb__matcher_dfa(m, str, len);
}
int stb_regex(char *regex, char *str)
{
static stb_perfect p;
static stb_matcher ** matchers;
static char ** regexps;
static char ** regexp_cache;
static unsigned short *mapping;
int z = stb_perfect_hash(&p, (int) regex);
if (z >= 0) {
if (strcmp(regex, regexp_cache[(int) mapping[z]])) {
int i = mapping[z];
stb_matcher_free(matchers[i]);
free(regexp_cache[i]);
regexps[i] = regex;
regexp_cache[i] = strdup(regex);
matchers[i] = stb_regex_matcher(regex);
}
} else {
int i,n;
if (regex == NULL) {
for (i=0; i < stb_arr_len(matchers); ++i) {
stb_matcher_free(matchers[i]);
free(regexp_cache[i]);
}
stb_arr_free(matchers);
stb_arr_free(regexps);
stb_arr_free(regexp_cache);
stb_perfect_destroy(&p);
free(mapping); mapping = NULL;
return -1;
}
stb_arr_push(regexps, regex);
stb_arr_push(regexp_cache, strdup(regex));
stb_arr_push(matchers, stb_regex_matcher(regex));
stb_perfect_destroy(&p);
n = stb_perfect_create(&p, (unsigned int *) (char **) regexps, stb_arr_len(regexps));
mapping = (unsigned short *) realloc(mapping, n * sizeof(*mapping));
for (i=0; i < stb_arr_len(regexps); ++i)
mapping[stb_perfect_hash(&p, (int) regexps[i])] = i;
z = stb_perfect_hash(&p, (int) regex);
}
return stb_matcher_find(matchers[(int) mapping[z]], str);
}
#endif // STB_DEFINE
#if 0
//////////////////////////////////////////////////////////////////////////////
//
// C source-code introspection
//
// runtime structure
typedef struct
{
char *name;
char *type; // base type
char *comment; // content of comment field
int size; // size of base type
int offset; // field offset
int arrcount[8]; // array sizes; -1 = pointer indirection; 0 = end of list
} stb_info_field;
typedef struct
{
char *structname;
int size;
int num_fields;
stb_info_field *fields;
} stb_info_struct;
extern stb_info_struct stb_introspect_output[];
//
STB_EXTERN void stb_introspect_precompiled(stb_info_struct *compiled);
STB_EXTERN void stb__introspect(char *path, char *file);
#define stb_introspect_ship() stb__introspect(NULL, NULL, stb__introspect_output)
#ifdef STB_SHIP
#define stb_introspect() stb_introspect_ship()
#define stb_introspect_path(p) stb_introspect_ship()
#else
// bootstrapping: define stb_introspect() (or 'path') the first time
#define stb_introspect() stb__introspect(NULL, __FILE__, NULL)
#define stb_introspect_auto() stb__introspect(NULL, __FILE__, stb__introspect_output)
#define stb_introspect_path(p) stb__introspect(p, __FILE__, NULL)
#define stb_introspect_path(p) stb__introspect(p, __FILE__, NULL)
#endif
#ifdef STB_DEFINE
#ifndef STB_INTROSPECT_CPP
#ifdef __cplusplus
#define STB_INTROSPECT_CPP 1
#else
#define STB_INTROSPECT_CPP 0
#endif
#endif
void stb_introspect_precompiled(stb_info_struct *compiled)
{
}
static void stb__introspect_filename(char *buffer, char *path)
{
#if STB_INTROSPECT_CPP
sprintf(buffer, "%s/stb_introspect.cpp", path);
#else
sprintf(buffer, "%s/stb_introspect.c", path);
#endif
}
static void stb__introspect_compute(char *path, char *file)
{
int i;
char ** include_list = NULL;
char ** introspect_list = NULL;
FILE *f;
f = fopen(file, "w");
if (!f) return;
fputs("// if you get compiler errors, change the following 0 to a 1:\n", f);
fputs("#define STB_INTROSPECT_INVALID 0\n\n", f);
fputs("// this will force the code to compile, and force the introspector\n", f);
fputs("// to run and then exit, allowing you to recompile\n\n\n", f);
fputs("#include \"stb.h\"\n\n",f );
fputs("#if STB_INTROSPECT_INVALID\n", f);
fputs(" stb_info_struct stb__introspect_output[] = { (void *) 1 }\n", f);
fputs("#else\n\n", f);
for (i=0; i < stb_arr_len(include_list); ++i)
fprintf(f, " #include \"%s\"\n", include_list[i]);
fputs(" stb_info_struct stb__introspect_output[] =\n{\n", f);
for (i=0; i < stb_arr_len(introspect_list); ++i)
fprintf(f, " stb_introspect_%s,\n", introspect_list[i]);
fputs(" };\n", f);
fputs("#endif\n", f);
fclose(f);
}
static stb_info_struct *stb__introspect_info;
#ifndef STB_SHIP
#endif
void stb__introspect(char *path, char *file, stb_info_struct *compiled)
{
static int first=1;
if (!first) return;
first=0;
stb__introspect_info = compiled;
#ifndef STB_SHIP
if (path || file) {
int bail_flag = compiled && compiled[0].structname == (void *) 1;
int needs_building = bail_flag;
struct stb__stat st;
char buffer[1024], buffer2[1024];
if (!path) {
stb_splitpath(buffer, file, STB_PATH);
path = buffer;
}
// bail if the source path doesn't exist
if (!stb_fexists(path)) return;
stb__introspect_filename(buffer2, path);
// get source/include files timestamps, compare to output-file timestamp;
// if mismatched, regenerate
if (stb__stat(buffer2, &st))
needs_building = STB_TRUE;
{
// find any file that contains an introspection command and is newer
// if needs_building is already true, we don't need to do this test,
// but we still need these arrays, so go ahead and get them
char **all[3];
all[0] = stb_readdir_files_mask(path, "*.h");
all[1] = stb_readdir_files_mask(path, "*.c");
all[2] = stb_readdir_files_mask(path, "*.cpp");
int i,j;
if (needs_building) {
for (j=0; j < 3; ++j) {
for (i=0; i < stb_arr_len(all[j]); ++i) {
struct stb__stat st2;
if (!stb__stat(all[j][i], &st2)) {
if (st.st_mtime < st2.st_mtime) {
char *z = stb_filec(all[j][i], NULL);
int found=STB_FALSE;
while (y) {
y = strstr(y, "//si");
if (y && isspace(y[4])) {
found = STB_TRUE;
break;
}
}
needs_building = STB_TRUE;
goto done;
}
}
}
}
done:;
}
char *z = stb_filec(all[i], NULL), *y = z;
int found=STB_FALSE;
while (y) {
y = strstr(y, "//si");
if (y && isspace(y[4])) {
found = STB_TRUE;
break;
}
}
if (found)
stb_arr_push(introspect_h, strdup(all[i]));
free(z);
}
}
stb_readdir_free(all);
if (!needs_building) {
for (i=0; i < stb_arr_len(introspect_h); ++i) {
struct stb__stat st2;
if (!stb__stat(introspect_h[i], &st2))
if (st.st_mtime < st2.st_mtime)
needs_building = STB_TRUE;
}
}
if (needs_building) {
stb__introspect_compute(path, buffer2);
}
}
}
#endif
}
#endif
#endif
#ifdef STB_INTROSPECT
// compile-time code-generator
#define INTROSPECT(x) int main(int argc, char **argv) { stb__introspect(__FILE__); return 0; }
#define FILE(x)
void stb__introspect(char *filename)
{
char *file = stb_file(filename, NULL);
char *s = file, *t, **p;
char *out_name = "stb_introspect.c";
char *out_path;
STB_ARR(char) filelist = NULL;
int i,n;
if (!file) stb_fatal("Couldn't open %s", filename);
out_path = stb_splitpathdup(filename, STB_PATH);
// search for the macros
while (*s) {
char buffer[256];
while (*s && !isupper(*s)) ++s;
s = stb_strtok_invert(buffer, s, "ABCDEFGHIJKLMNOPQRSTUVWXYZ");
s = stb_skipwhite(s);
if (*s == '(') {
++s;
t = strchr(s, ')');
if (t == NULL) stb_fatal("Error parsing %s", filename);
}
}
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// STB-C sliding-window dictionary compression
//
// This uses a DEFLATE-style sliding window, but no bitwise entropy.
// Everything is on byte boundaries, so you could then apply a byte-wise
// entropy code, though that's nowhere near as effective.
//
// An STB-C stream begins with a 16-byte header:
// 4 bytes: 0x57 0xBC 0x00 0x00
// 8 bytes: big-endian size of decompressed data, 64-bits
// 4 bytes: big-endian size of window (how far back decompressor may need)
//
// The following symbols appear in the stream (these were determined ad hoc,
// not by analysis):
//
// [dict] 00000100 yyyyyyyy yyyyyyyy yyyyyyyy xxxxxxxx xxxxxxxx
// [END] 00000101 11111010 cccccccc cccccccc cccccccc cccccccc
// [dict] 00000110 yyyyyyyy yyyyyyyy yyyyyyyy xxxxxxxx
// [literals] 00000111 zzzzzzzz zzzzzzzz
// [literals] 00001zzz zzzzzzzz
// [dict] 00010yyy yyyyyyyy yyyyyyyy xxxxxxxx xxxxxxxx
// [dict] 00011yyy yyyyyyyy yyyyyyyy xxxxxxxx
// [literals] 001zzzzz
// [dict] 01yyyyyy yyyyyyyy xxxxxxxx
// [dict] 1xxxxxxx yyyyyyyy
//
// xxxxxxxx: match length - 1
// yyyyyyyy: backwards distance - 1
// zzzzzzzz: num literals - 1
// cccccccc: adler32 checksum of decompressed data
// (all big-endian)
STB_EXTERN stb_uint stb_decompress_length(stb_uchar *input);
STB_EXTERN stb_uint stb_decompress(stb_uchar *out,stb_uchar *in,stb_uint len);
STB_EXTERN stb_uint stb_compress (stb_uchar *out,stb_uchar *in,stb_uint len);
STB_EXTERN void stb_compress_window(int z);
STB_EXTERN void stb_compress_hashsize(unsigned int z);
STB_EXTERN int stb_compress_tofile(char *filename, char *in, stb_uint len);
STB_EXTERN int stb_compress_intofile(FILE *f, char *input, stb_uint len);
STB_EXTERN char *stb_decompress_fromfile(char *filename, stb_uint *len);
STB_EXTERN int stb_compress_stream_start(FILE *f);
STB_EXTERN void stb_compress_stream_end(int close);
STB_EXTERN void stb_write(char *data, int data_len);
#ifdef STB_DEFINE
stb_uint stb_decompress_length(stb_uchar *input)
{
return (input[8] << 24) + (input[9] << 16) + (input[10] << 8) + input[11];
}
//////////////////// decompressor ///////////////////////
// simple implementation that just writes whole thing into big block
static unsigned char *stb__barrier;
static unsigned char *stb__barrier2;
static unsigned char *stb__barrier3;
static unsigned char *stb__barrier4;
static stb_uchar *stb__dout;
static void stb__match(stb_uchar *data, stb_uint length)
{
// INVERSE of memmove... write each byte before copying the next...
assert (stb__dout + length <= stb__barrier);
if (stb__dout + length > stb__barrier) { stb__dout += length; return; }
if (data < stb__barrier4) { stb__dout = stb__barrier+1; return; }
while (length--) *stb__dout++ = *data++;
}
static void stb__lit(stb_uchar *data, stb_uint length)
{
assert (stb__dout + length <= stb__barrier);
if (stb__dout + length > stb__barrier) { stb__dout += length; return; }
if (data < stb__barrier2) { stb__dout = stb__barrier+1; return; }
memcpy(stb__dout, data, length);
stb__dout += length;
}
#define stb__in2(x) ((i[x] << 8) + i[(x)+1])
#define stb__in3(x) ((i[x] << 16) + stb__in2((x)+1))
#define stb__in4(x) ((i[x] << 24) + stb__in3((x)+1))
static stb_uchar *stb_decompress_token(stb_uchar *i)
{
if (*i >= 0x20) { // use fewer if's for cases that expand small
if (*i >= 0x80) stb__match(stb__dout-i[1]-1, i[0] - 0x80 + 1), i += 2;
else if (*i >= 0x40) stb__match(stb__dout-(stb__in2(0) - 0x4000 + 1), i[2]+1), i += 3;
else /* *i >= 0x20 */ stb__lit(i+1, i[0] - 0x20 + 1), i += 1 + (i[0] - 0x20 + 1);
} else { // more ifs for cases that expand large, since overhead is amortized
if (*i >= 0x18) stb__match(stb__dout-(stb__in3(0) - 0x180000 + 1), i[3]+1), i += 4;
else if (*i >= 0x10) stb__match(stb__dout-(stb__in3(0) - 0x100000 + 1), stb__in2(3)+1), i += 5;
else if (*i >= 0x08) stb__lit(i+2, stb__in2(0) - 0x0800 + 1), i += 2 + (stb__in2(0) - 0x0800 + 1);
else if (*i == 0x07) stb__lit(i+3, stb__in2(1) + 1), i += 3 + (stb__in2(1) + 1);
else if (*i == 0x06) stb__match(stb__dout-(stb__in3(1)+1), i[4]+1), i += 5;
else if (*i == 0x04) stb__match(stb__dout-(stb__in3(1)+1), stb__in2(4)+1), i += 6;
}
return i;
}
stb_uint stb_decompress(stb_uchar *output, stb_uchar *i, stb_uint length)
{
stb_uint olen;
if (stb__in4(0) != 0x57bC0000) return 0;
if (stb__in4(4) != 0) return 0; // error! stream is > 4GB
olen = stb_decompress_length(i);
stb__barrier2 = i;
stb__barrier3 = i+length;
stb__barrier = output + olen;
stb__barrier4 = output;
i += 16;
stb__dout = output;
while (1) {
stb_uchar *old_i = i;
i = stb_decompress_token(i);
if (i == old_i) {
if (*i == 0x05 && i[1] == 0xfa) {
assert(stb__dout == output + olen);
if (stb__dout != output + olen) return 0;
if (stb_adler32(1, output, olen) != (stb_uint) stb__in4(2))
return 0;
return olen;
} else {
assert(0); /* NOTREACHED */
return 0;
}
}
assert(stb__dout <= output + olen);
if (stb__dout > output + olen)
return 0;
}
}
char *stb_decompress_fromfile(char *filename, unsigned int *len)
{
unsigned int n;
char *q;
unsigned char *p;
FILE *f = fopen(filename, "rb"); if (f == NULL) return NULL;
fseek(f, 0, SEEK_END);
n = ftell(f);
fseek(f, 0, SEEK_SET);
p = (unsigned char * ) malloc(n); if (p == NULL) return NULL;
fread(p, 1, n, f);
fclose(f);
if (p == NULL) return NULL;
if (p[0] != 0x57 || p[1] != 0xBc || p[2] || p[3]) { free(p); return NULL; }
q = (char *) malloc(stb_decompress_length(p)+1);
if (!q) { free(p); free(p); return NULL; }
*len = stb_decompress((unsigned char *) q, p, n);
if (*len) q[*len] = 0;
free(p);
return q;
}
#if 0
// streaming decompressor
static struct
{
stb__uchar *in_buffer;
stb__uchar *match;
stb__uint pending_literals;
stb__uint pending_match;
} xx;
static void stb__match(stb_uchar *data, stb_uint length)
{
// INVERSE of memmove... write each byte before copying the next...
assert (stb__dout + length <= stb__barrier);
if (stb__dout + length > stb__barrier) { stb__dout += length; return; }
if (data < stb__barrier2) { stb__dout = stb__barrier+1; return; }
while (length--) *stb__dout++ = *data++;
}
static void stb__lit(stb_uchar *data, stb_uint length)
{
assert (stb__dout + length <= stb__barrier);
if (stb__dout + length > stb__barrier) { stb__dout += length; return; }
if (data < stb__barrier2) { stb__dout = stb__barrier+1; return; }
memcpy(stb__dout, data, length);
stb__dout += length;
}
static void sx_match(stb_uchar *data, stb_uint length)
{
xx.match = data;
xx.pending_match = length;
}
static void sx_lit(stb_uchar *data, stb_uint length)
{
xx.pending_lit = length;
}
static int stb_decompress_token_state(void)
{
stb__uchar *i = xx.in_buffer;
if (*i >= 0x20) { // use fewer if's for cases that expand small
if (*i >= 0x80) sx_match(stb__dout-i[1]-1, i[0] - 0x80 + 1), i += 2;
else if (*i >= 0x40) sx_match(stb__dout-(stb__in2(0) - 0x4000 + 1), i[2]+1), i += 3;
else /* *i >= 0x20 */ sx_lit(i+1, i[0] - 0x20 + 1), i += 1;
} else { // more ifs for cases that expand large, since overhead is amortized
if (*i >= 0x18) sx_match(stb__dout-(stb__in3(0) - 0x180000 + 1), i[3]+1), i += 4;
else if (*i >= 0x10) sx_match(stb__dout-(stb__in3(0) - 0x100000 + 1), stb__in2(3)+1), i += 5;
else if (*i >= 0x08) sx_lit(i+2, stb__in2(0) - 0x0800 + 1), i += 2;
else if (*i == 0x07) sx_lit(i+3, stb__in2(1) + 1), i += 3;
else if (*i == 0x06) sx_match(stb__dout-(stb__in3(1)+1), i[4]+1), i += 5;
else if (*i == 0x04) sx_match(stb__dout-(stb__in3(1)+1), stb__in2(4)+1), i += 6;
else return 0;
}
xx.in_buffer = i;
return 1;
}
#endif
//////////////////// compressor ///////////////////////
static unsigned int stb_matchlen(stb_uchar *m1, stb_uchar *m2, stb_uint maxlen)
{
stb_uint i;
for (i=0; i < maxlen; ++i)
if (m1[i] != m2[i]) return i;
return i;
}
// simple implementation that just takes the source data in a big block
static stb_uchar *stb__out;
static FILE *stb__outfile;
static stb_uint stb__outbytes;
static void stb__write(unsigned char v)
{
fputc(v, stb__outfile);
++stb__outbytes;
}
#define stb_out(v) (stb__out ? *stb__out++ = (stb_uchar) (v) : stb__write((stb_uchar) (v)))
static void stb_out2(stb_uint v)
{
stb_out(v >> 8);
stb_out(v);
}
static void stb_out3(stb_uint v) { stb_out(v >> 16); stb_out(v >> 8); stb_out(v); }
static void stb_out4(stb_uint v) { stb_out(v >> 24); stb_out(v >> 16);
stb_out(v >> 8 ); stb_out(v); }
static void outliterals(stb_uchar *in, int numlit)
{
while (numlit > 65536) {
outliterals(in,65536);
in += 65536;
numlit -= 65536;
}
if (numlit == 0) ;
else if (numlit <= 32) stb_out (0x000020 + numlit-1);
else if (numlit <= 2048) stb_out2(0x000800 + numlit-1);
else /* numlit <= 65536) */ stb_out3(0x070000 + numlit-1);
if (stb__out) {
memcpy(stb__out,in,numlit);
stb__out += numlit;
} else
fwrite(in, 1, numlit, stb__outfile);
}
static int stb__window = 0x40000; // 256K
void stb_compress_window(int z)
{
if (z >= 0x1000000) z = 0x1000000; // limit of implementation
if (z < 0x100) z = 0x100; // insanely small
stb__window = z;
}
static int stb_not_crap(int best, int dist)
{
return ((best > 2 && dist <= 0x00100)
|| (best > 5 && dist <= 0x04000)
|| (best > 7 && dist <= 0x80000));
}
static stb_uint stb__hashsize = 32768;
void stb_compress_hashsize(unsigned int y)
{
unsigned int z = 1024;
while (z < y) z <<= 1;
stb__hashsize = z >> 2; // pass in bytes, store #pointers
}
// note that you can play with the hashing functions all you
// want without needing to change the decompressor
#define stb__hc(q,h,c) (((h) << 7) + ((h) >> 25) + q[c])
#define stb__hc2(q,h,c,d) (((h) << 14) + ((h) >> 18) + (q[c] << 7) + q[d])
#define stb__hc3(q,c,d,e) ((q[c] << 14) + (q[d] << 7) + q[e])
static stb_uint32 stb__running_adler;
static int stb_compress_chunk(stb_uchar *history,
stb_uchar *start,
stb_uchar *end,
int length,
int *pending_literals,
stb_uchar **chash,
stb_uint mask)
{
int window = stb__window;
stb_uint match_max;
stb_uchar *lit_start = start - *pending_literals;
stb_uchar *q = start;
#define STB__SCRAMBLE(h) (((h) + ((h) >> 16)) & mask)
// stop short of the end so we don't scan off the end doing
// the hashing; this means we won't compress the last few bytes
// unless they were part of something longer
while (q < start+length && q+12 < end) {
int m;
stb_uint h1,h2,h3,h4, h;
stb_uchar *t;
int best = 2, dist=0;
if (q+65536 > end)
match_max = end-q;
else
match_max = 65536;
#define stb__nc(b,d) ((d) <= window && ((b) > 9 || stb_not_crap(b,d)))
#define STB__TRY(t,p) /* avoid retrying a match we already tried */ \
if (p ? dist != q-t : 1) \
if ((m = stb_matchlen(t, q, match_max)) > best) \
if (stb__nc(m,q-(t))) \
best = m, dist = q - (t)
// rather than search for all matches, only try 4 candidate locations,
// chosen based on 4 different hash functions of different lengths.
// this strategy is inspired by LZO; hashing is unrolled here using the
// 'hc' macro
h = stb__hc3(q,0, 1, 2); h1 = STB__SCRAMBLE(h);
t = chash[h1]; if (t) STB__TRY(t,0);
h = stb__hc2(q,h, 3, 4); h2 = STB__SCRAMBLE(h);
h = stb__hc2(q,h, 5, 6); t = chash[h2]; if (t) STB__TRY(t,1);
h = stb__hc2(q,h, 7, 8); h3 = STB__SCRAMBLE(h);
h = stb__hc2(q,h, 9,10); t = chash[h3]; if (t) STB__TRY(t,1);
h = stb__hc2(q,h,11,12); h4 = STB__SCRAMBLE(h);
t = chash[h4]; if (t) STB__TRY(t,1);
// because we use a shared hash table, can only update it
// _after_ we've probed all of them
chash[h1] = chash[h2] = chash[h3] = chash[h4] = q;
if (best > 2)
assert(dist > 0);
// see if our best match qualifies
if (best < 3) { // fast path literals
++q;
} else if (best > 2 && best <= 0x80 && dist <= 0x100) {
outliterals(lit_start, q-lit_start); lit_start = (q += best);
stb_out(0x80 + best-1);
stb_out(dist-1);
} else if (best > 5 && best <= 0x100 && dist <= 0x4000) {
outliterals(lit_start, q-lit_start); lit_start = (q += best);
stb_out2(0x4000 + dist-1);
stb_out(best-1);
} else if (best > 7 && best <= 0x100 && dist <= 0x80000) {
outliterals(lit_start, q-lit_start); lit_start = (q += best);
stb_out3(0x180000 + dist-1);
stb_out(best-1);
} else if (best > 8 && best <= 0x10000 && dist <= 0x80000) {
outliterals(lit_start, q-lit_start); lit_start = (q += best);
stb_out3(0x100000 + dist-1);
stb_out2(best-1);
} else if (best > 9 && dist <= 0x1000000) {
if (best > 65536) best = 65536;
outliterals(lit_start, q-lit_start); lit_start = (q += best);
if (best <= 0x100) {
stb_out(0x06);
stb_out3(dist-1);
stb_out(best-1);
} else {
stb_out(0x04);
stb_out3(dist-1);
stb_out2(best-1);
}
} else { // fallback literals if no match was a balanced tradeoff
++q;
}
}
// if we didn't get all the way, add the rest to literals
if (q-start < length)
q = start+length;
// the literals are everything from lit_start to q
*pending_literals = (q - lit_start);
stb__running_adler = stb_adler32(stb__running_adler, start, q - start);
return q - start;
}
static int stb_compress_inner(stb_uchar *input, stb_uint length)
{
int literals = 0;
stb_uint len,i;
stb_uchar **chash;
chash = (stb_uchar**) malloc(stb__hashsize * sizeof(stb_uchar*));
if (chash == NULL) return 0; // failure
for (i=0; i < stb__hashsize; ++i)
chash[i] = NULL;
// stream signature
stb_out(0x57); stb_out(0xbc);
stb_out2(0);
stb_out4(0); // 64-bit length requires 32-bit leading 0
stb_out4(length);
stb_out4(stb__window);
stb__running_adler = 1;
len = stb_compress_chunk(input, input, input+length, length, &literals, chash, stb__hashsize-1);
assert(len == length);
outliterals(input+length - literals, literals);
free(chash);
stb_out2(0x05fa); // end opcode
stb_out4(stb__running_adler);
return 1; // success
}
stb_uint stb_compress(stb_uchar *out, stb_uchar *input, stb_uint length)
{
stb__out = out;
stb__outfile = NULL;
stb_compress_inner(input, length);
return stb__out - out;
}
int stb_compress_tofile(char *filename, char *input, unsigned int length)
{
//int maxlen = length + 512 + (length >> 2); // total guess
//char *buffer = (char *) malloc(maxlen);
//int blen = stb_compress((stb_uchar*)buffer, (stb_uchar*)input, length);
stb__out = NULL;
stb__outfile = fopen(filename, "wb");
if (!stb__outfile) return 0;
stb__outbytes = 0;
if (!stb_compress_inner((stb_uchar*)input, length))
return 0;
fclose(stb__outfile);
return stb__outbytes;
}
int stb_compress_intofile(FILE *f, char *input, unsigned int length)
{
//int maxlen = length + 512 + (length >> 2); // total guess
//char *buffer = (char*)malloc(maxlen);
//int blen = stb_compress((stb_uchar*)buffer, (stb_uchar*)input, length);
stb__out = NULL;
stb__outfile = f;
if (!stb__outfile) return 0;
stb__outbytes = 0;
if (!stb_compress_inner((stb_uchar*)input, length))
return 0;
return stb__outbytes;
}
////////////////////// streaming I/O version /////////////////////
static size_t stb_out_backpatch_id(void)
{
if (stb__out)
return (size_t) stb__out;
else
return ftell(stb__outfile);
}
static void stb_out_backpatch(size_t id, stb_uint value)
{
stb_uchar data[4] = { value >> 24, value >> 16, value >> 8, value };
if (stb__out) {
memcpy((void *) id, data, 4);
} else {
stb_uint where = ftell(stb__outfile);
fseek(stb__outfile, id, SEEK_SET);
fwrite(data, 4, 1, stb__outfile);
fseek(stb__outfile, where, SEEK_SET);
}
}
// ok, the wraparound buffer was a total failure. let's instead
// use a copying-in-place buffer, which lets us share the code.
// This is way less efficient but it'll do for now.
static struct
{
stb_uchar *buffer;
int size; // physical size of buffer in bytes
int valid; // amount of valid data in bytes
int start; // bytes of data already output
int window;
int fsize;
int pending_literals; // bytes not-quite output but counted in start
int length_id;
stb_uint total_bytes;
stb_uchar **chash;
stb_uint hashmask;
} xtb;
static int stb_compress_streaming_start(void)
{
stb_uint i;
xtb.size = stb__window * 3;
xtb.buffer = (stb_uchar*)malloc(xtb.size);
if (!xtb.buffer) return 0;
xtb.chash = (stb_uchar**)malloc(sizeof(*xtb.chash) * stb__hashsize);
if (!xtb.chash) {
free(xtb.buffer);
return 0;
}
for (i=0; i < stb__hashsize; ++i)
xtb.chash[i] = NULL;
xtb.hashmask = stb__hashsize-1;
xtb.valid = 0;
xtb.start = 0;
xtb.window = stb__window;
xtb.fsize = stb__window;
xtb.pending_literals = 0;
xtb.total_bytes = 0;
// stream signature
stb_out(0x57); stb_out(0xbc); stb_out2(0);
stb_out4(0); // 64-bit length requires 32-bit leading 0
xtb.length_id = stb_out_backpatch_id();
stb_out4(0); // we don't know the output length yet
stb_out4(stb__window);
stb__running_adler = 1;
return 1;
}
static int stb_compress_streaming_end(void)
{
// flush out any remaining data
stb_compress_chunk(xtb.buffer, xtb.buffer+xtb.start, xtb.buffer+xtb.valid,
xtb.valid-xtb.start, &xtb.pending_literals, xtb.chash, xtb.hashmask);
// write out pending literals
outliterals(xtb.buffer + xtb.valid - xtb.pending_literals, xtb.pending_literals);
stb_out2(0x05fa); // end opcode
stb_out4(stb__running_adler);
stb_out_backpatch(xtb.length_id, xtb.total_bytes);
free(xtb.buffer);
free(xtb.chash);
return 1;
}
void stb_write(char *data, int data_len)
{
stb_uint i;
// @TODO: fast path for filling the buffer and doing nothing else
// if (xtb.valid + data_len < xtb.size)
xtb.total_bytes += data_len;
while (data_len) {
// fill buffer
if (xtb.valid < xtb.size) {
int amt = xtb.size - xtb.valid;
if (data_len < amt) amt = data_len;
memcpy(xtb.buffer + xtb.valid, data, amt);
data_len -= amt;
data += amt;
xtb.valid += amt;
}
if (xtb.valid < xtb.size)
return;
// at this point, the buffer is full
// if we can process some data, go for it; make sure
// we leave an 'fsize's worth of data, though
if (xtb.start + xtb.fsize < xtb.valid) {
int amount = (xtb.valid - xtb.fsize) - xtb.start;
int n;
assert(amount > 0);
n = stb_compress_chunk(xtb.buffer, xtb.buffer + xtb.start, xtb.buffer + xtb.valid,
amount, &xtb.pending_literals, xtb.chash, xtb.hashmask);
xtb.start += n;
}
assert(xtb.start + xtb.fsize >= xtb.valid);
// at this point, our future size is too small, so we
// need to flush some history. we, in fact, flush exactly
// one window's worth of history
{
int flush = xtb.window;
assert(xtb.start >= flush);
assert(xtb.valid >= flush);
// if 'pending literals' extends back into the shift region,
// write them out
if (xtb.start - xtb.pending_literals < flush) {
outliterals(xtb.buffer + xtb.start - xtb.pending_literals, xtb.pending_literals);
xtb.pending_literals = 0;
}
// now shift the window
memmove(xtb.buffer, xtb.buffer + flush, xtb.valid - flush);
xtb.start -= flush;
xtb.valid -= flush;
for (i=0; i <= xtb.hashmask; ++i)
if (xtb.chash[i] < xtb.buffer + flush)
xtb.chash[i] = NULL;
else
xtb.chash[i] -= flush;
}
// and now that we've made room for more data, go back to the top
}
}
int stb_compress_stream_start(FILE *f)
{
stb__out = NULL;
stb__outfile = f;
if (f == NULL)
return 0;
if (!stb_compress_streaming_start())
return 0;
return 1;
}
void stb_compress_stream_end(int close)
{
stb_compress_streaming_end();
if (close && stb__outfile) {
fclose(stb__outfile);
}
}
#endif // STB_DEFINE
//////////////////////////////////////////////////////////////////////////////
//
// File abstraction... tired of not having this... we can write
// compressors to be layers over these that auto-close their children.
typedef struct stbfile
{
int (*getbyte)(struct stbfile *); // -1 on EOF
unsigned int (*getdata)(struct stbfile *, void *block, unsigned int len);
int (*putbyte)(struct stbfile *, int byte);
unsigned int (*putdata)(struct stbfile *, void *block, unsigned int len);
unsigned int (*size)(struct stbfile *);
unsigned int (*tell)(struct stbfile *);
void (*backpatch)(struct stbfile *, unsigned int tell, void *block, unsigned int len);
void (*close)(struct stbfile *);
FILE *f; // file to fread/fwrite
unsigned char *buffer; // input/output buffer
unsigned char *indata, *inend; // input buffer
union {
int various;
void *ptr;
};
} stbfile;
STB_EXTERN unsigned int stb_getc(stbfile *f); // read
STB_EXTERN int stb_putc(stbfile *f, int ch); // write
STB_EXTERN unsigned int stb_getdata(stbfile *f, void *buffer, unsigned int len); // read
STB_EXTERN unsigned int stb_putdata(stbfile *f, void *buffer, unsigned int len); // write
STB_EXTERN unsigned int stb_tell(stbfile *f); // read
STB_EXTERN unsigned int stb_size(stbfile *f); // read/write
STB_EXTERN void stb_backpatch(stbfile *f, unsigned int tell, void *buffer, unsigned int len); // write
#ifdef STB_DEFINE
unsigned int stb_getc(stbfile *f) { return f->getbyte(f); }
int stb_putc(stbfile *f, int ch) { return f->putbyte(f, ch); }
unsigned int stb_getdata(stbfile *f, void *buffer, unsigned int len)
{
return f->getdata(f, buffer, len);
}
unsigned int stb_putdata(stbfile *f, void *buffer, unsigned int len)
{
return f->putdata(f, buffer, len);
}
void stb_close(stbfile *f)
{
f->close(f);
free(f);
}
unsigned int stb_tell(stbfile *f) { return f->tell(f); }
unsigned int stb_size(stbfile *f) { return f->size(f); }
void stb_backpatch(stbfile *f, unsigned int tell, void *buffer, unsigned int len)
{
f->backpatch(f,tell,buffer,len);
}
// FILE * implementation
static int stb__fgetbyte(stbfile *f) { return fgetc(f->f); }
static int stb__fputbyte(stbfile *f, int ch) { return fputc(ch, f->f)==0; }
static unsigned int stb__fgetdata(stbfile *f, void *buffer, unsigned int len) { return fread(buffer,1,len,f->f); }
static unsigned int stb__fputdata(stbfile *f, void *buffer, unsigned int len) { return fwrite(buffer,1,len,f->f); }
static unsigned int stb__fsize(stbfile *f) { return stb_filelen(f->f); }
static unsigned int stb__ftell(stbfile *f) { return ftell(f->f); }
static void stb__fbackpatch(stbfile *f, unsigned int where, void *buffer, unsigned int len)
{
fseek(f->f, where, SEEK_SET);
fwrite(buffer, 1, len, f->f);
fseek(f->f, 0, SEEK_END);
}
static void stb__fclose(stbfile *f) { fclose(f->f); }
stbfile *stb_openf(FILE *f)
{
stbfile m = { stb__fgetbyte, stb__fgetdata,
stb__fputbyte, stb__fputdata,
stb__fsize, stb__ftell, stb__fbackpatch, stb__fclose,
0,0,0, };
stbfile *z = (stbfile *) malloc(sizeof(*z));
if (z) {
*z = m;
z->f = f;
}
return z;
}
static int stb__nogetbyte(stbfile *f) { assert(0); return -1; }
static unsigned int stb__nogetdata(stbfile *f, void *buffer, unsigned int len) { assert(0); return 0; }
static int stb__noputbyte(stbfile *f, int ch) { assert(0); return 0; }
static unsigned int stb__noputdata(stbfile *f, void *buffer, unsigned int len) { assert(0); return 0; }
static void stb__nobackpatch(stbfile *f, unsigned int where, void *buffer, unsigned int len) { assert(0); }
static int stb__bgetbyte(stbfile *s)
{
if (s->indata < s->inend)
return *s->indata++;
else
return -1;
}
static unsigned int stb__bgetdata(stbfile *s, void *buffer, unsigned int len)
{
if (s->indata + len > s->inend)
len = s->inend - s->indata;
memcpy(buffer, s->indata, len);
s->indata += len;
return len;
}
static unsigned int stb__bsize(stbfile *s) { return s->inend - s->buffer; }
static unsigned int stb__btell(stbfile *s) { return s->indata - s->buffer; }
static void stb__bclose(stbfile *s)
{
if (s->various)
free(s->buffer);
}
stbfile *stb_open_inbuffer(void *buffer, unsigned int len)
{
stbfile m = { stb__bgetbyte, stb__bgetdata,
stb__noputbyte, stb__noputdata,
stb__bsize, stb__btell, stb__nobackpatch, stb__bclose };
stbfile *z = (stbfile *) malloc(sizeof(*z));
if (z) {
*z = m;
z->buffer = (unsigned char *) buffer;
z->indata = z->buffer;
z->inend = z->indata + len;
}
return z;
}
stbfile *stb_open_inbuffer_free(void *buffer, unsigned int len)
{
stbfile *z = stb_open_inbuffer(buffer, len);
if (z)
z->various = 1; // free
return z;
}
#ifndef STB_VERSION
// if we've been cut-and-pasted elsewhere, you get a limited
// version of stb_open, without the 'k' flag and utf8 support
static void stb__fclose2(stbfile *f)
{
fclose(f->f);
}
stbfile *stb_open(char *filename, char *mode)
{
FILE *f = fopen(filename, mode);
stbfile *s;
if (f == NULL) return NULL;
s = stb_openf(f);
if (s)
s->close = stb__fclose2;
return s;
}
#else
// the full version depends on some code in stb.h; this
// also includes the memory buffer output format implemented with stb_arr
static void stb__fclose2(stbfile *f)
{
stb_fclose(f->f, f->various);
}
stbfile *stb_open(char *filename, char *mode)
{
FILE *f = stb_fopen(filename, mode[0] == 'k' ? mode+1 : mode);
stbfile *s;
if (f == NULL) return NULL;
s = stb_openf(f);
if (s) {
s->close = stb__fclose2;
s->various = mode[0] == 'k' ? stb_keep_if_different : stb_keep_yes;
}
return s;
}
static int stb__aputbyte(stbfile *f, int ch)
{
stb_arr_push(f->buffer, ch);
return 1;
}
static unsigned int stb__aputdata(stbfile *f, void *data, unsigned int len)
{
memcpy(stb_arr_addn(f->buffer, (int) len), data, len);
return len;
}
static unsigned int stb__asize(stbfile *f) { return stb_arr_len(f->buffer); }
static void stb__abackpatch(stbfile *f, unsigned int where, void *data, unsigned int len)
{
memcpy(f->buffer+where, data, len);
}
static void stb__aclose(stbfile *f)
{
*(unsigned char **) f->ptr = f->buffer;
}
stbfile *stb_open_outbuffer(unsigned char **update_on_close)
{
stbfile m = { stb__nogetbyte, stb__nogetdata,
stb__aputbyte, stb__aputdata,
stb__asize, stb__asize, stb__abackpatch, stb__aclose };
stbfile *z = (stbfile *) malloc(sizeof(*z));
if (z) {
z->ptr = update_on_close;
*z = m;
}
return z;
}
#endif
#endif
//////////////////////////////////////////////////////////////////////////////
//
// Arithmetic coder... based on cbloom's notes on the subject, should be
// less code than a huffman code.
typedef struct
{
unsigned int range_low;
unsigned int range_high;
unsigned int code, range; // decode
int buffered_u8;
int pending_ffs;
stbfile *output;
} stb_arith;
STB_EXTERN void stb_arith_init_encode(stb_arith *a, stbfile *out);
STB_EXTERN void stb_arith_init_decode(stb_arith *a, stbfile *in);
STB_EXTERN stbfile *stb_arith_encode_close(stb_arith *a);
STB_EXTERN stbfile *stb_arith_decode_close(stb_arith *a);
STB_EXTERN void stb_arith_encode(stb_arith *a, unsigned int totalfreq, unsigned int freq, unsigned int cumfreq);
STB_EXTERN void stb_arith_encode_log2(stb_arith *a, unsigned int totalfreq2, unsigned int freq, unsigned int cumfreq);
STB_EXTERN unsigned int stb_arith_decode_value(stb_arith *a, unsigned int totalfreq);
STB_EXTERN void stb_arith_decode_advance(stb_arith *a, unsigned int totalfreq, unsigned int freq, unsigned int cumfreq);
STB_EXTERN unsigned int stb_arith_decode_value_log2(stb_arith *a, unsigned int totalfreq2);
STB_EXTERN void stb_arith_decode_advance_log2(stb_arith *a, unsigned int totalfreq2, unsigned int freq, unsigned int cumfreq);
STB_EXTERN void stb_arith_encode_byte(stb_arith *a, int byte);
STB_EXTERN int stb_arith_decode_byte(stb_arith *a);
// this is a memory-inefficient way of doing things, but it's
// fast(?) and simple
typedef struct
{
unsigned short cumfreq;
unsigned short samples;
} stb_arith_symstate_item;
typedef struct
{
int num_sym;
unsigned int pow2;
int countdown;
stb_arith_symstate_item data[1];
} stb_arith_symstate;
#ifdef STB_DEFINE
void stb_arith_init_encode(stb_arith *a, stbfile *out)
{
a->range_low = 0;
a->range_high = 0xffffffff;
a->pending_ffs = -1; // means no buffered character currently, to speed up normal case
a->output = out;
}
static void stb__arith_carry(stb_arith *a)
{
int i;
assert(a->pending_ffs != -1); // can't carry with no data
stb_putc(a->output, a->buffered_u8);
for (i=0; i < a->pending_ffs; ++i)
stb_putc(a->output, 0);
}
static void stb__arith_putbyte(stb_arith *a, int byte)
{
if (a->pending_ffs) {
if (a->pending_ffs == -1) { // means no buffered data; encoded for fast path efficiency
if (byte == 0xff)
stb_putc(a->output, byte); // just write it immediately
else {
a->buffered_u8 = byte;
a->pending_ffs = 0;
}
} else if (byte == 0xff) {
++a->pending_ffs;
} else {
int i;
stb_putc(a->output, a->buffered_u8);
for (i=0; i < a->pending_ffs; ++i)
stb_putc(a->output, 0xff);
}
} else if (byte == 0xff) {
++a->pending_ffs;
} else {
// fast path
stb_putc(a->output, a->buffered_u8);
a->buffered_u8 = byte;
}
}
static void stb__arith_flush(stb_arith *a)
{
if (a->pending_ffs >= 0) {
int i;
stb_putc(a->output, a->buffered_u8);
for (i=0; i < a->pending_ffs; ++i)
stb_putc(a->output, 0xff);
}
}
static void stb__renorm_encoder(stb_arith *a)
{
stb__arith_putbyte(a, a->range_low >> 24);
a->range_low <<= 8;
a->range_high = (a->range_high << 8) | 0xff;
}
static void stb__renorm_decoder(stb_arith *a)
{
int c = stb_getc(a->output);
a->code = (a->code << 8) + (c >= 0 ? c : 0); // if EOF, insert 0
}
void stb_arith_encode(stb_arith *a, unsigned int totalfreq, unsigned int freq, unsigned int cumfreq)
{
unsigned int range = a->range_high - a->range_low;
unsigned int old = a->range_low;
range /= totalfreq;
a->range_low += range * cumfreq;
a->range_high = a->range_low + range*freq;
if (a->range_low < old)
stb__arith_carry(a);
while (a->range_high - a->range_low < 0x1000000)
stb__renorm_encoder(a);
}
void stb_arith_encode_log2(stb_arith *a, unsigned int totalfreq2, unsigned int freq, unsigned int cumfreq)
{
unsigned int range = a->range_high - a->range_low;
unsigned int old = a->range_low;
range >>= totalfreq2;
a->range_low += range * cumfreq;
a->range_high = a->range_low + range*freq;
if (a->range_low < old)
stb__arith_carry(a);
while (a->range_high - a->range_low < 0x1000000)
stb__renorm_encoder(a);
}
unsigned int stb_arith_decode_value(stb_arith *a, unsigned int totalfreq)
{
unsigned int freqsize = a->range / totalfreq;
unsigned int z = a->code / freqsize;
return z >= totalfreq ? totalfreq-1 : z;
}
void stb_arith_decode_advance(stb_arith *a, unsigned int totalfreq, unsigned int freq, unsigned int cumfreq)
{
unsigned int freqsize = a->range / totalfreq; // @OPTIMIZE, share with above divide somehow?
a->code -= freqsize * cumfreq;
a->range = freqsize * freq;
while (a->range < 0x1000000)
stb__renorm_decoder(a);
}
unsigned int stb_arith_decode_value_log2(stb_arith *a, unsigned int totalfreq2)
{
unsigned int freqsize = a->range >> totalfreq2;
unsigned int z = a->code / freqsize;
return z >= (1U<<totalfreq2) ? (1U<<totalfreq2)-1 : z;
}
void stb_arith_decode_advance_log2(stb_arith *a, unsigned int totalfreq2, unsigned int freq, unsigned int cumfreq)
{
unsigned int freqsize = a->range >> totalfreq2;
a->code -= freqsize * cumfreq;
a->range = freqsize * freq;
while (a->range < 0x1000000)
stb__renorm_decoder(a);
}
stbfile *stb_arith_encode_close(stb_arith *a)
{
// put exactly as many bytes as we'll read, so we can turn on/off arithmetic coding in a stream
stb__arith_putbyte(a, a->range_low >> 24);
stb__arith_putbyte(a, a->range_low >> 16);
stb__arith_putbyte(a, a->range_low >> 8);
stb__arith_putbyte(a, a->range_low >> 0);
stb__arith_flush(a);
return a->output;
}
stbfile *stb_arith_decode_close(stb_arith *a)
{
return a->output;
}
// this is a simple power-of-two based model -- using
// power of two means we need one divide per decode,
// not two.
#define POW2_LIMIT 12
stb_arith_symstate *stb_arith_state_create(int num_sym)
{
stb_arith_symstate *s = (stb_arith_symstate *) malloc(sizeof(*s) + (num_sym-1) * sizeof(s->data[0]));
if (s) {
int i, cf, cf_next, next;
int start_freq, extra;
s->num_sym = num_sym;
s->pow2 = 4;
while (s->pow2 < 15 && (1 << s->pow2) < 3*num_sym) {
++s->pow2;
}
start_freq = (1 << s->pow2) / num_sym;
assert(start_freq >= 1);
extra = (1 << s->pow2) % num_sym;
// now set up the initial stats
if (s->pow2 < POW2_LIMIT)
next = 0;
else
next = 1;
cf = cf_next = 0;
for (i=0; i < extra; ++i) {
s->data[i].cumfreq = cf;
s->data[i].samples = next;
cf += start_freq+1;
cf_next += next;
}
for (; i < num_sym; ++i) {
s->data[i].cumfreq = cf;
s->data[i].samples = next;
cf += start_freq;
cf_next += next;
}
assert(cf == (1 << s->pow2));
// now, how long should we go until we have 2 << s->pow2 samples?
s->countdown = (2 << s->pow2) - cf - cf_next;
}
return s;
}
static void stb_arith_state_rescale(stb_arith_symstate *s)
{
if (s->pow2 < POW2_LIMIT) {
int pcf, cf, cf_next, next, i;
++s->pow2;
if (s->pow2 < POW2_LIMIT)
next = 0;
else
next = 1;
cf = cf_next = 0;
pcf = 0;
for (i=0; i < s->num_sym; ++i) {
int sample = s->data[i].cumfreq - pcf + s->data[i].samples;
s->data[i].cumfreq = cf;
cf += sample;
s->data[i].samples = next;
cf_next += next;
}
assert(cf == (1 << s->pow2));
s->countdown = (2 << s->pow2) - cf - cf_next;
} else {
int pcf, cf, cf_next, i;
cf = cf_next = 0;
pcf = 0;
for (i=0; i < s->num_sym; ++i) {
int sample = (s->data[i].cumfreq - pcf + s->data[i].samples) >> 1;
s->data[i].cumfreq = cf;
cf += sample;
s->data[i].samples = 1;
cf_next += 1;
}
assert(cf == (1 << s->pow2)); // this isn't necessarily true, due to rounding down!
s->countdown = (2 << s->pow2) - cf - cf_next;
}
}
void stb_arith_encode_byte(stb_arith *a, int byte)
{
}
int stb_arith_decode_byte(stb_arith *a)
{
return -1;
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// Threads
//
#ifndef WIN32
#ifdef STB_THREADS
#error "threads not implemented except for Windows"
#endif
#endif
// call this function to free any global variables for memory testing
STB_EXTERN void stb_thread_cleanup(void);
typedef void * (*stb_thread_func)(void *);
// do not rely on these types, this is an implementation detail.
// compare against STB_THREAD_NULL and ST_SEMAPHORE_NULL
typedef void *stb_thread;
typedef void *stb_semaphore;
typedef void *stb_mutex;
typedef struct stb__sync *stb_sync;
#define STB_SEMAPHORE_NULL NULL
#define STB_THREAD_NULL NULL
#define STB_MUTEX_NULL NULL
#define STB_SYNC_NULL NULL
// get the number of processors (limited to those in the affinity mask for this process).
STB_EXTERN int stb_processor_count(void);
// force to run on a single core -- needed for RDTSC to work, e.g. for iprof
STB_EXTERN void stb_force_uniprocessor(void);
// stb_work functions: queue up work to be done by some worker threads
// set number of threads to serve the queue; you can change this on the fly,
// but if you decrease it, it won't decrease until things currently on the
// queue are finished
STB_EXTERN void stb_work_numthreads(int n);
// set maximum number of units in the queue; you can only set this BEFORE running any work functions
STB_EXTERN int stb_work_maxunits(int n);
// enqueue some work to be done (can do this from any thread, or even from a piece of work);
// return value of f is stored in *return_code if non-NULL
STB_EXTERN int stb_work(stb_thread_func f, void *d, volatile void **return_code);
// as above, but stb_sync_reach is called on 'rel' after work is complete
STB_EXTERN int stb_work_reach(stb_thread_func f, void *d, volatile void **return_code, stb_sync rel);
// necessary to call this when using volatile to order writes/reads
STB_EXTERN void stb_barrier(void);
// support for independent queues with their own threads
typedef struct stb__workqueue stb_workqueue;
STB_EXTERN stb_workqueue*stb_workq_new(int numthreads, int max_units);
STB_EXTERN stb_workqueue*stb_workq_new_flags(int numthreads, int max_units, int no_add_mutex, int no_remove_mutex);
STB_EXTERN void stb_workq_delete(stb_workqueue *q);
STB_EXTERN void stb_workq_numthreads(stb_workqueue *q, int n);
STB_EXTERN int stb_workq(stb_workqueue *q, stb_thread_func f, void *d, volatile void **return_code);
STB_EXTERN int stb_workq_reach(stb_workqueue *q, stb_thread_func f, void *d, volatile void **return_code, stb_sync rel);
STB_EXTERN int stb_workq_length(stb_workqueue *q);
STB_EXTERN stb_thread stb_create_thread (stb_thread_func f, void *d);
STB_EXTERN stb_thread stb_create_thread2(stb_thread_func f, void *d, volatile void **return_code, stb_semaphore rel);
STB_EXTERN void stb_destroy_thread(stb_thread t);
STB_EXTERN stb_semaphore stb_sem_new(int max_val);
STB_EXTERN stb_semaphore stb_sem_new_extra(int max_val, int start_val);
STB_EXTERN void stb_sem_delete (stb_semaphore s);
STB_EXTERN void stb_sem_waitfor(stb_semaphore s);
STB_EXTERN void stb_sem_release(stb_semaphore s);
STB_EXTERN stb_mutex stb_mutex_new(void);
STB_EXTERN void stb_mutex_delete(stb_mutex m);
STB_EXTERN void stb_mutex_begin(stb_mutex m);
STB_EXTERN void stb_mutex_end(stb_mutex m);
STB_EXTERN stb_sync stb_sync_new(void);
STB_EXTERN void stb_sync_delete(stb_sync s);
STB_EXTERN int stb_sync_set_target(stb_sync s, int count);
STB_EXTERN void stb_sync_reach_and_wait(stb_sync s); // wait for 'target' reachers
STB_EXTERN int stb_sync_reach(stb_sync s);
typedef struct stb__threadqueue stb_threadqueue;
#define STB_THREADQ_DYNAMIC 0
STB_EXTERN stb_threadqueue *stb_threadq_new(int item_size, int num_items, int many_add, int many_remove);
STB_EXTERN void stb_threadq_delete(stb_threadqueue *tq);
STB_EXTERN int stb_threadq_get(stb_threadqueue *tq, void *output);
STB_EXTERN void stb_threadq_get_block(stb_threadqueue *tq, void *output);
STB_EXTERN int stb_threadq_add(stb_threadqueue *tq, void *input);
// can return FALSE if STB_THREADQ_DYNAMIC and attempt to grow fails
STB_EXTERN int stb_threadq_add_block(stb_threadqueue *tq, void *input);
#ifdef STB_THREADS
#ifdef STB_DEFINE
typedef struct
{
stb_thread_func f;
void *d;
volatile void **return_val;
stb_semaphore sem;
} stb__thread;
// this is initialized along all possible paths to create threads, therefore
// it's always initialized before any other threads are create, therefore
// it's free of races AS LONG AS you only create threads through stb_*
static stb_mutex stb__threadmutex, stb__workmutex;
static void stb__threadmutex_init(void)
{
if (stb__threadmutex == STB_SEMAPHORE_NULL) {
stb__threadmutex = stb_mutex_new();
stb__workmutex = stb_mutex_new();
}
}
#ifdef STB_THREAD_TEST
volatile float stb__t1=1, stb__t2;
static void stb__wait(int n)
{
float z = 0;
int i;
for (i=0; i < n; ++i)
z += 1 / (stb__t1+i);
stb__t2 = z;
}
#else
#define stb__wait(x)
#endif
#ifdef _WIN32
// avoid including windows.h -- note that our definitions aren't
// exactly the same (we don't define the security descriptor struct)
// so if you want to include windows.h, make sure you do it first.
#include <process.h>
#ifndef _WINDOWS_ // check windows.h guard
#define STB__IMPORT STB_EXTERN __declspec(dllimport)
#define STB__DW unsigned long
STB__IMPORT int __stdcall TerminateThread(void *, STB__DW);
STB__IMPORT void * __stdcall CreateSemaphoreA(void *sec, long,long,char*);
STB__IMPORT int __stdcall CloseHandle(void *);
STB__IMPORT STB__DW __stdcall WaitForSingleObject(void *, STB__DW);
STB__IMPORT int __stdcall ReleaseSemaphore(void *, long, long *);
STB__IMPORT void __stdcall Sleep(STB__DW);
#endif
// necessary to call this when using volatile to order writes/reads
void stb_barrier(void)
{
#ifdef MemoryBarrier
MemoryBarrier();
#else
long temp;
__asm xchg temp,eax;
#endif
}
static void stb__thread_run(void *t)
{
void *res;
stb__thread info = * (stb__thread *) t;
free(t);
res = info.f(info.d);
if (info.return_val)
*info.return_val = res;
if (info.sem != STB_SEMAPHORE_NULL)
stb_sem_release(info.sem);
}
static stb_thread stb_create_thread_raw(stb_thread_func f, void *d, volatile void **return_code, stb_semaphore rel)
{
#ifdef _MT
#if defined(STB_FASTMALLOC) && !defined(STB_FASTMALLOC_ITS_OKAY_I_ONLY_MALLOC_IN_ONE_THREAD)
stb_fatal("Error! Cannot use STB_FASTMALLOC with threads.\n");
return STB_THREAD_NULL;
#else
unsigned long id;
stb__thread *data = (stb__thread *) malloc(sizeof(*data));
if (!data) return NULL;
stb__threadmutex_init();
data->f = f;
data->d = d;
data->return_val = return_code;
data->sem = rel;
id = _beginthread(stb__thread_run, 0, data);
if (id == -1) return NULL;
return (void *) id;
#endif
#else
#ifdef STB_NO_STB_STRINGS
stb_fatal("Invalid compilation");
#else
stb_fatal("Must compile mult-threaded to use stb_thread/stb_work.");
#endif
return NULL;
#endif
}
// trivial win32 wrappers
void stb_destroy_thread(stb_thread t) { TerminateThread(t,0); }
stb_semaphore stb_sem_new(int maxv) {return CreateSemaphoreA(NULL,0,maxv,NULL); }
stb_semaphore stb_sem_new_extra(int maxv,int start){return CreateSemaphoreA(NULL,start,maxv,NULL); }
void stb_sem_delete(stb_semaphore s) { if (s != NULL) CloseHandle(s); }
void stb_sem_waitfor(stb_semaphore s) { WaitForSingleObject(s, 0xffffffff); } // INFINITE
void stb_sem_release(stb_semaphore s) { ReleaseSemaphore(s,1,NULL); }
static void stb__thread_sleep(int ms) { Sleep(ms); }
#ifndef _WINDOWS_
STB__IMPORT int __stdcall GetProcessAffinityMask(void *, STB__DW *, STB__DW *);
STB__IMPORT void * __stdcall GetCurrentProcess(void);
STB__IMPORT int __stdcall SetProcessAffinityMask(void *, STB__DW);
#endif
int stb_processor_count(void)
{
unsigned long proc,sys;
GetProcessAffinityMask(GetCurrentProcess(), &proc, &sys);
return stb_bitcount(proc);
}
void stb_force_uniprocessor(void)
{
unsigned long proc,sys;
GetProcessAffinityMask(GetCurrentProcess(), &proc, &sys);
if (stb_bitcount(proc) > 1) {
int z;
for (z=0; z < 32; ++z)
if (proc & (1 << z))
break;
if (z < 32) {
proc = 1 << z;
SetProcessAffinityMask(GetCurrentProcess(), proc);
}
}
}
#ifdef _WINDOWS_
#define STB_MUTEX_NATIVE
void *stb_mutex_new(void)
{
CRITICAL_SECTION *p = (CRITICAL_SECTION *) malloc(sizeof(*p));
if (p)
#if _WIN32_WINNT >= 0x0500
InitializeCriticalSectionAndSpinCount(p, 500);
#else
InitializeCriticalSection(p);
#endif
return p;
}
void stb_mutex_delete(void *p)
{
if (p) {
DeleteCriticalSection((CRITICAL_SECTION *) p);
free(p);
}
}
void stb_mutex_begin(void *p)
{
stb__wait(500);
if (p)
EnterCriticalSection((CRITICAL_SECTION *) p);
}
void stb_mutex_end(void *p)
{
if (p)
LeaveCriticalSection((CRITICAL_SECTION *) p);
stb__wait(500);
}
#endif // _WINDOWS_
#if 0
// for future reference,
// InterlockedCompareExchange for x86:
int cas64_mp(void * dest, void * xcmp, void * xxchg) {
__asm
{
mov esi, [xxchg] ; exchange
mov ebx, [esi + 0]
mov ecx, [esi + 4]
mov esi, [xcmp] ; comparand
mov eax, [esi + 0]
mov edx, [esi + 4]
mov edi, [dest] ; destination
lock cmpxchg8b [edi]
jz yyyy;
mov [esi + 0], eax;
mov [esi + 4], edx;
yyyy:
xor eax, eax;
setz al;
};
inline unsigned __int64 _InterlockedCompareExchange64(volatile unsigned __int64 *dest
,unsigned __int64 exchange
,unsigned __int64 comperand)
{
//value returned in eax::edx
__asm {
lea esi,comperand;
lea edi,exchange;
mov eax,[esi];
mov edx,4[esi];
mov ebx,[edi];
mov ecx,4[edi];
mov esi,dest;
lock CMPXCHG8B [esi];
}
#endif // #if 0
#endif // _WIN32
stb_thread stb_create_thread2(stb_thread_func f, void *d, volatile void **return_code, stb_semaphore rel)
{
return stb_create_thread_raw(f,d,return_code,rel);
}
stb_thread stb_create_thread(stb_thread_func f, void *d)
{
return stb_create_thread2(f,d,NULL,STB_SEMAPHORE_NULL);
}
// mutex implemented by wrapping semaphore
#ifndef STB_MUTEX_NATIVE
stb_mutex stb_mutex_new(void) { return stb_sem_new_extra(1,1); }
void stb_mutex_delete(stb_mutex m) { stb_sem_delete (m); }
void stb_mutex_begin(stb_mutex m) { stb__wait(500); if (m) stb_sem_waitfor(m); }
void stb_mutex_end(stb_mutex m) { if (m) stb_sem_release(m); stb__wait(500); }
#endif
// thread merge operation
struct stb__sync
{
int target; // target number of threads to hit it
int sofar; // total threads that hit it
int waiting; // total threads waiting
stb_mutex start; // mutex to prevent starting again before finishing previous
stb_mutex mutex; // mutex while tweaking state
stb_semaphore release; // semaphore wake up waiting threads
// we have to wake them up one at a time, rather than using a single release
// call, because win32 semaphores don't let you dynamically change the max count!
};
stb_sync stb_sync_new(void)
{
stb_sync s = (stb_sync) malloc(sizeof(*s));
if (!s) return s;
s->target = s->sofar = s->waiting = 0;
s->mutex = stb_mutex_new();
s->start = stb_mutex_new();
s->release = stb_sem_new(1);
if (s->mutex == STB_MUTEX_NULL || s->release == STB_SEMAPHORE_NULL || s->start == STB_MUTEX_NULL) {
stb_mutex_delete(s->mutex);
stb_mutex_delete(s->mutex);
stb_sem_delete(s->release);
free(s);
return NULL;
}
return s;
}
void stb_sync_delete(stb_sync s)
{
if (s->waiting) {
// it's bad to delete while there are threads waiting!
// shall we wait for them to reach, or just bail? just bail
assert(0);
}
stb_mutex_delete(s->mutex);
stb_mutex_delete(s->release);
free(s);
}
int stb_sync_set_target(stb_sync s, int count)
{
// don't allow setting a target until the last one is fully released;
// note that this can lead to inefficient pipelining, and maybe we'd
// be better off ping-ponging between two internal syncs?
// I tried seeing how often this happened using TryEnterCriticalSection
// and could _never_ get it to happen in imv(stb), even with more threads
// than processors. So who knows!
stb_mutex_begin(s->start);
// this mutex is pointless, since it's not valid for threads
// to call reach() before anyone calls set_target() anyway
stb_mutex_begin(s->mutex);
assert(s->target == 0); // enforced by start mutex
s->target = count;
s->sofar = 0;
s->waiting = 0;
stb_mutex_end(s->mutex);
return STB_TRUE;
}
void stb__sync_release(stb_sync s)
{
if (s->waiting)
stb_sem_release(s->release);
else {
s->target = 0;
stb_mutex_end(s->start);
}
}
int stb_sync_reach(stb_sync s)
{
int n;
stb_mutex_begin(s->mutex);
assert(s->sofar < s->target);
n = ++s->sofar; // record this value to avoid possible race if we did 'return s->sofar';
if (s->sofar == s->target)
stb__sync_release(s);
stb_mutex_end(s->mutex);
return n;
}
void stb_sync_reach_and_wait(stb_sync s)
{
stb_mutex_begin(s->mutex);
assert(s->sofar < s->target);
++s->sofar;
if (s->sofar == s->target) {
stb__sync_release(s);
stb_mutex_end(s->mutex);
} else {
++s->waiting; // we're waiting, so one more waiter
stb_mutex_end(s->mutex); // release the mutex to other threads
stb_sem_waitfor(s->release); // wait for merge completion
stb_mutex_begin(s->mutex); // on merge completion, grab the mutex
--s->waiting; // we're done waiting
stb__sync_release(s); // restart the next waiter
stb_mutex_end(s->mutex); // and now we're done
// this ends the same as the first case, but it's a lot
// clearer to understand without sharing the code
}
}
struct stb__threadqueue
{
stb_mutex add, remove;
stb_semaphore nonempty, nonfull;
int head_blockers; // number of threads blocking--used to know whether to release(avail)
int tail_blockers;
int head, tail, array_size, growable;
int item_size;
char *data;
};
static int stb__tq_wrap(volatile stb_threadqueue *z, int p)
{
if (p == z->array_size)
return p - z->array_size;
else
return p;
}
int stb__threadq_get_raw(stb_threadqueue *tq2, void *output, int block)
{
volatile stb_threadqueue *tq = (volatile stb_threadqueue *) tq2;
if (tq->head == tq->tail && !block) return 0;
stb_mutex_begin(tq->remove);
while (tq->head == tq->tail) {
if (!block) {
stb_mutex_end(tq->remove);
return 0;
}
++tq->head_blockers;
stb_mutex_end(tq->remove);
stb_sem_waitfor(tq->nonempty);
stb_mutex_begin(tq->remove);
--tq->head_blockers;
}
memcpy(output, tq->data + tq->head*tq->item_size, tq->item_size);
stb_barrier();
tq->head = stb__tq_wrap(tq, tq->head+1);
stb_sem_release(tq->nonfull);
if (tq->head_blockers) // can't check if actually non-empty due to race?
stb_sem_release(tq->nonempty); // if there are other blockers, wake one
stb_mutex_end(tq->remove);
return STB_TRUE;
}
int stb__threadq_grow(volatile stb_threadqueue *tq)
{
int n;
char *p;
assert(tq->remove != STB_MUTEX_NULL); // must have this to allow growth!
stb_mutex_begin(tq->remove);
n = tq->array_size * 2;
p = (char *) realloc(tq->data, n * tq->item_size);
if (p == NULL) {
stb_mutex_end(tq->remove);
stb_mutex_end(tq->add);
return STB_FALSE;
}
if (tq->tail < tq->head) {
memcpy(p + tq->array_size * tq->item_size, p, tq->tail * tq->item_size);
tq->tail += tq->array_size;
}
tq->data = p;
tq->array_size = n;
stb_mutex_end(tq->remove);
return STB_TRUE;
}
int stb__threadq_add_raw(stb_threadqueue *tq2, void *input, int block)
{
int tail,pos;
volatile stb_threadqueue *tq = (volatile stb_threadqueue *) tq2;
stb_mutex_begin(tq->add);
for(;;) {
pos = tq->tail;
tail = stb__tq_wrap(tq, pos+1);
if (tail != tq->head) break;
// full
if (tq->growable) {
if (!stb__threadq_grow(tq)) {
stb_mutex_end(tq->add);
return STB_FALSE; // out of memory
}
} else if (!block) {
stb_mutex_end(tq->add);
return STB_FALSE;
} else {
++tq->tail_blockers;
stb_mutex_end(tq->add);
stb_sem_waitfor(tq->nonfull);
stb_mutex_begin(tq->add);
--tq->tail_blockers;
}
}
memcpy(tq->data + tq->item_size * pos, input, tq->item_size);
stb_barrier();
tq->tail = tail;
stb_sem_release(tq->nonempty);
if (tq->tail_blockers) // can't check if actually non-full due to race?
stb_sem_release(tq->nonfull);
stb_mutex_end(tq->add);
return STB_TRUE;
}
int stb_threadq_length(stb_threadqueue *tq2)
{
int a,b,n;
volatile stb_threadqueue *tq = (volatile stb_threadqueue *) tq2;
stb_mutex_begin(tq->add);
a = tq->head;
b = tq->tail;
n = tq->array_size;
stb_mutex_end(tq->add);
if (a > b) b += n;
return b-a;
}
int stb_threadq_get(stb_threadqueue *tq, void *output)
{
return stb__threadq_get_raw(tq, output, STB_FALSE);
}
void stb_threadq_get_block(stb_threadqueue *tq, void *output)
{
stb__threadq_get_raw(tq, output, STB_TRUE);
}
int stb_threadq_add(stb_threadqueue *tq, void *input)
{
return stb__threadq_add_raw(tq, input, STB_FALSE);
}
int stb_threadq_add_block(stb_threadqueue *tq, void *input)
{
return stb__threadq_add_raw(tq, input, STB_TRUE);
}
void stb_threadq_delete(stb_threadqueue *tq)
{
if (tq) {
free(tq->data);
stb_mutex_delete(tq->add);
stb_mutex_delete(tq->remove);
stb_sem_delete(tq->nonempty);
stb_sem_delete(tq->nonfull);
free(tq);
}
}
#define STB_THREADQUEUE_DYNAMIC 0
stb_threadqueue *stb_threadq_new(int item_size, int num_items, int many_add, int many_remove)
{
int error=0;
stb_threadqueue *tq = (stb_threadqueue *) malloc(sizeof(*tq));
if (tq == NULL) return NULL;
if (num_items == STB_THREADQUEUE_DYNAMIC) {
tq->growable = STB_TRUE;
num_items = 32;
} else
tq->growable = STB_FALSE;
tq->item_size = item_size;
tq->array_size = num_items+1;
tq->add = tq->remove = STB_MUTEX_NULL;
tq->nonempty = tq->nonfull = STB_SEMAPHORE_NULL;
tq->data = NULL;
if (many_add)
{ tq->add = stb_mutex_new(); if (tq->add == STB_MUTEX_NULL) goto error; }
if (many_remove || tq->growable)
{ tq->remove = stb_mutex_new(); if (tq->remove == STB_MUTEX_NULL) goto error; }
tq->nonempty = stb_sem_new(1); if (tq->nonempty == STB_SEMAPHORE_NULL) goto error;
tq->nonfull = stb_sem_new(1); if (tq->nonfull == STB_SEMAPHORE_NULL) goto error;
tq->data = (char *) malloc(tq->item_size * tq->array_size);
if (tq->data == NULL) goto error;
tq->head = tq->tail = 0;
tq->head_blockers = tq->tail_blockers = 0;
return tq;
error:
stb_threadq_delete(tq);
return NULL;
}
typedef struct
{
stb_thread_func f;
void *d;
volatile void **retval;
stb_sync sync;
} stb__workinfo;
//static volatile stb__workinfo *stb__work;
struct stb__workqueue
{
int numthreads;
stb_threadqueue *tq;
};
static stb_workqueue *stb__work_global;
static void *stb__thread_workloop(void *p)
{
volatile stb_workqueue *q = (volatile stb_workqueue *) p;
for(;;) {
void *z;
stb__workinfo w;
stb_threadq_get_block(q->tq, &w);
if (w.f == NULL) // null work is a signal to end the thread
return NULL;
z = w.f(w.d);
if (w.retval) { stb_barrier(); *w.retval = z; }
if (w.sync != STB_SYNC_NULL) stb_sync_reach(w.sync);
}
}
stb_workqueue *stb_workq_new(int num_threads, int max_units)
{
return stb_workq_new_flags(num_threads, max_units, 0,0);
}
stb_workqueue *stb_workq_new_flags(int numthreads, int max_units, int no_add_mutex, int no_remove_mutex)
{
stb_workqueue *q = (stb_workqueue *) malloc(sizeof(*q));
if (q == NULL) return NULL;
q->tq = stb_threadq_new(sizeof(stb__workinfo), max_units, !no_add_mutex, !no_remove_mutex);
if (q->tq == NULL) { free(q); return NULL; }
q->numthreads = 0;
stb_workq_numthreads(q, numthreads);
return q;
}
void stb_workq_delete(stb_workqueue *q)
{
while (stb_workq_length(q) != 0)
stb__thread_sleep(1);
stb_threadq_delete(q->tq);
free(q);
}
static int stb__work_maxitems = STB_THREADQUEUE_DYNAMIC;
static void stb_work_init(int num_threads)
{
if (stb__work_global == NULL) {
stb__threadmutex_init();
stb_mutex_begin(stb__workmutex);
stb_barrier();
if (*(stb_workqueue * volatile *) &stb__work_global == NULL)
stb__work_global = stb_workq_new(num_threads, stb__work_maxitems);
stb_mutex_end(stb__workmutex);
}
}
static int stb__work_raw(stb_workqueue *q, stb_thread_func f, void *d, volatile void **return_code, stb_sync rel)
{
stb__workinfo w;
if (q == NULL) {
stb_work_init(1);
q = stb__work_global;
}
w.f = f;
w.d = d;
w.retval = return_code;
w.sync = rel;
return stb_threadq_add(q->tq, &w);
}
int stb_workq_length(stb_workqueue *q)
{
return stb_threadq_length(q->tq);
}
int stb_workq(stb_workqueue *q, stb_thread_func f, void *d, volatile void **return_code)
{
if (f == NULL) return 0;
return stb_workq_reach(q, f, d, return_code, NULL);
}
int stb_workq_reach(stb_workqueue *q, stb_thread_func f, void *d, volatile void **return_code, stb_sync rel)
{
if (f == NULL) return 0;
return stb__work_raw(q, f, d, return_code, rel);
}
static void stb__workq_numthreads(stb_workqueue *q, int n)
{
while (q->numthreads < n) {
stb_create_thread(stb__thread_workloop, q);
++q->numthreads;
}
while (q->numthreads > n) {
stb__work_raw(q, NULL, NULL, NULL, NULL);
--q->numthreads;
}
}
void stb_workq_numthreads(stb_workqueue *q, int n)
{
stb_mutex_begin(stb__threadmutex);
stb__workq_numthreads(q,n);
stb_mutex_end(stb__threadmutex);
}
int stb_work_maxunits(int n)
{
if (stb__work_global == NULL) {
stb__work_maxitems = n;
stb_work_init(1);
}
return stb__work_maxitems;
}
int stb_work(stb_thread_func f, void *d, volatile void **return_code)
{
return stb_workq(stb__work_global, f,d,return_code);
}
int stb_work_reach(stb_thread_func f, void *d, volatile void **return_code, stb_sync rel)
{
return stb_workq_reach(stb__work_global, f,d,return_code,rel);
}
void stb_work_numthreads(int n)
{
if (stb__work_global == NULL)
stb_work_init(n);
else
stb_workq_numthreads(stb__work_global, n);
}
#endif // STB_DEFINE
//////////////////////////////////////////////////////////////////////////////
//
// Background disk I/O
//
//
#define STB_BGIO_READ_ALL (-1)
STB_EXTERN int stb_bgio_read (char *filename, int offset, int len, stb_uchar **result, int *olen);
STB_EXTERN int stb_bgio_readf (FILE *f , int offset, int len, stb_uchar **result, int *olen);
STB_EXTERN int stb_bgio_read_to (char *filename, int offset, int len, stb_uchar *buffer, int *olen);
STB_EXTERN int stb_bgio_readf_to(FILE *f , int offset, int len, stb_uchar *buffer, int *olen);
typedef struct
{
int have_data;
int is_valid;
int is_dir;
time_t filetime;
stb_int64 filesize;
} stb_bgstat;
STB_EXTERN int stb_bgio_stat (char *filename, stb_bgstat *result);
#ifdef STB_DEFINE
static stb_workqueue *stb__diskio;
static stb_mutex stb__diskio_mutex;
void stb_thread_cleanup(void)
{
if (stb__work_global) stb_workq_delete(stb__work_global); stb__work_global = NULL;
if (stb__threadmutex) stb_mutex_delete(stb__threadmutex); stb__threadmutex = NULL;
if (stb__workmutex) stb_mutex_delete(stb__workmutex); stb__workmutex = NULL;
if (stb__diskio) stb_workq_delete(stb__diskio); stb__diskio = NULL;
if (stb__diskio_mutex)stb_mutex_delete(stb__diskio_mutex);stb__diskio_mutex= NULL;
}
typedef struct
{
char *filename;
FILE *f;
int offset;
int len;
stb_bgstat *stat_out;
stb_uchar *output;
stb_uchar **result;
int *len_output;
int *flag;
} stb__disk_command;
#define STB__MAX_DISK_COMMAND 100
static stb__disk_command stb__dc_queue[STB__MAX_DISK_COMMAND];
static int stb__dc_offset;
void stb__io_init(void)
{
if (!stb__diskio) {
stb__threadmutex_init();
stb_mutex_begin(stb__threadmutex);
stb_barrier();
if (*(stb_thread * volatile *) &stb__diskio == NULL) {
stb__diskio_mutex = stb_mutex_new();
// use many threads so OS can try to schedule seeks
stb__diskio = stb_workq_new_flags(16,STB__MAX_DISK_COMMAND,STB_FALSE,STB_FALSE);
}
stb_mutex_end(stb__threadmutex);
}
}
static void * stb__io_error(stb__disk_command *dc)
{
if (dc->len_output) *dc->len_output = 0;
if (dc->result) *dc->result = NULL;
if (dc->flag) *dc->flag = -1;
return NULL;
}
static void * stb__io_task(void *p)
{
stb__disk_command *dc = (stb__disk_command *) p;
int len;
FILE *f;
stb_uchar *buf;
if (dc->stat_out) {
struct _stati64 s;
if (!_stati64(dc->filename, &s)) {
dc->stat_out->filesize = s.st_size;
dc->stat_out->filetime = s.st_mtime;
dc->stat_out->is_dir = s.st_mode & _S_IFDIR;
dc->stat_out->is_valid = (s.st_mode & _S_IFREG) || dc->stat_out->is_dir;
} else
dc->stat_out->is_valid = 0;
stb_barrier();
dc->stat_out->have_data = 1;
free(dc->filename);
return 0;
}
if (dc->f) {
#ifdef WIN32
f = _fdopen(_dup(_fileno(dc->f)), "rb");
#else
f = fdopen(dup(fileno(dc->f)), "rb");
#endif
if (!f)
return stb__io_error(dc);
} else {
f = fopen(dc->filename, "rb");
free(dc->filename);
if (!f)
return stb__io_error(dc);
}
len = dc->len;
if (len < 0) {
fseek(f, 0, SEEK_END);
len = ftell(f) - dc->offset;
}
if (fseek(f, dc->offset, SEEK_SET)) {
fclose(f);
return stb__io_error(dc);
}
if (dc->output)
buf = dc->output;
else {
buf = (stb_uchar *) malloc(len);
if (buf == NULL) {
fclose(f);
return stb__io_error(dc);
}
}
len = fread(buf, 1, len, f);
fclose(f);
if (dc->len_output) *dc->len_output = len;
if (dc->result) *dc->result = buf;
if (dc->flag) *dc->flag = 1;
return NULL;
}
int stb__io_add(char *fname, FILE *f, int off, int len, stb_uchar *out, stb_uchar **result, int *olen, int *flag, stb_bgstat *stat)
{
int res;
stb__io_init();
// do memory allocation outside of mutex
if (fname) fname = strdup(fname);
stb_mutex_begin(stb__diskio_mutex);
{
stb__disk_command *dc = &stb__dc_queue[stb__dc_offset];
dc->filename = fname;
dc->f = f;
dc->offset = off;
dc->len = len;
dc->output = out;
dc->result = result;
dc->len_output = olen;
dc->flag = flag;
dc->stat_out = stat;
res = stb_workq(stb__diskio, stb__io_task, dc, NULL);
if (res)
stb__dc_offset = (stb__dc_offset + 1 == STB__MAX_DISK_COMMAND ? 0 : stb__dc_offset+1);
}
stb_mutex_end(stb__diskio_mutex);
return res;
}
int stb_bgio_read(char *filename, int offset, int len, stb_uchar **result, int *olen)
{
return stb__io_add(filename,NULL,offset,len,NULL,result,olen,NULL,NULL);
}
int stb_bgio_readf(FILE *f, int offset, int len, stb_uchar **result, int *olen)
{
return stb__io_add(NULL,f,offset,len,NULL,result,olen,NULL,NULL);
}
int stb_bgio_read_to(char *filename, int offset, int len, stb_uchar *buffer, int *olen)
{
return stb__io_add(filename,NULL,offset,len,buffer,NULL,olen,NULL,NULL);
}
int stb_bgio_readf_to(FILE *f, int offset, int len, stb_uchar *buffer, int *olen)
{
return stb__io_add(NULL,f,offset,len,buffer,NULL,olen,NULL,NULL);
}
STB_EXTERN int stb_bgio_stat (char *filename, stb_bgstat *result)
{
result->have_data = 0;
return stb__io_add(filename,NULL,0,0,0,NULL,0,NULL, result);
}
#endif
#endif
//////////////////////////////////////////////////////////////////////////////
//
// Fast malloc implementation
//
// This is a clone of TCMalloc, but without the thread support.
// 1. large objects are allocated directly, page-aligned
// 2. small objects are allocated in homogeonous heaps, 0 overhead
//
// We keep an allocation table for pages a la TCMalloc. This would
// require 4MB for the entire address space, but we only allocate
// the parts that are in use. The overhead from using homogenous heaps
// everywhere is 3MB. (That is, if you allocate 1 object of each size,
// you'll use 3MB.)
#if defined(STB_DEFINE) && (defined(_WIN32) || defined(STB_FASTMALLOC))
#ifdef _WIN32
#ifndef _WINDOWS_
#ifndef STB__IMPORT
#define STB__IMPORT STB_EXTERN __declspec(dllimport)
#define STB__DW unsigned long
#endif
STB__IMPORT void * __stdcall VirtualAlloc(void *p, unsigned long size, unsigned long type, unsigned long protect);
STB__IMPORT int __stdcall VirtualFree(void *p, unsigned long size, unsigned long freetype);
#endif
#define stb__alloc_pages_raw(x) (stb_uint32) VirtualAlloc(NULL, (x), 0x3000, 0x04)
#define stb__dealloc_pages_raw(p) VirtualFree((void *) p, 0, 0x8000)
#else
#error "Platform not currently supported"
#endif
typedef struct stb__span
{
int start, len;
struct stb__span *next, *prev;
void *first_free;
unsigned short list; // 1..256 free; 257..511 sizeclass; 0=large block
short allocations; // # outstanding allocations for sizeclass
} stb__span; // 24
static stb__span **stb__span_for_page;
static int stb__firstpage, stb__lastpage;
static void stb__update_page_range(int first, int last)
{
stb__span **sfp;
int i, f,l;
if (first >= stb__firstpage && last <= stb__lastpage) return;
if (stb__span_for_page == NULL) {
f = first;
l = f+stb_max(last-f, 16384);
l = stb_min(l, 1<<20);
} else if (last > stb__lastpage) {
f = stb__firstpage;
l = f + (stb__lastpage - f) * 2;
l = stb_clamp(last, l,1<<20);
} else {
l = stb__lastpage;
f = l - (l - stb__firstpage) * 2;
f = stb_clamp(f, 0,first);
}
sfp = (stb__span **) stb__alloc_pages_raw(sizeof(void *) * (l-f));
for (i=f; i < stb__firstpage; ++i) sfp[i - f] = NULL;
for ( ; i < stb__lastpage ; ++i) sfp[i - f] = stb__span_for_page[i - stb__firstpage];
for ( ; i < l ; ++i) sfp[i - f] = NULL;
if (stb__span_for_page) stb__dealloc_pages_raw(stb__span_for_page);
stb__firstpage = f;
stb__lastpage = l;
stb__span_for_page = sfp;
}
static stb__span *stb__span_free=NULL;
static stb__span *stb__span_first, *stb__span_end;
static stb__span *stb__span_alloc(void)
{
stb__span *s = stb__span_free;
if (s)
stb__span_free = s->next;
else {
if (!stb__span_first) {
stb__span_first = (stb__span *) stb__alloc_pages_raw(65536);
if (stb__span_first == NULL) return NULL;
stb__span_end = stb__span_first + (65536 / sizeof(stb__span));
}
s = stb__span_first++;
if (stb__span_first == stb__span_end) stb__span_first = NULL;
}
return s;
}
static stb__span *stb__spanlist[512];
static void stb__spanlist_unlink(stb__span *s)
{
if (s->prev)
s->prev->next = s->next;
else {
int n = s->list;
assert(stb__spanlist[n] == s);
stb__spanlist[n] = s->next;
}
if (s->next)
s->next->prev = s->prev;
s->next = s->prev = NULL;
s->list = 0;
}
static void stb__spanlist_add(int n, stb__span *s)
{
s->list = n;
s->next = stb__spanlist[n];
s->prev = NULL;
stb__spanlist[n] = s;
if (s->next) s->next->prev = s;
}
#define stb__page_shift 12
#define stb__page_size (1 << stb__page_shift)
#define stb__page_number(x) ((x) >> stb__page_shift)
#define stb__page_address(x) ((x) << stb__page_shift)
static void stb__set_span_for_page(stb__span *s)
{
int i;
for (i=0; i < s->len; ++i)
stb__span_for_page[s->start + i - stb__firstpage] = s;
}
static stb__span *stb__coalesce(stb__span *a, stb__span *b)
{
assert(a->start + a->len == b->start);
if (a->list) stb__spanlist_unlink(a);
if (b->list) stb__spanlist_unlink(b);
a->len += b->len;
b->len = 0;
b->next = stb__span_free;
stb__span_free = b;
stb__set_span_for_page(a);
return a;
}
static void stb__free_span(stb__span *s)
{
stb__span *n = NULL;
if (s->start > stb__firstpage) {
n = stb__span_for_page[s->start-1 - stb__firstpage];
if (n && n->allocations == -2 && n->start + n->len == s->start) s = stb__coalesce(n,s);
}
if (s->start + s->len < stb__lastpage) {
n = stb__span_for_page[s->start + s->len - stb__firstpage];
if (n && n->allocations == -2 && s->start + s->len == n->start) s = stb__coalesce(s,n);
}
s->allocations = -2;
stb__spanlist_add(s->len > 256 ? 256 : s->len, s);
}
static stb__span *stb__alloc_pages(int num)
{
stb__span *s = stb__span_alloc();
int p;
if (!s) return NULL;
p = stb__alloc_pages_raw(num << stb__page_shift);
if (p == 0) { s->next = stb__span_free; stb__span_free = s; return 0; }
assert(stb__page_address(stb__page_number(p)) == p);
p = stb__page_number(p);
stb__update_page_range(p, p+num);
s->start = p;
s->len = num;
s->next = NULL;
s->prev = NULL;
stb__set_span_for_page(s);
return s;
}
static stb__span *stb__alloc_span(int pagecount)
{
int i;
stb__span *p = NULL;
for(i=pagecount; i < 256; ++i)
if (stb__spanlist[i]) {
p = stb__spanlist[i];
break;
}
if (!p) {
p = stb__spanlist[256];
while (p && p->len < pagecount)
p = p->next;
}
if (!p) {
p = stb__alloc_pages(pagecount < 16 ? 16 : pagecount);
if (p == NULL) return 0;
} else
stb__spanlist_unlink(p);
if (p->len > pagecount) {
stb__span *q = stb__span_alloc();
if (q) {
q->start = p->start + pagecount;
q->len = p->len - pagecount;
p->len = pagecount;
for (i=0; i < q->len; ++i)
stb__span_for_page[q->start+i - stb__firstpage] = q;
stb__spanlist_add(q->len > 256 ? 256 : q->len, q);
}
}
return p;
}
#define STB__MAX_SMALL_SIZE 32768
#define STB__MAX_SIZE_CLASSES 256
static unsigned char stb__class_base[32];
static unsigned char stb__class_shift[32];
static unsigned char stb__pages_for_class[STB__MAX_SIZE_CLASSES];
static int stb__size_for_class[STB__MAX_SIZE_CLASSES];
stb__span *stb__get_nonempty_sizeclass(int c)
{
int s = c + 256, i, size, tsize; // remap to span-list index
char *z;
void *q;
stb__span *p = stb__spanlist[s];
if (p) {
if (p->first_free) return p; // fast path: it's in the first one in list
for (p=p->next; p; p=p->next)
if (p->first_free) {
// move to front for future queries
stb__spanlist_unlink(p);
stb__spanlist_add(s, p);
return p;
}
}
// no non-empty ones, so allocate a new one
p = stb__alloc_span(stb__pages_for_class[c]);
if (!p) return NULL;
// create the free list up front
size = stb__size_for_class[c];
tsize = stb__pages_for_class[c] << stb__page_shift;
i = 0;
z = (char *) stb__page_address(p->start);
q = NULL;
while (i + size <= tsize) {
* (void **) z = q; q = z;
z += size;
i += size;
}
p->first_free = q;
p->allocations = 0;
stb__spanlist_add(s,p);
return p;
}
static int stb__sizeclass(size_t sz)
{
int z = stb_log2_floor(sz); // -1 below to group e.g. 13,14,15,16 correctly
return stb__class_base[z] + ((sz-1) >> stb__class_shift[z]);
}
static void stb__init_sizeclass(void)
{
int i, size, overhead;
int align_shift = 2; // allow 4-byte and 12-byte blocks as well, vs. TCMalloc
int next_class = 1;
int last_log = 0;
for (i = 0; i < align_shift; i++) {
stb__class_base [i] = next_class;
stb__class_shift[i] = align_shift;
}
for (size = 1 << align_shift; size <= STB__MAX_SMALL_SIZE; size += 1 << align_shift) {
i = stb_log2_floor(size);
if (i > last_log) {
if (size == 16) ++align_shift; // switch from 4-byte to 8-byte alignment
else if (size >= 128 && align_shift < 8) ++align_shift;
stb__class_base[i] = next_class - ((size-1) >> align_shift);
stb__class_shift[i] = align_shift;
last_log = i;
}
stb__size_for_class[next_class++] = size;
}
for (i=1; i <= STB__MAX_SMALL_SIZE; ++i)
assert(i <= stb__size_for_class[stb__sizeclass(i)]);
overhead = 0;
for (i = 1; i < next_class; i++) {
int s = stb__size_for_class[i];
size = stb__page_size;
while (size % s > size >> 3)
size += stb__page_size;
stb__pages_for_class[i] = (unsigned char) (size >> stb__page_shift);
overhead += size;
}
assert(overhead < (4 << 20)); // make sure it's under 4MB of overhead
}
#ifdef STB_DEBUG
#define stb__smemset(a,b,c) memset((void *) a, b, c)
#elif defined(STB_FASTMALLOC_INIT)
#define stb__smemset(a,b,c) memset((void *) a, b, c)
#else
#define stb__smemset(a,b,c)
#endif
void *stb_smalloc(size_t sz)
{
stb__span *s;
if (sz == 0) return NULL;
if (stb__size_for_class[1] == 0) stb__init_sizeclass();
if (sz > STB__MAX_SMALL_SIZE) {
s = stb__alloc_span((sz + stb__page_size - 1) >> stb__page_shift);
if (s == NULL) return NULL;
s->list = 0;
s->next = s->prev = NULL;
s->allocations = -32767;
stb__smemset(stb__page_address(s->start), 0xcd, (sz+3)&~3);
return (void *) stb__page_address(s->start);
} else {
void *p;
int c = stb__sizeclass(sz);
s = stb__spanlist[256+c];
if (!s || !s->first_free)
s = stb__get_nonempty_sizeclass(c);
if (s == NULL) return NULL;
p = s->first_free;
s->first_free = * (void **) p;
++s->allocations;
stb__smemset(p,0xcd, sz);
return p;
}
}
int stb_ssize(void *p)
{
stb__span *s;
if (p == NULL) return 0;
s = stb__span_for_page[stb__page_number((stb_uint) p) - stb__firstpage];
if (s->list >= 256) {
return stb__size_for_class[s->list - 256];
} else {
assert(s->list == 0);
return s->len << stb__page_shift;
}
}
void stb_sfree(void *p)
{
stb__span *s;
if (p == NULL) return;
s = stb__span_for_page[stb__page_number((stb_uint) p) - stb__firstpage];
if (s->list >= 256) {
stb__smemset(p, 0xfe, stb__size_for_class[s->list-256]);
* (void **) p = s->first_free;
s->first_free = p;
if (--s->allocations == 0) {
stb__spanlist_unlink(s);
stb__free_span(s);
}
} else {
assert(s->list == 0);
stb__smemset(p, 0xfe, stb_ssize(p));
stb__free_span(s);
}
}
void *stb_srealloc(void *p, size_t sz)
{
size_t cur_size;
if (p == NULL) return stb_smalloc(sz);
if (sz == 0) { stb_sfree(p); return NULL; }
cur_size = stb_ssize(p);
if (sz > cur_size || sz <= (cur_size >> 1)) {
void *q;
if (sz > cur_size && sz < (cur_size << 1)) sz = cur_size << 1;
q = stb_smalloc(sz); if (q == NULL) return NULL;
memcpy(q, p, sz < cur_size ? sz : cur_size);
stb_sfree(p);
return q;
}
return p;
}
void *stb_scalloc(size_t n, size_t sz)
{
void *p;
if (n == 0 || sz == 0) return NULL;
if (stb_log2_ceil(n) + stb_log2_ceil(n) >= 32) return NULL;
p = stb_smalloc(n*sz);
if (p) memset(p, 0, n*sz);
return p;
}
char *stb_sstrdup(char *s)
{
int n = strlen(s);
char *p = (char *) stb_smalloc(n+1);
if (p) strcpy(p,s);
return p;
}
#endif // STB_DEFINE
//////////////////////////////////////////////////////////////////////////////
//
// Source code constants
//
// This is a trivial system to let you specify constants in source code,
// then while running you can change the constants.
//
// Note that you can't wrap the #defines, because we need to know their
// names. So we provide a pre-wrapped version without 'STB_' for convenience;
// to request it, #define STB_CONVENIENT_H, yielding:
// KI -- integer
// KU -- unsigned integer
// KF -- float
// KD -- double
// KS -- string constant
//
// Defaults to functioning in debug build, not in release builds.
// To force on, define STB_ALWAYS_H
#ifdef STB_CONVENIENT_H
#define KI(x) STB_I(x)
#define KU(x) STB_UI(x)
#define KF(x) STB_F(x)
#define KD(x) STB_D(x)
#define KS(x) STB_S(x)
#endif
STB_EXTERN void stb_source_path(char *str);
#ifdef STB_DEFINE
char *stb__source_path;
void stb_source_path(char *path)
{
stb__source_path = path;
}
char *stb__get_sourcefile_path(char *file)
{
static char filebuf[512];
if (stb__source_path) {
sprintf(filebuf, "%s/%s", stb__source_path, file);
if (stb_fexists(filebuf)) return filebuf;
}
if (stb_fexists(file)) return file;
sprintf(filebuf, "../%s", file);
if (!stb_fexists(filebuf)) return filebuf;
return file;
}
#endif
#define STB_F(x) ((float) STB_H(x))
#define STB_UI(x) ((unsigned int) STB_I(x))
#if !defined(STB_DEBUG) && !defined(STB_ALWAYS_H)
#define STB_D(x) ((double) (x))
#define STB_I(x) ((int) (x))
#define STB_S(x) ((char *) (x))
#else
#define STB_D(x) stb__double_constant(__FILE__, __LINE__-1, (x))
#define STB_I(x) stb__int_constant(__FILE__, __LINE__-1, (x))
#define STB_S(x) stb__string_constant(__FILE__, __LINE__-1, (x))
STB_EXTERN double stb__double_constant(char *file, int line, double x);
STB_EXTERN int stb__int_constant(char *file, int line, int x);
STB_EXTERN char * stb__string_constant(char *file, int line, char *str);
#ifdef STB_DEFINE
enum
{
STB__CTYPE_int,
STB__CTYPE_uint,
STB__CTYPE_float,
STB__CTYPE_double,
STB__CTYPE_string,
};
typedef struct
{
int line;
int type;
union {
int ival;
double dval;
char *sval;
};
} stb__Entry;
typedef struct
{
stb__Entry *entries;
char *filename;
time_t timestamp;
char **file_data;
int file_len;
unsigned short *line_index;
} stb__FileEntry;
static void stb__constant_parse(stb__FileEntry *f, int i)
{
char *s;
int n;
if (!stb_arr_valid(f->entries, i)) return;
n = f->entries[i].line;
if (n >= f->file_len) return;
s = f->file_data[n];
switch (f->entries[i].type) {
case STB__CTYPE_float:
while (*s) {
if (!strncmp(s, "STB_D(", 6)) { s+=6; goto matched_float; }
if (!strncmp(s, "STB_F(", 6)) { s+=6; goto matched_float; }
if (!strncmp(s, "KD(", 3)) { s+=3; goto matched_float; }
if (!strncmp(s, "KF(", 3)) { s+=3; goto matched_float; }
++s;
}
break;
matched_float:
f->entries[i].dval = strtod(s, NULL);
break;
case STB__CTYPE_int:
while (*s) {
if (!strncmp(s, "STB_I(", 6)) { s+=6; goto matched_int; }
if (!strncmp(s, "STB_UI(", 7)) { s+=7; goto matched_int; }
if (!strncmp(s, "KI(", 3)) { s+=3; goto matched_int; }
if (!strncmp(s, "KU(", 3)) { s+=3; goto matched_int; }
++s;
}
break;
matched_int: {
int neg=0;
s = stb_skipwhite(s);
while (*s == '-') { neg = !neg; s = stb_skipwhite(s+1); } // handle '- - 5', pointlessly
if (s[0] == '0' && tolower(s[1]) == 'x')
f->entries[i].ival = strtol(s, NULL, 16);
else if (s[0] == '0')
f->entries[i].ival = strtol(s, NULL, 8);
else
f->entries[i].ival = strtol(s, NULL, 10);
if (neg) f->entries[i].ival = -f->entries[i].ival;
break;
}
case STB__CTYPE_string:
// @TODO
break;
}
}
static stb_sdict *stb__constant_file_hash;
stb__Entry *stb__constant_get_entry(char *filename, int line, int type)
{
int i;
stb__FileEntry *f;
if (stb__constant_file_hash == NULL)
stb__constant_file_hash = stb_sdict_new(STB_TRUE);
f = (stb__FileEntry*) stb_sdict_get(stb__constant_file_hash, filename);
if (f == NULL) {
char *s = stb__get_sourcefile_path(filename);
if (s == NULL || !stb_fexists(s)) return 0;
f = (stb__FileEntry *) malloc(sizeof(*f));
f->timestamp = stb_ftimestamp(s);
f->file_data = stb_stringfile(s, &f->file_len);
f->filename = strdup(s); // cache the full path
f->entries = NULL;
f->line_index = 0;
stb_arr_setlen(f->line_index, f->file_len);
memset(f->line_index, 0xff, stb_arr_storage(f->line_index));
} else {
time_t t = stb_ftimestamp(f->filename);
if (f->timestamp != t) {
f->timestamp = t;
free(f->file_data);
f->file_data = stb_stringfile(f->filename, &f->file_len);
stb_arr_setlen(f->line_index, f->file_len);
for (i=0; i < stb_arr_len(f->entries); ++i)
stb__constant_parse(f, i);
}
}
if (line >= f->file_len) return 0;
if (f->line_index[line] >= stb_arr_len(f->entries)) {
// need a new entry
int n = stb_arr_len(f->entries);
stb__Entry e;
e.line = line;
if (line < f->file_len)
f->line_index[line] = n;
e.type = type;
stb_arr_push(f->entries, e);
stb__constant_parse(f, n);
}
return f->entries + f->line_index[line];
}
double stb__double_constant(char *file, int line, double x)
{
stb__Entry *e = stb__constant_get_entry(file, line, STB__CTYPE_float);
if (!e) return x;
return e->dval;
}
int stb__int_constant(char *file, int line, int x)
{
stb__Entry *e = stb__constant_get_entry(file, line, STB__CTYPE_int);
if (!e) return x;
return e->ival;
}
char * stb__string_constant(char *file, int line, char *x)
{
stb__Entry *e = stb__constant_get_entry(file, line, STB__CTYPE_string);
if (!e) return x;
return e->sval;
}
#endif // STB_DEFINE
#endif // !STB_DEBUG && !STB_ALWAYS_H
#ifdef STB_STUA
//////////////////////////////////////////////////////////////////////////
//
// stua: little scripting language
//
// define STB_STUA to compile it
//
// see http://nothings.org/stb/stb_stua.html for documentation
//
// basic parsing model:
//
// lexical analysis
// use stb_lex() to parse tokens; keywords get their own tokens
//
// parsing:
// recursive descent parser. too much of a hassle to make an unambiguous
// LR(1) grammar, and one-pass generation is clumsier (recursive descent
// makes it easier to e.g. compile nested functions). on the other hand,
// dictionary syntax required hackery to get extra lookahead.
//
// codegen:
// output into an evaluation tree, using array indices as 'pointers'
//
// run:
// traverse the tree; support for 'break/continue/return' is tricky
//
// garbage collection:
// stu__mark and sweep; explicit stack with non-stu__compile_global_scope roots
typedef stb_int32 stua_obj;
typedef stb_idict stua_dict;
STB_EXTERN void stua_run_script(char *s);
STB_EXTERN void stua_uninit(void);
extern stua_obj stua_globals;
STB_EXTERN double stua_number(stua_obj z);
STB_EXTERN stua_obj stua_getnil(void);
STB_EXTERN stua_obj stua_getfalse(void);
STB_EXTERN stua_obj stua_gettrue(void);
STB_EXTERN stua_obj stua_string(char *z);
STB_EXTERN stua_obj stua_make_number(double d);
STB_EXTERN stua_obj stua_box(int type, void *data, int size);
enum
{
STUA_op_negate=129,
STUA_op_shl, STUA_op_ge,
STUA_op_shr, STUA_op_le,
STUA_op_shru,
STUA_op_last
};
#define STUA_NO_VALUE 2 // equivalent to a tagged NULL
STB_EXTERN stua_obj (*stua_overload)(int op, stua_obj a, stua_obj b, stua_obj c);
STB_EXTERN stua_obj stua_error(char *err, ...);
STB_EXTERN stua_obj stua_pushroot(stua_obj o);
STB_EXTERN void stua_poproot ( void );
#ifdef STB_DEFINE
// INTERPRETER
// 31-bit floating point implementation
// force the (1 << 30) bit (2nd highest bit) to be zero by re-biasing the exponent;
// then shift and set the bottom bit
static stua_obj stu__floatp(float *f)
{
unsigned int n = *(unsigned int *) f;
unsigned int e = n & (0xff << 23);
assert(sizeof(int) == 4 && sizeof(float) == 4);
if (!e) // zero?
n = n; // no change
else if (e < (64 << 23)) // underflow of the packed encoding?
n = (n & 0x80000000); // signed 0
else if (e > (190 << 23)) // overflow of the encoding? (or INF or NAN)
n = (n & 0x80000000) + (127 << 23); // new INF encoding
else
n -= 0x20000000;
// now we need to shuffle the bits so that the spare bit is at the bottom
assert((n & 0x40000000) == 0);
return (n & 0x80000000) + (n << 1) + 1;
}
static unsigned char stu__getfloat_addend[256];
static float stu__getfloat(stua_obj v)
{
unsigned int n;
unsigned int e = ((unsigned int) v) >> 24;
n = (int) v >> 1; // preserve high bit
n += stu__getfloat_addend[e] << 24;
return *(float *) &n;
}
stua_obj stua_float(float f)
{
return stu__floatp(&f);
}
static void stu__float_init(void)
{
int i;
stu__getfloat_addend[0] = 0; // do nothing to biased exponent of 0
for (i=1; i < 127; ++i)
stu__getfloat_addend[i] = 32; // undo the -0x20000000
stu__getfloat_addend[127] = 64; // convert packed INF to INF (0x3f -> 0x7f)
for (i=0; i < 128; ++i) // for signed floats, remove the bit we just shifted down
stu__getfloat_addend[128+i] = stu__getfloat_addend[i] - 64;
}
// Tagged data type implementation
// TAGS:
#define stu__int_tag 0 // of 2 bits // 00 int
#define stu__float_tag 1 // of 1 bit // 01 float
#define stu__ptr_tag 2 // of 2 bits // 10 boxed
// 11 float
#define stu__tag(x) ((x) & 3)
#define stu__number(x) (stu__tag(x) != stu__ptr_tag)
#define stu__isint(x) (stu__tag(x) == stu__int_tag)
#define stu__int(x) ((x) >> 2)
#define stu__float(x) (stu__getfloat(x))
#define stu__makeint(v) ((v)*4+stu__int_tag)
// boxed data, and tag support for boxed data
enum
{
STU___float = 1, STU___int = 2,
STU___number = 3, STU___string = 4,
STU___function = 5, STU___dict = 6,
STU___boolean = 7, STU___error = 8,
};
// boxed data
#define STU__BOX short type, stua_gc
typedef struct stu__box { STU__BOX; } stu__box;
stu__box stu__nil = { 0, 1 };
stu__box stu__true = { STU___boolean, 1, };
stu__box stu__false = { STU___boolean, 1, };
#define stu__makeptr(v) ((stua_obj) (v) + stu__ptr_tag)
#define stua_nil stu__makeptr(&stu__nil)
#define stua_true stu__makeptr(&stu__true)
#define stua_false stu__makeptr(&stu__false)
stua_obj stua_getnil(void) { return stua_nil; }
stua_obj stua_getfalse(void) { return stua_false; }
stua_obj stua_gettrue(void) { return stua_true; }
#define stu__ptr(x) ((stu__box *) ((x) - stu__ptr_tag))
#define stu__checkt(t,x) ((t) == STU___float ? ((x) & 1) == stu__float_tag : \
(t) == STU___int ? stu__isint(x) : \
(t) == STU___number ? stu__number(x) : \
stu__tag(x) == stu__ptr_tag && stu__ptr(x)->type == (t))
typedef struct
{
STU__BOX;
void *ptr;
} stu__wrapper;
// implementation of a 'function' or function + closure
typedef struct stu__func
{
STU__BOX;
stua_obj closure_source; // 0 - regular function; 4 - C function
// if closure, pointer to source function
union {
stua_obj closure_data; // partial-application data
void *store; // pointer to free that holds 'code'
stua_obj (*func)(stua_dict *context);
} f;
// closure ends here
short *code;
int num_param;
stua_obj *param; // list of parameter strings
} stu__func;
// apply this to 'short *code' to get at data
#define stu__const(f) ((stua_obj *) (f))
static void stu__free_func(stu__func *f)
{
if (f->closure_source == 0) free(f->f.store);
if ((stb_uint) f->closure_source <= 4) free(f->param);
free(f);
}
#define stu__pd(x) ((stua_dict *) stu__ptr(x))
#define stu__pw(x) ((stu__wrapper *) stu__ptr(x))
#define stu__pf(x) ((stu__func *) stu__ptr(x))
// garbage-collection
static stu__box ** stu__gc_ptrlist;
static stua_obj * stu__gc_root_stack;
stua_obj stua_pushroot(stua_obj o) { stb_arr_push(stu__gc_root_stack, o); return o; }
void stua_poproot ( void ) { stb_arr_pop(stu__gc_root_stack); }
static stb_sdict *stu__strings;
static void stu__mark(stua_obj z)
{
int i;
stu__box *p = stu__ptr(z);
if (p->stua_gc == 1) return; // already marked
assert(p->stua_gc == 0);
p->stua_gc = 1;
switch(p->type) {
case STU___function: {
stu__func *f = (stu__func *) p;
if ((stb_uint) f->closure_source <= 4) {
if (f->closure_source == 0) {
for (i=1; i <= f->code[0]; ++i)
if (!stu__number(((stua_obj *) f->code)[-i]))
stu__mark(((stua_obj *) f->code)[-i]);
}
for (i=0; i < f->num_param; ++i)
stu__mark(f->param[i]);
} else {
stu__mark(f->closure_source);
stu__mark(f->f.closure_data);
}
break;
}
case STU___dict: {
stua_dict *e = (stua_dict *) p;
for (i=0; i < e->limit; ++i)
if (e->table[i].k != STB_IEMPTY && e->table[i].k != STB_IDEL) {
if (!stu__number(e->table[i].k)) stu__mark((int) e->table[i].k);
if (!stu__number(e->table[i].v)) stu__mark((int) e->table[i].v);
}
break;
}
}
}
static int stu__num_allocs, stu__size_allocs;
static stua_obj stu__flow_val = stua_nil; // used for break & return
static void stua_gc(int force)
{
int i;
if (!force && stu__num_allocs == 0 && stu__size_allocs == 0) return;
stu__num_allocs = stu__size_allocs = 0;
//printf("[gc]\n");
// clear marks
for (i=0; i < stb_arr_len(stu__gc_ptrlist); ++i)
stu__gc_ptrlist[i]->stua_gc = 0;
// stu__mark everything reachable
stu__nil.stua_gc = stu__true.stua_gc = stu__false.stua_gc = 1;
stu__mark(stua_globals);
if (!stu__number(stu__flow_val))
stu__mark(stu__flow_val);
for (i=0; i < stb_arr_len(stu__gc_root_stack); ++i)
if (!stu__number(stu__gc_root_stack[i]))
stu__mark(stu__gc_root_stack[i]);
// sweep unreachables
for (i=0; i < stb_arr_len(stu__gc_ptrlist);) {
stu__box *z = stu__gc_ptrlist[i];
if (!z->stua_gc) {
switch (z->type) {
case STU___dict: stb_idict_destroy((stua_dict *) z); break;
case STU___error: free(((stu__wrapper *) z)->ptr); break;
case STU___string: stb_sdict_remove(stu__strings, (char*) ((stu__wrapper *) z)->ptr, NULL); free(z); break;
case STU___function: stu__free_func((stu__func *) z); break;
}
// swap in the last item over this, and repeat
z = stb_arr_pop(stu__gc_ptrlist);
stu__gc_ptrlist[i] = z;
} else
++i;
}
}
static void stu__consider_gc(stua_obj x)
{
if (stu__size_allocs < 100000) return;
if (stu__num_allocs < 10 && stu__size_allocs < 1000000) return;
stb_arr_push(stu__gc_root_stack, x);
stua_gc(0);
stb_arr_pop(stu__gc_root_stack);
}
static stua_obj stu__makeobj(int type, void *data, int size, int safe_to_gc)
{
stua_obj x = stu__makeptr(data);
((stu__box *) data)->type = type;
stb_arr_push(stu__gc_ptrlist, (stu__box *) data);
stu__num_allocs += 1;
stu__size_allocs += size;
if (safe_to_gc) stu__consider_gc(x);
return x;
}
stua_obj stua_box(int type, void *data, int size)
{
stu__wrapper *p = (stu__wrapper *) malloc(sizeof(*p));
p->ptr = data;
return stu__makeobj(type, p, size, 0);
}
// a stu string can be directly compared for equality, because
// they go into a hash table
stua_obj stua_string(char *z)
{
stu__wrapper *b = (stu__wrapper *) stb_sdict_get(stu__strings, z);
if (b == NULL) {
int o = stua_box(STU___string, NULL, strlen(z) + sizeof(*b));
b = stu__pw(o);
stb_sdict_add(stu__strings, z, b);
stb_sdict_getkey(stu__strings, z, (char **) &b->ptr);
}
return stu__makeptr(b);
}
// stb_obj dictionary is just an stb_idict
static void stu__set(stua_dict *d, stua_obj k, stua_obj v)
{ if (stb_idict_set(d, k, v)) stu__size_allocs += 8; }
static stua_obj stu__get(stua_dict *d, stua_obj k, stua_obj res)
{
stb_idict_get_flag(d, k, &res);
return res;
}
static stua_obj make_string(char *z, int len)
{
stua_obj s;
char temp[256], *q = (char *) stb_temp(temp, len+1), *p = q;
while (len > 0) {
if (*z == '\\') {
if (z[1] == 'n') *p = '\n';
else if (z[1] == 'r') *p = '\r';
else if (z[1] == 't') *p = '\t';
else *p = z[1];
p += 1; z += 2; len -= 2;
} else {
*p++ = *z++; len -= 1;
}
}
*p = 0;
s = stua_string(q);
stb_tempfree(temp, q);
return s;
}
enum token_names
{
T__none=128,
ST_shl = STUA_op_shl, ST_ge = STUA_op_ge,
ST_shr = STUA_op_shr, ST_le = STUA_op_le,
ST_shru = STUA_op_shru, STU__negate = STUA_op_negate,
ST__reset_numbering = STUA_op_last,
ST_white,
ST_id, ST_float, ST_decimal, ST_hex, ST_char,ST_string, ST_number,
// make sure the keywords come _AFTER_ ST_id, so stb_lex prefer them
ST_if, ST_while, ST_for, ST_eq, ST_nil,
ST_then, ST_do, ST_in, ST_ne, ST_true,
ST_else, ST_break, ST_let, ST_and, ST_false,
ST_elseif, ST_continue, ST_into, ST_or, ST_repeat,
ST_end, ST_as, ST_return, ST_var, ST_func,
ST_catch, ST__frame,
ST__max_terminals,
STU__defaultparm, STU__seq,
};
static stua_dict * stu__globaldict;
stua_obj stua_globals;
static enum
{
FLOW_normal, FLOW_continue, FLOW_break, FLOW_return, FLOW_error,
} stu__flow;
stua_obj stua_error(char *z, ...)
{
stua_obj a;
char temp[4096], *x;
va_list v; va_start(v,z); vsprintf(temp, z, v); va_end(v);
x = strdup(temp);
a = stua_box(STU___error, x, strlen(x));
stu__flow = FLOW_error;
stu__flow_val = a;
return stua_nil;
}
double stua_number(stua_obj z)
{
return stu__tag(z) == stu__int_tag ? stu__int(z) : stu__float(z);
}
stua_obj stua_make_number(double d)
{
double e = floor(d);
if (e == d && e < (1 << 29) && e >= -(1 << 29))
return stu__makeint((int) e);
else
return stua_float((float) d);
}
stua_obj (*stua_overload)(int op, stua_obj a, stua_obj b, stua_obj c) = NULL;
static stua_obj stu__op(int op, stua_obj a, stua_obj b, stua_obj c)
{
stua_obj r = STUA_NO_VALUE;
if (op == '+') {
if (stu__checkt(STU___string, a) && stu__checkt(STU___string, b)) {
;// @TODO: string concatenation
} else if (stu__checkt(STU___function, a) && stu__checkt(STU___dict, b)) {
stu__func *f = (stu__func *) malloc(12);
assert(offsetof(stu__func, code)==12);
f->closure_source = a;
f->f.closure_data = b;
return stu__makeobj(STU___function, f, 16, 1);
}
}
if (stua_overload) r = stua_overload(op,a,b,c);
if (stu__flow != FLOW_error && r == STUA_NO_VALUE)
stua_error("Typecheck for operator %d", op), r=stua_nil;
return r;
}
#define STU__EVAL2(a,b) \
a = stu__eval(stu__f[n+1]); if (stu__flow) break; stua_pushroot(a); \
b = stu__eval(stu__f[n+2]); stua_poproot(); if (stu__flow) break;
#define STU__FB(op) \
STU__EVAL2(a,b) \
if (stu__tag(a) == stu__int_tag && stu__tag(b) == stu__int_tag) \
return ((a) op (b)); \
if (stu__number(a) && stu__number(b)) \
return stua_make_number(stua_number(a) op stua_number(b)); \
return stu__op(stu__f[n], a,b, stua_nil)
#define STU__F(op) \
STU__EVAL2(a,b) \
if (stu__number(a) && stu__number(b)) \
return stua_make_number(stua_number(a) op stua_number(b)); \
return stu__op(stu__f[n], a,b, stua_nil)
#define STU__I(op) \
STU__EVAL2(a,b) \
if (stu__tag(a) == stu__int_tag && stu__tag(b) == stu__int_tag) \
return stu__makeint(stu__int(a) op stu__int(b)); \
return stu__op(stu__f[n], a,b, stua_nil)
#define STU__C(op) \
STU__EVAL2(a,b) \
if (stu__number(a) && stu__number(b)) \
return (stua_number(a) op stua_number(b)) ? stua_true : stua_false; \
return stu__op(stu__f[n], a,b, stua_nil)
#define STU__CE(op) \
STU__EVAL2(a,b) \
return (a op b) ? stua_true : stua_false
static short *stu__f;
static stua_obj stu__f_obj;
static stua_dict *stu__c;
static stua_obj stu__funceval(stua_obj fo, stua_obj co);
static int stu__cond(stua_obj x)
{
if (stu__flow) return 0;
if (!stu__checkt(STU___boolean, x))
x = stu__op('!', x, stua_nil, stua_nil);
if (x == stua_true ) return 1;
if (x == stua_false) return 0;
stu__flow = FLOW_error;
return 0;
}
// had to manually eliminate tailcall recursion for debugging complex stuff
#define TAILCALL(x) n = (x); goto top;
static stua_obj stu__eval(int n)
{
top:
if (stu__flow >= FLOW_return) return stua_nil; // is this needed?
if (n < 0) return stu__const(stu__f)[n];
assert(n != 0 && n != 1);
switch (stu__f[n]) {
stua_obj a,b,c;
case ST_catch: a = stu__eval(stu__f[n+1]);
if (stu__flow == FLOW_error) { a=stu__flow_val; stu__flow = FLOW_normal; }
return a;
case ST_var: b = stu__eval(stu__f[n+2]); if (stu__flow) break;
stu__set(stu__c, stu__const(stu__f)[stu__f[n+1]], b);
return b;
case STU__seq: stu__eval(stu__f[n+1]); if (stu__flow) break;
TAILCALL(stu__f[n+2]);
case ST_if: if (!stu__cond(stu__eval(stu__f[n+1]))) return stua_nil;
TAILCALL(stu__f[n+2]);
case ST_else: a = stu__cond(stu__eval(stu__f[n+1]));
TAILCALL(stu__f[n + 2 + !a]);
#define STU__HANDLE_BREAK \
if (stu__flow >= FLOW_break) { \
if (stu__flow == FLOW_break) { \
a = stu__flow_val; \
stu__flow = FLOW_normal; \
stu__flow_val = stua_nil; \
return a; \
} \
return stua_nil; \
}
case ST_as: stu__eval(stu__f[n+3]);
STU__HANDLE_BREAK
// fallthrough!
case ST_while: a = stua_nil; stua_pushroot(a);
while (stu__cond(stu__eval(stu__f[n+1]))) {
stua_poproot();
a = stu__eval(stu__f[n+2]);
STU__HANDLE_BREAK
stu__flow = FLOW_normal; // clear 'continue' flag
stua_pushroot(a);
if (stu__f[n+3]) stu__eval(stu__f[n+3]);
STU__HANDLE_BREAK
stu__flow = FLOW_normal; // clear 'continue' flag
}
stua_poproot();
return a;
case ST_break: stu__flow = FLOW_break; stu__flow_val = stu__eval(stu__f[n+1]); break;
case ST_continue:stu__flow = FLOW_continue; break;
case ST_return: stu__flow = FLOW_return; stu__flow_val = stu__eval(stu__f[n+1]); break;
case ST__frame: return stu__f_obj;
case '[': STU__EVAL2(a,b);
if (stu__checkt(STU___dict, a))
return stu__get(stu__pd(a), b, stua_nil);
return stu__op(stu__f[n], a, b, stua_nil);
case '=': a = stu__eval(stu__f[n+2]); if (stu__flow) break;
n = stu__f[n+1];
if (stu__f[n] == ST_id) {
if (!stb_idict_update(stu__c, stu__const(stu__f)[stu__f[n+1]], a))
if (!stb_idict_update(stu__globaldict, stu__const(stu__f)[stu__f[n+1]], a))
return stua_error("Assignment to undefined variable");
} else if (stu__f[n] == '[') {
stua_pushroot(a);
b = stu__eval(stu__f[n+1]); if (stu__flow) { stua_poproot(); break; }
stua_pushroot(b);
c = stu__eval(stu__f[n+2]); stua_poproot(); stua_poproot();
if (stu__flow) break;
if (!stu__checkt(STU___dict, b)) return stua_nil;
stu__set(stu__pd(b), c, a);
} else {
return stu__op(stu__f[n], stu__eval(n), a, stua_nil);
}
return a;
case STU__defaultparm:
a = stu__eval(stu__f[n+2]);
stu__flow = FLOW_normal;
if (stb_idict_add(stu__c, stu__const(stu__f)[stu__f[n+1]], a))
stu__size_allocs += 8;
return stua_nil;
case ST_id: a = stu__get(stu__c, stu__const(stu__f)[stu__f[n+1]], STUA_NO_VALUE); // try local variable
return a != STUA_NO_VALUE // else try stu__compile_global_scope variable
? a : stu__get(stu__globaldict, stu__const(stu__f)[stu__f[n+1]], stua_nil);
case STU__negate:a = stu__eval(stu__f[n+1]); if (stu__flow) break;
return stu__isint(a) ? -a : stu__op(stu__f[n], a, stua_nil, stua_nil);
case '~': a = stu__eval(stu__f[n+1]); if (stu__flow) break;
return stu__isint(a) ? (~a)&~3 : stu__op(stu__f[n], a, stua_nil, stua_nil);
case '!': a = stu__eval(stu__f[n+1]); if (stu__flow) break;
a = stu__cond(a); if (stu__flow) break;
return a ? stua_true : stua_false;
case ST_eq: STU__CE(==); case ST_le: STU__C(<=); case '<': STU__C(<);
case ST_ne: STU__CE(!=); case ST_ge: STU__C(>=); case '>': STU__C(>);
case '+' : STU__FB(+); case '*': STU__F(*); case '&': STU__I(&); case ST_shl: STU__I(<<);
case '-' : STU__FB(-); case '/': STU__F(/); case '|': STU__I(|); case ST_shr: STU__I(>>);
case '%': STU__I(%); case '^': STU__I(^);
case ST_shru: STU__EVAL2(a,b);
if (stu__tag(a) == stu__int_tag && stu__tag(b) == stu__int_tag)
return stu__makeint((unsigned) stu__int(a) >> stu__int(b));
return stu__op(stu__f[n], a,b, stua_nil);
case ST_and: a = stu__eval(stu__f[n+1]); b = stu__cond(a); if (stu__flow) break;
return a ? stu__eval(stu__f[n+2]) : a;
case ST_or : a = stu__eval(stu__f[n+1]); b = stu__cond(a); if (stu__flow) break;
return a ? b : stu__eval(stu__f[n+2]);
case'(':case':': STU__EVAL2(a,b);
if (!stu__checkt(STU___function, a))
return stu__op(stu__f[n], a,b, stua_nil);
if (!stu__checkt(STU___dict, b))
return stua_nil;
if (stu__f[n] == ':')
b = stu__makeobj(STU___dict, stb_idict_copy(stu__pd(b)), stb_idict_memory_usage(stu__pd(b)), 0);
a = stu__funceval(a,b);
return a;
case '{' : {
stua_dict *d;
d = stb_idict_new_size(stu__f[n+1] > 40 ? 64 : 16);
if (d == NULL)
return stua_nil; // breakpoint fodder
c = stu__makeobj(STU___dict, d, 32, 1);
stua_pushroot(c);
a = stu__f[n+1];
for (b=0; b < a; ++b) {
stua_obj x = stua_pushroot(stu__eval(stu__f[n+2 + b*2 + 0]));
stua_obj y = stu__eval(stu__f[n+2 + b*2 + 1]);
stua_poproot();
if (stu__flow) { stua_poproot(); return stua_nil; }
stu__set(d, x, y);
}
stua_poproot();
return c;
}
default: if (stu__f[n] < 0) return stu__const(stu__f)[stu__f[n]];
assert(0); /* NOTREACHED */ // internal error!
}
return stua_nil;
}
int stb__stua_nesting;
static stua_obj stu__funceval(stua_obj fo, stua_obj co)
{
stu__func *f = stu__pf(fo);
stua_dict *context = stu__pd(co);
int i,j;
stua_obj p;
short *tf = stu__f; // save previous function
stua_dict *tc = stu__c;
if (stu__flow == FLOW_error) return stua_nil;
assert(stu__flow == FLOW_normal);
stua_pushroot(fo);
stua_pushroot(co);
stu__consider_gc(stua_nil);
while ((stb_uint) f->closure_source > 4) {
// add data from closure to context
stua_dict *e = (stua_dict *) stu__pd(f->f.closure_data);
for (i=0; i < e->limit; ++i)
if (e->table[i].k != STB_IEMPTY && e->table[i].k != STB_IDEL)
if (stb_idict_add(context, e->table[i].k, e->table[i].v))
stu__size_allocs += 8;
// use add so if it's already defined, we don't override it; that way
// explicit parameters win over applied ones, and most recent applications
// win over previous ones
f = stu__pf(f->closure_source);
}
for (j=0, i=0; i < f->num_param; ++i)
// if it doesn't already exist, add it from the numbered parameters
if (stb_idict_add(context, f->param[i], stu__get(context, stu__int(j), stua_nil)))
++j;
// @TODO: if (stu__get(context, stu__int(f->num_param+1)) != STUA_NO_VALUE) // error: too many parameters
// @TODO: ditto too few parameters
if (f->closure_source == 4)
p = f->f.func(context);
else {
stu__f = f->code, stu__c = context;
stu__f_obj = co;
++stb__stua_nesting;
if (stu__f[1])
p = stu__eval(stu__f[1]);
else
p = stua_nil;
--stb__stua_nesting;
stu__f = tf, stu__c = tc; // restore previous function
if (stu__flow == FLOW_return) {
stu__flow = FLOW_normal;
p = stu__flow_val;
stu__flow_val = stua_nil;
}
}
stua_poproot();
stua_poproot();
return p;
}
// Parser
static int stu__tok;
static stua_obj stu__tokval;
static char *stu__curbuf, *stu__bufstart;
static stb_matcher *stu__lex_matcher;
static unsigned char stu__prec[ST__max_terminals], stu__end[ST__max_terminals];
static void stu__nexttoken(void)
{
int len;
retry:
stu__tok = stb_lex(stu__lex_matcher, stu__curbuf, &len);
if (stu__tok == 0)
return;
switch(stu__tok) {
case ST_white : stu__curbuf += len; goto retry;
case T__none : stu__tok = *stu__curbuf; break;
case ST_string: stu__tokval = make_string(stu__curbuf+1, len-2); break;
case ST_id : stu__tokval = make_string(stu__curbuf, len); break;
case ST_hex : stu__tokval = stu__makeint(strtol(stu__curbuf+2,NULL,16)); stu__tok = ST_number; break;
case ST_decimal: stu__tokval = stu__makeint(strtol(stu__curbuf ,NULL,10)); stu__tok = ST_number; break;
case ST_float : stu__tokval = stua_float((float) atof(stu__curbuf)) ; stu__tok = ST_number; break;
case ST_char : stu__tokval = stu__curbuf[2] == '\\' ? stu__curbuf[3] : stu__curbuf[2];
if (stu__curbuf[3] == 't') stu__tokval = '\t';
if (stu__curbuf[3] == 'n') stu__tokval = '\n';
if (stu__curbuf[3] == 'r') stu__tokval = '\r';
stu__tokval = stu__makeint(stu__tokval);
stu__tok = ST_number;
break;
}
stu__curbuf += len;
}
static struct { int stu__tok; char *regex; } stu__lexemes[] =
{
ST_white , "([ \t\n\r]|/\\*(.|\n)*\\*/|//[^\r\n]*([\r\n]|$))+",
ST_id , "[_a-zA-Z][_a-zA-Z0-9]*",
ST_hex , "0x[0-9a-fA-F]+",
ST_decimal, "[0-9]+[0-9]*",
ST_float , "[0-9]+\\.?[0-9]*([eE][-+]?[0-9]+)?",
ST_float , "\\.[0-9]+([eE][-+]?[0-9]+)?",
ST_char , "c'(\\\\.|[^\\'])'",
ST_string , "\"(\\\\.|[^\\\"\n\r])*\"",
ST_string , "\'(\\\\.|[^\\\'\n\r])*\'",
#define stua_key4(a,b,c,d) ST_##a, #a, ST_##b, #b, ST_##c, #c, ST_##d, #d,
stua_key4(if,then,else,elseif) stua_key4(while,do,for,in)
stua_key4(func,var,let,break) stua_key4(nil,true,false,end)
stua_key4(return,continue,as,repeat) stua_key4(_frame,catch,catch,catch)
ST_shl, "<<", ST_and, "&&", ST_eq, "==", ST_ge, ">=",
ST_shr, ">>", ST_or , "||", ST_ne, "!=", ST_le, "<=",
ST_shru,">>>", ST_into, "=>",
T__none, ".",
};
typedef struct
{
stua_obj *data; // constants being compiled
short *code; // code being compiled
stua_dict *locals;
short *non_local_refs;
} stu__comp_func;
static stu__comp_func stu__pfunc;
static stu__comp_func *func_stack = NULL;
static void stu__push_func_comp(void)
{
stb_arr_push(func_stack, stu__pfunc);
stu__pfunc.data = NULL;
stu__pfunc.code = NULL;
stu__pfunc.locals = stb_idict_new_size(16);
stu__pfunc.non_local_refs = NULL;
stb_arr_push(stu__pfunc.code, 0); // number of data items
stb_arr_push(stu__pfunc.code, 1); // starting execution address
}
static void stu__pop_func_comp(void)
{
stb_arr_free(stu__pfunc.code);
stb_arr_free(stu__pfunc.data);
stb_idict_destroy(stu__pfunc.locals);
stb_arr_free(stu__pfunc.non_local_refs);
stu__pfunc = stb_arr_pop(func_stack);
}
// if an id is a reference to an outer lexical scope, this
// function returns the "name" of it, and updates the stack
// structures to make sure the names are propogated in.
static int stu__nonlocal_id(stua_obj var_obj)
{
stua_obj dummy, var = var_obj;
int i, n = stb_arr_len(func_stack), j,k;
if (stb_idict_get_flag(stu__pfunc.locals, var, &dummy)) return 0;
for (i=n-1; i > 1; --i) {
if (stb_idict_get_flag(func_stack[i].locals, var, &dummy))
break;
}
if (i <= 1) return 0; // stu__compile_global_scope
j = i; // need to access variable from j'th frame
for (i=0; i < stb_arr_len(stu__pfunc.non_local_refs); ++i)
if (stu__pfunc.non_local_refs[i] == j) return j-n;
stb_arr_push(stu__pfunc.non_local_refs, j-n);
// now make sure all the parents propogate it down
for (k=n-1; k > 1; --k) {
if (j-k >= 0) return j-n; // comes direct from this parent
for(i=0; i < stb_arr_len(func_stack[k].non_local_refs); ++i)
if (func_stack[k].non_local_refs[i] == j-k)
return j-n;
stb_arr_push(func_stack[k].non_local_refs, j-k);
}
assert (k != 1);
return j-n;
}
static int stu__off(void) { return stb_arr_len(stu__pfunc.code); }
static void stu__cc(int a)
{
assert(a >= -2000 && a < 5000);
stb_arr_push(stu__pfunc.code, a);
}
static int stu__cc1(int a) { stu__cc(a); return stu__off()-1; }
static int stu__cc2(int a, int b) { stu__cc(a); stu__cc(b); return stu__off()-2; }
static int stu__cc3(int a, int b, int c) {
if (a == '=') assert(c != 0);
stu__cc(a); stu__cc(b); stu__cc(c); return stu__off()-3; }
static int stu__cc4(int a, int b, int c, int d) { stu__cc(a); stu__cc(b); stu__cc(c); stu__cc(d); return stu__off()-4; }
static int stu__cdv(stua_obj p)
{
int i;
assert(p != STUA_NO_VALUE);
for (i=0; i < stb_arr_len(stu__pfunc.data); ++i)
if (stu__pfunc.data[i] == p)
break;
if (i == stb_arr_len(stu__pfunc.data))
stb_arr_push(stu__pfunc.data, p);
return ~i;
}
static int stu__cdt(void)
{
int z = stu__cdv(stu__tokval);
stu__nexttoken();
return z;
}
static int stu__seq(int a, int b)
{
return !a ? b : !b ? a : stu__cc3(STU__seq, a,b);
}
static char stu__comp_err_str[1024];
static int stu__comp_err_line;
static int stu__err(char *str, ...)
{
va_list v;
char *s = stu__bufstart;
stu__comp_err_line = 1;
while (s < stu__curbuf) {
if (s[0] == '\n' || s[0] == '\r') {
if (s[0]+s[1] == '\n' + '\r') ++s;
++stu__comp_err_line;
}
++s;
}
va_start(v, str);
vsprintf(stu__comp_err_str, str, v);
va_end(v);
return 0;
}
static int stu__accept(int p)
{
if (stu__tok != p) return 0;
stu__nexttoken();
return 1;
}
static int stu__demand(int p)
{
if (stu__accept(p)) return 1;
return stu__err("Didn't find expected stu__tok");
}
static int stu__demandv(int p, stua_obj *val)
{
if (stu__tok == p || p==0) {
*val = stu__tokval;
stu__nexttoken();
return 1;
} else
return 0;
}
static int stu__expr(int p);
int stu__nexpr(int p) { stu__nexttoken(); return stu__expr(p); }
static int stu__statements(int once, int as);
static int stu__parse_if(void) // parse both ST_if and ST_elseif
{
int b,c,a;
a = stu__nexpr(1); if (!a) return 0;
if (!stu__demand(ST_then)) return stu__err("expecting THEN");
b = stu__statements(0,0); if (!b) return 0;
if (b == 1) b = -1;
if (stu__tok == ST_elseif) {
return stu__parse_if();
} else if (stu__accept(ST_else)) {
c = stu__statements(0,0); if (!c) return 0;
if (!stu__demand(ST_end)) return stu__err("expecting END after else clause");
return stu__cc4(ST_else, a, b, c);
} else {
if (!stu__demand(ST_end)) return stu__err("expecting END in if statement");
return stu__cc3(ST_if, a, b);
}
}
int stu__varinit(int z, int in_globals)
{
int a,b;
stu__nexttoken();
while (stu__demandv(ST_id, &b)) {
if (!stb_idict_add(stu__pfunc.locals, b, 1))
if (!in_globals) return stu__err("Redefined variable %s.", stu__pw(b)->ptr);
if (stu__accept('=')) {
a = stu__expr(1); if (!a) return 0;
} else
a = stu__cdv(stua_nil);
z = stu__seq(z, stu__cc3(ST_var, stu__cdv(b), a));
if (!stu__accept(',')) break;
}
return z;
}
static int stu__compile_unary(int z, int outparm, int require_inparm)
{
int op = stu__tok, a, b;
stu__nexttoken();
if (outparm) {
if (require_inparm || (stu__tok && stu__tok != ST_end && stu__tok != ST_else && stu__tok != ST_elseif && stu__tok !=';')) {
a = stu__expr(1); if (!a) return 0;
} else
a = stu__cdv(stua_nil);
b = stu__cc2(op, a);
} else
b = stu__cc1(op);
return stu__seq(z,b);
}
static int stu__assign(void)
{
int z;
stu__accept(ST_let);
z = stu__expr(1); if (!z) return 0;
if (stu__accept('=')) {
int y,p = (z >= 0 ? stu__pfunc.code[z] : 0);
if (z < 0 || (p != ST_id && p != '[')) return stu__err("Invalid lvalue in assignment");
y = stu__assign(); if (!y) return 0;
z = stu__cc3('=', z, y);
}
return z;
}
static int stu__statements(int once, int stop_while)
{
int a,b, c, z=0;
for(;;) {
switch (stu__tok) {
case ST_if : a = stu__parse_if(); if (!a) return 0;
z = stu__seq(z, a);
break;
case ST_while : if (stop_while) return (z ? z:1);
a = stu__nexpr(1); if (!a) return 0;
if (stu__accept(ST_as)) c = stu__statements(0,0); else c = 0;
if (!stu__demand(ST_do)) return stu__err("expecting DO");
b = stu__statements(0,0); if (!b) return 0;
if (!stu__demand(ST_end)) return stu__err("expecting END");
if (b == 1) b = -1;
z = stu__seq(z, stu__cc4(ST_while, a, b, c));
break;
case ST_repeat : stu__nexttoken();
c = stu__statements(0,1); if (!c) return 0;
if (!stu__demand(ST_while)) return stu__err("expecting WHILE");
a = stu__expr(1); if (!a) return 0;
if (!stu__demand(ST_do)) return stu__err("expecting DO");
b = stu__statements(0,0); if (!b) return 0;
if (!stu__demand(ST_end)) return stu__err("expecting END");
if (b == 1) b = -1;
z = stu__seq(z, stu__cc4(ST_as, a, b, c));
break;
case ST_catch : a = stu__nexpr(1); if (!a) return 0;
z = stu__seq(z, stu__cc2(ST_catch, a));
break;
case ST_var : z = stu__varinit(z,0); break;
case ST_return : z = stu__compile_unary(z,1,1); break;
case ST_continue:z = stu__compile_unary(z,0,0); break;
case ST_break : z = stu__compile_unary(z,1,0); break;
case ST_into : if (z == 0 && !once) return stu__err("=> cannot be first statement in block");
a = stu__nexpr(99);
b = (a >= 0? stu__pfunc.code[a] : 0);
if (a < 0 || (b != ST_id && b != '[')) return stu__err("Invalid lvalue on right side of =>");
z = stu__cc3('=', a, z);
break;
default : if (stu__end[stu__tok]) return once ? 0 : (z ? z:1);
a = stu__assign(); if (!a) return 0;
stu__accept(';');
if (stu__tok && !stu__end[stu__tok]) {
if (a < 0)
return stu__err("Constant has no effect");
if (stu__pfunc.code[a] != '(' && stu__pfunc.code[a] != '=')
return stu__err("Expression has no effect");
}
z = stu__seq(z, a);
break;
}
if (!z) return 0;
stu__accept(';');
if (once && stu__tok != ST_into) return z;
}
}
static int stu__postexpr(int z, int p);
static int stu__dictdef(int end, int *count)
{
int z,n=0,i,flags=0;
short *dict=NULL;
stu__nexttoken();
while (stu__tok != end) {
if (stu__tok == ST_id) {
stua_obj id = stu__tokval;
stu__nexttoken();
if (stu__tok == '=') {
flags |= 1;
stb_arr_push(dict, stu__cdv(id));
z = stu__nexpr(1); if (!z) return 0;
} else {
z = stu__cc2(ST_id, stu__cdv(id));
z = stu__postexpr(z,1); if (!z) return 0;
flags |= 2;
stb_arr_push(dict, stu__cdv(stu__makeint(n++)));
}
} else {
z = stu__expr(1); if (!z) return 0;
flags |= 2;
stb_arr_push(dict, stu__cdv(stu__makeint(n++)));
}
if (end != ')' && flags == 3) { z=stu__err("can't mix initialized and uninitialized defs"); goto done;}
stb_arr_push(dict, z);
if (!stu__accept(',')) break;
}
if (!stu__demand(end))
return stu__err(end == ')' ? "Expecting ) at end of function call"
: "Expecting } at end of dictionary definition");
z = stu__cc2('{', stb_arr_len(dict)/2);
for (i=0; i < stb_arr_len(dict); ++i)
stu__cc(dict[i]);
if (count) *count = n;
done:
stb_arr_free(dict);
return z;
}
static int stu__comp_id(void)
{
int z,d;
d = stu__nonlocal_id(stu__tokval);
if (d == 0)
return z = stu__cc2(ST_id, stu__cdt());
// access a non-local frame by naming it with the appropriate int
assert(d < 0);
z = stu__cdv(d); // relative frame # is the 'variable' in our local frame
z = stu__cc2(ST_id, z); // now access that dictionary
return stu__cc3('[', z, stu__cdt()); // now access the variable from that dir
}
static stua_obj stu__funcdef(stua_obj *id, stua_obj *func);
static int stu__expr(int p)
{
int z;
// unary
switch (stu__tok) {
case ST_number: z = stu__cdt(); break;
case ST_string: z = stu__cdt(); break; // @TODO - string concatenation like C
case ST_id : z = stu__comp_id(); break;
case ST__frame: z = stu__cc1(ST__frame); stu__nexttoken(); break;
case ST_func : z = stu__funcdef(NULL,NULL); break;
case ST_if : z = stu__parse_if(); break;
case ST_nil : z = stu__cdv(stua_nil); stu__nexttoken(); break;
case ST_true : z = stu__cdv(stua_true); stu__nexttoken(); break;
case ST_false : z = stu__cdv(stua_false); stu__nexttoken(); break;
case '-' : z = stu__nexpr(99); if (z) z=stu__cc2(STU__negate,z); else return z; break;
case '!' : z = stu__nexpr(99); if (z) z=stu__cc2('!',z); else return z; break;
case '~' : z = stu__nexpr(99); if (z) z=stu__cc2('~',z); else return z; break;
case '{' : z = stu__dictdef('}', NULL); break;
default : return stu__err("Unexpected token");
case '(' : stu__nexttoken(); z = stu__statements(0,0); if (!stu__demand(')')) return stu__err("Expecting )");
}
return stu__postexpr(z,p);
}
static int stu__postexpr(int z, int p)
{
int q;
// postfix
while (stu__tok == '(' || stu__tok == '[' || stu__tok == '.') {
if (stu__accept('.')) {
// MUST be followed by a plain identifier! use [] for other stuff
if (stu__tok != ST_id) return stu__err("Must follow . with plain name; try [] instead");
z = stu__cc3('[', z, stu__cdv(stu__tokval));
stu__nexttoken();
} else if (stu__accept('[')) {
while (stu__tok != ']') {
int r = stu__expr(1); if (!r) return 0;
z = stu__cc3('[', z, r);
if (!stu__accept(',')) break;
}
if (!stu__demand(']')) return stu__err("Expecting ]");
} else {
int n, p = stu__dictdef(')', &n); if (!p) return 0;
#if 0 // this is incorrect!
if (z > 0 && stu__pfunc.code[z] == ST_id) {
stua_obj q = stu__get(stu__globaldict, stu__pfunc.data[-stu__pfunc.code[z+1]-1], stua_nil);
if (stu__checkt(STU___function, q))
if ((stu__pf(q))->num_param != n)
return stu__err("Incorrect number of parameters");
}
#endif
z = stu__cc3('(', z, p);
}
}
// binop - this implementation taken from lcc
for (q=stu__prec[stu__tok]; q >= p; --q) {
while (stu__prec[stu__tok] == q) {
int o = stu__tok, y = stu__nexpr(p+1); if (!y) return 0;
z = stu__cc3(o,z,y);
}
}
return z;
}
static stua_obj stu__finish_func(stua_obj *param, int start)
{
int n, size;
stu__func *f = (stu__func *) malloc(sizeof(*f));
f->closure_source = 0;
f->num_param = stb_arr_len(param);
f->param = (int *) stb_copy(param, f->num_param * sizeof(*f->param));
size = stb_arr_storage(stu__pfunc.code) + stb_arr_storage(stu__pfunc.data) + sizeof(*f) + 8;
f->f.store = malloc(stb_arr_storage(stu__pfunc.code) + stb_arr_storage(stu__pfunc.data));
f->code = (short *) ((char *) f->f.store + stb_arr_storage(stu__pfunc.data));
memcpy(f->code, stu__pfunc.code, stb_arr_storage(stu__pfunc.code));
f->code[1] = start;
f->code[0] = stb_arr_len(stu__pfunc.data);
for (n=0; n < f->code[0]; ++n)
((stua_obj *) f->code)[-1-n] = stu__pfunc.data[n];
return stu__makeobj(STU___function, f, size, 0);
}
static int stu__funcdef(stua_obj *id, stua_obj *result)
{
int n,z=0,i,q;
stua_obj *param = NULL;
short *nonlocal;
stua_obj v,f=stua_nil;
assert(stu__tok == ST_func);
stu__nexttoken();
if (id) {
if (!stu__demandv(ST_id, id)) return stu__err("Expecting function name");
} else
stu__accept(ST_id);
if (!stu__demand('(')) return stu__err("Expecting ( for function parameter");
stu__push_func_comp();
while (stu__tok != ')') {
if (!stu__demandv(ST_id, &v)) { z=stu__err("Expecting parameter name"); goto done; }
stb_idict_add(stu__pfunc.locals, v, 1);
if (stu__tok == '=') {
n = stu__nexpr(1); if (!n) { z=0; goto done; }
z = stu__seq(z, stu__cc3(STU__defaultparm, stu__cdv(v), n));
} else
stb_arr_push(param, v);
if (!stu__accept(',')) break;
}
if (!stu__demand(')')) { z=stu__err("Expecting ) at end of parameter list"); goto done; }
n = stu__statements(0,0); if (!n) { z=0; goto done; }
if (!stu__demand(ST_end)) { z=stu__err("Expecting END at end of function"); goto done; }
if (n == 1) n = 0;
n = stu__seq(z,n);
f = stu__finish_func(param, n);
if (result) { *result = f; z=1; stu__pop_func_comp(); }
else {
nonlocal = stu__pfunc.non_local_refs;
stu__pfunc.non_local_refs = NULL;
stu__pop_func_comp();
z = stu__cdv(f);
if (nonlocal) { // build a closure with references to the needed frames
short *initcode = NULL;
for (i=0; i < stb_arr_len(nonlocal); ++i) {
int k = nonlocal[i], p;
stb_arr_push(initcode, stu__cdv(k));
if (k == -1) p = stu__cc1(ST__frame);
else { p = stu__cdv(stu__makeint(k+1)); p = stu__cc2(ST_id, p); }
stb_arr_push(initcode, p);
}
q = stu__cc2('{', stb_arr_len(nonlocal));
for (i=0; i < stb_arr_len(initcode); ++i)
stu__cc(initcode[i]);
z = stu__cc3('+', z, q);
stb_arr_free(initcode);
}
stb_arr_free(nonlocal);
}
done:
stb_arr_free(param);
if (!z) stu__pop_func_comp();
return z;
}
static int stu__compile_global_scope(void)
{
stua_obj o;
int z=0;
stu__push_func_comp();
while (stu__tok != 0) {
if (stu__tok == ST_func) {
stua_obj id, f;
if (!stu__funcdef(&id,&f))
goto error;
stu__set(stu__globaldict, id, f);
} else if (stu__tok == ST_var) {
z = stu__varinit(z,1); if (!z) goto error;
} else {
int y = stu__statements(1,0); if (!y) goto error;
z = stu__seq(z,y);
}
stu__accept(';');
}
o = stu__finish_func(NULL, z);
stu__pop_func_comp();
o = stu__funceval(o, stua_globals); // initialize stu__globaldict
if (stu__flow == FLOW_error)
printf("Error: %s\n", ((stu__wrapper *) stu__ptr(stu__flow_val))->ptr);
return 1;
error:
stu__pop_func_comp();
return 0;
}
stua_obj stu__myprint(stua_dict *context)
{
stua_obj x = stu__get(context, stua_string("x"), stua_nil);
if ((x & 1) == stu__float_tag) printf("%f", stu__getfloat(x));
else if (stu__tag(x) == stu__int_tag) printf("%d", stu__int(x));
else {
stu__wrapper *s = stu__pw(x);
if (s->type == STU___string || s->type == STU___error)
printf("%s", s->ptr);
else if (s->type == STU___dict) printf("{{dictionary}}");
else if (s->type == STU___function) printf("[[function]]");
else
printf("[[ERROR:%s]]", s->ptr);
}
return x;
}
void stua_init(void)
{
if (!stu__globaldict) {
int i;
stua_obj s;
stu__func *f;
stu__prec[ST_and] = stu__prec[ST_or] = 1;
stu__prec[ST_eq ] = stu__prec[ST_ne] = stu__prec[ST_le] =
stu__prec[ST_ge] = stu__prec['>' ] = stu__prec['<'] = 2;
stu__prec[':'] = 3;
stu__prec['&'] = stu__prec['|'] = stu__prec['^'] = 4;
stu__prec['+'] = stu__prec['-'] = 5;
stu__prec['*'] = stu__prec['/'] = stu__prec['%'] =
stu__prec[ST_shl]= stu__prec[ST_shr]= stu__prec[ST_shru]= 6;
stu__end[')'] = stu__end[ST_end] = stu__end[ST_else] = 1;
stu__end[ST_do] = stu__end[ST_elseif] = 1;
stu__float_init();
stu__lex_matcher = stb_lex_matcher();
for (i=0; i < sizeof(stu__lexemes)/sizeof(stu__lexemes[0]); ++i)
stb_lex_item(stu__lex_matcher, stu__lexemes[i].regex, stu__lexemes[i].stu__tok);
stu__globaldict = stb_idict_new_size(64);
stua_globals = stu__makeobj(STU___dict, stu__globaldict, 0,0);
stu__strings = stb_sdict_new(0);
stu__curbuf = stu__bufstart = "func _print(x) end\n"
"func print()\n var x=0 while _frame[x] != nil as x=x+1 do _print(_frame[x]) end end\n";
stu__nexttoken();
if (!stu__compile_global_scope())
printf("Compile error in line %d: %s\n", stu__comp_err_line, stu__comp_err_str);
s = stu__get(stu__globaldict, stua_string("_print"), stua_nil);
if (stu__tag(s) == stu__ptr_tag && stu__ptr(s)->type == STU___function) {
f = stu__pf(s);
free(f->f.store);
f->closure_source = 4;
f->f.func = stu__myprint;
f->code = NULL;
}
}
}
void stua_uninit(void)
{
if (stu__globaldict) {
stb_idict_remove_all(stu__globaldict);
stb_arr_setlen(stu__gc_root_stack, 0);
stua_gc(1);
stb_idict_destroy(stu__globaldict);
stb_sdict_delete(stu__strings);
stb_matcher_free(stu__lex_matcher);
stb_arr_free(stu__gc_ptrlist);
stb_arr_free(func_stack);
stb_arr_free(stu__gc_root_stack);
stu__globaldict = NULL;
}
}
void stua_run_script(char *s)
{
stua_init();
stu__curbuf = stu__bufstart = s;
stu__nexttoken();
stu__flow = FLOW_normal;
if (!stu__compile_global_scope())
printf("Compile error in line %d: %s\n", stu__comp_err_line, stu__comp_err_str);
stua_gc(1);
}
#endif // STB_DEFINE
#endif // STB_STUA
#undef STB_EXTERN
#endif // STB_INCLUDE_STB_H