8c812f98a3
FossilOrigin-Name: 934ee8bdb481a5cbd3d9c5f53028073129d3bca4fee14fe4a49bbf9c0c9d74f7
6786 lines
243 KiB
C
6786 lines
243 KiB
C
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains C code routines that are called by the parser
|
|
** to handle SELECT statements in SQLite.
|
|
*/
|
|
#include "sqliteInt.h"
|
|
|
|
/*
|
|
** Trace output macros
|
|
*/
|
|
#if SELECTTRACE_ENABLED
|
|
/***/ int sqlite3SelectTrace = 0;
|
|
# define SELECTTRACE(K,P,S,X) \
|
|
if(sqlite3SelectTrace&(K)) \
|
|
sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\
|
|
sqlite3DebugPrintf X
|
|
#else
|
|
# define SELECTTRACE(K,P,S,X)
|
|
#endif
|
|
|
|
|
|
/*
|
|
** An instance of the following object is used to record information about
|
|
** how to process the DISTINCT keyword, to simplify passing that information
|
|
** into the selectInnerLoop() routine.
|
|
*/
|
|
typedef struct DistinctCtx DistinctCtx;
|
|
struct DistinctCtx {
|
|
u8 isTnct; /* True if the DISTINCT keyword is present */
|
|
u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
|
|
int tabTnct; /* Ephemeral table used for DISTINCT processing */
|
|
int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
|
|
};
|
|
|
|
/*
|
|
** An instance of the following object is used to record information about
|
|
** the ORDER BY (or GROUP BY) clause of query is being coded.
|
|
**
|
|
** The aDefer[] array is used by the sorter-references optimization. For
|
|
** example, assuming there is no index that can be used for the ORDER BY,
|
|
** for the query:
|
|
**
|
|
** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
|
|
**
|
|
** it may be more efficient to add just the "a" values to the sorter, and
|
|
** retrieve the associated "bigblob" values directly from table t1 as the
|
|
** 10 smallest "a" values are extracted from the sorter.
|
|
**
|
|
** When the sorter-reference optimization is used, there is one entry in the
|
|
** aDefer[] array for each database table that may be read as values are
|
|
** extracted from the sorter.
|
|
*/
|
|
typedef struct SortCtx SortCtx;
|
|
struct SortCtx {
|
|
ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
|
|
int nOBSat; /* Number of ORDER BY terms satisfied by indices */
|
|
int iECursor; /* Cursor number for the sorter */
|
|
int regReturn; /* Register holding block-output return address */
|
|
int labelBkOut; /* Start label for the block-output subroutine */
|
|
int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
|
|
int labelDone; /* Jump here when done, ex: LIMIT reached */
|
|
int labelOBLopt; /* Jump here when sorter is full */
|
|
u8 sortFlags; /* Zero or more SORTFLAG_* bits */
|
|
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
|
|
u8 nDefer; /* Number of valid entries in aDefer[] */
|
|
struct DeferredCsr {
|
|
Table *pTab; /* Table definition */
|
|
int iCsr; /* Cursor number for table */
|
|
int nKey; /* Number of PK columns for table pTab (>=1) */
|
|
} aDefer[4];
|
|
#endif
|
|
struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */
|
|
};
|
|
#define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
|
|
|
|
/*
|
|
** Delete all the content of a Select structure. Deallocate the structure
|
|
** itself depending on the value of bFree
|
|
**
|
|
** If bFree==1, call sqlite3DbFree() on the p object.
|
|
** If bFree==0, Leave the first Select object unfreed
|
|
*/
|
|
static void clearSelect(sqlite3 *db, Select *p, int bFree){
|
|
while( p ){
|
|
Select *pPrior = p->pPrior;
|
|
sqlite3ExprListDelete(db, p->pEList);
|
|
sqlite3SrcListDelete(db, p->pSrc);
|
|
sqlite3ExprDelete(db, p->pWhere);
|
|
sqlite3ExprListDelete(db, p->pGroupBy);
|
|
sqlite3ExprDelete(db, p->pHaving);
|
|
sqlite3ExprListDelete(db, p->pOrderBy);
|
|
sqlite3ExprDelete(db, p->pLimit);
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
|
|
sqlite3WindowListDelete(db, p->pWinDefn);
|
|
}
|
|
assert( p->pWin==0 );
|
|
#endif
|
|
if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
|
|
if( bFree ) sqlite3DbFreeNN(db, p);
|
|
p = pPrior;
|
|
bFree = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Initialize a SelectDest structure.
|
|
*/
|
|
void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
|
|
pDest->eDest = (u8)eDest;
|
|
pDest->iSDParm = iParm;
|
|
pDest->zAffSdst = 0;
|
|
pDest->iSdst = 0;
|
|
pDest->nSdst = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
** Allocate a new Select structure and return a pointer to that
|
|
** structure.
|
|
*/
|
|
Select *sqlite3SelectNew(
|
|
Parse *pParse, /* Parsing context */
|
|
ExprList *pEList, /* which columns to include in the result */
|
|
SrcList *pSrc, /* the FROM clause -- which tables to scan */
|
|
Expr *pWhere, /* the WHERE clause */
|
|
ExprList *pGroupBy, /* the GROUP BY clause */
|
|
Expr *pHaving, /* the HAVING clause */
|
|
ExprList *pOrderBy, /* the ORDER BY clause */
|
|
u32 selFlags, /* Flag parameters, such as SF_Distinct */
|
|
Expr *pLimit /* LIMIT value. NULL means not used */
|
|
){
|
|
Select *pNew;
|
|
Select standin;
|
|
pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
|
|
if( pNew==0 ){
|
|
assert( pParse->db->mallocFailed );
|
|
pNew = &standin;
|
|
}
|
|
if( pEList==0 ){
|
|
pEList = sqlite3ExprListAppend(pParse, 0,
|
|
sqlite3Expr(pParse->db,TK_ASTERISK,0));
|
|
}
|
|
pNew->pEList = pEList;
|
|
pNew->op = TK_SELECT;
|
|
pNew->selFlags = selFlags;
|
|
pNew->iLimit = 0;
|
|
pNew->iOffset = 0;
|
|
pNew->selId = ++pParse->nSelect;
|
|
pNew->addrOpenEphm[0] = -1;
|
|
pNew->addrOpenEphm[1] = -1;
|
|
pNew->nSelectRow = 0;
|
|
if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
|
|
pNew->pSrc = pSrc;
|
|
pNew->pWhere = pWhere;
|
|
pNew->pGroupBy = pGroupBy;
|
|
pNew->pHaving = pHaving;
|
|
pNew->pOrderBy = pOrderBy;
|
|
pNew->pPrior = 0;
|
|
pNew->pNext = 0;
|
|
pNew->pLimit = pLimit;
|
|
pNew->pWith = 0;
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
pNew->pWin = 0;
|
|
pNew->pWinDefn = 0;
|
|
#endif
|
|
if( pParse->db->mallocFailed ) {
|
|
clearSelect(pParse->db, pNew, pNew!=&standin);
|
|
pNew = 0;
|
|
}else{
|
|
assert( pNew->pSrc!=0 || pParse->nErr>0 );
|
|
}
|
|
assert( pNew!=&standin );
|
|
return pNew;
|
|
}
|
|
|
|
|
|
/*
|
|
** Delete the given Select structure and all of its substructures.
|
|
*/
|
|
void sqlite3SelectDelete(sqlite3 *db, Select *p){
|
|
if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
|
|
}
|
|
|
|
/*
|
|
** Delete all the substructure for p, but keep p allocated. Redefine
|
|
** p to be a single SELECT where every column of the result set has a
|
|
** value of NULL.
|
|
*/
|
|
void sqlite3SelectReset(Parse *pParse, Select *p){
|
|
if( ALWAYS(p) ){
|
|
clearSelect(pParse->db, p, 0);
|
|
memset(&p->iLimit, 0, sizeof(Select) - offsetof(Select,iLimit));
|
|
p->pEList = sqlite3ExprListAppend(pParse, 0,
|
|
sqlite3ExprAlloc(pParse->db,TK_NULL,0,0));
|
|
p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(SrcList));
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to the right-most SELECT statement in a compound.
|
|
*/
|
|
static Select *findRightmost(Select *p){
|
|
while( p->pNext ) p = p->pNext;
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
|
|
** type of join. Return an integer constant that expresses that type
|
|
** in terms of the following bit values:
|
|
**
|
|
** JT_INNER
|
|
** JT_CROSS
|
|
** JT_OUTER
|
|
** JT_NATURAL
|
|
** JT_LEFT
|
|
** JT_RIGHT
|
|
**
|
|
** A full outer join is the combination of JT_LEFT and JT_RIGHT.
|
|
**
|
|
** If an illegal or unsupported join type is seen, then still return
|
|
** a join type, but put an error in the pParse structure.
|
|
*/
|
|
int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
|
|
int jointype = 0;
|
|
Token *apAll[3];
|
|
Token *p;
|
|
/* 0123456789 123456789 123456789 123 */
|
|
static const char zKeyText[] = "naturaleftouterightfullinnercross";
|
|
static const struct {
|
|
u8 i; /* Beginning of keyword text in zKeyText[] */
|
|
u8 nChar; /* Length of the keyword in characters */
|
|
u8 code; /* Join type mask */
|
|
} aKeyword[] = {
|
|
/* natural */ { 0, 7, JT_NATURAL },
|
|
/* left */ { 6, 4, JT_LEFT|JT_OUTER },
|
|
/* outer */ { 10, 5, JT_OUTER },
|
|
/* right */ { 14, 5, JT_RIGHT|JT_OUTER },
|
|
/* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
|
|
/* inner */ { 23, 5, JT_INNER },
|
|
/* cross */ { 28, 5, JT_INNER|JT_CROSS },
|
|
};
|
|
int i, j;
|
|
apAll[0] = pA;
|
|
apAll[1] = pB;
|
|
apAll[2] = pC;
|
|
for(i=0; i<3 && apAll[i]; i++){
|
|
p = apAll[i];
|
|
for(j=0; j<ArraySize(aKeyword); j++){
|
|
if( p->n==aKeyword[j].nChar
|
|
&& sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
|
|
jointype |= aKeyword[j].code;
|
|
break;
|
|
}
|
|
}
|
|
testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
|
|
if( j>=ArraySize(aKeyword) ){
|
|
jointype |= JT_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
if(
|
|
(jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
|
|
(jointype & JT_ERROR)!=0
|
|
){
|
|
const char *zSp = " ";
|
|
assert( pB!=0 );
|
|
if( pC==0 ){ zSp++; }
|
|
sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
|
|
"%T %T%s%T", pA, pB, zSp, pC);
|
|
jointype = JT_INNER;
|
|
}else if( (jointype & JT_OUTER)!=0
|
|
&& (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"RIGHT and FULL OUTER JOINs are not currently supported");
|
|
jointype = JT_INNER;
|
|
}
|
|
return jointype;
|
|
}
|
|
|
|
/*
|
|
** Return the index of a column in a table. Return -1 if the column
|
|
** is not contained in the table.
|
|
*/
|
|
static int columnIndex(Table *pTab, const char *zCol){
|
|
int i;
|
|
for(i=0; i<pTab->nCol; i++){
|
|
if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
** Search the first N tables in pSrc, from left to right, looking for a
|
|
** table that has a column named zCol.
|
|
**
|
|
** When found, set *piTab and *piCol to the table index and column index
|
|
** of the matching column and return TRUE.
|
|
**
|
|
** If not found, return FALSE.
|
|
*/
|
|
static int tableAndColumnIndex(
|
|
SrcList *pSrc, /* Array of tables to search */
|
|
int N, /* Number of tables in pSrc->a[] to search */
|
|
const char *zCol, /* Name of the column we are looking for */
|
|
int *piTab, /* Write index of pSrc->a[] here */
|
|
int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
|
|
int bIgnoreHidden /* True to ignore hidden columns */
|
|
){
|
|
int i; /* For looping over tables in pSrc */
|
|
int iCol; /* Index of column matching zCol */
|
|
|
|
assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
|
|
for(i=0; i<N; i++){
|
|
iCol = columnIndex(pSrc->a[i].pTab, zCol);
|
|
if( iCol>=0
|
|
&& (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
|
|
){
|
|
if( piTab ){
|
|
*piTab = i;
|
|
*piCol = iCol;
|
|
}
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** This function is used to add terms implied by JOIN syntax to the
|
|
** WHERE clause expression of a SELECT statement. The new term, which
|
|
** is ANDed with the existing WHERE clause, is of the form:
|
|
**
|
|
** (tab1.col1 = tab2.col2)
|
|
**
|
|
** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
|
|
** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
|
|
** column iColRight of tab2.
|
|
*/
|
|
static void addWhereTerm(
|
|
Parse *pParse, /* Parsing context */
|
|
SrcList *pSrc, /* List of tables in FROM clause */
|
|
int iLeft, /* Index of first table to join in pSrc */
|
|
int iColLeft, /* Index of column in first table */
|
|
int iRight, /* Index of second table in pSrc */
|
|
int iColRight, /* Index of column in second table */
|
|
int isOuterJoin, /* True if this is an OUTER join */
|
|
Expr **ppWhere /* IN/OUT: The WHERE clause to add to */
|
|
){
|
|
sqlite3 *db = pParse->db;
|
|
Expr *pE1;
|
|
Expr *pE2;
|
|
Expr *pEq;
|
|
|
|
assert( iLeft<iRight );
|
|
assert( pSrc->nSrc>iRight );
|
|
assert( pSrc->a[iLeft].pTab );
|
|
assert( pSrc->a[iRight].pTab );
|
|
|
|
pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
|
|
pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
|
|
|
|
pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
|
|
if( pEq && isOuterJoin ){
|
|
ExprSetProperty(pEq, EP_FromJoin);
|
|
assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
|
|
ExprSetVVAProperty(pEq, EP_NoReduce);
|
|
pEq->iRightJoinTable = (i16)pE2->iTable;
|
|
}
|
|
*ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
|
|
}
|
|
|
|
/*
|
|
** Set the EP_FromJoin property on all terms of the given expression.
|
|
** And set the Expr.iRightJoinTable to iTable for every term in the
|
|
** expression.
|
|
**
|
|
** The EP_FromJoin property is used on terms of an expression to tell
|
|
** the LEFT OUTER JOIN processing logic that this term is part of the
|
|
** join restriction specified in the ON or USING clause and not a part
|
|
** of the more general WHERE clause. These terms are moved over to the
|
|
** WHERE clause during join processing but we need to remember that they
|
|
** originated in the ON or USING clause.
|
|
**
|
|
** The Expr.iRightJoinTable tells the WHERE clause processing that the
|
|
** expression depends on table iRightJoinTable even if that table is not
|
|
** explicitly mentioned in the expression. That information is needed
|
|
** for cases like this:
|
|
**
|
|
** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
|
|
**
|
|
** The where clause needs to defer the handling of the t1.x=5
|
|
** term until after the t2 loop of the join. In that way, a
|
|
** NULL t2 row will be inserted whenever t1.x!=5. If we do not
|
|
** defer the handling of t1.x=5, it will be processed immediately
|
|
** after the t1 loop and rows with t1.x!=5 will never appear in
|
|
** the output, which is incorrect.
|
|
*/
|
|
void sqlite3SetJoinExpr(Expr *p, int iTable){
|
|
while( p ){
|
|
ExprSetProperty(p, EP_FromJoin);
|
|
assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
|
|
ExprSetVVAProperty(p, EP_NoReduce);
|
|
p->iRightJoinTable = (i16)iTable;
|
|
if( p->op==TK_FUNCTION && p->x.pList ){
|
|
int i;
|
|
for(i=0; i<p->x.pList->nExpr; i++){
|
|
sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
|
|
}
|
|
}
|
|
sqlite3SetJoinExpr(p->pLeft, iTable);
|
|
p = p->pRight;
|
|
}
|
|
}
|
|
|
|
/* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
|
|
** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
|
|
** an ordinary term that omits the EP_FromJoin mark.
|
|
**
|
|
** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
|
|
*/
|
|
static void unsetJoinExpr(Expr *p, int iTable){
|
|
while( p ){
|
|
if( ExprHasProperty(p, EP_FromJoin)
|
|
&& (iTable<0 || p->iRightJoinTable==iTable) ){
|
|
ExprClearProperty(p, EP_FromJoin);
|
|
}
|
|
if( p->op==TK_FUNCTION && p->x.pList ){
|
|
int i;
|
|
for(i=0; i<p->x.pList->nExpr; i++){
|
|
unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
|
|
}
|
|
}
|
|
unsetJoinExpr(p->pLeft, iTable);
|
|
p = p->pRight;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine processes the join information for a SELECT statement.
|
|
** ON and USING clauses are converted into extra terms of the WHERE clause.
|
|
** NATURAL joins also create extra WHERE clause terms.
|
|
**
|
|
** The terms of a FROM clause are contained in the Select.pSrc structure.
|
|
** The left most table is the first entry in Select.pSrc. The right-most
|
|
** table is the last entry. The join operator is held in the entry to
|
|
** the left. Thus entry 0 contains the join operator for the join between
|
|
** entries 0 and 1. Any ON or USING clauses associated with the join are
|
|
** also attached to the left entry.
|
|
**
|
|
** This routine returns the number of errors encountered.
|
|
*/
|
|
static int sqliteProcessJoin(Parse *pParse, Select *p){
|
|
SrcList *pSrc; /* All tables in the FROM clause */
|
|
int i, j; /* Loop counters */
|
|
struct SrcList_item *pLeft; /* Left table being joined */
|
|
struct SrcList_item *pRight; /* Right table being joined */
|
|
|
|
pSrc = p->pSrc;
|
|
pLeft = &pSrc->a[0];
|
|
pRight = &pLeft[1];
|
|
for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
|
|
Table *pRightTab = pRight->pTab;
|
|
int isOuter;
|
|
|
|
if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
|
|
isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
|
|
|
|
/* When the NATURAL keyword is present, add WHERE clause terms for
|
|
** every column that the two tables have in common.
|
|
*/
|
|
if( pRight->fg.jointype & JT_NATURAL ){
|
|
if( pRight->pOn || pRight->pUsing ){
|
|
sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
|
|
"an ON or USING clause", 0);
|
|
return 1;
|
|
}
|
|
for(j=0; j<pRightTab->nCol; j++){
|
|
char *zName; /* Name of column in the right table */
|
|
int iLeft; /* Matching left table */
|
|
int iLeftCol; /* Matching column in the left table */
|
|
|
|
if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
|
|
zName = pRightTab->aCol[j].zName;
|
|
if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
|
|
addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
|
|
isOuter, &p->pWhere);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Disallow both ON and USING clauses in the same join
|
|
*/
|
|
if( pRight->pOn && pRight->pUsing ){
|
|
sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
|
|
"clauses in the same join");
|
|
return 1;
|
|
}
|
|
|
|
/* Add the ON clause to the end of the WHERE clause, connected by
|
|
** an AND operator.
|
|
*/
|
|
if( pRight->pOn ){
|
|
if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
|
|
p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
|
|
pRight->pOn = 0;
|
|
}
|
|
|
|
/* Create extra terms on the WHERE clause for each column named
|
|
** in the USING clause. Example: If the two tables to be joined are
|
|
** A and B and the USING clause names X, Y, and Z, then add this
|
|
** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
|
|
** Report an error if any column mentioned in the USING clause is
|
|
** not contained in both tables to be joined.
|
|
*/
|
|
if( pRight->pUsing ){
|
|
IdList *pList = pRight->pUsing;
|
|
for(j=0; j<pList->nId; j++){
|
|
char *zName; /* Name of the term in the USING clause */
|
|
int iLeft; /* Table on the left with matching column name */
|
|
int iLeftCol; /* Column number of matching column on the left */
|
|
int iRightCol; /* Column number of matching column on the right */
|
|
|
|
zName = pList->a[j].zName;
|
|
iRightCol = columnIndex(pRightTab, zName);
|
|
if( iRightCol<0
|
|
|| !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
|
|
){
|
|
sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
|
|
"not present in both tables", zName);
|
|
return 1;
|
|
}
|
|
addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
|
|
isOuter, &p->pWhere);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** An instance of this object holds information (beyond pParse and pSelect)
|
|
** needed to load the next result row that is to be added to the sorter.
|
|
*/
|
|
typedef struct RowLoadInfo RowLoadInfo;
|
|
struct RowLoadInfo {
|
|
int regResult; /* Store results in array of registers here */
|
|
u8 ecelFlags; /* Flag argument to ExprCodeExprList() */
|
|
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
|
|
ExprList *pExtra; /* Extra columns needed by sorter refs */
|
|
int regExtraResult; /* Where to load the extra columns */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
** This routine does the work of loading query data into an array of
|
|
** registers so that it can be added to the sorter.
|
|
*/
|
|
static void innerLoopLoadRow(
|
|
Parse *pParse, /* Statement under construction */
|
|
Select *pSelect, /* The query being coded */
|
|
RowLoadInfo *pInfo /* Info needed to complete the row load */
|
|
){
|
|
sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
|
|
0, pInfo->ecelFlags);
|
|
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
|
|
if( pInfo->pExtra ){
|
|
sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
|
|
sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Code the OP_MakeRecord instruction that generates the entry to be
|
|
** added into the sorter.
|
|
**
|
|
** Return the register in which the result is stored.
|
|
*/
|
|
static int makeSorterRecord(
|
|
Parse *pParse,
|
|
SortCtx *pSort,
|
|
Select *pSelect,
|
|
int regBase,
|
|
int nBase
|
|
){
|
|
int nOBSat = pSort->nOBSat;
|
|
Vdbe *v = pParse->pVdbe;
|
|
int regOut = ++pParse->nMem;
|
|
if( pSort->pDeferredRowLoad ){
|
|
innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
|
|
return regOut;
|
|
}
|
|
|
|
/*
|
|
** Generate code that will push the record in registers regData
|
|
** through regData+nData-1 onto the sorter.
|
|
*/
|
|
static void pushOntoSorter(
|
|
Parse *pParse, /* Parser context */
|
|
SortCtx *pSort, /* Information about the ORDER BY clause */
|
|
Select *pSelect, /* The whole SELECT statement */
|
|
int regData, /* First register holding data to be sorted */
|
|
int regOrigData, /* First register holding data before packing */
|
|
int nData, /* Number of elements in the regData data array */
|
|
int nPrefixReg /* No. of reg prior to regData available for use */
|
|
){
|
|
Vdbe *v = pParse->pVdbe; /* Stmt under construction */
|
|
int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
|
|
int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
|
|
int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
|
|
int regBase; /* Regs for sorter record */
|
|
int regRecord = 0; /* Assembled sorter record */
|
|
int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
|
|
int op; /* Opcode to add sorter record to sorter */
|
|
int iLimit; /* LIMIT counter */
|
|
int iSkip = 0; /* End of the sorter insert loop */
|
|
|
|
assert( bSeq==0 || bSeq==1 );
|
|
|
|
/* Three cases:
|
|
** (1) The data to be sorted has already been packed into a Record
|
|
** by a prior OP_MakeRecord. In this case nData==1 and regData
|
|
** will be completely unrelated to regOrigData.
|
|
** (2) All output columns are included in the sort record. In that
|
|
** case regData==regOrigData.
|
|
** (3) Some output columns are omitted from the sort record due to
|
|
** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
|
|
** SQLITE_ECEL_OMITREF optimization, or due to the
|
|
** SortCtx.pDeferredRowLoad optimiation. In any of these cases
|
|
** regOrigData is 0 to prevent this routine from trying to copy
|
|
** values that might not yet exist.
|
|
*/
|
|
assert( nData==1 || regData==regOrigData || regOrigData==0 );
|
|
|
|
if( nPrefixReg ){
|
|
assert( nPrefixReg==nExpr+bSeq );
|
|
regBase = regData - nPrefixReg;
|
|
}else{
|
|
regBase = pParse->nMem + 1;
|
|
pParse->nMem += nBase;
|
|
}
|
|
assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
|
|
iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
|
|
pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
|
|
sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
|
|
SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
|
|
if( bSeq ){
|
|
sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
|
|
}
|
|
if( nPrefixReg==0 && nData>0 ){
|
|
sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
|
|
}
|
|
if( nOBSat>0 ){
|
|
int regPrevKey; /* The first nOBSat columns of the previous row */
|
|
int addrFirst; /* Address of the OP_IfNot opcode */
|
|
int addrJmp; /* Address of the OP_Jump opcode */
|
|
VdbeOp *pOp; /* Opcode that opens the sorter */
|
|
int nKey; /* Number of sorting key columns, including OP_Sequence */
|
|
KeyInfo *pKI; /* Original KeyInfo on the sorter table */
|
|
|
|
regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
|
|
regPrevKey = pParse->nMem+1;
|
|
pParse->nMem += pSort->nOBSat;
|
|
nKey = nExpr - pSort->nOBSat + bSeq;
|
|
if( bSeq ){
|
|
addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
|
|
}else{
|
|
addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
|
|
}
|
|
VdbeCoverage(v);
|
|
sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
|
|
pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
|
|
if( pParse->db->mallocFailed ) return;
|
|
pOp->p2 = nKey + nData;
|
|
pKI = pOp->p4.pKeyInfo;
|
|
memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
|
|
sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
|
|
testcase( pKI->nAllField > pKI->nKeyField+2 );
|
|
pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
|
|
pKI->nAllField-pKI->nKeyField-1);
|
|
pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
|
|
addrJmp = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
|
|
pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
|
|
pSort->regReturn = ++pParse->nMem;
|
|
sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
|
|
sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
|
|
if( iLimit ){
|
|
sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
|
|
VdbeCoverage(v);
|
|
}
|
|
sqlite3VdbeJumpHere(v, addrFirst);
|
|
sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
|
|
sqlite3VdbeJumpHere(v, addrJmp);
|
|
}
|
|
if( iLimit ){
|
|
/* At this point the values for the new sorter entry are stored
|
|
** in an array of registers. They need to be composed into a record
|
|
** and inserted into the sorter if either (a) there are currently
|
|
** less than LIMIT+OFFSET items or (b) the new record is smaller than
|
|
** the largest record currently in the sorter. If (b) is true and there
|
|
** are already LIMIT+OFFSET items in the sorter, delete the largest
|
|
** entry before inserting the new one. This way there are never more
|
|
** than LIMIT+OFFSET items in the sorter.
|
|
**
|
|
** If the new record does not need to be inserted into the sorter,
|
|
** jump to the next iteration of the loop. If the pSort->labelOBLopt
|
|
** value is not zero, then it is a label of where to jump. Otherwise,
|
|
** just bypass the row insert logic. See the header comment on the
|
|
** sqlite3WhereOrderByLimitOptLabel() function for additional info.
|
|
*/
|
|
int iCsr = pSort->iECursor;
|
|
sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
|
|
VdbeCoverage(v);
|
|
sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
|
|
iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
|
|
iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
|
|
VdbeCoverage(v);
|
|
sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
|
|
}
|
|
if( regRecord==0 ){
|
|
regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
|
|
}
|
|
if( pSort->sortFlags & SORTFLAG_UseSorter ){
|
|
op = OP_SorterInsert;
|
|
}else{
|
|
op = OP_IdxInsert;
|
|
}
|
|
sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
|
|
regBase+nOBSat, nBase-nOBSat);
|
|
if( iSkip ){
|
|
sqlite3VdbeChangeP2(v, iSkip,
|
|
pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Add code to implement the OFFSET
|
|
*/
|
|
static void codeOffset(
|
|
Vdbe *v, /* Generate code into this VM */
|
|
int iOffset, /* Register holding the offset counter */
|
|
int iContinue /* Jump here to skip the current record */
|
|
){
|
|
if( iOffset>0 ){
|
|
sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
|
|
VdbeComment((v, "OFFSET"));
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Add code that will check to make sure the N registers starting at iMem
|
|
** form a distinct entry. iTab is a sorting index that holds previously
|
|
** seen combinations of the N values. A new entry is made in iTab
|
|
** if the current N values are new.
|
|
**
|
|
** A jump to addrRepeat is made and the N+1 values are popped from the
|
|
** stack if the top N elements are not distinct.
|
|
*/
|
|
static void codeDistinct(
|
|
Parse *pParse, /* Parsing and code generating context */
|
|
int iTab, /* A sorting index used to test for distinctness */
|
|
int addrRepeat, /* Jump to here if not distinct */
|
|
int N, /* Number of elements */
|
|
int iMem /* First element */
|
|
){
|
|
Vdbe *v;
|
|
int r1;
|
|
|
|
v = pParse->pVdbe;
|
|
r1 = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
|
|
sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
}
|
|
|
|
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
|
|
/*
|
|
** This function is called as part of inner-loop generation for a SELECT
|
|
** statement with an ORDER BY that is not optimized by an index. It
|
|
** determines the expressions, if any, that the sorter-reference
|
|
** optimization should be used for. The sorter-reference optimization
|
|
** is used for SELECT queries like:
|
|
**
|
|
** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
|
|
**
|
|
** If the optimization is used for expression "bigblob", then instead of
|
|
** storing values read from that column in the sorter records, the PK of
|
|
** the row from table t1 is stored instead. Then, as records are extracted from
|
|
** the sorter to return to the user, the required value of bigblob is
|
|
** retrieved directly from table t1. If the values are very large, this
|
|
** can be more efficient than storing them directly in the sorter records.
|
|
**
|
|
** The ExprList_item.bSorterRef flag is set for each expression in pEList
|
|
** for which the sorter-reference optimization should be enabled.
|
|
** Additionally, the pSort->aDefer[] array is populated with entries
|
|
** for all cursors required to evaluate all selected expressions. Finally.
|
|
** output variable (*ppExtra) is set to an expression list containing
|
|
** expressions for all extra PK values that should be stored in the
|
|
** sorter records.
|
|
*/
|
|
static void selectExprDefer(
|
|
Parse *pParse, /* Leave any error here */
|
|
SortCtx *pSort, /* Sorter context */
|
|
ExprList *pEList, /* Expressions destined for sorter */
|
|
ExprList **ppExtra /* Expressions to append to sorter record */
|
|
){
|
|
int i;
|
|
int nDefer = 0;
|
|
ExprList *pExtra = 0;
|
|
for(i=0; i<pEList->nExpr; i++){
|
|
struct ExprList_item *pItem = &pEList->a[i];
|
|
if( pItem->u.x.iOrderByCol==0 ){
|
|
Expr *pExpr = pItem->pExpr;
|
|
Table *pTab = pExpr->y.pTab;
|
|
if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
|
|
&& (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
|
|
){
|
|
int j;
|
|
for(j=0; j<nDefer; j++){
|
|
if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
|
|
}
|
|
if( j==nDefer ){
|
|
if( nDefer==ArraySize(pSort->aDefer) ){
|
|
continue;
|
|
}else{
|
|
int nKey = 1;
|
|
int k;
|
|
Index *pPk = 0;
|
|
if( !HasRowid(pTab) ){
|
|
pPk = sqlite3PrimaryKeyIndex(pTab);
|
|
nKey = pPk->nKeyCol;
|
|
}
|
|
for(k=0; k<nKey; k++){
|
|
Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
|
|
if( pNew ){
|
|
pNew->iTable = pExpr->iTable;
|
|
pNew->y.pTab = pExpr->y.pTab;
|
|
pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
|
|
pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
|
|
}
|
|
}
|
|
pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
|
|
pSort->aDefer[nDefer].iCsr = pExpr->iTable;
|
|
pSort->aDefer[nDefer].nKey = nKey;
|
|
nDefer++;
|
|
}
|
|
}
|
|
pItem->bSorterRef = 1;
|
|
}
|
|
}
|
|
}
|
|
pSort->nDefer = (u8)nDefer;
|
|
*ppExtra = pExtra;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** This routine generates the code for the inside of the inner loop
|
|
** of a SELECT.
|
|
**
|
|
** If srcTab is negative, then the p->pEList expressions
|
|
** are evaluated in order to get the data for this row. If srcTab is
|
|
** zero or more, then data is pulled from srcTab and p->pEList is used only
|
|
** to get the number of columns and the collation sequence for each column.
|
|
*/
|
|
static void selectInnerLoop(
|
|
Parse *pParse, /* The parser context */
|
|
Select *p, /* The complete select statement being coded */
|
|
int srcTab, /* Pull data from this table if non-negative */
|
|
SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
|
|
DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
|
|
SelectDest *pDest, /* How to dispose of the results */
|
|
int iContinue, /* Jump here to continue with next row */
|
|
int iBreak /* Jump here to break out of the inner loop */
|
|
){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int i;
|
|
int hasDistinct; /* True if the DISTINCT keyword is present */
|
|
int eDest = pDest->eDest; /* How to dispose of results */
|
|
int iParm = pDest->iSDParm; /* First argument to disposal method */
|
|
int nResultCol; /* Number of result columns */
|
|
int nPrefixReg = 0; /* Number of extra registers before regResult */
|
|
RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */
|
|
|
|
/* Usually, regResult is the first cell in an array of memory cells
|
|
** containing the current result row. In this case regOrig is set to the
|
|
** same value. However, if the results are being sent to the sorter, the
|
|
** values for any expressions that are also part of the sort-key are omitted
|
|
** from this array. In this case regOrig is set to zero. */
|
|
int regResult; /* Start of memory holding current results */
|
|
int regOrig; /* Start of memory holding full result (or 0) */
|
|
|
|
assert( v );
|
|
assert( p->pEList!=0 );
|
|
hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
|
|
if( pSort && pSort->pOrderBy==0 ) pSort = 0;
|
|
if( pSort==0 && !hasDistinct ){
|
|
assert( iContinue!=0 );
|
|
codeOffset(v, p->iOffset, iContinue);
|
|
}
|
|
|
|
/* Pull the requested columns.
|
|
*/
|
|
nResultCol = p->pEList->nExpr;
|
|
|
|
if( pDest->iSdst==0 ){
|
|
if( pSort ){
|
|
nPrefixReg = pSort->pOrderBy->nExpr;
|
|
if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
|
|
pParse->nMem += nPrefixReg;
|
|
}
|
|
pDest->iSdst = pParse->nMem+1;
|
|
pParse->nMem += nResultCol;
|
|
}else if( pDest->iSdst+nResultCol > pParse->nMem ){
|
|
/* This is an error condition that can result, for example, when a SELECT
|
|
** on the right-hand side of an INSERT contains more result columns than
|
|
** there are columns in the table on the left. The error will be caught
|
|
** and reported later. But we need to make sure enough memory is allocated
|
|
** to avoid other spurious errors in the meantime. */
|
|
pParse->nMem += nResultCol;
|
|
}
|
|
pDest->nSdst = nResultCol;
|
|
regOrig = regResult = pDest->iSdst;
|
|
if( srcTab>=0 ){
|
|
for(i=0; i<nResultCol; i++){
|
|
sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
|
|
VdbeComment((v, "%s", p->pEList->a[i].zEName));
|
|
}
|
|
}else if( eDest!=SRT_Exists ){
|
|
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
|
|
ExprList *pExtra = 0;
|
|
#endif
|
|
/* If the destination is an EXISTS(...) expression, the actual
|
|
** values returned by the SELECT are not required.
|
|
*/
|
|
u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */
|
|
ExprList *pEList;
|
|
if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
|
|
ecelFlags = SQLITE_ECEL_DUP;
|
|
}else{
|
|
ecelFlags = 0;
|
|
}
|
|
if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
|
|
/* For each expression in p->pEList that is a copy of an expression in
|
|
** the ORDER BY clause (pSort->pOrderBy), set the associated
|
|
** iOrderByCol value to one more than the index of the ORDER BY
|
|
** expression within the sort-key that pushOntoSorter() will generate.
|
|
** This allows the p->pEList field to be omitted from the sorted record,
|
|
** saving space and CPU cycles. */
|
|
ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
|
|
|
|
for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
|
|
int j;
|
|
if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
|
|
p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
|
|
}
|
|
}
|
|
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
|
|
selectExprDefer(pParse, pSort, p->pEList, &pExtra);
|
|
if( pExtra && pParse->db->mallocFailed==0 ){
|
|
/* If there are any extra PK columns to add to the sorter records,
|
|
** allocate extra memory cells and adjust the OpenEphemeral
|
|
** instruction to account for the larger records. This is only
|
|
** required if there are one or more WITHOUT ROWID tables with
|
|
** composite primary keys in the SortCtx.aDefer[] array. */
|
|
VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
|
|
pOp->p2 += (pExtra->nExpr - pSort->nDefer);
|
|
pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
|
|
pParse->nMem += pExtra->nExpr;
|
|
}
|
|
#endif
|
|
|
|
/* Adjust nResultCol to account for columns that are omitted
|
|
** from the sorter by the optimizations in this branch */
|
|
pEList = p->pEList;
|
|
for(i=0; i<pEList->nExpr; i++){
|
|
if( pEList->a[i].u.x.iOrderByCol>0
|
|
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
|
|
|| pEList->a[i].bSorterRef
|
|
#endif
|
|
){
|
|
nResultCol--;
|
|
regOrig = 0;
|
|
}
|
|
}
|
|
|
|
testcase( regOrig );
|
|
testcase( eDest==SRT_Set );
|
|
testcase( eDest==SRT_Mem );
|
|
testcase( eDest==SRT_Coroutine );
|
|
testcase( eDest==SRT_Output );
|
|
assert( eDest==SRT_Set || eDest==SRT_Mem
|
|
|| eDest==SRT_Coroutine || eDest==SRT_Output );
|
|
}
|
|
sRowLoadInfo.regResult = regResult;
|
|
sRowLoadInfo.ecelFlags = ecelFlags;
|
|
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
|
|
sRowLoadInfo.pExtra = pExtra;
|
|
sRowLoadInfo.regExtraResult = regResult + nResultCol;
|
|
if( pExtra ) nResultCol += pExtra->nExpr;
|
|
#endif
|
|
if( p->iLimit
|
|
&& (ecelFlags & SQLITE_ECEL_OMITREF)!=0
|
|
&& nPrefixReg>0
|
|
){
|
|
assert( pSort!=0 );
|
|
assert( hasDistinct==0 );
|
|
pSort->pDeferredRowLoad = &sRowLoadInfo;
|
|
regOrig = 0;
|
|
}else{
|
|
innerLoopLoadRow(pParse, p, &sRowLoadInfo);
|
|
}
|
|
}
|
|
|
|
/* If the DISTINCT keyword was present on the SELECT statement
|
|
** and this row has been seen before, then do not make this row
|
|
** part of the result.
|
|
*/
|
|
if( hasDistinct ){
|
|
switch( pDistinct->eTnctType ){
|
|
case WHERE_DISTINCT_ORDERED: {
|
|
VdbeOp *pOp; /* No longer required OpenEphemeral instr. */
|
|
int iJump; /* Jump destination */
|
|
int regPrev; /* Previous row content */
|
|
|
|
/* Allocate space for the previous row */
|
|
regPrev = pParse->nMem+1;
|
|
pParse->nMem += nResultCol;
|
|
|
|
/* Change the OP_OpenEphemeral coded earlier to an OP_Null
|
|
** sets the MEM_Cleared bit on the first register of the
|
|
** previous value. This will cause the OP_Ne below to always
|
|
** fail on the first iteration of the loop even if the first
|
|
** row is all NULLs.
|
|
*/
|
|
sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
|
|
pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
|
|
pOp->opcode = OP_Null;
|
|
pOp->p1 = 1;
|
|
pOp->p2 = regPrev;
|
|
pOp = 0; /* Ensure pOp is not used after sqlite3VdbeAddOp() */
|
|
|
|
iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
|
|
for(i=0; i<nResultCol; i++){
|
|
CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
|
|
if( i<nResultCol-1 ){
|
|
sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
|
|
VdbeCoverage(v);
|
|
}else{
|
|
sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
|
|
VdbeCoverage(v);
|
|
}
|
|
sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
|
|
sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
|
|
}
|
|
assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
|
|
sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
|
|
break;
|
|
}
|
|
|
|
case WHERE_DISTINCT_UNIQUE: {
|
|
sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
|
|
break;
|
|
}
|
|
|
|
default: {
|
|
assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
|
|
codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
|
|
regResult);
|
|
break;
|
|
}
|
|
}
|
|
if( pSort==0 ){
|
|
codeOffset(v, p->iOffset, iContinue);
|
|
}
|
|
}
|
|
|
|
switch( eDest ){
|
|
/* In this mode, write each query result to the key of the temporary
|
|
** table iParm.
|
|
*/
|
|
#ifndef SQLITE_OMIT_COMPOUND_SELECT
|
|
case SRT_Union: {
|
|
int r1;
|
|
r1 = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
|
|
sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
break;
|
|
}
|
|
|
|
/* Construct a record from the query result, but instead of
|
|
** saving that record, use it as a key to delete elements from
|
|
** the temporary table iParm.
|
|
*/
|
|
case SRT_Except: {
|
|
sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_COMPOUND_SELECT */
|
|
|
|
/* Store the result as data using a unique key.
|
|
*/
|
|
case SRT_Fifo:
|
|
case SRT_DistFifo:
|
|
case SRT_Table:
|
|
case SRT_EphemTab: {
|
|
int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
|
|
testcase( eDest==SRT_Table );
|
|
testcase( eDest==SRT_EphemTab );
|
|
testcase( eDest==SRT_Fifo );
|
|
testcase( eDest==SRT_DistFifo );
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
|
|
#ifndef SQLITE_OMIT_CTE
|
|
if( eDest==SRT_DistFifo ){
|
|
/* If the destination is DistFifo, then cursor (iParm+1) is open
|
|
** on an ephemeral index. If the current row is already present
|
|
** in the index, do not write it to the output. If not, add the
|
|
** current row to the index and proceed with writing it to the
|
|
** output table as well. */
|
|
int addr = sqlite3VdbeCurrentAddr(v) + 4;
|
|
sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
|
|
VdbeCoverage(v);
|
|
sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
|
|
assert( pSort==0 );
|
|
}
|
|
#endif
|
|
if( pSort ){
|
|
assert( regResult==regOrig );
|
|
pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
|
|
}else{
|
|
int r2 = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
|
sqlite3ReleaseTempReg(pParse, r2);
|
|
}
|
|
sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
|
|
break;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
/* If we are creating a set for an "expr IN (SELECT ...)" construct,
|
|
** then there should be a single item on the stack. Write this
|
|
** item into the set table with bogus data.
|
|
*/
|
|
case SRT_Set: {
|
|
if( pSort ){
|
|
/* At first glance you would think we could optimize out the
|
|
** ORDER BY in this case since the order of entries in the set
|
|
** does not matter. But there might be a LIMIT clause, in which
|
|
** case the order does matter */
|
|
pushOntoSorter(
|
|
pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
|
|
}else{
|
|
int r1 = sqlite3GetTempReg(pParse);
|
|
assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
|
|
sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
|
|
r1, pDest->zAffSdst, nResultCol);
|
|
sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* If any row exist in the result set, record that fact and abort.
|
|
*/
|
|
case SRT_Exists: {
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
|
|
/* The LIMIT clause will terminate the loop for us */
|
|
break;
|
|
}
|
|
|
|
/* If this is a scalar select that is part of an expression, then
|
|
** store the results in the appropriate memory cell or array of
|
|
** memory cells and break out of the scan loop.
|
|
*/
|
|
case SRT_Mem: {
|
|
if( pSort ){
|
|
assert( nResultCol<=pDest->nSdst );
|
|
pushOntoSorter(
|
|
pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
|
|
}else{
|
|
assert( nResultCol==pDest->nSdst );
|
|
assert( regResult==iParm );
|
|
/* The LIMIT clause will jump out of the loop for us */
|
|
}
|
|
break;
|
|
}
|
|
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
|
|
|
|
case SRT_Coroutine: /* Send data to a co-routine */
|
|
case SRT_Output: { /* Return the results */
|
|
testcase( eDest==SRT_Coroutine );
|
|
testcase( eDest==SRT_Output );
|
|
if( pSort ){
|
|
pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
|
|
nPrefixReg);
|
|
}else if( eDest==SRT_Coroutine ){
|
|
sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
|
|
}
|
|
break;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_CTE
|
|
/* Write the results into a priority queue that is order according to
|
|
** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
|
|
** index with pSO->nExpr+2 columns. Build a key using pSO for the first
|
|
** pSO->nExpr columns, then make sure all keys are unique by adding a
|
|
** final OP_Sequence column. The last column is the record as a blob.
|
|
*/
|
|
case SRT_DistQueue:
|
|
case SRT_Queue: {
|
|
int nKey;
|
|
int r1, r2, r3;
|
|
int addrTest = 0;
|
|
ExprList *pSO;
|
|
pSO = pDest->pOrderBy;
|
|
assert( pSO );
|
|
nKey = pSO->nExpr;
|
|
r1 = sqlite3GetTempReg(pParse);
|
|
r2 = sqlite3GetTempRange(pParse, nKey+2);
|
|
r3 = r2+nKey+1;
|
|
if( eDest==SRT_DistQueue ){
|
|
/* If the destination is DistQueue, then cursor (iParm+1) is open
|
|
** on a second ephemeral index that holds all values every previously
|
|
** added to the queue. */
|
|
addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
|
|
regResult, nResultCol);
|
|
VdbeCoverage(v);
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
|
|
if( eDest==SRT_DistQueue ){
|
|
sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
|
|
}
|
|
for(i=0; i<nKey; i++){
|
|
sqlite3VdbeAddOp2(v, OP_SCopy,
|
|
regResult + pSO->a[i].u.x.iOrderByCol - 1,
|
|
r2+i);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
|
|
sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
|
|
if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
sqlite3ReleaseTempRange(pParse, r2, nKey+2);
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_CTE */
|
|
|
|
|
|
|
|
#if !defined(SQLITE_OMIT_TRIGGER)
|
|
/* Discard the results. This is used for SELECT statements inside
|
|
** the body of a TRIGGER. The purpose of such selects is to call
|
|
** user-defined functions that have side effects. We do not care
|
|
** about the actual results of the select.
|
|
*/
|
|
default: {
|
|
assert( eDest==SRT_Discard );
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Jump to the end of the loop if the LIMIT is reached. Except, if
|
|
** there is a sorter, in which case the sorter has already limited
|
|
** the output for us.
|
|
*/
|
|
if( pSort==0 && p->iLimit ){
|
|
sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Allocate a KeyInfo object sufficient for an index of N key columns and
|
|
** X extra columns.
|
|
*/
|
|
KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
|
|
int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
|
|
KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
|
|
if( p ){
|
|
p->aSortFlags = (u8*)&p->aColl[N+X];
|
|
p->nKeyField = (u16)N;
|
|
p->nAllField = (u16)(N+X);
|
|
p->enc = ENC(db);
|
|
p->db = db;
|
|
p->nRef = 1;
|
|
memset(&p[1], 0, nExtra);
|
|
}else{
|
|
sqlite3OomFault(db);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Deallocate a KeyInfo object
|
|
*/
|
|
void sqlite3KeyInfoUnref(KeyInfo *p){
|
|
if( p ){
|
|
assert( p->nRef>0 );
|
|
p->nRef--;
|
|
if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Make a new pointer to a KeyInfo object
|
|
*/
|
|
KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
|
|
if( p ){
|
|
assert( p->nRef>0 );
|
|
p->nRef++;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** Return TRUE if a KeyInfo object can be change. The KeyInfo object
|
|
** can only be changed if this is just a single reference to the object.
|
|
**
|
|
** This routine is used only inside of assert() statements.
|
|
*/
|
|
int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
|
|
#endif /* SQLITE_DEBUG */
|
|
|
|
/*
|
|
** Given an expression list, generate a KeyInfo structure that records
|
|
** the collating sequence for each expression in that expression list.
|
|
**
|
|
** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
|
|
** KeyInfo structure is appropriate for initializing a virtual index to
|
|
** implement that clause. If the ExprList is the result set of a SELECT
|
|
** then the KeyInfo structure is appropriate for initializing a virtual
|
|
** index to implement a DISTINCT test.
|
|
**
|
|
** Space to hold the KeyInfo structure is obtained from malloc. The calling
|
|
** function is responsible for seeing that this structure is eventually
|
|
** freed.
|
|
*/
|
|
KeyInfo *sqlite3KeyInfoFromExprList(
|
|
Parse *pParse, /* Parsing context */
|
|
ExprList *pList, /* Form the KeyInfo object from this ExprList */
|
|
int iStart, /* Begin with this column of pList */
|
|
int nExtra /* Add this many extra columns to the end */
|
|
){
|
|
int nExpr;
|
|
KeyInfo *pInfo;
|
|
struct ExprList_item *pItem;
|
|
sqlite3 *db = pParse->db;
|
|
int i;
|
|
|
|
nExpr = pList->nExpr;
|
|
pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
|
|
if( pInfo ){
|
|
assert( sqlite3KeyInfoIsWriteable(pInfo) );
|
|
for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
|
|
pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
|
|
pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
|
|
}
|
|
}
|
|
return pInfo;
|
|
}
|
|
|
|
/*
|
|
** Name of the connection operator, used for error messages.
|
|
*/
|
|
static const char *selectOpName(int id){
|
|
char *z;
|
|
switch( id ){
|
|
case TK_ALL: z = "UNION ALL"; break;
|
|
case TK_INTERSECT: z = "INTERSECT"; break;
|
|
case TK_EXCEPT: z = "EXCEPT"; break;
|
|
default: z = "UNION"; break;
|
|
}
|
|
return z;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_EXPLAIN
|
|
/*
|
|
** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
|
|
** is a no-op. Otherwise, it adds a single row of output to the EQP result,
|
|
** where the caption is of the form:
|
|
**
|
|
** "USE TEMP B-TREE FOR xxx"
|
|
**
|
|
** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
|
|
** is determined by the zUsage argument.
|
|
*/
|
|
static void explainTempTable(Parse *pParse, const char *zUsage){
|
|
ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
|
|
}
|
|
|
|
/*
|
|
** Assign expression b to lvalue a. A second, no-op, version of this macro
|
|
** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
|
|
** in sqlite3Select() to assign values to structure member variables that
|
|
** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
|
|
** code with #ifndef directives.
|
|
*/
|
|
# define explainSetInteger(a, b) a = b
|
|
|
|
#else
|
|
/* No-op versions of the explainXXX() functions and macros. */
|
|
# define explainTempTable(y,z)
|
|
# define explainSetInteger(y,z)
|
|
#endif
|
|
|
|
|
|
/*
|
|
** If the inner loop was generated using a non-null pOrderBy argument,
|
|
** then the results were placed in a sorter. After the loop is terminated
|
|
** we need to run the sorter and output the results. The following
|
|
** routine generates the code needed to do that.
|
|
*/
|
|
static void generateSortTail(
|
|
Parse *pParse, /* Parsing context */
|
|
Select *p, /* The SELECT statement */
|
|
SortCtx *pSort, /* Information on the ORDER BY clause */
|
|
int nColumn, /* Number of columns of data */
|
|
SelectDest *pDest /* Write the sorted results here */
|
|
){
|
|
Vdbe *v = pParse->pVdbe; /* The prepared statement */
|
|
int addrBreak = pSort->labelDone; /* Jump here to exit loop */
|
|
int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
|
|
int addr; /* Top of output loop. Jump for Next. */
|
|
int addrOnce = 0;
|
|
int iTab;
|
|
ExprList *pOrderBy = pSort->pOrderBy;
|
|
int eDest = pDest->eDest;
|
|
int iParm = pDest->iSDParm;
|
|
int regRow;
|
|
int regRowid;
|
|
int iCol;
|
|
int nKey; /* Number of key columns in sorter record */
|
|
int iSortTab; /* Sorter cursor to read from */
|
|
int i;
|
|
int bSeq; /* True if sorter record includes seq. no. */
|
|
int nRefKey = 0;
|
|
struct ExprList_item *aOutEx = p->pEList->a;
|
|
|
|
assert( addrBreak<0 );
|
|
if( pSort->labelBkOut ){
|
|
sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
|
|
sqlite3VdbeGoto(v, addrBreak);
|
|
sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
|
|
}
|
|
|
|
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
|
|
/* Open any cursors needed for sorter-reference expressions */
|
|
for(i=0; i<pSort->nDefer; i++){
|
|
Table *pTab = pSort->aDefer[i].pTab;
|
|
int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
|
|
nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
|
|
}
|
|
#endif
|
|
|
|
iTab = pSort->iECursor;
|
|
if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
|
|
regRowid = 0;
|
|
regRow = pDest->iSdst;
|
|
}else{
|
|
regRowid = sqlite3GetTempReg(pParse);
|
|
if( eDest==SRT_EphemTab || eDest==SRT_Table ){
|
|
regRow = sqlite3GetTempReg(pParse);
|
|
nColumn = 0;
|
|
}else{
|
|
regRow = sqlite3GetTempRange(pParse, nColumn);
|
|
}
|
|
}
|
|
nKey = pOrderBy->nExpr - pSort->nOBSat;
|
|
if( pSort->sortFlags & SORTFLAG_UseSorter ){
|
|
int regSortOut = ++pParse->nMem;
|
|
iSortTab = pParse->nTab++;
|
|
if( pSort->labelBkOut ){
|
|
addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
|
|
nKey+1+nColumn+nRefKey);
|
|
if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
|
|
addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
|
|
VdbeCoverage(v);
|
|
codeOffset(v, p->iOffset, addrContinue);
|
|
sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
|
|
bSeq = 0;
|
|
}else{
|
|
addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
|
|
codeOffset(v, p->iOffset, addrContinue);
|
|
iSortTab = iTab;
|
|
bSeq = 1;
|
|
}
|
|
for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
|
|
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
|
|
if( aOutEx[i].bSorterRef ) continue;
|
|
#endif
|
|
if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
|
|
}
|
|
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
|
|
if( pSort->nDefer ){
|
|
int iKey = iCol+1;
|
|
int regKey = sqlite3GetTempRange(pParse, nRefKey);
|
|
|
|
for(i=0; i<pSort->nDefer; i++){
|
|
int iCsr = pSort->aDefer[i].iCsr;
|
|
Table *pTab = pSort->aDefer[i].pTab;
|
|
int nKey = pSort->aDefer[i].nKey;
|
|
|
|
sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
|
|
if( HasRowid(pTab) ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
|
|
sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
|
|
sqlite3VdbeCurrentAddr(v)+1, regKey);
|
|
}else{
|
|
int k;
|
|
int iJmp;
|
|
assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
|
|
for(k=0; k<nKey; k++){
|
|
sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
|
|
}
|
|
iJmp = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
|
|
sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
|
|
sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
|
|
}
|
|
}
|
|
sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
|
|
}
|
|
#endif
|
|
for(i=nColumn-1; i>=0; i--){
|
|
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
|
|
if( aOutEx[i].bSorterRef ){
|
|
sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
|
|
}else
|
|
#endif
|
|
{
|
|
int iRead;
|
|
if( aOutEx[i].u.x.iOrderByCol ){
|
|
iRead = aOutEx[i].u.x.iOrderByCol-1;
|
|
}else{
|
|
iRead = iCol--;
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
|
|
VdbeComment((v, "%s", aOutEx[i].zEName));
|
|
}
|
|
}
|
|
switch( eDest ){
|
|
case SRT_Table:
|
|
case SRT_EphemTab: {
|
|
sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
|
break;
|
|
}
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
case SRT_Set: {
|
|
assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
|
|
sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
|
|
pDest->zAffSdst, nColumn);
|
|
sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
|
|
break;
|
|
}
|
|
case SRT_Mem: {
|
|
/* The LIMIT clause will terminate the loop for us */
|
|
break;
|
|
}
|
|
#endif
|
|
default: {
|
|
assert( eDest==SRT_Output || eDest==SRT_Coroutine );
|
|
testcase( eDest==SRT_Output );
|
|
testcase( eDest==SRT_Coroutine );
|
|
if( eDest==SRT_Output ){
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
|
|
}else{
|
|
sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if( regRowid ){
|
|
if( eDest==SRT_Set ){
|
|
sqlite3ReleaseTempRange(pParse, regRow, nColumn);
|
|
}else{
|
|
sqlite3ReleaseTempReg(pParse, regRow);
|
|
}
|
|
sqlite3ReleaseTempReg(pParse, regRowid);
|
|
}
|
|
/* The bottom of the loop
|
|
*/
|
|
sqlite3VdbeResolveLabel(v, addrContinue);
|
|
if( pSort->sortFlags & SORTFLAG_UseSorter ){
|
|
sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
|
|
}
|
|
if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
|
|
sqlite3VdbeResolveLabel(v, addrBreak);
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to a string containing the 'declaration type' of the
|
|
** expression pExpr. The string may be treated as static by the caller.
|
|
**
|
|
** Also try to estimate the size of the returned value and return that
|
|
** result in *pEstWidth.
|
|
**
|
|
** The declaration type is the exact datatype definition extracted from the
|
|
** original CREATE TABLE statement if the expression is a column. The
|
|
** declaration type for a ROWID field is INTEGER. Exactly when an expression
|
|
** is considered a column can be complex in the presence of subqueries. The
|
|
** result-set expression in all of the following SELECT statements is
|
|
** considered a column by this function.
|
|
**
|
|
** SELECT col FROM tbl;
|
|
** SELECT (SELECT col FROM tbl;
|
|
** SELECT (SELECT col FROM tbl);
|
|
** SELECT abc FROM (SELECT col AS abc FROM tbl);
|
|
**
|
|
** The declaration type for any expression other than a column is NULL.
|
|
**
|
|
** This routine has either 3 or 6 parameters depending on whether or not
|
|
** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
|
|
*/
|
|
#ifdef SQLITE_ENABLE_COLUMN_METADATA
|
|
# define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
|
|
#else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
|
|
# define columnType(A,B,C,D,E) columnTypeImpl(A,B)
|
|
#endif
|
|
static const char *columnTypeImpl(
|
|
NameContext *pNC,
|
|
#ifndef SQLITE_ENABLE_COLUMN_METADATA
|
|
Expr *pExpr
|
|
#else
|
|
Expr *pExpr,
|
|
const char **pzOrigDb,
|
|
const char **pzOrigTab,
|
|
const char **pzOrigCol
|
|
#endif
|
|
){
|
|
char const *zType = 0;
|
|
int j;
|
|
#ifdef SQLITE_ENABLE_COLUMN_METADATA
|
|
char const *zOrigDb = 0;
|
|
char const *zOrigTab = 0;
|
|
char const *zOrigCol = 0;
|
|
#endif
|
|
|
|
assert( pExpr!=0 );
|
|
assert( pNC->pSrcList!=0 );
|
|
switch( pExpr->op ){
|
|
case TK_COLUMN: {
|
|
/* The expression is a column. Locate the table the column is being
|
|
** extracted from in NameContext.pSrcList. This table may be real
|
|
** database table or a subquery.
|
|
*/
|
|
Table *pTab = 0; /* Table structure column is extracted from */
|
|
Select *pS = 0; /* Select the column is extracted from */
|
|
int iCol = pExpr->iColumn; /* Index of column in pTab */
|
|
while( pNC && !pTab ){
|
|
SrcList *pTabList = pNC->pSrcList;
|
|
for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
|
|
if( j<pTabList->nSrc ){
|
|
pTab = pTabList->a[j].pTab;
|
|
pS = pTabList->a[j].pSelect;
|
|
}else{
|
|
pNC = pNC->pNext;
|
|
}
|
|
}
|
|
|
|
if( pTab==0 ){
|
|
/* At one time, code such as "SELECT new.x" within a trigger would
|
|
** cause this condition to run. Since then, we have restructured how
|
|
** trigger code is generated and so this condition is no longer
|
|
** possible. However, it can still be true for statements like
|
|
** the following:
|
|
**
|
|
** CREATE TABLE t1(col INTEGER);
|
|
** SELECT (SELECT t1.col) FROM FROM t1;
|
|
**
|
|
** when columnType() is called on the expression "t1.col" in the
|
|
** sub-select. In this case, set the column type to NULL, even
|
|
** though it should really be "INTEGER".
|
|
**
|
|
** This is not a problem, as the column type of "t1.col" is never
|
|
** used. When columnType() is called on the expression
|
|
** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
|
|
** branch below. */
|
|
break;
|
|
}
|
|
|
|
assert( pTab && pExpr->y.pTab==pTab );
|
|
if( pS ){
|
|
/* The "table" is actually a sub-select or a view in the FROM clause
|
|
** of the SELECT statement. Return the declaration type and origin
|
|
** data for the result-set column of the sub-select.
|
|
*/
|
|
if( iCol>=0 && iCol<pS->pEList->nExpr ){
|
|
/* If iCol is less than zero, then the expression requests the
|
|
** rowid of the sub-select or view. This expression is legal (see
|
|
** test case misc2.2.2) - it always evaluates to NULL.
|
|
*/
|
|
NameContext sNC;
|
|
Expr *p = pS->pEList->a[iCol].pExpr;
|
|
sNC.pSrcList = pS->pSrc;
|
|
sNC.pNext = pNC;
|
|
sNC.pParse = pNC->pParse;
|
|
zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
|
|
}
|
|
}else{
|
|
/* A real table or a CTE table */
|
|
assert( !pS );
|
|
#ifdef SQLITE_ENABLE_COLUMN_METADATA
|
|
if( iCol<0 ) iCol = pTab->iPKey;
|
|
assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
|
|
if( iCol<0 ){
|
|
zType = "INTEGER";
|
|
zOrigCol = "rowid";
|
|
}else{
|
|
zOrigCol = pTab->aCol[iCol].zName;
|
|
zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
|
|
}
|
|
zOrigTab = pTab->zName;
|
|
if( pNC->pParse && pTab->pSchema ){
|
|
int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
|
|
zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
|
|
}
|
|
#else
|
|
assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
|
|
if( iCol<0 ){
|
|
zType = "INTEGER";
|
|
}else{
|
|
zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
|
|
}
|
|
#endif
|
|
}
|
|
break;
|
|
}
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
case TK_SELECT: {
|
|
/* The expression is a sub-select. Return the declaration type and
|
|
** origin info for the single column in the result set of the SELECT
|
|
** statement.
|
|
*/
|
|
NameContext sNC;
|
|
Select *pS = pExpr->x.pSelect;
|
|
Expr *p = pS->pEList->a[0].pExpr;
|
|
assert( ExprHasProperty(pExpr, EP_xIsSelect) );
|
|
sNC.pSrcList = pS->pSrc;
|
|
sNC.pNext = pNC;
|
|
sNC.pParse = pNC->pParse;
|
|
zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef SQLITE_ENABLE_COLUMN_METADATA
|
|
if( pzOrigDb ){
|
|
assert( pzOrigTab && pzOrigCol );
|
|
*pzOrigDb = zOrigDb;
|
|
*pzOrigTab = zOrigTab;
|
|
*pzOrigCol = zOrigCol;
|
|
}
|
|
#endif
|
|
return zType;
|
|
}
|
|
|
|
/*
|
|
** Generate code that will tell the VDBE the declaration types of columns
|
|
** in the result set.
|
|
*/
|
|
static void generateColumnTypes(
|
|
Parse *pParse, /* Parser context */
|
|
SrcList *pTabList, /* List of tables */
|
|
ExprList *pEList /* Expressions defining the result set */
|
|
){
|
|
#ifndef SQLITE_OMIT_DECLTYPE
|
|
Vdbe *v = pParse->pVdbe;
|
|
int i;
|
|
NameContext sNC;
|
|
sNC.pSrcList = pTabList;
|
|
sNC.pParse = pParse;
|
|
sNC.pNext = 0;
|
|
for(i=0; i<pEList->nExpr; i++){
|
|
Expr *p = pEList->a[i].pExpr;
|
|
const char *zType;
|
|
#ifdef SQLITE_ENABLE_COLUMN_METADATA
|
|
const char *zOrigDb = 0;
|
|
const char *zOrigTab = 0;
|
|
const char *zOrigCol = 0;
|
|
zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
|
|
|
|
/* The vdbe must make its own copy of the column-type and other
|
|
** column specific strings, in case the schema is reset before this
|
|
** virtual machine is deleted.
|
|
*/
|
|
sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
|
|
sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
|
|
sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
|
|
#else
|
|
zType = columnType(&sNC, p, 0, 0, 0);
|
|
#endif
|
|
sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
|
|
}
|
|
#endif /* !defined(SQLITE_OMIT_DECLTYPE) */
|
|
}
|
|
|
|
|
|
/*
|
|
** Compute the column names for a SELECT statement.
|
|
**
|
|
** The only guarantee that SQLite makes about column names is that if the
|
|
** column has an AS clause assigning it a name, that will be the name used.
|
|
** That is the only documented guarantee. However, countless applications
|
|
** developed over the years have made baseless assumptions about column names
|
|
** and will break if those assumptions changes. Hence, use extreme caution
|
|
** when modifying this routine to avoid breaking legacy.
|
|
**
|
|
** See Also: sqlite3ColumnsFromExprList()
|
|
**
|
|
** The PRAGMA short_column_names and PRAGMA full_column_names settings are
|
|
** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
|
|
** applications should operate this way. Nevertheless, we need to support the
|
|
** other modes for legacy:
|
|
**
|
|
** short=OFF, full=OFF: Column name is the text of the expression has it
|
|
** originally appears in the SELECT statement. In
|
|
** other words, the zSpan of the result expression.
|
|
**
|
|
** short=ON, full=OFF: (This is the default setting). If the result
|
|
** refers directly to a table column, then the
|
|
** result column name is just the table column
|
|
** name: COLUMN. Otherwise use zSpan.
|
|
**
|
|
** full=ON, short=ANY: If the result refers directly to a table column,
|
|
** then the result column name with the table name
|
|
** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
|
|
*/
|
|
static void generateColumnNames(
|
|
Parse *pParse, /* Parser context */
|
|
Select *pSelect /* Generate column names for this SELECT statement */
|
|
){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int i;
|
|
Table *pTab;
|
|
SrcList *pTabList;
|
|
ExprList *pEList;
|
|
sqlite3 *db = pParse->db;
|
|
int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */
|
|
int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
|
|
|
|
#ifndef SQLITE_OMIT_EXPLAIN
|
|
/* If this is an EXPLAIN, skip this step */
|
|
if( pParse->explain ){
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if( pParse->colNamesSet ) return;
|
|
/* Column names are determined by the left-most term of a compound select */
|
|
while( pSelect->pPrior ) pSelect = pSelect->pPrior;
|
|
SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
|
|
pTabList = pSelect->pSrc;
|
|
pEList = pSelect->pEList;
|
|
assert( v!=0 );
|
|
assert( pTabList!=0 );
|
|
pParse->colNamesSet = 1;
|
|
fullName = (db->flags & SQLITE_FullColNames)!=0;
|
|
srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
|
|
sqlite3VdbeSetNumCols(v, pEList->nExpr);
|
|
for(i=0; i<pEList->nExpr; i++){
|
|
Expr *p = pEList->a[i].pExpr;
|
|
|
|
assert( p!=0 );
|
|
assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */
|
|
assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
|
|
if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
|
|
/* An AS clause always takes first priority */
|
|
char *zName = pEList->a[i].zEName;
|
|
sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
|
|
}else if( srcName && p->op==TK_COLUMN ){
|
|
char *zCol;
|
|
int iCol = p->iColumn;
|
|
pTab = p->y.pTab;
|
|
assert( pTab!=0 );
|
|
if( iCol<0 ) iCol = pTab->iPKey;
|
|
assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
|
|
if( iCol<0 ){
|
|
zCol = "rowid";
|
|
}else{
|
|
zCol = pTab->aCol[iCol].zName;
|
|
}
|
|
if( fullName ){
|
|
char *zName = 0;
|
|
zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
|
|
sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
|
|
}else{
|
|
sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
|
|
}
|
|
}else{
|
|
const char *z = pEList->a[i].zEName;
|
|
z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
|
|
sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
|
|
}
|
|
}
|
|
generateColumnTypes(pParse, pTabList, pEList);
|
|
}
|
|
|
|
/*
|
|
** Given an expression list (which is really the list of expressions
|
|
** that form the result set of a SELECT statement) compute appropriate
|
|
** column names for a table that would hold the expression list.
|
|
**
|
|
** All column names will be unique.
|
|
**
|
|
** Only the column names are computed. Column.zType, Column.zColl,
|
|
** and other fields of Column are zeroed.
|
|
**
|
|
** Return SQLITE_OK on success. If a memory allocation error occurs,
|
|
** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
|
|
**
|
|
** The only guarantee that SQLite makes about column names is that if the
|
|
** column has an AS clause assigning it a name, that will be the name used.
|
|
** That is the only documented guarantee. However, countless applications
|
|
** developed over the years have made baseless assumptions about column names
|
|
** and will break if those assumptions changes. Hence, use extreme caution
|
|
** when modifying this routine to avoid breaking legacy.
|
|
**
|
|
** See Also: generateColumnNames()
|
|
*/
|
|
int sqlite3ColumnsFromExprList(
|
|
Parse *pParse, /* Parsing context */
|
|
ExprList *pEList, /* Expr list from which to derive column names */
|
|
i16 *pnCol, /* Write the number of columns here */
|
|
Column **paCol /* Write the new column list here */
|
|
){
|
|
sqlite3 *db = pParse->db; /* Database connection */
|
|
int i, j; /* Loop counters */
|
|
u32 cnt; /* Index added to make the name unique */
|
|
Column *aCol, *pCol; /* For looping over result columns */
|
|
int nCol; /* Number of columns in the result set */
|
|
char *zName; /* Column name */
|
|
int nName; /* Size of name in zName[] */
|
|
Hash ht; /* Hash table of column names */
|
|
|
|
sqlite3HashInit(&ht);
|
|
if( pEList ){
|
|
nCol = pEList->nExpr;
|
|
aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
|
|
testcase( aCol==0 );
|
|
if( nCol>32767 ) nCol = 32767;
|
|
}else{
|
|
nCol = 0;
|
|
aCol = 0;
|
|
}
|
|
assert( nCol==(i16)nCol );
|
|
*pnCol = nCol;
|
|
*paCol = aCol;
|
|
|
|
for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
|
|
/* Get an appropriate name for the column
|
|
*/
|
|
if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
|
|
/* If the column contains an "AS <name>" phrase, use <name> as the name */
|
|
}else{
|
|
Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
|
|
while( pColExpr->op==TK_DOT ){
|
|
pColExpr = pColExpr->pRight;
|
|
assert( pColExpr!=0 );
|
|
}
|
|
if( pColExpr->op==TK_COLUMN ){
|
|
/* For columns use the column name name */
|
|
int iCol = pColExpr->iColumn;
|
|
Table *pTab = pColExpr->y.pTab;
|
|
assert( pTab!=0 );
|
|
if( iCol<0 ) iCol = pTab->iPKey;
|
|
zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
|
|
}else if( pColExpr->op==TK_ID ){
|
|
assert( !ExprHasProperty(pColExpr, EP_IntValue) );
|
|
zName = pColExpr->u.zToken;
|
|
}else{
|
|
/* Use the original text of the column expression as its name */
|
|
zName = pEList->a[i].zEName;
|
|
}
|
|
}
|
|
if( zName && !sqlite3IsTrueOrFalse(zName) ){
|
|
zName = sqlite3DbStrDup(db, zName);
|
|
}else{
|
|
zName = sqlite3MPrintf(db,"column%d",i+1);
|
|
}
|
|
|
|
/* Make sure the column name is unique. If the name is not unique,
|
|
** append an integer to the name so that it becomes unique.
|
|
*/
|
|
cnt = 0;
|
|
while( zName && sqlite3HashFind(&ht, zName)!=0 ){
|
|
nName = sqlite3Strlen30(zName);
|
|
if( nName>0 ){
|
|
for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
|
|
if( zName[j]==':' ) nName = j;
|
|
}
|
|
zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
|
|
if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
|
|
}
|
|
pCol->zName = zName;
|
|
sqlite3ColumnPropertiesFromName(0, pCol);
|
|
if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
|
|
sqlite3OomFault(db);
|
|
}
|
|
}
|
|
sqlite3HashClear(&ht);
|
|
if( db->mallocFailed ){
|
|
for(j=0; j<i; j++){
|
|
sqlite3DbFree(db, aCol[j].zName);
|
|
}
|
|
sqlite3DbFree(db, aCol);
|
|
*paCol = 0;
|
|
*pnCol = 0;
|
|
return SQLITE_NOMEM_BKPT;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Add type and collation information to a column list based on
|
|
** a SELECT statement.
|
|
**
|
|
** The column list presumably came from selectColumnNamesFromExprList().
|
|
** The column list has only names, not types or collations. This
|
|
** routine goes through and adds the types and collations.
|
|
**
|
|
** This routine requires that all identifiers in the SELECT
|
|
** statement be resolved.
|
|
*/
|
|
void sqlite3SelectAddColumnTypeAndCollation(
|
|
Parse *pParse, /* Parsing contexts */
|
|
Table *pTab, /* Add column type information to this table */
|
|
Select *pSelect, /* SELECT used to determine types and collations */
|
|
char aff /* Default affinity for columns */
|
|
){
|
|
sqlite3 *db = pParse->db;
|
|
NameContext sNC;
|
|
Column *pCol;
|
|
CollSeq *pColl;
|
|
int i;
|
|
Expr *p;
|
|
struct ExprList_item *a;
|
|
|
|
assert( pSelect!=0 );
|
|
assert( (pSelect->selFlags & SF_Resolved)!=0 );
|
|
assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
|
|
if( db->mallocFailed ) return;
|
|
memset(&sNC, 0, sizeof(sNC));
|
|
sNC.pSrcList = pSelect->pSrc;
|
|
a = pSelect->pEList->a;
|
|
for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
|
|
const char *zType;
|
|
int n, m;
|
|
p = a[i].pExpr;
|
|
zType = columnType(&sNC, p, 0, 0, 0);
|
|
/* pCol->szEst = ... // Column size est for SELECT tables never used */
|
|
pCol->affinity = sqlite3ExprAffinity(p);
|
|
if( zType ){
|
|
m = sqlite3Strlen30(zType);
|
|
n = sqlite3Strlen30(pCol->zName);
|
|
pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
|
|
if( pCol->zName ){
|
|
memcpy(&pCol->zName[n+1], zType, m+1);
|
|
pCol->colFlags |= COLFLAG_HASTYPE;
|
|
}
|
|
}
|
|
if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
|
|
pColl = sqlite3ExprCollSeq(pParse, p);
|
|
if( pColl && pCol->zColl==0 ){
|
|
pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
|
|
}
|
|
}
|
|
pTab->szTabRow = 1; /* Any non-zero value works */
|
|
}
|
|
|
|
/*
|
|
** Given a SELECT statement, generate a Table structure that describes
|
|
** the result set of that SELECT.
|
|
*/
|
|
Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
|
|
Table *pTab;
|
|
sqlite3 *db = pParse->db;
|
|
u64 savedFlags;
|
|
|
|
savedFlags = db->flags;
|
|
db->flags &= ~(u64)SQLITE_FullColNames;
|
|
db->flags |= SQLITE_ShortColNames;
|
|
sqlite3SelectPrep(pParse, pSelect, 0);
|
|
db->flags = savedFlags;
|
|
if( pParse->nErr ) return 0;
|
|
while( pSelect->pPrior ) pSelect = pSelect->pPrior;
|
|
pTab = sqlite3DbMallocZero(db, sizeof(Table) );
|
|
if( pTab==0 ){
|
|
return 0;
|
|
}
|
|
pTab->nTabRef = 1;
|
|
pTab->zName = 0;
|
|
pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
|
|
sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
|
|
sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
|
|
pTab->iPKey = -1;
|
|
if( db->mallocFailed ){
|
|
sqlite3DeleteTable(db, pTab);
|
|
return 0;
|
|
}
|
|
return pTab;
|
|
}
|
|
|
|
/*
|
|
** Get a VDBE for the given parser context. Create a new one if necessary.
|
|
** If an error occurs, return NULL and leave a message in pParse.
|
|
*/
|
|
Vdbe *sqlite3GetVdbe(Parse *pParse){
|
|
if( pParse->pVdbe ){
|
|
return pParse->pVdbe;
|
|
}
|
|
if( pParse->pToplevel==0
|
|
&& OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
|
|
){
|
|
pParse->okConstFactor = 1;
|
|
}
|
|
return sqlite3VdbeCreate(pParse);
|
|
}
|
|
|
|
|
|
/*
|
|
** Compute the iLimit and iOffset fields of the SELECT based on the
|
|
** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
|
|
** that appear in the original SQL statement after the LIMIT and OFFSET
|
|
** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
|
|
** are the integer memory register numbers for counters used to compute
|
|
** the limit and offset. If there is no limit and/or offset, then
|
|
** iLimit and iOffset are negative.
|
|
**
|
|
** This routine changes the values of iLimit and iOffset only if
|
|
** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
|
|
** and iOffset should have been preset to appropriate default values (zero)
|
|
** prior to calling this routine.
|
|
**
|
|
** The iOffset register (if it exists) is initialized to the value
|
|
** of the OFFSET. The iLimit register is initialized to LIMIT. Register
|
|
** iOffset+1 is initialized to LIMIT+OFFSET.
|
|
**
|
|
** Only if pLimit->pLeft!=0 do the limit registers get
|
|
** redefined. The UNION ALL operator uses this property to force
|
|
** the reuse of the same limit and offset registers across multiple
|
|
** SELECT statements.
|
|
*/
|
|
static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
|
|
Vdbe *v = 0;
|
|
int iLimit = 0;
|
|
int iOffset;
|
|
int n;
|
|
Expr *pLimit = p->pLimit;
|
|
|
|
if( p->iLimit ) return;
|
|
|
|
/*
|
|
** "LIMIT -1" always shows all rows. There is some
|
|
** controversy about what the correct behavior should be.
|
|
** The current implementation interprets "LIMIT 0" to mean
|
|
** no rows.
|
|
*/
|
|
if( pLimit ){
|
|
assert( pLimit->op==TK_LIMIT );
|
|
assert( pLimit->pLeft!=0 );
|
|
p->iLimit = iLimit = ++pParse->nMem;
|
|
v = sqlite3GetVdbe(pParse);
|
|
assert( v!=0 );
|
|
if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
|
|
sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
|
|
VdbeComment((v, "LIMIT counter"));
|
|
if( n==0 ){
|
|
sqlite3VdbeGoto(v, iBreak);
|
|
}else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
|
|
p->nSelectRow = sqlite3LogEst((u64)n);
|
|
p->selFlags |= SF_FixedLimit;
|
|
}
|
|
}else{
|
|
sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
|
|
sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
|
|
VdbeComment((v, "LIMIT counter"));
|
|
sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
|
|
}
|
|
if( pLimit->pRight ){
|
|
p->iOffset = iOffset = ++pParse->nMem;
|
|
pParse->nMem++; /* Allocate an extra register for limit+offset */
|
|
sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
|
|
sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
|
|
VdbeComment((v, "OFFSET counter"));
|
|
sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
|
|
VdbeComment((v, "LIMIT+OFFSET"));
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_COMPOUND_SELECT
|
|
/*
|
|
** Return the appropriate collating sequence for the iCol-th column of
|
|
** the result set for the compound-select statement "p". Return NULL if
|
|
** the column has no default collating sequence.
|
|
**
|
|
** The collating sequence for the compound select is taken from the
|
|
** left-most term of the select that has a collating sequence.
|
|
*/
|
|
static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
|
|
CollSeq *pRet;
|
|
if( p->pPrior ){
|
|
pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
|
|
}else{
|
|
pRet = 0;
|
|
}
|
|
assert( iCol>=0 );
|
|
/* iCol must be less than p->pEList->nExpr. Otherwise an error would
|
|
** have been thrown during name resolution and we would not have gotten
|
|
** this far */
|
|
if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
|
|
pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
|
|
}
|
|
return pRet;
|
|
}
|
|
|
|
/*
|
|
** The select statement passed as the second parameter is a compound SELECT
|
|
** with an ORDER BY clause. This function allocates and returns a KeyInfo
|
|
** structure suitable for implementing the ORDER BY.
|
|
**
|
|
** Space to hold the KeyInfo structure is obtained from malloc. The calling
|
|
** function is responsible for ensuring that this structure is eventually
|
|
** freed.
|
|
*/
|
|
static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
|
|
ExprList *pOrderBy = p->pOrderBy;
|
|
int nOrderBy = p->pOrderBy->nExpr;
|
|
sqlite3 *db = pParse->db;
|
|
KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
|
|
if( pRet ){
|
|
int i;
|
|
for(i=0; i<nOrderBy; i++){
|
|
struct ExprList_item *pItem = &pOrderBy->a[i];
|
|
Expr *pTerm = pItem->pExpr;
|
|
CollSeq *pColl;
|
|
|
|
if( pTerm->flags & EP_Collate ){
|
|
pColl = sqlite3ExprCollSeq(pParse, pTerm);
|
|
}else{
|
|
pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
|
|
if( pColl==0 ) pColl = db->pDfltColl;
|
|
pOrderBy->a[i].pExpr =
|
|
sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
|
|
}
|
|
assert( sqlite3KeyInfoIsWriteable(pRet) );
|
|
pRet->aColl[i] = pColl;
|
|
pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
|
|
}
|
|
}
|
|
|
|
return pRet;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_CTE
|
|
/*
|
|
** This routine generates VDBE code to compute the content of a WITH RECURSIVE
|
|
** query of the form:
|
|
**
|
|
** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
|
|
** \___________/ \_______________/
|
|
** p->pPrior p
|
|
**
|
|
**
|
|
** There is exactly one reference to the recursive-table in the FROM clause
|
|
** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
|
|
**
|
|
** The setup-query runs once to generate an initial set of rows that go
|
|
** into a Queue table. Rows are extracted from the Queue table one by
|
|
** one. Each row extracted from Queue is output to pDest. Then the single
|
|
** extracted row (now in the iCurrent table) becomes the content of the
|
|
** recursive-table for a recursive-query run. The output of the recursive-query
|
|
** is added back into the Queue table. Then another row is extracted from Queue
|
|
** and the iteration continues until the Queue table is empty.
|
|
**
|
|
** If the compound query operator is UNION then no duplicate rows are ever
|
|
** inserted into the Queue table. The iDistinct table keeps a copy of all rows
|
|
** that have ever been inserted into Queue and causes duplicates to be
|
|
** discarded. If the operator is UNION ALL, then duplicates are allowed.
|
|
**
|
|
** If the query has an ORDER BY, then entries in the Queue table are kept in
|
|
** ORDER BY order and the first entry is extracted for each cycle. Without
|
|
** an ORDER BY, the Queue table is just a FIFO.
|
|
**
|
|
** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
|
|
** have been output to pDest. A LIMIT of zero means to output no rows and a
|
|
** negative LIMIT means to output all rows. If there is also an OFFSET clause
|
|
** with a positive value, then the first OFFSET outputs are discarded rather
|
|
** than being sent to pDest. The LIMIT count does not begin until after OFFSET
|
|
** rows have been skipped.
|
|
*/
|
|
static void generateWithRecursiveQuery(
|
|
Parse *pParse, /* Parsing context */
|
|
Select *p, /* The recursive SELECT to be coded */
|
|
SelectDest *pDest /* What to do with query results */
|
|
){
|
|
SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
|
|
int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
|
|
Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
|
|
Select *pSetup = p->pPrior; /* The setup query */
|
|
int addrTop; /* Top of the loop */
|
|
int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
|
|
int iCurrent = 0; /* The Current table */
|
|
int regCurrent; /* Register holding Current table */
|
|
int iQueue; /* The Queue table */
|
|
int iDistinct = 0; /* To ensure unique results if UNION */
|
|
int eDest = SRT_Fifo; /* How to write to Queue */
|
|
SelectDest destQueue; /* SelectDest targetting the Queue table */
|
|
int i; /* Loop counter */
|
|
int rc; /* Result code */
|
|
ExprList *pOrderBy; /* The ORDER BY clause */
|
|
Expr *pLimit; /* Saved LIMIT and OFFSET */
|
|
int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
|
|
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
if( p->pWin ){
|
|
sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* Obtain authorization to do a recursive query */
|
|
if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
|
|
|
|
/* Process the LIMIT and OFFSET clauses, if they exist */
|
|
addrBreak = sqlite3VdbeMakeLabel(pParse);
|
|
p->nSelectRow = 320; /* 4 billion rows */
|
|
computeLimitRegisters(pParse, p, addrBreak);
|
|
pLimit = p->pLimit;
|
|
regLimit = p->iLimit;
|
|
regOffset = p->iOffset;
|
|
p->pLimit = 0;
|
|
p->iLimit = p->iOffset = 0;
|
|
pOrderBy = p->pOrderBy;
|
|
|
|
/* Locate the cursor number of the Current table */
|
|
for(i=0; ALWAYS(i<pSrc->nSrc); i++){
|
|
if( pSrc->a[i].fg.isRecursive ){
|
|
iCurrent = pSrc->a[i].iCursor;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Allocate cursors numbers for Queue and Distinct. The cursor number for
|
|
** the Distinct table must be exactly one greater than Queue in order
|
|
** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
|
|
iQueue = pParse->nTab++;
|
|
if( p->op==TK_UNION ){
|
|
eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
|
|
iDistinct = pParse->nTab++;
|
|
}else{
|
|
eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
|
|
}
|
|
sqlite3SelectDestInit(&destQueue, eDest, iQueue);
|
|
|
|
/* Allocate cursors for Current, Queue, and Distinct. */
|
|
regCurrent = ++pParse->nMem;
|
|
sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
|
|
if( pOrderBy ){
|
|
KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
|
|
sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
|
|
(char*)pKeyInfo, P4_KEYINFO);
|
|
destQueue.pOrderBy = pOrderBy;
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
|
|
}
|
|
VdbeComment((v, "Queue table"));
|
|
if( iDistinct ){
|
|
p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
|
|
p->selFlags |= SF_UsesEphemeral;
|
|
}
|
|
|
|
/* Detach the ORDER BY clause from the compound SELECT */
|
|
p->pOrderBy = 0;
|
|
|
|
/* Store the results of the setup-query in Queue. */
|
|
pSetup->pNext = 0;
|
|
ExplainQueryPlan((pParse, 1, "SETUP"));
|
|
rc = sqlite3Select(pParse, pSetup, &destQueue);
|
|
pSetup->pNext = p;
|
|
if( rc ) goto end_of_recursive_query;
|
|
|
|
/* Find the next row in the Queue and output that row */
|
|
addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
|
|
|
|
/* Transfer the next row in Queue over to Current */
|
|
sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
|
|
if( pOrderBy ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
|
|
}
|
|
sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
|
|
|
|
/* Output the single row in Current */
|
|
addrCont = sqlite3VdbeMakeLabel(pParse);
|
|
codeOffset(v, regOffset, addrCont);
|
|
selectInnerLoop(pParse, p, iCurrent,
|
|
0, 0, pDest, addrCont, addrBreak);
|
|
if( regLimit ){
|
|
sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
|
|
VdbeCoverage(v);
|
|
}
|
|
sqlite3VdbeResolveLabel(v, addrCont);
|
|
|
|
/* Execute the recursive SELECT taking the single row in Current as
|
|
** the value for the recursive-table. Store the results in the Queue.
|
|
*/
|
|
if( p->selFlags & SF_Aggregate ){
|
|
sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
|
|
}else{
|
|
p->pPrior = 0;
|
|
ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
|
|
sqlite3Select(pParse, p, &destQueue);
|
|
assert( p->pPrior==0 );
|
|
p->pPrior = pSetup;
|
|
}
|
|
|
|
/* Keep running the loop until the Queue is empty */
|
|
sqlite3VdbeGoto(v, addrTop);
|
|
sqlite3VdbeResolveLabel(v, addrBreak);
|
|
|
|
end_of_recursive_query:
|
|
sqlite3ExprListDelete(pParse->db, p->pOrderBy);
|
|
p->pOrderBy = pOrderBy;
|
|
p->pLimit = pLimit;
|
|
return;
|
|
}
|
|
#endif /* SQLITE_OMIT_CTE */
|
|
|
|
/* Forward references */
|
|
static int multiSelectOrderBy(
|
|
Parse *pParse, /* Parsing context */
|
|
Select *p, /* The right-most of SELECTs to be coded */
|
|
SelectDest *pDest /* What to do with query results */
|
|
);
|
|
|
|
/*
|
|
** Handle the special case of a compound-select that originates from a
|
|
** VALUES clause. By handling this as a special case, we avoid deep
|
|
** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
|
|
** on a VALUES clause.
|
|
**
|
|
** Because the Select object originates from a VALUES clause:
|
|
** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
|
|
** (2) All terms are UNION ALL
|
|
** (3) There is no ORDER BY clause
|
|
**
|
|
** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
|
|
** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
|
|
** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
|
|
** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
|
|
*/
|
|
static int multiSelectValues(
|
|
Parse *pParse, /* Parsing context */
|
|
Select *p, /* The right-most of SELECTs to be coded */
|
|
SelectDest *pDest /* What to do with query results */
|
|
){
|
|
int nRow = 1;
|
|
int rc = 0;
|
|
int bShowAll = p->pLimit==0;
|
|
assert( p->selFlags & SF_MultiValue );
|
|
do{
|
|
assert( p->selFlags & SF_Values );
|
|
assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
|
|
assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
if( p->pWin ) return -1;
|
|
#endif
|
|
if( p->pPrior==0 ) break;
|
|
assert( p->pPrior->pNext==p );
|
|
p = p->pPrior;
|
|
nRow += bShowAll;
|
|
}while(1);
|
|
ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
|
|
nRow==1 ? "" : "S"));
|
|
while( p ){
|
|
selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
|
|
if( !bShowAll ) break;
|
|
p->nSelectRow = nRow;
|
|
p = p->pNext;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This routine is called to process a compound query form from
|
|
** two or more separate queries using UNION, UNION ALL, EXCEPT, or
|
|
** INTERSECT
|
|
**
|
|
** "p" points to the right-most of the two queries. the query on the
|
|
** left is p->pPrior. The left query could also be a compound query
|
|
** in which case this routine will be called recursively.
|
|
**
|
|
** The results of the total query are to be written into a destination
|
|
** of type eDest with parameter iParm.
|
|
**
|
|
** Example 1: Consider a three-way compound SQL statement.
|
|
**
|
|
** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
|
|
**
|
|
** This statement is parsed up as follows:
|
|
**
|
|
** SELECT c FROM t3
|
|
** |
|
|
** `-----> SELECT b FROM t2
|
|
** |
|
|
** `------> SELECT a FROM t1
|
|
**
|
|
** The arrows in the diagram above represent the Select.pPrior pointer.
|
|
** So if this routine is called with p equal to the t3 query, then
|
|
** pPrior will be the t2 query. p->op will be TK_UNION in this case.
|
|
**
|
|
** Notice that because of the way SQLite parses compound SELECTs, the
|
|
** individual selects always group from left to right.
|
|
*/
|
|
static int multiSelect(
|
|
Parse *pParse, /* Parsing context */
|
|
Select *p, /* The right-most of SELECTs to be coded */
|
|
SelectDest *pDest /* What to do with query results */
|
|
){
|
|
int rc = SQLITE_OK; /* Success code from a subroutine */
|
|
Select *pPrior; /* Another SELECT immediately to our left */
|
|
Vdbe *v; /* Generate code to this VDBE */
|
|
SelectDest dest; /* Alternative data destination */
|
|
Select *pDelete = 0; /* Chain of simple selects to delete */
|
|
sqlite3 *db; /* Database connection */
|
|
|
|
/* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
|
|
** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
|
|
*/
|
|
assert( p && p->pPrior ); /* Calling function guarantees this much */
|
|
assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
|
|
assert( p->selFlags & SF_Compound );
|
|
db = pParse->db;
|
|
pPrior = p->pPrior;
|
|
dest = *pDest;
|
|
if( pPrior->pOrderBy || pPrior->pLimit ){
|
|
sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
|
|
pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
|
|
rc = 1;
|
|
goto multi_select_end;
|
|
}
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
assert( v!=0 ); /* The VDBE already created by calling function */
|
|
|
|
/* Create the destination temporary table if necessary
|
|
*/
|
|
if( dest.eDest==SRT_EphemTab ){
|
|
assert( p->pEList );
|
|
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
|
|
dest.eDest = SRT_Table;
|
|
}
|
|
|
|
/* Special handling for a compound-select that originates as a VALUES clause.
|
|
*/
|
|
if( p->selFlags & SF_MultiValue ){
|
|
rc = multiSelectValues(pParse, p, &dest);
|
|
if( rc>=0 ) goto multi_select_end;
|
|
rc = SQLITE_OK;
|
|
}
|
|
|
|
/* Make sure all SELECTs in the statement have the same number of elements
|
|
** in their result sets.
|
|
*/
|
|
assert( p->pEList && pPrior->pEList );
|
|
assert( p->pEList->nExpr==pPrior->pEList->nExpr );
|
|
|
|
#ifndef SQLITE_OMIT_CTE
|
|
if( p->selFlags & SF_Recursive ){
|
|
generateWithRecursiveQuery(pParse, p, &dest);
|
|
}else
|
|
#endif
|
|
|
|
/* Compound SELECTs that have an ORDER BY clause are handled separately.
|
|
*/
|
|
if( p->pOrderBy ){
|
|
return multiSelectOrderBy(pParse, p, pDest);
|
|
}else{
|
|
|
|
#ifndef SQLITE_OMIT_EXPLAIN
|
|
if( pPrior->pPrior==0 ){
|
|
ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
|
|
ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
|
|
}
|
|
#endif
|
|
|
|
/* Generate code for the left and right SELECT statements.
|
|
*/
|
|
switch( p->op ){
|
|
case TK_ALL: {
|
|
int addr = 0;
|
|
int nLimit;
|
|
assert( !pPrior->pLimit );
|
|
pPrior->iLimit = p->iLimit;
|
|
pPrior->iOffset = p->iOffset;
|
|
pPrior->pLimit = p->pLimit;
|
|
rc = sqlite3Select(pParse, pPrior, &dest);
|
|
p->pLimit = 0;
|
|
if( rc ){
|
|
goto multi_select_end;
|
|
}
|
|
p->pPrior = 0;
|
|
p->iLimit = pPrior->iLimit;
|
|
p->iOffset = pPrior->iOffset;
|
|
if( p->iLimit ){
|
|
addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
|
|
VdbeComment((v, "Jump ahead if LIMIT reached"));
|
|
if( p->iOffset ){
|
|
sqlite3VdbeAddOp3(v, OP_OffsetLimit,
|
|
p->iLimit, p->iOffset+1, p->iOffset);
|
|
}
|
|
}
|
|
ExplainQueryPlan((pParse, 1, "UNION ALL"));
|
|
rc = sqlite3Select(pParse, p, &dest);
|
|
testcase( rc!=SQLITE_OK );
|
|
pDelete = p->pPrior;
|
|
p->pPrior = pPrior;
|
|
p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
|
|
if( pPrior->pLimit
|
|
&& sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
|
|
&& nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
|
|
){
|
|
p->nSelectRow = sqlite3LogEst((u64)nLimit);
|
|
}
|
|
if( addr ){
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
}
|
|
break;
|
|
}
|
|
case TK_EXCEPT:
|
|
case TK_UNION: {
|
|
int unionTab; /* Cursor number of the temp table holding result */
|
|
u8 op = 0; /* One of the SRT_ operations to apply to self */
|
|
int priorOp; /* The SRT_ operation to apply to prior selects */
|
|
Expr *pLimit; /* Saved values of p->nLimit */
|
|
int addr;
|
|
SelectDest uniondest;
|
|
|
|
testcase( p->op==TK_EXCEPT );
|
|
testcase( p->op==TK_UNION );
|
|
priorOp = SRT_Union;
|
|
if( dest.eDest==priorOp ){
|
|
/* We can reuse a temporary table generated by a SELECT to our
|
|
** right.
|
|
*/
|
|
assert( p->pLimit==0 ); /* Not allowed on leftward elements */
|
|
unionTab = dest.iSDParm;
|
|
}else{
|
|
/* We will need to create our own temporary table to hold the
|
|
** intermediate results.
|
|
*/
|
|
unionTab = pParse->nTab++;
|
|
assert( p->pOrderBy==0 );
|
|
addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
|
|
assert( p->addrOpenEphm[0] == -1 );
|
|
p->addrOpenEphm[0] = addr;
|
|
findRightmost(p)->selFlags |= SF_UsesEphemeral;
|
|
assert( p->pEList );
|
|
}
|
|
|
|
/* Code the SELECT statements to our left
|
|
*/
|
|
assert( !pPrior->pOrderBy );
|
|
sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
|
|
rc = sqlite3Select(pParse, pPrior, &uniondest);
|
|
if( rc ){
|
|
goto multi_select_end;
|
|
}
|
|
|
|
/* Code the current SELECT statement
|
|
*/
|
|
if( p->op==TK_EXCEPT ){
|
|
op = SRT_Except;
|
|
}else{
|
|
assert( p->op==TK_UNION );
|
|
op = SRT_Union;
|
|
}
|
|
p->pPrior = 0;
|
|
pLimit = p->pLimit;
|
|
p->pLimit = 0;
|
|
uniondest.eDest = op;
|
|
ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
|
|
selectOpName(p->op)));
|
|
rc = sqlite3Select(pParse, p, &uniondest);
|
|
testcase( rc!=SQLITE_OK );
|
|
/* Query flattening in sqlite3Select() might refill p->pOrderBy.
|
|
** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
|
|
sqlite3ExprListDelete(db, p->pOrderBy);
|
|
pDelete = p->pPrior;
|
|
p->pPrior = pPrior;
|
|
p->pOrderBy = 0;
|
|
if( p->op==TK_UNION ){
|
|
p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
|
|
}
|
|
sqlite3ExprDelete(db, p->pLimit);
|
|
p->pLimit = pLimit;
|
|
p->iLimit = 0;
|
|
p->iOffset = 0;
|
|
|
|
/* Convert the data in the temporary table into whatever form
|
|
** it is that we currently need.
|
|
*/
|
|
assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
|
|
assert( p->pEList || db->mallocFailed );
|
|
if( dest.eDest!=priorOp && db->mallocFailed==0 ){
|
|
int iCont, iBreak, iStart;
|
|
iBreak = sqlite3VdbeMakeLabel(pParse);
|
|
iCont = sqlite3VdbeMakeLabel(pParse);
|
|
computeLimitRegisters(pParse, p, iBreak);
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
|
|
iStart = sqlite3VdbeCurrentAddr(v);
|
|
selectInnerLoop(pParse, p, unionTab,
|
|
0, 0, &dest, iCont, iBreak);
|
|
sqlite3VdbeResolveLabel(v, iCont);
|
|
sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
|
|
sqlite3VdbeResolveLabel(v, iBreak);
|
|
sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
|
|
}
|
|
break;
|
|
}
|
|
default: assert( p->op==TK_INTERSECT ); {
|
|
int tab1, tab2;
|
|
int iCont, iBreak, iStart;
|
|
Expr *pLimit;
|
|
int addr;
|
|
SelectDest intersectdest;
|
|
int r1;
|
|
|
|
/* INTERSECT is different from the others since it requires
|
|
** two temporary tables. Hence it has its own case. Begin
|
|
** by allocating the tables we will need.
|
|
*/
|
|
tab1 = pParse->nTab++;
|
|
tab2 = pParse->nTab++;
|
|
assert( p->pOrderBy==0 );
|
|
|
|
addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
|
|
assert( p->addrOpenEphm[0] == -1 );
|
|
p->addrOpenEphm[0] = addr;
|
|
findRightmost(p)->selFlags |= SF_UsesEphemeral;
|
|
assert( p->pEList );
|
|
|
|
/* Code the SELECTs to our left into temporary table "tab1".
|
|
*/
|
|
sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
|
|
rc = sqlite3Select(pParse, pPrior, &intersectdest);
|
|
if( rc ){
|
|
goto multi_select_end;
|
|
}
|
|
|
|
/* Code the current SELECT into temporary table "tab2"
|
|
*/
|
|
addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
|
|
assert( p->addrOpenEphm[1] == -1 );
|
|
p->addrOpenEphm[1] = addr;
|
|
p->pPrior = 0;
|
|
pLimit = p->pLimit;
|
|
p->pLimit = 0;
|
|
intersectdest.iSDParm = tab2;
|
|
ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
|
|
selectOpName(p->op)));
|
|
rc = sqlite3Select(pParse, p, &intersectdest);
|
|
testcase( rc!=SQLITE_OK );
|
|
pDelete = p->pPrior;
|
|
p->pPrior = pPrior;
|
|
if( p->nSelectRow>pPrior->nSelectRow ){
|
|
p->nSelectRow = pPrior->nSelectRow;
|
|
}
|
|
sqlite3ExprDelete(db, p->pLimit);
|
|
p->pLimit = pLimit;
|
|
|
|
/* Generate code to take the intersection of the two temporary
|
|
** tables.
|
|
*/
|
|
assert( p->pEList );
|
|
iBreak = sqlite3VdbeMakeLabel(pParse);
|
|
iCont = sqlite3VdbeMakeLabel(pParse);
|
|
computeLimitRegisters(pParse, p, iBreak);
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
|
|
r1 = sqlite3GetTempReg(pParse);
|
|
iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
|
|
sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
|
|
VdbeCoverage(v);
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
selectInnerLoop(pParse, p, tab1,
|
|
0, 0, &dest, iCont, iBreak);
|
|
sqlite3VdbeResolveLabel(v, iCont);
|
|
sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
|
|
sqlite3VdbeResolveLabel(v, iBreak);
|
|
sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
|
|
sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_EXPLAIN
|
|
if( p->pNext==0 ){
|
|
ExplainQueryPlanPop(pParse);
|
|
}
|
|
#endif
|
|
}
|
|
if( pParse->nErr ) goto multi_select_end;
|
|
|
|
/* Compute collating sequences used by
|
|
** temporary tables needed to implement the compound select.
|
|
** Attach the KeyInfo structure to all temporary tables.
|
|
**
|
|
** This section is run by the right-most SELECT statement only.
|
|
** SELECT statements to the left always skip this part. The right-most
|
|
** SELECT might also skip this part if it has no ORDER BY clause and
|
|
** no temp tables are required.
|
|
*/
|
|
if( p->selFlags & SF_UsesEphemeral ){
|
|
int i; /* Loop counter */
|
|
KeyInfo *pKeyInfo; /* Collating sequence for the result set */
|
|
Select *pLoop; /* For looping through SELECT statements */
|
|
CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
|
|
int nCol; /* Number of columns in result set */
|
|
|
|
assert( p->pNext==0 );
|
|
nCol = p->pEList->nExpr;
|
|
pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
|
|
if( !pKeyInfo ){
|
|
rc = SQLITE_NOMEM_BKPT;
|
|
goto multi_select_end;
|
|
}
|
|
for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
|
|
*apColl = multiSelectCollSeq(pParse, p, i);
|
|
if( 0==*apColl ){
|
|
*apColl = db->pDfltColl;
|
|
}
|
|
}
|
|
|
|
for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
|
|
for(i=0; i<2; i++){
|
|
int addr = pLoop->addrOpenEphm[i];
|
|
if( addr<0 ){
|
|
/* If [0] is unused then [1] is also unused. So we can
|
|
** always safely abort as soon as the first unused slot is found */
|
|
assert( pLoop->addrOpenEphm[1]<0 );
|
|
break;
|
|
}
|
|
sqlite3VdbeChangeP2(v, addr, nCol);
|
|
sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
|
|
P4_KEYINFO);
|
|
pLoop->addrOpenEphm[i] = -1;
|
|
}
|
|
}
|
|
sqlite3KeyInfoUnref(pKeyInfo);
|
|
}
|
|
|
|
multi_select_end:
|
|
pDest->iSdst = dest.iSdst;
|
|
pDest->nSdst = dest.nSdst;
|
|
sqlite3SelectDelete(db, pDelete);
|
|
return rc;
|
|
}
|
|
#endif /* SQLITE_OMIT_COMPOUND_SELECT */
|
|
|
|
/*
|
|
** Error message for when two or more terms of a compound select have different
|
|
** size result sets.
|
|
*/
|
|
void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
|
|
if( p->selFlags & SF_Values ){
|
|
sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
|
|
}else{
|
|
sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
|
|
" do not have the same number of result columns", selectOpName(p->op));
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Code an output subroutine for a coroutine implementation of a
|
|
** SELECT statment.
|
|
**
|
|
** The data to be output is contained in pIn->iSdst. There are
|
|
** pIn->nSdst columns to be output. pDest is where the output should
|
|
** be sent.
|
|
**
|
|
** regReturn is the number of the register holding the subroutine
|
|
** return address.
|
|
**
|
|
** If regPrev>0 then it is the first register in a vector that
|
|
** records the previous output. mem[regPrev] is a flag that is false
|
|
** if there has been no previous output. If regPrev>0 then code is
|
|
** generated to suppress duplicates. pKeyInfo is used for comparing
|
|
** keys.
|
|
**
|
|
** If the LIMIT found in p->iLimit is reached, jump immediately to
|
|
** iBreak.
|
|
*/
|
|
static int generateOutputSubroutine(
|
|
Parse *pParse, /* Parsing context */
|
|
Select *p, /* The SELECT statement */
|
|
SelectDest *pIn, /* Coroutine supplying data */
|
|
SelectDest *pDest, /* Where to send the data */
|
|
int regReturn, /* The return address register */
|
|
int regPrev, /* Previous result register. No uniqueness if 0 */
|
|
KeyInfo *pKeyInfo, /* For comparing with previous entry */
|
|
int iBreak /* Jump here if we hit the LIMIT */
|
|
){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int iContinue;
|
|
int addr;
|
|
|
|
addr = sqlite3VdbeCurrentAddr(v);
|
|
iContinue = sqlite3VdbeMakeLabel(pParse);
|
|
|
|
/* Suppress duplicates for UNION, EXCEPT, and INTERSECT
|
|
*/
|
|
if( regPrev ){
|
|
int addr1, addr2;
|
|
addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
|
|
addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
|
|
(char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
|
|
sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
|
|
}
|
|
if( pParse->db->mallocFailed ) return 0;
|
|
|
|
/* Suppress the first OFFSET entries if there is an OFFSET clause
|
|
*/
|
|
codeOffset(v, p->iOffset, iContinue);
|
|
|
|
assert( pDest->eDest!=SRT_Exists );
|
|
assert( pDest->eDest!=SRT_Table );
|
|
switch( pDest->eDest ){
|
|
/* Store the result as data using a unique key.
|
|
*/
|
|
case SRT_EphemTab: {
|
|
int r1 = sqlite3GetTempReg(pParse);
|
|
int r2 = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
|
sqlite3ReleaseTempReg(pParse, r2);
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
break;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
/* If we are creating a set for an "expr IN (SELECT ...)".
|
|
*/
|
|
case SRT_Set: {
|
|
int r1;
|
|
testcase( pIn->nSdst>1 );
|
|
r1 = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
|
|
r1, pDest->zAffSdst, pIn->nSdst);
|
|
sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
|
|
pIn->iSdst, pIn->nSdst);
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
break;
|
|
}
|
|
|
|
/* If this is a scalar select that is part of an expression, then
|
|
** store the results in the appropriate memory cell and break out
|
|
** of the scan loop. Note that the select might return multiple columns
|
|
** if it is the RHS of a row-value IN operator.
|
|
*/
|
|
case SRT_Mem: {
|
|
if( pParse->nErr==0 ){
|
|
testcase( pIn->nSdst>1 );
|
|
sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
|
|
}
|
|
/* The LIMIT clause will jump out of the loop for us */
|
|
break;
|
|
}
|
|
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
|
|
|
|
/* The results are stored in a sequence of registers
|
|
** starting at pDest->iSdst. Then the co-routine yields.
|
|
*/
|
|
case SRT_Coroutine: {
|
|
if( pDest->iSdst==0 ){
|
|
pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
|
|
pDest->nSdst = pIn->nSdst;
|
|
}
|
|
sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
|
|
sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
|
|
break;
|
|
}
|
|
|
|
/* If none of the above, then the result destination must be
|
|
** SRT_Output. This routine is never called with any other
|
|
** destination other than the ones handled above or SRT_Output.
|
|
**
|
|
** For SRT_Output, results are stored in a sequence of registers.
|
|
** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
|
|
** return the next row of result.
|
|
*/
|
|
default: {
|
|
assert( pDest->eDest==SRT_Output );
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Jump to the end of the loop if the LIMIT is reached.
|
|
*/
|
|
if( p->iLimit ){
|
|
sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
|
|
}
|
|
|
|
/* Generate the subroutine return
|
|
*/
|
|
sqlite3VdbeResolveLabel(v, iContinue);
|
|
sqlite3VdbeAddOp1(v, OP_Return, regReturn);
|
|
|
|
return addr;
|
|
}
|
|
|
|
/*
|
|
** Alternative compound select code generator for cases when there
|
|
** is an ORDER BY clause.
|
|
**
|
|
** We assume a query of the following form:
|
|
**
|
|
** <selectA> <operator> <selectB> ORDER BY <orderbylist>
|
|
**
|
|
** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
|
|
** is to code both <selectA> and <selectB> with the ORDER BY clause as
|
|
** co-routines. Then run the co-routines in parallel and merge the results
|
|
** into the output. In addition to the two coroutines (called selectA and
|
|
** selectB) there are 7 subroutines:
|
|
**
|
|
** outA: Move the output of the selectA coroutine into the output
|
|
** of the compound query.
|
|
**
|
|
** outB: Move the output of the selectB coroutine into the output
|
|
** of the compound query. (Only generated for UNION and
|
|
** UNION ALL. EXCEPT and INSERTSECT never output a row that
|
|
** appears only in B.)
|
|
**
|
|
** AltB: Called when there is data from both coroutines and A<B.
|
|
**
|
|
** AeqB: Called when there is data from both coroutines and A==B.
|
|
**
|
|
** AgtB: Called when there is data from both coroutines and A>B.
|
|
**
|
|
** EofA: Called when data is exhausted from selectA.
|
|
**
|
|
** EofB: Called when data is exhausted from selectB.
|
|
**
|
|
** The implementation of the latter five subroutines depend on which
|
|
** <operator> is used:
|
|
**
|
|
**
|
|
** UNION ALL UNION EXCEPT INTERSECT
|
|
** ------------- ----------------- -------------- -----------------
|
|
** AltB: outA, nextA outA, nextA outA, nextA nextA
|
|
**
|
|
** AeqB: outA, nextA nextA nextA outA, nextA
|
|
**
|
|
** AgtB: outB, nextB outB, nextB nextB nextB
|
|
**
|
|
** EofA: outB, nextB outB, nextB halt halt
|
|
**
|
|
** EofB: outA, nextA outA, nextA outA, nextA halt
|
|
**
|
|
** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
|
|
** causes an immediate jump to EofA and an EOF on B following nextB causes
|
|
** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
|
|
** following nextX causes a jump to the end of the select processing.
|
|
**
|
|
** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
|
|
** within the output subroutine. The regPrev register set holds the previously
|
|
** output value. A comparison is made against this value and the output
|
|
** is skipped if the next results would be the same as the previous.
|
|
**
|
|
** The implementation plan is to implement the two coroutines and seven
|
|
** subroutines first, then put the control logic at the bottom. Like this:
|
|
**
|
|
** goto Init
|
|
** coA: coroutine for left query (A)
|
|
** coB: coroutine for right query (B)
|
|
** outA: output one row of A
|
|
** outB: output one row of B (UNION and UNION ALL only)
|
|
** EofA: ...
|
|
** EofB: ...
|
|
** AltB: ...
|
|
** AeqB: ...
|
|
** AgtB: ...
|
|
** Init: initialize coroutine registers
|
|
** yield coA
|
|
** if eof(A) goto EofA
|
|
** yield coB
|
|
** if eof(B) goto EofB
|
|
** Cmpr: Compare A, B
|
|
** Jump AltB, AeqB, AgtB
|
|
** End: ...
|
|
**
|
|
** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
|
|
** actually called using Gosub and they do not Return. EofA and EofB loop
|
|
** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
|
|
** and AgtB jump to either L2 or to one of EofA or EofB.
|
|
*/
|
|
#ifndef SQLITE_OMIT_COMPOUND_SELECT
|
|
static int multiSelectOrderBy(
|
|
Parse *pParse, /* Parsing context */
|
|
Select *p, /* The right-most of SELECTs to be coded */
|
|
SelectDest *pDest /* What to do with query results */
|
|
){
|
|
int i, j; /* Loop counters */
|
|
Select *pPrior; /* Another SELECT immediately to our left */
|
|
Vdbe *v; /* Generate code to this VDBE */
|
|
SelectDest destA; /* Destination for coroutine A */
|
|
SelectDest destB; /* Destination for coroutine B */
|
|
int regAddrA; /* Address register for select-A coroutine */
|
|
int regAddrB; /* Address register for select-B coroutine */
|
|
int addrSelectA; /* Address of the select-A coroutine */
|
|
int addrSelectB; /* Address of the select-B coroutine */
|
|
int regOutA; /* Address register for the output-A subroutine */
|
|
int regOutB; /* Address register for the output-B subroutine */
|
|
int addrOutA; /* Address of the output-A subroutine */
|
|
int addrOutB = 0; /* Address of the output-B subroutine */
|
|
int addrEofA; /* Address of the select-A-exhausted subroutine */
|
|
int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
|
|
int addrEofB; /* Address of the select-B-exhausted subroutine */
|
|
int addrAltB; /* Address of the A<B subroutine */
|
|
int addrAeqB; /* Address of the A==B subroutine */
|
|
int addrAgtB; /* Address of the A>B subroutine */
|
|
int regLimitA; /* Limit register for select-A */
|
|
int regLimitB; /* Limit register for select-A */
|
|
int regPrev; /* A range of registers to hold previous output */
|
|
int savedLimit; /* Saved value of p->iLimit */
|
|
int savedOffset; /* Saved value of p->iOffset */
|
|
int labelCmpr; /* Label for the start of the merge algorithm */
|
|
int labelEnd; /* Label for the end of the overall SELECT stmt */
|
|
int addr1; /* Jump instructions that get retargetted */
|
|
int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
|
|
KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
|
|
KeyInfo *pKeyMerge; /* Comparison information for merging rows */
|
|
sqlite3 *db; /* Database connection */
|
|
ExprList *pOrderBy; /* The ORDER BY clause */
|
|
int nOrderBy; /* Number of terms in the ORDER BY clause */
|
|
int *aPermute; /* Mapping from ORDER BY terms to result set columns */
|
|
|
|
assert( p->pOrderBy!=0 );
|
|
assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
|
|
db = pParse->db;
|
|
v = pParse->pVdbe;
|
|
assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
|
|
labelEnd = sqlite3VdbeMakeLabel(pParse);
|
|
labelCmpr = sqlite3VdbeMakeLabel(pParse);
|
|
|
|
|
|
/* Patch up the ORDER BY clause
|
|
*/
|
|
op = p->op;
|
|
pPrior = p->pPrior;
|
|
assert( pPrior->pOrderBy==0 );
|
|
pOrderBy = p->pOrderBy;
|
|
assert( pOrderBy );
|
|
nOrderBy = pOrderBy->nExpr;
|
|
|
|
/* For operators other than UNION ALL we have to make sure that
|
|
** the ORDER BY clause covers every term of the result set. Add
|
|
** terms to the ORDER BY clause as necessary.
|
|
*/
|
|
if( op!=TK_ALL ){
|
|
for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
|
|
struct ExprList_item *pItem;
|
|
for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
|
|
assert( pItem->u.x.iOrderByCol>0 );
|
|
if( pItem->u.x.iOrderByCol==i ) break;
|
|
}
|
|
if( j==nOrderBy ){
|
|
Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
|
|
if( pNew==0 ) return SQLITE_NOMEM_BKPT;
|
|
pNew->flags |= EP_IntValue;
|
|
pNew->u.iValue = i;
|
|
p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
|
|
if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Compute the comparison permutation and keyinfo that is used with
|
|
** the permutation used to determine if the next
|
|
** row of results comes from selectA or selectB. Also add explicit
|
|
** collations to the ORDER BY clause terms so that when the subqueries
|
|
** to the right and the left are evaluated, they use the correct
|
|
** collation.
|
|
*/
|
|
aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
|
|
if( aPermute ){
|
|
struct ExprList_item *pItem;
|
|
aPermute[0] = nOrderBy;
|
|
for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
|
|
assert( pItem->u.x.iOrderByCol>0 );
|
|
assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
|
|
aPermute[i] = pItem->u.x.iOrderByCol - 1;
|
|
}
|
|
pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
|
|
}else{
|
|
pKeyMerge = 0;
|
|
}
|
|
|
|
/* Reattach the ORDER BY clause to the query.
|
|
*/
|
|
p->pOrderBy = pOrderBy;
|
|
pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
|
|
|
|
/* Allocate a range of temporary registers and the KeyInfo needed
|
|
** for the logic that removes duplicate result rows when the
|
|
** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
|
|
*/
|
|
if( op==TK_ALL ){
|
|
regPrev = 0;
|
|
}else{
|
|
int nExpr = p->pEList->nExpr;
|
|
assert( nOrderBy>=nExpr || db->mallocFailed );
|
|
regPrev = pParse->nMem+1;
|
|
pParse->nMem += nExpr+1;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
|
|
pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
|
|
if( pKeyDup ){
|
|
assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
|
|
for(i=0; i<nExpr; i++){
|
|
pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
|
|
pKeyDup->aSortFlags[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Separate the left and the right query from one another
|
|
*/
|
|
p->pPrior = 0;
|
|
pPrior->pNext = 0;
|
|
sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
|
|
if( pPrior->pPrior==0 ){
|
|
sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
|
|
}
|
|
|
|
/* Compute the limit registers */
|
|
computeLimitRegisters(pParse, p, labelEnd);
|
|
if( p->iLimit && op==TK_ALL ){
|
|
regLimitA = ++pParse->nMem;
|
|
regLimitB = ++pParse->nMem;
|
|
sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
|
|
regLimitA);
|
|
sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
|
|
}else{
|
|
regLimitA = regLimitB = 0;
|
|
}
|
|
sqlite3ExprDelete(db, p->pLimit);
|
|
p->pLimit = 0;
|
|
|
|
regAddrA = ++pParse->nMem;
|
|
regAddrB = ++pParse->nMem;
|
|
regOutA = ++pParse->nMem;
|
|
regOutB = ++pParse->nMem;
|
|
sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
|
|
sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
|
|
|
|
ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
|
|
|
|
/* Generate a coroutine to evaluate the SELECT statement to the
|
|
** left of the compound operator - the "A" select.
|
|
*/
|
|
addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
|
|
addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
|
|
VdbeComment((v, "left SELECT"));
|
|
pPrior->iLimit = regLimitA;
|
|
ExplainQueryPlan((pParse, 1, "LEFT"));
|
|
sqlite3Select(pParse, pPrior, &destA);
|
|
sqlite3VdbeEndCoroutine(v, regAddrA);
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
|
|
/* Generate a coroutine to evaluate the SELECT statement on
|
|
** the right - the "B" select
|
|
*/
|
|
addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
|
|
addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
|
|
VdbeComment((v, "right SELECT"));
|
|
savedLimit = p->iLimit;
|
|
savedOffset = p->iOffset;
|
|
p->iLimit = regLimitB;
|
|
p->iOffset = 0;
|
|
ExplainQueryPlan((pParse, 1, "RIGHT"));
|
|
sqlite3Select(pParse, p, &destB);
|
|
p->iLimit = savedLimit;
|
|
p->iOffset = savedOffset;
|
|
sqlite3VdbeEndCoroutine(v, regAddrB);
|
|
|
|
/* Generate a subroutine that outputs the current row of the A
|
|
** select as the next output row of the compound select.
|
|
*/
|
|
VdbeNoopComment((v, "Output routine for A"));
|
|
addrOutA = generateOutputSubroutine(pParse,
|
|
p, &destA, pDest, regOutA,
|
|
regPrev, pKeyDup, labelEnd);
|
|
|
|
/* Generate a subroutine that outputs the current row of the B
|
|
** select as the next output row of the compound select.
|
|
*/
|
|
if( op==TK_ALL || op==TK_UNION ){
|
|
VdbeNoopComment((v, "Output routine for B"));
|
|
addrOutB = generateOutputSubroutine(pParse,
|
|
p, &destB, pDest, regOutB,
|
|
regPrev, pKeyDup, labelEnd);
|
|
}
|
|
sqlite3KeyInfoUnref(pKeyDup);
|
|
|
|
/* Generate a subroutine to run when the results from select A
|
|
** are exhausted and only data in select B remains.
|
|
*/
|
|
if( op==TK_EXCEPT || op==TK_INTERSECT ){
|
|
addrEofA_noB = addrEofA = labelEnd;
|
|
}else{
|
|
VdbeNoopComment((v, "eof-A subroutine"));
|
|
addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
|
|
addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
|
|
VdbeCoverage(v);
|
|
sqlite3VdbeGoto(v, addrEofA);
|
|
p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
|
|
}
|
|
|
|
/* Generate a subroutine to run when the results from select B
|
|
** are exhausted and only data in select A remains.
|
|
*/
|
|
if( op==TK_INTERSECT ){
|
|
addrEofB = addrEofA;
|
|
if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
|
|
}else{
|
|
VdbeNoopComment((v, "eof-B subroutine"));
|
|
addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
|
|
sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
|
|
sqlite3VdbeGoto(v, addrEofB);
|
|
}
|
|
|
|
/* Generate code to handle the case of A<B
|
|
*/
|
|
VdbeNoopComment((v, "A-lt-B subroutine"));
|
|
addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
|
|
sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
|
|
sqlite3VdbeGoto(v, labelCmpr);
|
|
|
|
/* Generate code to handle the case of A==B
|
|
*/
|
|
if( op==TK_ALL ){
|
|
addrAeqB = addrAltB;
|
|
}else if( op==TK_INTERSECT ){
|
|
addrAeqB = addrAltB;
|
|
addrAltB++;
|
|
}else{
|
|
VdbeNoopComment((v, "A-eq-B subroutine"));
|
|
addrAeqB =
|
|
sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
|
|
sqlite3VdbeGoto(v, labelCmpr);
|
|
}
|
|
|
|
/* Generate code to handle the case of A>B
|
|
*/
|
|
VdbeNoopComment((v, "A-gt-B subroutine"));
|
|
addrAgtB = sqlite3VdbeCurrentAddr(v);
|
|
if( op==TK_ALL || op==TK_UNION ){
|
|
sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
|
|
sqlite3VdbeGoto(v, labelCmpr);
|
|
|
|
/* This code runs once to initialize everything.
|
|
*/
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
|
|
sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
|
|
|
|
/* Implement the main merge loop
|
|
*/
|
|
sqlite3VdbeResolveLabel(v, labelCmpr);
|
|
sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
|
|
sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
|
|
(char*)pKeyMerge, P4_KEYINFO);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
|
|
sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
|
|
|
|
/* Jump to the this point in order to terminate the query.
|
|
*/
|
|
sqlite3VdbeResolveLabel(v, labelEnd);
|
|
|
|
/* Reassembly the compound query so that it will be freed correctly
|
|
** by the calling function */
|
|
if( p->pPrior ){
|
|
sqlite3SelectDelete(db, p->pPrior);
|
|
}
|
|
p->pPrior = pPrior;
|
|
pPrior->pNext = p;
|
|
|
|
/*** TBD: Insert subroutine calls to close cursors on incomplete
|
|
**** subqueries ****/
|
|
ExplainQueryPlanPop(pParse);
|
|
return pParse->nErr!=0;
|
|
}
|
|
#endif
|
|
|
|
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
|
|
|
|
/* An instance of the SubstContext object describes an substitution edit
|
|
** to be performed on a parse tree.
|
|
**
|
|
** All references to columns in table iTable are to be replaced by corresponding
|
|
** expressions in pEList.
|
|
*/
|
|
typedef struct SubstContext {
|
|
Parse *pParse; /* The parsing context */
|
|
int iTable; /* Replace references to this table */
|
|
int iNewTable; /* New table number */
|
|
int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */
|
|
ExprList *pEList; /* Replacement expressions */
|
|
} SubstContext;
|
|
|
|
/* Forward Declarations */
|
|
static void substExprList(SubstContext*, ExprList*);
|
|
static void substSelect(SubstContext*, Select*, int);
|
|
|
|
/*
|
|
** Scan through the expression pExpr. Replace every reference to
|
|
** a column in table number iTable with a copy of the iColumn-th
|
|
** entry in pEList. (But leave references to the ROWID column
|
|
** unchanged.)
|
|
**
|
|
** This routine is part of the flattening procedure. A subquery
|
|
** whose result set is defined by pEList appears as entry in the
|
|
** FROM clause of a SELECT such that the VDBE cursor assigned to that
|
|
** FORM clause entry is iTable. This routine makes the necessary
|
|
** changes to pExpr so that it refers directly to the source table
|
|
** of the subquery rather the result set of the subquery.
|
|
*/
|
|
static Expr *substExpr(
|
|
SubstContext *pSubst, /* Description of the substitution */
|
|
Expr *pExpr /* Expr in which substitution occurs */
|
|
){
|
|
if( pExpr==0 ) return 0;
|
|
if( ExprHasProperty(pExpr, EP_FromJoin)
|
|
&& pExpr->iRightJoinTable==pSubst->iTable
|
|
){
|
|
pExpr->iRightJoinTable = pSubst->iNewTable;
|
|
}
|
|
if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
|
|
if( pExpr->iColumn<0 ){
|
|
pExpr->op = TK_NULL;
|
|
}else{
|
|
Expr *pNew;
|
|
Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
|
|
Expr ifNullRow;
|
|
assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
|
|
assert( pExpr->pRight==0 );
|
|
if( sqlite3ExprIsVector(pCopy) ){
|
|
sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
|
|
}else{
|
|
sqlite3 *db = pSubst->pParse->db;
|
|
if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
|
|
memset(&ifNullRow, 0, sizeof(ifNullRow));
|
|
ifNullRow.op = TK_IF_NULL_ROW;
|
|
ifNullRow.pLeft = pCopy;
|
|
ifNullRow.iTable = pSubst->iNewTable;
|
|
pCopy = &ifNullRow;
|
|
}
|
|
testcase( ExprHasProperty(pCopy, EP_Subquery) );
|
|
pNew = sqlite3ExprDup(db, pCopy, 0);
|
|
if( pNew && pSubst->isLeftJoin ){
|
|
ExprSetProperty(pNew, EP_CanBeNull);
|
|
}
|
|
if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
|
|
pNew->iRightJoinTable = pExpr->iRightJoinTable;
|
|
ExprSetProperty(pNew, EP_FromJoin);
|
|
}
|
|
sqlite3ExprDelete(db, pExpr);
|
|
pExpr = pNew;
|
|
|
|
/* Ensure that the expression now has an implicit collation sequence,
|
|
** just as it did when it was a column of a view or sub-query. */
|
|
if( pExpr ){
|
|
if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
|
|
CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
|
|
pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
|
|
(pColl ? pColl->zName : "BINARY")
|
|
);
|
|
}
|
|
ExprClearProperty(pExpr, EP_Collate);
|
|
}
|
|
}
|
|
}
|
|
}else{
|
|
if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
|
|
pExpr->iTable = pSubst->iNewTable;
|
|
}
|
|
pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
|
|
pExpr->pRight = substExpr(pSubst, pExpr->pRight);
|
|
if( ExprHasProperty(pExpr, EP_xIsSelect) ){
|
|
substSelect(pSubst, pExpr->x.pSelect, 1);
|
|
}else{
|
|
substExprList(pSubst, pExpr->x.pList);
|
|
}
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
if( ExprHasProperty(pExpr, EP_WinFunc) ){
|
|
Window *pWin = pExpr->y.pWin;
|
|
pWin->pFilter = substExpr(pSubst, pWin->pFilter);
|
|
substExprList(pSubst, pWin->pPartition);
|
|
substExprList(pSubst, pWin->pOrderBy);
|
|
}
|
|
#endif
|
|
}
|
|
return pExpr;
|
|
}
|
|
static void substExprList(
|
|
SubstContext *pSubst, /* Description of the substitution */
|
|
ExprList *pList /* List to scan and in which to make substitutes */
|
|
){
|
|
int i;
|
|
if( pList==0 ) return;
|
|
for(i=0; i<pList->nExpr; i++){
|
|
pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
|
|
}
|
|
}
|
|
static void substSelect(
|
|
SubstContext *pSubst, /* Description of the substitution */
|
|
Select *p, /* SELECT statement in which to make substitutions */
|
|
int doPrior /* Do substitutes on p->pPrior too */
|
|
){
|
|
SrcList *pSrc;
|
|
struct SrcList_item *pItem;
|
|
int i;
|
|
if( !p ) return;
|
|
do{
|
|
substExprList(pSubst, p->pEList);
|
|
substExprList(pSubst, p->pGroupBy);
|
|
substExprList(pSubst, p->pOrderBy);
|
|
p->pHaving = substExpr(pSubst, p->pHaving);
|
|
p->pWhere = substExpr(pSubst, p->pWhere);
|
|
pSrc = p->pSrc;
|
|
assert( pSrc!=0 );
|
|
for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
|
|
substSelect(pSubst, pItem->pSelect, 1);
|
|
if( pItem->fg.isTabFunc ){
|
|
substExprList(pSubst, pItem->u1.pFuncArg);
|
|
}
|
|
}
|
|
}while( doPrior && (p = p->pPrior)!=0 );
|
|
}
|
|
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
|
|
|
|
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
|
|
/*
|
|
** This routine attempts to flatten subqueries as a performance optimization.
|
|
** This routine returns 1 if it makes changes and 0 if no flattening occurs.
|
|
**
|
|
** To understand the concept of flattening, consider the following
|
|
** query:
|
|
**
|
|
** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
|
|
**
|
|
** The default way of implementing this query is to execute the
|
|
** subquery first and store the results in a temporary table, then
|
|
** run the outer query on that temporary table. This requires two
|
|
** passes over the data. Furthermore, because the temporary table
|
|
** has no indices, the WHERE clause on the outer query cannot be
|
|
** optimized.
|
|
**
|
|
** This routine attempts to rewrite queries such as the above into
|
|
** a single flat select, like this:
|
|
**
|
|
** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
|
|
**
|
|
** The code generated for this simplification gives the same result
|
|
** but only has to scan the data once. And because indices might
|
|
** exist on the table t1, a complete scan of the data might be
|
|
** avoided.
|
|
**
|
|
** Flattening is subject to the following constraints:
|
|
**
|
|
** (**) We no longer attempt to flatten aggregate subqueries. Was:
|
|
** The subquery and the outer query cannot both be aggregates.
|
|
**
|
|
** (**) We no longer attempt to flatten aggregate subqueries. Was:
|
|
** (2) If the subquery is an aggregate then
|
|
** (2a) the outer query must not be a join and
|
|
** (2b) the outer query must not use subqueries
|
|
** other than the one FROM-clause subquery that is a candidate
|
|
** for flattening. (This is due to ticket [2f7170d73bf9abf80]
|
|
** from 2015-02-09.)
|
|
**
|
|
** (3) If the subquery is the right operand of a LEFT JOIN then
|
|
** (3a) the subquery may not be a join and
|
|
** (3b) the FROM clause of the subquery may not contain a virtual
|
|
** table and
|
|
** (3c) the outer query may not be an aggregate.
|
|
** (3d) the outer query may not be DISTINCT.
|
|
**
|
|
** (4) The subquery can not be DISTINCT.
|
|
**
|
|
** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
|
|
** sub-queries that were excluded from this optimization. Restriction
|
|
** (4) has since been expanded to exclude all DISTINCT subqueries.
|
|
**
|
|
** (**) We no longer attempt to flatten aggregate subqueries. Was:
|
|
** If the subquery is aggregate, the outer query may not be DISTINCT.
|
|
**
|
|
** (7) The subquery must have a FROM clause. TODO: For subqueries without
|
|
** A FROM clause, consider adding a FROM clause with the special
|
|
** table sqlite_once that consists of a single row containing a
|
|
** single NULL.
|
|
**
|
|
** (8) If the subquery uses LIMIT then the outer query may not be a join.
|
|
**
|
|
** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
|
|
**
|
|
** (**) Restriction (10) was removed from the code on 2005-02-05 but we
|
|
** accidently carried the comment forward until 2014-09-15. Original
|
|
** constraint: "If the subquery is aggregate then the outer query
|
|
** may not use LIMIT."
|
|
**
|
|
** (11) The subquery and the outer query may not both have ORDER BY clauses.
|
|
**
|
|
** (**) Not implemented. Subsumed into restriction (3). Was previously
|
|
** a separate restriction deriving from ticket #350.
|
|
**
|
|
** (13) The subquery and outer query may not both use LIMIT.
|
|
**
|
|
** (14) The subquery may not use OFFSET.
|
|
**
|
|
** (15) If the outer query is part of a compound select, then the
|
|
** subquery may not use LIMIT.
|
|
** (See ticket #2339 and ticket [02a8e81d44]).
|
|
**
|
|
** (16) If the outer query is aggregate, then the subquery may not
|
|
** use ORDER BY. (Ticket #2942) This used to not matter
|
|
** until we introduced the group_concat() function.
|
|
**
|
|
** (17) If the subquery is a compound select, then
|
|
** (17a) all compound operators must be a UNION ALL, and
|
|
** (17b) no terms within the subquery compound may be aggregate
|
|
** or DISTINCT, and
|
|
** (17c) every term within the subquery compound must have a FROM clause
|
|
** (17d) the outer query may not be
|
|
** (17d1) aggregate, or
|
|
** (17d2) DISTINCT, or
|
|
** (17d3) a join.
|
|
** (17e) the subquery may not contain window functions
|
|
**
|
|
** The parent and sub-query may contain WHERE clauses. Subject to
|
|
** rules (11), (13) and (14), they may also contain ORDER BY,
|
|
** LIMIT and OFFSET clauses. The subquery cannot use any compound
|
|
** operator other than UNION ALL because all the other compound
|
|
** operators have an implied DISTINCT which is disallowed by
|
|
** restriction (4).
|
|
**
|
|
** Also, each component of the sub-query must return the same number
|
|
** of result columns. This is actually a requirement for any compound
|
|
** SELECT statement, but all the code here does is make sure that no
|
|
** such (illegal) sub-query is flattened. The caller will detect the
|
|
** syntax error and return a detailed message.
|
|
**
|
|
** (18) If the sub-query is a compound select, then all terms of the
|
|
** ORDER BY clause of the parent must be simple references to
|
|
** columns of the sub-query.
|
|
**
|
|
** (19) If the subquery uses LIMIT then the outer query may not
|
|
** have a WHERE clause.
|
|
**
|
|
** (20) If the sub-query is a compound select, then it must not use
|
|
** an ORDER BY clause. Ticket #3773. We could relax this constraint
|
|
** somewhat by saying that the terms of the ORDER BY clause must
|
|
** appear as unmodified result columns in the outer query. But we
|
|
** have other optimizations in mind to deal with that case.
|
|
**
|
|
** (21) If the subquery uses LIMIT then the outer query may not be
|
|
** DISTINCT. (See ticket [752e1646fc]).
|
|
**
|
|
** (22) The subquery may not be a recursive CTE.
|
|
**
|
|
** (**) Subsumed into restriction (17d3). Was: If the outer query is
|
|
** a recursive CTE, then the sub-query may not be a compound query.
|
|
** This restriction is because transforming the
|
|
** parent to a compound query confuses the code that handles
|
|
** recursive queries in multiSelect().
|
|
**
|
|
** (**) We no longer attempt to flatten aggregate subqueries. Was:
|
|
** The subquery may not be an aggregate that uses the built-in min() or
|
|
** or max() functions. (Without this restriction, a query like:
|
|
** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
|
|
** return the value X for which Y was maximal.)
|
|
**
|
|
** (25) If either the subquery or the parent query contains a window
|
|
** function in the select list or ORDER BY clause, flattening
|
|
** is not attempted.
|
|
**
|
|
**
|
|
** In this routine, the "p" parameter is a pointer to the outer query.
|
|
** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
|
|
** uses aggregates.
|
|
**
|
|
** If flattening is not attempted, this routine is a no-op and returns 0.
|
|
** If flattening is attempted this routine returns 1.
|
|
**
|
|
** All of the expression analysis must occur on both the outer query and
|
|
** the subquery before this routine runs.
|
|
*/
|
|
static int flattenSubquery(
|
|
Parse *pParse, /* Parsing context */
|
|
Select *p, /* The parent or outer SELECT statement */
|
|
int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
|
|
int isAgg /* True if outer SELECT uses aggregate functions */
|
|
){
|
|
const char *zSavedAuthContext = pParse->zAuthContext;
|
|
Select *pParent; /* Current UNION ALL term of the other query */
|
|
Select *pSub; /* The inner query or "subquery" */
|
|
Select *pSub1; /* Pointer to the rightmost select in sub-query */
|
|
SrcList *pSrc; /* The FROM clause of the outer query */
|
|
SrcList *pSubSrc; /* The FROM clause of the subquery */
|
|
int iParent; /* VDBE cursor number of the pSub result set temp table */
|
|
int iNewParent = -1;/* Replacement table for iParent */
|
|
int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
|
|
int i; /* Loop counter */
|
|
Expr *pWhere; /* The WHERE clause */
|
|
struct SrcList_item *pSubitem; /* The subquery */
|
|
sqlite3 *db = pParse->db;
|
|
|
|
/* Check to see if flattening is permitted. Return 0 if not.
|
|
*/
|
|
assert( p!=0 );
|
|
assert( p->pPrior==0 );
|
|
if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
|
|
pSrc = p->pSrc;
|
|
assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
|
|
pSubitem = &pSrc->a[iFrom];
|
|
iParent = pSubitem->iCursor;
|
|
pSub = pSubitem->pSelect;
|
|
assert( pSub!=0 );
|
|
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */
|
|
#endif
|
|
|
|
pSubSrc = pSub->pSrc;
|
|
assert( pSubSrc );
|
|
/* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
|
|
** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
|
|
** because they could be computed at compile-time. But when LIMIT and OFFSET
|
|
** became arbitrary expressions, we were forced to add restrictions (13)
|
|
** and (14). */
|
|
if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
|
|
if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */
|
|
if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
|
|
return 0; /* Restriction (15) */
|
|
}
|
|
if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
|
|
if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */
|
|
if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
|
|
return 0; /* Restrictions (8)(9) */
|
|
}
|
|
if( p->pOrderBy && pSub->pOrderBy ){
|
|
return 0; /* Restriction (11) */
|
|
}
|
|
if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
|
|
if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
|
|
if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
|
|
return 0; /* Restriction (21) */
|
|
}
|
|
if( pSub->selFlags & (SF_Recursive) ){
|
|
return 0; /* Restrictions (22) */
|
|
}
|
|
|
|
/*
|
|
** If the subquery is the right operand of a LEFT JOIN, then the
|
|
** subquery may not be a join itself (3a). Example of why this is not
|
|
** allowed:
|
|
**
|
|
** t1 LEFT OUTER JOIN (t2 JOIN t3)
|
|
**
|
|
** If we flatten the above, we would get
|
|
**
|
|
** (t1 LEFT OUTER JOIN t2) JOIN t3
|
|
**
|
|
** which is not at all the same thing.
|
|
**
|
|
** If the subquery is the right operand of a LEFT JOIN, then the outer
|
|
** query cannot be an aggregate. (3c) This is an artifact of the way
|
|
** aggregates are processed - there is no mechanism to determine if
|
|
** the LEFT JOIN table should be all-NULL.
|
|
**
|
|
** See also tickets #306, #350, and #3300.
|
|
*/
|
|
if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
|
|
isLeftJoin = 1;
|
|
if( pSubSrc->nSrc>1 /* (3a) */
|
|
|| isAgg /* (3b) */
|
|
|| IsVirtual(pSubSrc->a[0].pTab) /* (3c) */
|
|
|| (p->selFlags & SF_Distinct)!=0 /* (3d) */
|
|
){
|
|
return 0;
|
|
}
|
|
}
|
|
#ifdef SQLITE_EXTRA_IFNULLROW
|
|
else if( iFrom>0 && !isAgg ){
|
|
/* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
|
|
** every reference to any result column from subquery in a join, even
|
|
** though they are not necessary. This will stress-test the OP_IfNullRow
|
|
** opcode. */
|
|
isLeftJoin = -1;
|
|
}
|
|
#endif
|
|
|
|
/* Restriction (17): If the sub-query is a compound SELECT, then it must
|
|
** use only the UNION ALL operator. And none of the simple select queries
|
|
** that make up the compound SELECT are allowed to be aggregate or distinct
|
|
** queries.
|
|
*/
|
|
if( pSub->pPrior ){
|
|
if( pSub->pOrderBy ){
|
|
return 0; /* Restriction (20) */
|
|
}
|
|
if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
|
|
return 0; /* (17d1), (17d2), or (17d3) */
|
|
}
|
|
for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
|
|
testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
|
|
testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
|
|
assert( pSub->pSrc!=0 );
|
|
assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
|
|
if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */
|
|
|| (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */
|
|
|| pSub1->pSrc->nSrc<1 /* (17c) */
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
|| pSub1->pWin /* (17e) */
|
|
#endif
|
|
){
|
|
return 0;
|
|
}
|
|
testcase( pSub1->pSrc->nSrc>1 );
|
|
}
|
|
|
|
/* Restriction (18). */
|
|
if( p->pOrderBy ){
|
|
int ii;
|
|
for(ii=0; ii<p->pOrderBy->nExpr; ii++){
|
|
if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Ex-restriction (23):
|
|
** The only way that the recursive part of a CTE can contain a compound
|
|
** subquery is for the subquery to be one term of a join. But if the
|
|
** subquery is a join, then the flattening has already been stopped by
|
|
** restriction (17d3)
|
|
*/
|
|
assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
|
|
|
|
/***** If we reach this point, flattening is permitted. *****/
|
|
SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
|
|
pSub->selId, pSub, iFrom));
|
|
|
|
/* Authorize the subquery */
|
|
pParse->zAuthContext = pSubitem->zName;
|
|
TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
|
|
testcase( i==SQLITE_DENY );
|
|
pParse->zAuthContext = zSavedAuthContext;
|
|
|
|
/* If the sub-query is a compound SELECT statement, then (by restrictions
|
|
** 17 and 18 above) it must be a UNION ALL and the parent query must
|
|
** be of the form:
|
|
**
|
|
** SELECT <expr-list> FROM (<sub-query>) <where-clause>
|
|
**
|
|
** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
|
|
** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
|
|
** OFFSET clauses and joins them to the left-hand-side of the original
|
|
** using UNION ALL operators. In this case N is the number of simple
|
|
** select statements in the compound sub-query.
|
|
**
|
|
** Example:
|
|
**
|
|
** SELECT a+1 FROM (
|
|
** SELECT x FROM tab
|
|
** UNION ALL
|
|
** SELECT y FROM tab
|
|
** UNION ALL
|
|
** SELECT abs(z*2) FROM tab2
|
|
** ) WHERE a!=5 ORDER BY 1
|
|
**
|
|
** Transformed into:
|
|
**
|
|
** SELECT x+1 FROM tab WHERE x+1!=5
|
|
** UNION ALL
|
|
** SELECT y+1 FROM tab WHERE y+1!=5
|
|
** UNION ALL
|
|
** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
|
|
** ORDER BY 1
|
|
**
|
|
** We call this the "compound-subquery flattening".
|
|
*/
|
|
for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
|
|
Select *pNew;
|
|
ExprList *pOrderBy = p->pOrderBy;
|
|
Expr *pLimit = p->pLimit;
|
|
Select *pPrior = p->pPrior;
|
|
p->pOrderBy = 0;
|
|
p->pSrc = 0;
|
|
p->pPrior = 0;
|
|
p->pLimit = 0;
|
|
pNew = sqlite3SelectDup(db, p, 0);
|
|
p->pLimit = pLimit;
|
|
p->pOrderBy = pOrderBy;
|
|
p->pSrc = pSrc;
|
|
p->op = TK_ALL;
|
|
if( pNew==0 ){
|
|
p->pPrior = pPrior;
|
|
}else{
|
|
pNew->pPrior = pPrior;
|
|
if( pPrior ) pPrior->pNext = pNew;
|
|
pNew->pNext = p;
|
|
p->pPrior = pNew;
|
|
SELECTTRACE(2,pParse,p,("compound-subquery flattener"
|
|
" creates %u as peer\n",pNew->selId));
|
|
}
|
|
if( db->mallocFailed ) return 1;
|
|
}
|
|
|
|
/* Begin flattening the iFrom-th entry of the FROM clause
|
|
** in the outer query.
|
|
*/
|
|
pSub = pSub1 = pSubitem->pSelect;
|
|
|
|
/* Delete the transient table structure associated with the
|
|
** subquery
|
|
*/
|
|
sqlite3DbFree(db, pSubitem->zDatabase);
|
|
sqlite3DbFree(db, pSubitem->zName);
|
|
sqlite3DbFree(db, pSubitem->zAlias);
|
|
pSubitem->zDatabase = 0;
|
|
pSubitem->zName = 0;
|
|
pSubitem->zAlias = 0;
|
|
pSubitem->pSelect = 0;
|
|
|
|
/* Defer deleting the Table object associated with the
|
|
** subquery until code generation is
|
|
** complete, since there may still exist Expr.pTab entries that
|
|
** refer to the subquery even after flattening. Ticket #3346.
|
|
**
|
|
** pSubitem->pTab is always non-NULL by test restrictions and tests above.
|
|
*/
|
|
if( ALWAYS(pSubitem->pTab!=0) ){
|
|
Table *pTabToDel = pSubitem->pTab;
|
|
if( pTabToDel->nTabRef==1 ){
|
|
Parse *pToplevel = sqlite3ParseToplevel(pParse);
|
|
pTabToDel->pNextZombie = pToplevel->pZombieTab;
|
|
pToplevel->pZombieTab = pTabToDel;
|
|
}else{
|
|
pTabToDel->nTabRef--;
|
|
}
|
|
pSubitem->pTab = 0;
|
|
}
|
|
|
|
/* The following loop runs once for each term in a compound-subquery
|
|
** flattening (as described above). If we are doing a different kind
|
|
** of flattening - a flattening other than a compound-subquery flattening -
|
|
** then this loop only runs once.
|
|
**
|
|
** This loop moves all of the FROM elements of the subquery into the
|
|
** the FROM clause of the outer query. Before doing this, remember
|
|
** the cursor number for the original outer query FROM element in
|
|
** iParent. The iParent cursor will never be used. Subsequent code
|
|
** will scan expressions looking for iParent references and replace
|
|
** those references with expressions that resolve to the subquery FROM
|
|
** elements we are now copying in.
|
|
*/
|
|
for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
|
|
int nSubSrc;
|
|
u8 jointype = 0;
|
|
assert( pSub!=0 );
|
|
pSubSrc = pSub->pSrc; /* FROM clause of subquery */
|
|
nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
|
|
pSrc = pParent->pSrc; /* FROM clause of the outer query */
|
|
|
|
if( pSrc ){
|
|
assert( pParent==p ); /* First time through the loop */
|
|
jointype = pSubitem->fg.jointype;
|
|
}else{
|
|
assert( pParent!=p ); /* 2nd and subsequent times through the loop */
|
|
pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
|
|
if( pSrc==0 ) break;
|
|
pParent->pSrc = pSrc;
|
|
}
|
|
|
|
/* The subquery uses a single slot of the FROM clause of the outer
|
|
** query. If the subquery has more than one element in its FROM clause,
|
|
** then expand the outer query to make space for it to hold all elements
|
|
** of the subquery.
|
|
**
|
|
** Example:
|
|
**
|
|
** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
|
|
**
|
|
** The outer query has 3 slots in its FROM clause. One slot of the
|
|
** outer query (the middle slot) is used by the subquery. The next
|
|
** block of code will expand the outer query FROM clause to 4 slots.
|
|
** The middle slot is expanded to two slots in order to make space
|
|
** for the two elements in the FROM clause of the subquery.
|
|
*/
|
|
if( nSubSrc>1 ){
|
|
pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
|
|
if( pSrc==0 ) break;
|
|
pParent->pSrc = pSrc;
|
|
}
|
|
|
|
/* Transfer the FROM clause terms from the subquery into the
|
|
** outer query.
|
|
*/
|
|
for(i=0; i<nSubSrc; i++){
|
|
sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
|
|
assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
|
|
pSrc->a[i+iFrom] = pSubSrc->a[i];
|
|
iNewParent = pSubSrc->a[i].iCursor;
|
|
memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
|
|
}
|
|
pSrc->a[iFrom].fg.jointype = jointype;
|
|
|
|
/* Now begin substituting subquery result set expressions for
|
|
** references to the iParent in the outer query.
|
|
**
|
|
** Example:
|
|
**
|
|
** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
|
|
** \ \_____________ subquery __________/ /
|
|
** \_____________________ outer query ______________________________/
|
|
**
|
|
** We look at every expression in the outer query and every place we see
|
|
** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
|
|
*/
|
|
if( pSub->pOrderBy ){
|
|
/* At this point, any non-zero iOrderByCol values indicate that the
|
|
** ORDER BY column expression is identical to the iOrderByCol'th
|
|
** expression returned by SELECT statement pSub. Since these values
|
|
** do not necessarily correspond to columns in SELECT statement pParent,
|
|
** zero them before transfering the ORDER BY clause.
|
|
**
|
|
** Not doing this may cause an error if a subsequent call to this
|
|
** function attempts to flatten a compound sub-query into pParent
|
|
** (the only way this can happen is if the compound sub-query is
|
|
** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
|
|
ExprList *pOrderBy = pSub->pOrderBy;
|
|
for(i=0; i<pOrderBy->nExpr; i++){
|
|
pOrderBy->a[i].u.x.iOrderByCol = 0;
|
|
}
|
|
assert( pParent->pOrderBy==0 );
|
|
pParent->pOrderBy = pOrderBy;
|
|
pSub->pOrderBy = 0;
|
|
}
|
|
pWhere = pSub->pWhere;
|
|
pSub->pWhere = 0;
|
|
if( isLeftJoin>0 ){
|
|
sqlite3SetJoinExpr(pWhere, iNewParent);
|
|
}
|
|
pParent->pWhere = sqlite3ExprAnd(pParse, pWhere, pParent->pWhere);
|
|
if( db->mallocFailed==0 ){
|
|
SubstContext x;
|
|
x.pParse = pParse;
|
|
x.iTable = iParent;
|
|
x.iNewTable = iNewParent;
|
|
x.isLeftJoin = isLeftJoin;
|
|
x.pEList = pSub->pEList;
|
|
substSelect(&x, pParent, 0);
|
|
}
|
|
|
|
/* The flattened query is a compound if either the inner or the
|
|
** outer query is a compound. */
|
|
pParent->selFlags |= pSub->selFlags & SF_Compound;
|
|
assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
|
|
|
|
/*
|
|
** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
|
|
**
|
|
** One is tempted to try to add a and b to combine the limits. But this
|
|
** does not work if either limit is negative.
|
|
*/
|
|
if( pSub->pLimit ){
|
|
pParent->pLimit = pSub->pLimit;
|
|
pSub->pLimit = 0;
|
|
}
|
|
}
|
|
|
|
/* Finially, delete what is left of the subquery and return
|
|
** success.
|
|
*/
|
|
sqlite3SelectDelete(db, pSub1);
|
|
|
|
#if SELECTTRACE_ENABLED
|
|
if( sqlite3SelectTrace & 0x100 ){
|
|
SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
|
|
sqlite3TreeViewSelect(0, p, 0);
|
|
}
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
|
|
|
|
/*
|
|
** A structure to keep track of all of the column values that are fixed to
|
|
** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
|
|
*/
|
|
typedef struct WhereConst WhereConst;
|
|
struct WhereConst {
|
|
Parse *pParse; /* Parsing context */
|
|
int nConst; /* Number for COLUMN=CONSTANT terms */
|
|
int nChng; /* Number of times a constant is propagated */
|
|
Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */
|
|
};
|
|
|
|
/*
|
|
** Add a new entry to the pConst object. Except, do not add duplicate
|
|
** pColumn entires. Also, do not add if doing so would not be appropriate.
|
|
**
|
|
** The caller guarantees the pColumn is a column and pValue is a constant.
|
|
** This routine has to do some additional checks before completing the
|
|
** insert.
|
|
*/
|
|
static void constInsert(
|
|
WhereConst *pConst, /* The WhereConst into which we are inserting */
|
|
Expr *pColumn, /* The COLUMN part of the constraint */
|
|
Expr *pValue, /* The VALUE part of the constraint */
|
|
Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
|
|
){
|
|
int i;
|
|
assert( pColumn->op==TK_COLUMN );
|
|
assert( sqlite3ExprIsConstant(pValue) );
|
|
|
|
if( !ExprHasProperty(pValue, EP_FixedCol) && sqlite3ExprAffinity(pValue)!=0 ){
|
|
return;
|
|
}
|
|
if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
|
|
return;
|
|
}
|
|
|
|
/* 2018-10-25 ticket [cf5ed20f]
|
|
** Make sure the same pColumn is not inserted more than once */
|
|
for(i=0; i<pConst->nConst; i++){
|
|
const Expr *pE2 = pConst->apExpr[i*2];
|
|
assert( pE2->op==TK_COLUMN );
|
|
if( pE2->iTable==pColumn->iTable
|
|
&& pE2->iColumn==pColumn->iColumn
|
|
){
|
|
return; /* Already present. Return without doing anything. */
|
|
}
|
|
}
|
|
|
|
pConst->nConst++;
|
|
pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
|
|
pConst->nConst*2*sizeof(Expr*));
|
|
if( pConst->apExpr==0 ){
|
|
pConst->nConst = 0;
|
|
}else{
|
|
if( ExprHasProperty(pValue, EP_FixedCol) ){
|
|
pValue = pValue->pLeft;
|
|
}
|
|
pConst->apExpr[pConst->nConst*2-2] = pColumn;
|
|
pConst->apExpr[pConst->nConst*2-1] = pValue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
|
|
** is a constant expression and where the term must be true because it
|
|
** is part of the AND-connected terms of the expression. For each term
|
|
** found, add it to the pConst structure.
|
|
*/
|
|
static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
|
|
Expr *pRight, *pLeft;
|
|
if( pExpr==0 ) return;
|
|
if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
|
|
if( pExpr->op==TK_AND ){
|
|
findConstInWhere(pConst, pExpr->pRight);
|
|
findConstInWhere(pConst, pExpr->pLeft);
|
|
return;
|
|
}
|
|
if( pExpr->op!=TK_EQ ) return;
|
|
pRight = pExpr->pRight;
|
|
pLeft = pExpr->pLeft;
|
|
assert( pRight!=0 );
|
|
assert( pLeft!=0 );
|
|
if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
|
|
constInsert(pConst,pRight,pLeft,pExpr);
|
|
}
|
|
if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
|
|
constInsert(pConst,pLeft,pRight,pExpr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This is a Walker expression callback. pExpr is a candidate expression
|
|
** to be replaced by a value. If pExpr is equivalent to one of the
|
|
** columns named in pWalker->u.pConst, then overwrite it with its
|
|
** corresponding value.
|
|
*/
|
|
static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
|
|
int i;
|
|
WhereConst *pConst;
|
|
if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
|
|
if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
|
|
testcase( ExprHasProperty(pExpr, EP_FixedCol) );
|
|
testcase( ExprHasProperty(pExpr, EP_FromJoin) );
|
|
return WRC_Continue;
|
|
}
|
|
pConst = pWalker->u.pConst;
|
|
for(i=0; i<pConst->nConst; i++){
|
|
Expr *pColumn = pConst->apExpr[i*2];
|
|
if( pColumn==pExpr ) continue;
|
|
if( pColumn->iTable!=pExpr->iTable ) continue;
|
|
if( pColumn->iColumn!=pExpr->iColumn ) continue;
|
|
/* A match is found. Add the EP_FixedCol property */
|
|
pConst->nChng++;
|
|
ExprClearProperty(pExpr, EP_Leaf);
|
|
ExprSetProperty(pExpr, EP_FixedCol);
|
|
assert( pExpr->pLeft==0 );
|
|
pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
|
|
break;
|
|
}
|
|
return WRC_Prune;
|
|
}
|
|
|
|
/*
|
|
** The WHERE-clause constant propagation optimization.
|
|
**
|
|
** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
|
|
** CONSTANT=COLUMN that are top-level AND-connected terms that are not
|
|
** part of a ON clause from a LEFT JOIN, then throughout the query
|
|
** replace all other occurrences of COLUMN with CONSTANT.
|
|
**
|
|
** For example, the query:
|
|
**
|
|
** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
|
|
**
|
|
** Is transformed into
|
|
**
|
|
** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
|
|
**
|
|
** Return true if any transformations where made and false if not.
|
|
**
|
|
** Implementation note: Constant propagation is tricky due to affinity
|
|
** and collating sequence interactions. Consider this example:
|
|
**
|
|
** CREATE TABLE t1(a INT,b TEXT);
|
|
** INSERT INTO t1 VALUES(123,'0123');
|
|
** SELECT * FROM t1 WHERE a=123 AND b=a;
|
|
** SELECT * FROM t1 WHERE a=123 AND b=123;
|
|
**
|
|
** The two SELECT statements above should return different answers. b=a
|
|
** is alway true because the comparison uses numeric affinity, but b=123
|
|
** is false because it uses text affinity and '0123' is not the same as '123'.
|
|
** To work around this, the expression tree is not actually changed from
|
|
** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
|
|
** and the "123" value is hung off of the pLeft pointer. Code generator
|
|
** routines know to generate the constant "123" instead of looking up the
|
|
** column value. Also, to avoid collation problems, this optimization is
|
|
** only attempted if the "a=123" term uses the default BINARY collation.
|
|
*/
|
|
static int propagateConstants(
|
|
Parse *pParse, /* The parsing context */
|
|
Select *p /* The query in which to propagate constants */
|
|
){
|
|
WhereConst x;
|
|
Walker w;
|
|
int nChng = 0;
|
|
x.pParse = pParse;
|
|
do{
|
|
x.nConst = 0;
|
|
x.nChng = 0;
|
|
x.apExpr = 0;
|
|
findConstInWhere(&x, p->pWhere);
|
|
if( x.nConst ){
|
|
memset(&w, 0, sizeof(w));
|
|
w.pParse = pParse;
|
|
w.xExprCallback = propagateConstantExprRewrite;
|
|
w.xSelectCallback = sqlite3SelectWalkNoop;
|
|
w.xSelectCallback2 = 0;
|
|
w.walkerDepth = 0;
|
|
w.u.pConst = &x;
|
|
sqlite3WalkExpr(&w, p->pWhere);
|
|
sqlite3DbFree(x.pParse->db, x.apExpr);
|
|
nChng += x.nChng;
|
|
}
|
|
}while( x.nChng );
|
|
return nChng;
|
|
}
|
|
|
|
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
|
|
/*
|
|
** Make copies of relevant WHERE clause terms of the outer query into
|
|
** the WHERE clause of subquery. Example:
|
|
**
|
|
** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
|
|
**
|
|
** Transformed into:
|
|
**
|
|
** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
|
|
** WHERE x=5 AND y=10;
|
|
**
|
|
** The hope is that the terms added to the inner query will make it more
|
|
** efficient.
|
|
**
|
|
** Do not attempt this optimization if:
|
|
**
|
|
** (1) (** This restriction was removed on 2017-09-29. We used to
|
|
** disallow this optimization for aggregate subqueries, but now
|
|
** it is allowed by putting the extra terms on the HAVING clause.
|
|
** The added HAVING clause is pointless if the subquery lacks
|
|
** a GROUP BY clause. But such a HAVING clause is also harmless
|
|
** so there does not appear to be any reason to add extra logic
|
|
** to suppress it. **)
|
|
**
|
|
** (2) The inner query is the recursive part of a common table expression.
|
|
**
|
|
** (3) The inner query has a LIMIT clause (since the changes to the WHERE
|
|
** clause would change the meaning of the LIMIT).
|
|
**
|
|
** (4) The inner query is the right operand of a LEFT JOIN and the
|
|
** expression to be pushed down does not come from the ON clause
|
|
** on that LEFT JOIN.
|
|
**
|
|
** (5) The WHERE clause expression originates in the ON or USING clause
|
|
** of a LEFT JOIN where iCursor is not the right-hand table of that
|
|
** left join. An example:
|
|
**
|
|
** SELECT *
|
|
** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
|
|
** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
|
|
** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
|
|
**
|
|
** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
|
|
** But if the (b2=2) term were to be pushed down into the bb subquery,
|
|
** then the (1,1,NULL) row would be suppressed.
|
|
**
|
|
** (6) The inner query features one or more window-functions (since
|
|
** changes to the WHERE clause of the inner query could change the
|
|
** window over which window functions are calculated).
|
|
**
|
|
** Return 0 if no changes are made and non-zero if one or more WHERE clause
|
|
** terms are duplicated into the subquery.
|
|
*/
|
|
static int pushDownWhereTerms(
|
|
Parse *pParse, /* Parse context (for malloc() and error reporting) */
|
|
Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
|
|
Expr *pWhere, /* The WHERE clause of the outer query */
|
|
int iCursor, /* Cursor number of the subquery */
|
|
int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */
|
|
){
|
|
Expr *pNew;
|
|
int nChng = 0;
|
|
if( pWhere==0 ) return 0;
|
|
if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */
|
|
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
if( pSubq->pWin ) return 0; /* restriction (6) */
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/* Only the first term of a compound can have a WITH clause. But make
|
|
** sure no other terms are marked SF_Recursive in case something changes
|
|
** in the future.
|
|
*/
|
|
{
|
|
Select *pX;
|
|
for(pX=pSubq; pX; pX=pX->pPrior){
|
|
assert( (pX->selFlags & (SF_Recursive))==0 );
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if( pSubq->pLimit!=0 ){
|
|
return 0; /* restriction (3) */
|
|
}
|
|
while( pWhere->op==TK_AND ){
|
|
nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
|
|
iCursor, isLeftJoin);
|
|
pWhere = pWhere->pLeft;
|
|
}
|
|
if( isLeftJoin
|
|
&& (ExprHasProperty(pWhere,EP_FromJoin)==0
|
|
|| pWhere->iRightJoinTable!=iCursor)
|
|
){
|
|
return 0; /* restriction (4) */
|
|
}
|
|
if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
|
|
return 0; /* restriction (5) */
|
|
}
|
|
if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
|
|
nChng++;
|
|
while( pSubq ){
|
|
SubstContext x;
|
|
pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
|
|
unsetJoinExpr(pNew, -1);
|
|
x.pParse = pParse;
|
|
x.iTable = iCursor;
|
|
x.iNewTable = iCursor;
|
|
x.isLeftJoin = 0;
|
|
x.pEList = pSubq->pEList;
|
|
pNew = substExpr(&x, pNew);
|
|
if( pSubq->selFlags & SF_Aggregate ){
|
|
pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
|
|
}else{
|
|
pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
|
|
}
|
|
pSubq = pSubq->pPrior;
|
|
}
|
|
}
|
|
return nChng;
|
|
}
|
|
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
|
|
|
|
/*
|
|
** The pFunc is the only aggregate function in the query. Check to see
|
|
** if the query is a candidate for the min/max optimization.
|
|
**
|
|
** If the query is a candidate for the min/max optimization, then set
|
|
** *ppMinMax to be an ORDER BY clause to be used for the optimization
|
|
** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
|
|
** whether pFunc is a min() or max() function.
|
|
**
|
|
** If the query is not a candidate for the min/max optimization, return
|
|
** WHERE_ORDERBY_NORMAL (which must be zero).
|
|
**
|
|
** This routine must be called after aggregate functions have been
|
|
** located but before their arguments have been subjected to aggregate
|
|
** analysis.
|
|
*/
|
|
static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
|
|
int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
|
|
ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */
|
|
const char *zFunc; /* Name of aggregate function pFunc */
|
|
ExprList *pOrderBy;
|
|
u8 sortFlags;
|
|
|
|
assert( *ppMinMax==0 );
|
|
assert( pFunc->op==TK_AGG_FUNCTION );
|
|
assert( !IsWindowFunc(pFunc) );
|
|
if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){
|
|
return eRet;
|
|
}
|
|
zFunc = pFunc->u.zToken;
|
|
if( sqlite3StrICmp(zFunc, "min")==0 ){
|
|
eRet = WHERE_ORDERBY_MIN;
|
|
sortFlags = KEYINFO_ORDER_BIGNULL;
|
|
}else if( sqlite3StrICmp(zFunc, "max")==0 ){
|
|
eRet = WHERE_ORDERBY_MAX;
|
|
sortFlags = KEYINFO_ORDER_DESC;
|
|
}else{
|
|
return eRet;
|
|
}
|
|
*ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
|
|
assert( pOrderBy!=0 || db->mallocFailed );
|
|
if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
|
|
return eRet;
|
|
}
|
|
|
|
/*
|
|
** The select statement passed as the first argument is an aggregate query.
|
|
** The second argument is the associated aggregate-info object. This
|
|
** function tests if the SELECT is of the form:
|
|
**
|
|
** SELECT count(*) FROM <tbl>
|
|
**
|
|
** where table is a database table, not a sub-select or view. If the query
|
|
** does match this pattern, then a pointer to the Table object representing
|
|
** <tbl> is returned. Otherwise, 0 is returned.
|
|
*/
|
|
static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
|
|
Table *pTab;
|
|
Expr *pExpr;
|
|
|
|
assert( !p->pGroupBy );
|
|
|
|
if( p->pWhere || p->pEList->nExpr!=1
|
|
|| p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
|
|
){
|
|
return 0;
|
|
}
|
|
pTab = p->pSrc->a[0].pTab;
|
|
pExpr = p->pEList->a[0].pExpr;
|
|
assert( pTab && !pTab->pSelect && pExpr );
|
|
|
|
if( IsVirtual(pTab) ) return 0;
|
|
if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
|
|
if( NEVER(pAggInfo->nFunc==0) ) return 0;
|
|
if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
|
|
if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
|
|
|
|
return pTab;
|
|
}
|
|
|
|
/*
|
|
** If the source-list item passed as an argument was augmented with an
|
|
** INDEXED BY clause, then try to locate the specified index. If there
|
|
** was such a clause and the named index cannot be found, return
|
|
** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
|
|
** pFrom->pIndex and return SQLITE_OK.
|
|
*/
|
|
int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
|
|
if( pFrom->pTab && pFrom->fg.isIndexedBy ){
|
|
Table *pTab = pFrom->pTab;
|
|
char *zIndexedBy = pFrom->u1.zIndexedBy;
|
|
Index *pIdx;
|
|
for(pIdx=pTab->pIndex;
|
|
pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
|
|
pIdx=pIdx->pNext
|
|
);
|
|
if( !pIdx ){
|
|
sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
|
|
pParse->checkSchema = 1;
|
|
return SQLITE_ERROR;
|
|
}
|
|
pFrom->pIBIndex = pIdx;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
/*
|
|
** Detect compound SELECT statements that use an ORDER BY clause with
|
|
** an alternative collating sequence.
|
|
**
|
|
** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
|
|
**
|
|
** These are rewritten as a subquery:
|
|
**
|
|
** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
|
|
** ORDER BY ... COLLATE ...
|
|
**
|
|
** This transformation is necessary because the multiSelectOrderBy() routine
|
|
** above that generates the code for a compound SELECT with an ORDER BY clause
|
|
** uses a merge algorithm that requires the same collating sequence on the
|
|
** result columns as on the ORDER BY clause. See ticket
|
|
** http://www.sqlite.org/src/info/6709574d2a
|
|
**
|
|
** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
|
|
** The UNION ALL operator works fine with multiSelectOrderBy() even when
|
|
** there are COLLATE terms in the ORDER BY.
|
|
*/
|
|
static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
|
|
int i;
|
|
Select *pNew;
|
|
Select *pX;
|
|
sqlite3 *db;
|
|
struct ExprList_item *a;
|
|
SrcList *pNewSrc;
|
|
Parse *pParse;
|
|
Token dummy;
|
|
|
|
if( p->pPrior==0 ) return WRC_Continue;
|
|
if( p->pOrderBy==0 ) return WRC_Continue;
|
|
for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
|
|
if( pX==0 ) return WRC_Continue;
|
|
a = p->pOrderBy->a;
|
|
for(i=p->pOrderBy->nExpr-1; i>=0; i--){
|
|
if( a[i].pExpr->flags & EP_Collate ) break;
|
|
}
|
|
if( i<0 ) return WRC_Continue;
|
|
|
|
/* If we reach this point, that means the transformation is required. */
|
|
|
|
pParse = pWalker->pParse;
|
|
db = pParse->db;
|
|
pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
|
|
if( pNew==0 ) return WRC_Abort;
|
|
memset(&dummy, 0, sizeof(dummy));
|
|
pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
|
|
if( pNewSrc==0 ) return WRC_Abort;
|
|
*pNew = *p;
|
|
p->pSrc = pNewSrc;
|
|
p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
|
|
p->op = TK_SELECT;
|
|
p->pWhere = 0;
|
|
pNew->pGroupBy = 0;
|
|
pNew->pHaving = 0;
|
|
pNew->pOrderBy = 0;
|
|
p->pPrior = 0;
|
|
p->pNext = 0;
|
|
p->pWith = 0;
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
p->pWinDefn = 0;
|
|
#endif
|
|
p->selFlags &= ~SF_Compound;
|
|
assert( (p->selFlags & SF_Converted)==0 );
|
|
p->selFlags |= SF_Converted;
|
|
assert( pNew->pPrior!=0 );
|
|
pNew->pPrior->pNext = pNew;
|
|
pNew->pLimit = 0;
|
|
return WRC_Continue;
|
|
}
|
|
|
|
/*
|
|
** Check to see if the FROM clause term pFrom has table-valued function
|
|
** arguments. If it does, leave an error message in pParse and return
|
|
** non-zero, since pFrom is not allowed to be a table-valued function.
|
|
*/
|
|
static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
|
|
if( pFrom->fg.isTabFunc ){
|
|
sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_CTE
|
|
/*
|
|
** Argument pWith (which may be NULL) points to a linked list of nested
|
|
** WITH contexts, from inner to outermost. If the table identified by
|
|
** FROM clause element pItem is really a common-table-expression (CTE)
|
|
** then return a pointer to the CTE definition for that table. Otherwise
|
|
** return NULL.
|
|
**
|
|
** If a non-NULL value is returned, set *ppContext to point to the With
|
|
** object that the returned CTE belongs to.
|
|
*/
|
|
static struct Cte *searchWith(
|
|
With *pWith, /* Current innermost WITH clause */
|
|
struct SrcList_item *pItem, /* FROM clause element to resolve */
|
|
With **ppContext /* OUT: WITH clause return value belongs to */
|
|
){
|
|
const char *zName;
|
|
if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
|
|
With *p;
|
|
for(p=pWith; p; p=p->pOuter){
|
|
int i;
|
|
for(i=0; i<p->nCte; i++){
|
|
if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
|
|
*ppContext = p;
|
|
return &p->a[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* The code generator maintains a stack of active WITH clauses
|
|
** with the inner-most WITH clause being at the top of the stack.
|
|
**
|
|
** This routine pushes the WITH clause passed as the second argument
|
|
** onto the top of the stack. If argument bFree is true, then this
|
|
** WITH clause will never be popped from the stack. In this case it
|
|
** should be freed along with the Parse object. In other cases, when
|
|
** bFree==0, the With object will be freed along with the SELECT
|
|
** statement with which it is associated.
|
|
*/
|
|
void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
|
|
assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
|
|
if( pWith ){
|
|
assert( pParse->pWith!=pWith );
|
|
pWith->pOuter = pParse->pWith;
|
|
pParse->pWith = pWith;
|
|
if( bFree ) pParse->pWithToFree = pWith;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This function checks if argument pFrom refers to a CTE declared by
|
|
** a WITH clause on the stack currently maintained by the parser. And,
|
|
** if currently processing a CTE expression, if it is a recursive
|
|
** reference to the current CTE.
|
|
**
|
|
** If pFrom falls into either of the two categories above, pFrom->pTab
|
|
** and other fields are populated accordingly. The caller should check
|
|
** (pFrom->pTab!=0) to determine whether or not a successful match
|
|
** was found.
|
|
**
|
|
** Whether or not a match is found, SQLITE_OK is returned if no error
|
|
** occurs. If an error does occur, an error message is stored in the
|
|
** parser and some error code other than SQLITE_OK returned.
|
|
*/
|
|
static int withExpand(
|
|
Walker *pWalker,
|
|
struct SrcList_item *pFrom
|
|
){
|
|
Parse *pParse = pWalker->pParse;
|
|
sqlite3 *db = pParse->db;
|
|
struct Cte *pCte; /* Matched CTE (or NULL if no match) */
|
|
With *pWith; /* WITH clause that pCte belongs to */
|
|
|
|
assert( pFrom->pTab==0 );
|
|
if( pParse->nErr ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
pCte = searchWith(pParse->pWith, pFrom, &pWith);
|
|
if( pCte ){
|
|
Table *pTab;
|
|
ExprList *pEList;
|
|
Select *pSel;
|
|
Select *pLeft; /* Left-most SELECT statement */
|
|
int bMayRecursive; /* True if compound joined by UNION [ALL] */
|
|
With *pSavedWith; /* Initial value of pParse->pWith */
|
|
|
|
/* If pCte->zCteErr is non-NULL at this point, then this is an illegal
|
|
** recursive reference to CTE pCte. Leave an error in pParse and return
|
|
** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
|
|
** In this case, proceed. */
|
|
if( pCte->zCteErr ){
|
|
sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
|
|
return SQLITE_ERROR;
|
|
}
|
|
if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
|
|
|
|
assert( pFrom->pTab==0 );
|
|
pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
|
|
if( pTab==0 ) return WRC_Abort;
|
|
pTab->nTabRef = 1;
|
|
pTab->zName = sqlite3DbStrDup(db, pCte->zName);
|
|
pTab->iPKey = -1;
|
|
pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
|
|
pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
|
|
pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
|
|
if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
|
|
assert( pFrom->pSelect );
|
|
|
|
/* Check if this is a recursive CTE. */
|
|
pSel = pFrom->pSelect;
|
|
bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
|
|
if( bMayRecursive ){
|
|
int i;
|
|
SrcList *pSrc = pFrom->pSelect->pSrc;
|
|
for(i=0; i<pSrc->nSrc; i++){
|
|
struct SrcList_item *pItem = &pSrc->a[i];
|
|
if( pItem->zDatabase==0
|
|
&& pItem->zName!=0
|
|
&& 0==sqlite3StrICmp(pItem->zName, pCte->zName)
|
|
){
|
|
pItem->pTab = pTab;
|
|
pItem->fg.isRecursive = 1;
|
|
pTab->nTabRef++;
|
|
pSel->selFlags |= SF_Recursive;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Only one recursive reference is permitted. */
|
|
if( pTab->nTabRef>2 ){
|
|
sqlite3ErrorMsg(
|
|
pParse, "multiple references to recursive table: %s", pCte->zName
|
|
);
|
|
return SQLITE_ERROR;
|
|
}
|
|
assert( pTab->nTabRef==1 ||
|
|
((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
|
|
|
|
pCte->zCteErr = "circular reference: %s";
|
|
pSavedWith = pParse->pWith;
|
|
pParse->pWith = pWith;
|
|
if( bMayRecursive ){
|
|
Select *pPrior = pSel->pPrior;
|
|
assert( pPrior->pWith==0 );
|
|
pPrior->pWith = pSel->pWith;
|
|
sqlite3WalkSelect(pWalker, pPrior);
|
|
pPrior->pWith = 0;
|
|
}else{
|
|
sqlite3WalkSelect(pWalker, pSel);
|
|
}
|
|
pParse->pWith = pWith;
|
|
|
|
for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
|
|
pEList = pLeft->pEList;
|
|
if( pCte->pCols ){
|
|
if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
|
|
sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
|
|
pCte->zName, pEList->nExpr, pCte->pCols->nExpr
|
|
);
|
|
pParse->pWith = pSavedWith;
|
|
return SQLITE_ERROR;
|
|
}
|
|
pEList = pCte->pCols;
|
|
}
|
|
|
|
sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
|
|
if( bMayRecursive ){
|
|
if( pSel->selFlags & SF_Recursive ){
|
|
pCte->zCteErr = "multiple recursive references: %s";
|
|
}else{
|
|
pCte->zCteErr = "recursive reference in a subquery: %s";
|
|
}
|
|
sqlite3WalkSelect(pWalker, pSel);
|
|
}
|
|
pCte->zCteErr = 0;
|
|
pParse->pWith = pSavedWith;
|
|
}
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_CTE
|
|
/*
|
|
** If the SELECT passed as the second argument has an associated WITH
|
|
** clause, pop it from the stack stored as part of the Parse object.
|
|
**
|
|
** This function is used as the xSelectCallback2() callback by
|
|
** sqlite3SelectExpand() when walking a SELECT tree to resolve table
|
|
** names and other FROM clause elements.
|
|
*/
|
|
static void selectPopWith(Walker *pWalker, Select *p){
|
|
Parse *pParse = pWalker->pParse;
|
|
if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
|
|
With *pWith = findRightmost(p)->pWith;
|
|
if( pWith!=0 ){
|
|
assert( pParse->pWith==pWith || pParse->nErr );
|
|
pParse->pWith = pWith->pOuter;
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
#define selectPopWith 0
|
|
#endif
|
|
|
|
/*
|
|
** The SrcList_item structure passed as the second argument represents a
|
|
** sub-query in the FROM clause of a SELECT statement. This function
|
|
** allocates and populates the SrcList_item.pTab object. If successful,
|
|
** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
|
|
** SQLITE_NOMEM.
|
|
*/
|
|
int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
|
|
Select *pSel = pFrom->pSelect;
|
|
Table *pTab;
|
|
|
|
assert( pSel );
|
|
pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
|
|
if( pTab==0 ) return SQLITE_NOMEM;
|
|
pTab->nTabRef = 1;
|
|
if( pFrom->zAlias ){
|
|
pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
|
|
}else{
|
|
pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
|
|
}
|
|
while( pSel->pPrior ){ pSel = pSel->pPrior; }
|
|
sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
|
|
pTab->iPKey = -1;
|
|
pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
|
|
pTab->tabFlags |= TF_Ephemeral;
|
|
|
|
return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** This routine is a Walker callback for "expanding" a SELECT statement.
|
|
** "Expanding" means to do the following:
|
|
**
|
|
** (1) Make sure VDBE cursor numbers have been assigned to every
|
|
** element of the FROM clause.
|
|
**
|
|
** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
|
|
** defines FROM clause. When views appear in the FROM clause,
|
|
** fill pTabList->a[].pSelect with a copy of the SELECT statement
|
|
** that implements the view. A copy is made of the view's SELECT
|
|
** statement so that we can freely modify or delete that statement
|
|
** without worrying about messing up the persistent representation
|
|
** of the view.
|
|
**
|
|
** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
|
|
** on joins and the ON and USING clause of joins.
|
|
**
|
|
** (4) Scan the list of columns in the result set (pEList) looking
|
|
** for instances of the "*" operator or the TABLE.* operator.
|
|
** If found, expand each "*" to be every column in every table
|
|
** and TABLE.* to be every column in TABLE.
|
|
**
|
|
*/
|
|
static int selectExpander(Walker *pWalker, Select *p){
|
|
Parse *pParse = pWalker->pParse;
|
|
int i, j, k;
|
|
SrcList *pTabList;
|
|
ExprList *pEList;
|
|
struct SrcList_item *pFrom;
|
|
sqlite3 *db = pParse->db;
|
|
Expr *pE, *pRight, *pExpr;
|
|
u16 selFlags = p->selFlags;
|
|
u32 elistFlags = 0;
|
|
|
|
p->selFlags |= SF_Expanded;
|
|
if( db->mallocFailed ){
|
|
return WRC_Abort;
|
|
}
|
|
assert( p->pSrc!=0 );
|
|
if( (selFlags & SF_Expanded)!=0 ){
|
|
return WRC_Prune;
|
|
}
|
|
if( pWalker->eCode ){
|
|
/* Renumber selId because it has been copied from a view */
|
|
p->selId = ++pParse->nSelect;
|
|
}
|
|
pTabList = p->pSrc;
|
|
pEList = p->pEList;
|
|
sqlite3WithPush(pParse, p->pWith, 0);
|
|
|
|
/* Make sure cursor numbers have been assigned to all entries in
|
|
** the FROM clause of the SELECT statement.
|
|
*/
|
|
sqlite3SrcListAssignCursors(pParse, pTabList);
|
|
|
|
/* Look up every table named in the FROM clause of the select. If
|
|
** an entry of the FROM clause is a subquery instead of a table or view,
|
|
** then create a transient table structure to describe the subquery.
|
|
*/
|
|
for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
|
|
Table *pTab;
|
|
assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
|
|
if( pFrom->fg.isRecursive ) continue;
|
|
assert( pFrom->pTab==0 );
|
|
#ifndef SQLITE_OMIT_CTE
|
|
if( withExpand(pWalker, pFrom) ) return WRC_Abort;
|
|
if( pFrom->pTab ) {} else
|
|
#endif
|
|
if( pFrom->zName==0 ){
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
Select *pSel = pFrom->pSelect;
|
|
/* A sub-query in the FROM clause of a SELECT */
|
|
assert( pSel!=0 );
|
|
assert( pFrom->pTab==0 );
|
|
if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
|
|
if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
|
|
#endif
|
|
}else{
|
|
/* An ordinary table or view name in the FROM clause */
|
|
assert( pFrom->pTab==0 );
|
|
pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
|
|
if( pTab==0 ) return WRC_Abort;
|
|
if( pTab->nTabRef>=0xffff ){
|
|
sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
|
|
pTab->zName);
|
|
pFrom->pTab = 0;
|
|
return WRC_Abort;
|
|
}
|
|
pTab->nTabRef++;
|
|
if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
|
|
return WRC_Abort;
|
|
}
|
|
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
|
|
if( IsVirtual(pTab) || pTab->pSelect ){
|
|
i16 nCol;
|
|
u8 eCodeOrig = pWalker->eCode;
|
|
if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
|
|
assert( pFrom->pSelect==0 );
|
|
if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){
|
|
sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
|
|
pTab->zName);
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( IsVirtual(pTab)
|
|
&& pFrom->fg.fromDDL
|
|
&& ALWAYS(pTab->pVTable!=0)
|
|
&& pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
|
|
){
|
|
sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
|
|
pTab->zName);
|
|
}
|
|
#endif
|
|
pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
|
|
nCol = pTab->nCol;
|
|
pTab->nCol = -1;
|
|
pWalker->eCode = 1; /* Turn on Select.selId renumbering */
|
|
sqlite3WalkSelect(pWalker, pFrom->pSelect);
|
|
pWalker->eCode = eCodeOrig;
|
|
pTab->nCol = nCol;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Locate the index named by the INDEXED BY clause, if any. */
|
|
if( sqlite3IndexedByLookup(pParse, pFrom) ){
|
|
return WRC_Abort;
|
|
}
|
|
}
|
|
|
|
/* Process NATURAL keywords, and ON and USING clauses of joins.
|
|
*/
|
|
if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){
|
|
return WRC_Abort;
|
|
}
|
|
|
|
/* For every "*" that occurs in the column list, insert the names of
|
|
** all columns in all tables. And for every TABLE.* insert the names
|
|
** of all columns in TABLE. The parser inserted a special expression
|
|
** with the TK_ASTERISK operator for each "*" that it found in the column
|
|
** list. The following code just has to locate the TK_ASTERISK
|
|
** expressions and expand each one to the list of all columns in
|
|
** all tables.
|
|
**
|
|
** The first loop just checks to see if there are any "*" operators
|
|
** that need expanding.
|
|
*/
|
|
for(k=0; k<pEList->nExpr; k++){
|
|
pE = pEList->a[k].pExpr;
|
|
if( pE->op==TK_ASTERISK ) break;
|
|
assert( pE->op!=TK_DOT || pE->pRight!=0 );
|
|
assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
|
|
if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
|
|
elistFlags |= pE->flags;
|
|
}
|
|
if( k<pEList->nExpr ){
|
|
/*
|
|
** If we get here it means the result set contains one or more "*"
|
|
** operators that need to be expanded. Loop through each expression
|
|
** in the result set and expand them one by one.
|
|
*/
|
|
struct ExprList_item *a = pEList->a;
|
|
ExprList *pNew = 0;
|
|
int flags = pParse->db->flags;
|
|
int longNames = (flags & SQLITE_FullColNames)!=0
|
|
&& (flags & SQLITE_ShortColNames)==0;
|
|
|
|
for(k=0; k<pEList->nExpr; k++){
|
|
pE = a[k].pExpr;
|
|
elistFlags |= pE->flags;
|
|
pRight = pE->pRight;
|
|
assert( pE->op!=TK_DOT || pRight!=0 );
|
|
if( pE->op!=TK_ASTERISK
|
|
&& (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
|
|
){
|
|
/* This particular expression does not need to be expanded.
|
|
*/
|
|
pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
|
|
if( pNew ){
|
|
pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
|
|
pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
|
|
a[k].zEName = 0;
|
|
}
|
|
a[k].pExpr = 0;
|
|
}else{
|
|
/* This expression is a "*" or a "TABLE.*" and needs to be
|
|
** expanded. */
|
|
int tableSeen = 0; /* Set to 1 when TABLE matches */
|
|
char *zTName = 0; /* text of name of TABLE */
|
|
if( pE->op==TK_DOT ){
|
|
assert( pE->pLeft!=0 );
|
|
assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
|
|
zTName = pE->pLeft->u.zToken;
|
|
}
|
|
for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
|
|
Table *pTab = pFrom->pTab;
|
|
Select *pSub = pFrom->pSelect;
|
|
char *zTabName = pFrom->zAlias;
|
|
const char *zSchemaName = 0;
|
|
int iDb;
|
|
if( zTabName==0 ){
|
|
zTabName = pTab->zName;
|
|
}
|
|
if( db->mallocFailed ) break;
|
|
if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
|
|
pSub = 0;
|
|
if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
|
|
continue;
|
|
}
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
|
|
}
|
|
for(j=0; j<pTab->nCol; j++){
|
|
char *zName = pTab->aCol[j].zName;
|
|
char *zColname; /* The computed column name */
|
|
char *zToFree; /* Malloced string that needs to be freed */
|
|
Token sColname; /* Computed column name as a token */
|
|
|
|
assert( zName );
|
|
if( zTName && pSub
|
|
&& sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
|
|
){
|
|
continue;
|
|
}
|
|
|
|
/* If a column is marked as 'hidden', omit it from the expanded
|
|
** result-set list unless the SELECT has the SF_IncludeHidden
|
|
** bit set.
|
|
*/
|
|
if( (p->selFlags & SF_IncludeHidden)==0
|
|
&& IsHiddenColumn(&pTab->aCol[j])
|
|
){
|
|
continue;
|
|
}
|
|
tableSeen = 1;
|
|
|
|
if( i>0 && zTName==0 ){
|
|
if( (pFrom->fg.jointype & JT_NATURAL)!=0
|
|
&& tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
|
|
){
|
|
/* In a NATURAL join, omit the join columns from the
|
|
** table to the right of the join */
|
|
continue;
|
|
}
|
|
if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
|
|
/* In a join with a USING clause, omit columns in the
|
|
** using clause from the table on the right. */
|
|
continue;
|
|
}
|
|
}
|
|
pRight = sqlite3Expr(db, TK_ID, zName);
|
|
zColname = zName;
|
|
zToFree = 0;
|
|
if( longNames || pTabList->nSrc>1 ){
|
|
Expr *pLeft;
|
|
pLeft = sqlite3Expr(db, TK_ID, zTabName);
|
|
pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
|
|
if( zSchemaName ){
|
|
pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
|
|
pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
|
|
}
|
|
if( longNames ){
|
|
zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
|
|
zToFree = zColname;
|
|
}
|
|
}else{
|
|
pExpr = pRight;
|
|
}
|
|
pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
|
|
sqlite3TokenInit(&sColname, zColname);
|
|
sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
|
|
if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
|
|
struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
|
|
sqlite3DbFree(db, pX->zEName);
|
|
if( pSub ){
|
|
pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
|
|
testcase( pX->zEName==0 );
|
|
}else{
|
|
pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
|
|
zSchemaName, zTabName, zColname);
|
|
testcase( pX->zEName==0 );
|
|
}
|
|
pX->eEName = ENAME_TAB;
|
|
}
|
|
sqlite3DbFree(db, zToFree);
|
|
}
|
|
}
|
|
if( !tableSeen ){
|
|
if( zTName ){
|
|
sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
|
|
}else{
|
|
sqlite3ErrorMsg(pParse, "no tables specified");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
sqlite3ExprListDelete(db, pEList);
|
|
p->pEList = pNew;
|
|
}
|
|
if( p->pEList ){
|
|
if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
|
|
sqlite3ErrorMsg(pParse, "too many columns in result set");
|
|
return WRC_Abort;
|
|
}
|
|
if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
|
|
p->selFlags |= SF_ComplexResult;
|
|
}
|
|
}
|
|
return WRC_Continue;
|
|
}
|
|
|
|
/*
|
|
** No-op routine for the parse-tree walker.
|
|
**
|
|
** When this routine is the Walker.xExprCallback then expression trees
|
|
** are walked without any actions being taken at each node. Presumably,
|
|
** when this routine is used for Walker.xExprCallback then
|
|
** Walker.xSelectCallback is set to do something useful for every
|
|
** subquery in the parser tree.
|
|
*/
|
|
int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
|
|
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
|
return WRC_Continue;
|
|
}
|
|
|
|
/*
|
|
** No-op routine for the parse-tree walker for SELECT statements.
|
|
** subquery in the parser tree.
|
|
*/
|
|
int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
|
|
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
|
return WRC_Continue;
|
|
}
|
|
|
|
#if SQLITE_DEBUG
|
|
/*
|
|
** Always assert. This xSelectCallback2 implementation proves that the
|
|
** xSelectCallback2 is never invoked.
|
|
*/
|
|
void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
|
|
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
|
assert( 0 );
|
|
}
|
|
#endif
|
|
/*
|
|
** This routine "expands" a SELECT statement and all of its subqueries.
|
|
** For additional information on what it means to "expand" a SELECT
|
|
** statement, see the comment on the selectExpand worker callback above.
|
|
**
|
|
** Expanding a SELECT statement is the first step in processing a
|
|
** SELECT statement. The SELECT statement must be expanded before
|
|
** name resolution is performed.
|
|
**
|
|
** If anything goes wrong, an error message is written into pParse.
|
|
** The calling function can detect the problem by looking at pParse->nErr
|
|
** and/or pParse->db->mallocFailed.
|
|
*/
|
|
static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
|
|
Walker w;
|
|
w.xExprCallback = sqlite3ExprWalkNoop;
|
|
w.pParse = pParse;
|
|
if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
|
|
w.xSelectCallback = convertCompoundSelectToSubquery;
|
|
w.xSelectCallback2 = 0;
|
|
sqlite3WalkSelect(&w, pSelect);
|
|
}
|
|
w.xSelectCallback = selectExpander;
|
|
w.xSelectCallback2 = selectPopWith;
|
|
w.eCode = 0;
|
|
sqlite3WalkSelect(&w, pSelect);
|
|
}
|
|
|
|
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
/*
|
|
** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
|
|
** interface.
|
|
**
|
|
** For each FROM-clause subquery, add Column.zType and Column.zColl
|
|
** information to the Table structure that represents the result set
|
|
** of that subquery.
|
|
**
|
|
** The Table structure that represents the result set was constructed
|
|
** by selectExpander() but the type and collation information was omitted
|
|
** at that point because identifiers had not yet been resolved. This
|
|
** routine is called after identifier resolution.
|
|
*/
|
|
static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
|
|
Parse *pParse;
|
|
int i;
|
|
SrcList *pTabList;
|
|
struct SrcList_item *pFrom;
|
|
|
|
assert( p->selFlags & SF_Resolved );
|
|
if( p->selFlags & SF_HasTypeInfo ) return;
|
|
p->selFlags |= SF_HasTypeInfo;
|
|
pParse = pWalker->pParse;
|
|
pTabList = p->pSrc;
|
|
for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
|
|
Table *pTab = pFrom->pTab;
|
|
assert( pTab!=0 );
|
|
if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
|
|
/* A sub-query in the FROM clause of a SELECT */
|
|
Select *pSel = pFrom->pSelect;
|
|
if( pSel ){
|
|
while( pSel->pPrior ) pSel = pSel->pPrior;
|
|
sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
|
|
SQLITE_AFF_NONE);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
** This routine adds datatype and collating sequence information to
|
|
** the Table structures of all FROM-clause subqueries in a
|
|
** SELECT statement.
|
|
**
|
|
** Use this routine after name resolution.
|
|
*/
|
|
static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
Walker w;
|
|
w.xSelectCallback = sqlite3SelectWalkNoop;
|
|
w.xSelectCallback2 = selectAddSubqueryTypeInfo;
|
|
w.xExprCallback = sqlite3ExprWalkNoop;
|
|
w.pParse = pParse;
|
|
sqlite3WalkSelect(&w, pSelect);
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
** This routine sets up a SELECT statement for processing. The
|
|
** following is accomplished:
|
|
**
|
|
** * VDBE Cursor numbers are assigned to all FROM-clause terms.
|
|
** * Ephemeral Table objects are created for all FROM-clause subqueries.
|
|
** * ON and USING clauses are shifted into WHERE statements
|
|
** * Wildcards "*" and "TABLE.*" in result sets are expanded.
|
|
** * Identifiers in expression are matched to tables.
|
|
**
|
|
** This routine acts recursively on all subqueries within the SELECT.
|
|
*/
|
|
void sqlite3SelectPrep(
|
|
Parse *pParse, /* The parser context */
|
|
Select *p, /* The SELECT statement being coded. */
|
|
NameContext *pOuterNC /* Name context for container */
|
|
){
|
|
assert( p!=0 || pParse->db->mallocFailed );
|
|
if( pParse->db->mallocFailed ) return;
|
|
if( p->selFlags & SF_HasTypeInfo ) return;
|
|
sqlite3SelectExpand(pParse, p);
|
|
if( pParse->nErr || pParse->db->mallocFailed ) return;
|
|
sqlite3ResolveSelectNames(pParse, p, pOuterNC);
|
|
if( pParse->nErr || pParse->db->mallocFailed ) return;
|
|
sqlite3SelectAddTypeInfo(pParse, p);
|
|
}
|
|
|
|
/*
|
|
** Reset the aggregate accumulator.
|
|
**
|
|
** The aggregate accumulator is a set of memory cells that hold
|
|
** intermediate results while calculating an aggregate. This
|
|
** routine generates code that stores NULLs in all of those memory
|
|
** cells.
|
|
*/
|
|
static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int i;
|
|
struct AggInfo_func *pFunc;
|
|
int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
|
|
if( nReg==0 ) return;
|
|
#ifdef SQLITE_DEBUG
|
|
/* Verify that all AggInfo registers are within the range specified by
|
|
** AggInfo.mnReg..AggInfo.mxReg */
|
|
assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
|
|
for(i=0; i<pAggInfo->nColumn; i++){
|
|
assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
|
|
&& pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
|
|
}
|
|
for(i=0; i<pAggInfo->nFunc; i++){
|
|
assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
|
|
&& pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
|
|
}
|
|
#endif
|
|
sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
|
|
for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
|
|
if( pFunc->iDistinct>=0 ){
|
|
Expr *pE = pFunc->pExpr;
|
|
assert( !ExprHasProperty(pE, EP_xIsSelect) );
|
|
if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
|
|
sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
|
|
"argument");
|
|
pFunc->iDistinct = -1;
|
|
}else{
|
|
KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
|
|
sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
|
|
(char*)pKeyInfo, P4_KEYINFO);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Invoke the OP_AggFinalize opcode for every aggregate function
|
|
** in the AggInfo structure.
|
|
*/
|
|
static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int i;
|
|
struct AggInfo_func *pF;
|
|
for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
|
|
ExprList *pList = pF->pExpr->x.pList;
|
|
assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
|
|
sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
|
|
sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Update the accumulator memory cells for an aggregate based on
|
|
** the current cursor position.
|
|
**
|
|
** If regAcc is non-zero and there are no min() or max() aggregates
|
|
** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
|
|
** registers if register regAcc contains 0. The caller will take care
|
|
** of setting and clearing regAcc.
|
|
*/
|
|
static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int i;
|
|
int regHit = 0;
|
|
int addrHitTest = 0;
|
|
struct AggInfo_func *pF;
|
|
struct AggInfo_col *pC;
|
|
|
|
pAggInfo->directMode = 1;
|
|
for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
|
|
int nArg;
|
|
int addrNext = 0;
|
|
int regAgg;
|
|
ExprList *pList = pF->pExpr->x.pList;
|
|
assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
|
|
assert( !IsWindowFunc(pF->pExpr) );
|
|
if( ExprHasProperty(pF->pExpr, EP_WinFunc) ){
|
|
Expr *pFilter = pF->pExpr->y.pWin->pFilter;
|
|
if( pAggInfo->nAccumulator
|
|
&& (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
|
|
){
|
|
if( regHit==0 ) regHit = ++pParse->nMem;
|
|
/* If this is the first row of the group (regAcc==0), clear the
|
|
** "magnet" register regHit so that the accumulator registers
|
|
** are populated if the FILTER clause jumps over the the
|
|
** invocation of min() or max() altogether. Or, if this is not
|
|
** the first row (regAcc==1), set the magnet register so that the
|
|
** accumulators are not populated unless the min()/max() is invoked and
|
|
** indicates that they should be. */
|
|
sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
|
|
}
|
|
addrNext = sqlite3VdbeMakeLabel(pParse);
|
|
sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
|
|
}
|
|
if( pList ){
|
|
nArg = pList->nExpr;
|
|
regAgg = sqlite3GetTempRange(pParse, nArg);
|
|
sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
|
|
}else{
|
|
nArg = 0;
|
|
regAgg = 0;
|
|
}
|
|
if( pF->iDistinct>=0 ){
|
|
if( addrNext==0 ){
|
|
addrNext = sqlite3VdbeMakeLabel(pParse);
|
|
}
|
|
testcase( nArg==0 ); /* Error condition */
|
|
testcase( nArg>1 ); /* Also an error */
|
|
codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
|
|
}
|
|
if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
|
|
CollSeq *pColl = 0;
|
|
struct ExprList_item *pItem;
|
|
int j;
|
|
assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
|
|
for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
|
|
pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
|
|
}
|
|
if( !pColl ){
|
|
pColl = pParse->db->pDfltColl;
|
|
}
|
|
if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
|
|
sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
|
|
sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
|
|
sqlite3VdbeChangeP5(v, (u8)nArg);
|
|
sqlite3ReleaseTempRange(pParse, regAgg, nArg);
|
|
if( addrNext ){
|
|
sqlite3VdbeResolveLabel(v, addrNext);
|
|
}
|
|
}
|
|
if( regHit==0 && pAggInfo->nAccumulator ){
|
|
regHit = regAcc;
|
|
}
|
|
if( regHit ){
|
|
addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
|
|
}
|
|
for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
|
|
sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
|
|
}
|
|
|
|
pAggInfo->directMode = 0;
|
|
if( addrHitTest ){
|
|
sqlite3VdbeJumpHere(v, addrHitTest);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Add a single OP_Explain instruction to the VDBE to explain a simple
|
|
** count(*) query ("SELECT count(*) FROM pTab").
|
|
*/
|
|
#ifndef SQLITE_OMIT_EXPLAIN
|
|
static void explainSimpleCount(
|
|
Parse *pParse, /* Parse context */
|
|
Table *pTab, /* Table being queried */
|
|
Index *pIdx /* Index used to optimize scan, or NULL */
|
|
){
|
|
if( pParse->explain==2 ){
|
|
int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
|
|
sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
|
|
pTab->zName,
|
|
bCover ? " USING COVERING INDEX " : "",
|
|
bCover ? pIdx->zName : ""
|
|
);
|
|
}
|
|
}
|
|
#else
|
|
# define explainSimpleCount(a,b,c)
|
|
#endif
|
|
|
|
/*
|
|
** sqlite3WalkExpr() callback used by havingToWhere().
|
|
**
|
|
** If the node passed to the callback is a TK_AND node, return
|
|
** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
|
|
**
|
|
** Otherwise, return WRC_Prune. In this case, also check if the
|
|
** sub-expression matches the criteria for being moved to the WHERE
|
|
** clause. If so, add it to the WHERE clause and replace the sub-expression
|
|
** within the HAVING expression with a constant "1".
|
|
*/
|
|
static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
|
|
if( pExpr->op!=TK_AND ){
|
|
Select *pS = pWalker->u.pSelect;
|
|
if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
|
|
sqlite3 *db = pWalker->pParse->db;
|
|
Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
|
|
if( pNew ){
|
|
Expr *pWhere = pS->pWhere;
|
|
SWAP(Expr, *pNew, *pExpr);
|
|
pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
|
|
pS->pWhere = pNew;
|
|
pWalker->eCode = 1;
|
|
}
|
|
}
|
|
return WRC_Prune;
|
|
}
|
|
return WRC_Continue;
|
|
}
|
|
|
|
/*
|
|
** Transfer eligible terms from the HAVING clause of a query, which is
|
|
** processed after grouping, to the WHERE clause, which is processed before
|
|
** grouping. For example, the query:
|
|
**
|
|
** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
|
|
**
|
|
** can be rewritten as:
|
|
**
|
|
** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
|
|
**
|
|
** A term of the HAVING expression is eligible for transfer if it consists
|
|
** entirely of constants and expressions that are also GROUP BY terms that
|
|
** use the "BINARY" collation sequence.
|
|
*/
|
|
static void havingToWhere(Parse *pParse, Select *p){
|
|
Walker sWalker;
|
|
memset(&sWalker, 0, sizeof(sWalker));
|
|
sWalker.pParse = pParse;
|
|
sWalker.xExprCallback = havingToWhereExprCb;
|
|
sWalker.u.pSelect = p;
|
|
sqlite3WalkExpr(&sWalker, p->pHaving);
|
|
#if SELECTTRACE_ENABLED
|
|
if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
|
|
SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
|
|
sqlite3TreeViewSelect(0, p, 0);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Check to see if the pThis entry of pTabList is a self-join of a prior view.
|
|
** If it is, then return the SrcList_item for the prior view. If it is not,
|
|
** then return 0.
|
|
*/
|
|
static struct SrcList_item *isSelfJoinView(
|
|
SrcList *pTabList, /* Search for self-joins in this FROM clause */
|
|
struct SrcList_item *pThis /* Search for prior reference to this subquery */
|
|
){
|
|
struct SrcList_item *pItem;
|
|
for(pItem = pTabList->a; pItem<pThis; pItem++){
|
|
Select *pS1;
|
|
if( pItem->pSelect==0 ) continue;
|
|
if( pItem->fg.viaCoroutine ) continue;
|
|
if( pItem->zName==0 ) continue;
|
|
assert( pItem->pTab!=0 );
|
|
assert( pThis->pTab!=0 );
|
|
if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
|
|
if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
|
|
pS1 = pItem->pSelect;
|
|
if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
|
|
/* The query flattener left two different CTE tables with identical
|
|
** names in the same FROM clause. */
|
|
continue;
|
|
}
|
|
if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1)
|
|
|| sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1)
|
|
){
|
|
/* The view was modified by some other optimization such as
|
|
** pushDownWhereTerms() */
|
|
continue;
|
|
}
|
|
return pItem;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
|
|
/*
|
|
** Attempt to transform a query of the form
|
|
**
|
|
** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
|
|
**
|
|
** Into this:
|
|
**
|
|
** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
|
|
**
|
|
** The transformation only works if all of the following are true:
|
|
**
|
|
** * The subquery is a UNION ALL of two or more terms
|
|
** * The subquery does not have a LIMIT clause
|
|
** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
|
|
** * The outer query is a simple count(*) with no WHERE clause or other
|
|
** extraneous syntax.
|
|
**
|
|
** Return TRUE if the optimization is undertaken.
|
|
*/
|
|
static int countOfViewOptimization(Parse *pParse, Select *p){
|
|
Select *pSub, *pPrior;
|
|
Expr *pExpr;
|
|
Expr *pCount;
|
|
sqlite3 *db;
|
|
if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */
|
|
if( p->pEList->nExpr!=1 ) return 0; /* Single result column */
|
|
if( p->pWhere ) return 0;
|
|
if( p->pGroupBy ) return 0;
|
|
pExpr = p->pEList->a[0].pExpr;
|
|
if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */
|
|
if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */
|
|
if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */
|
|
if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */
|
|
pSub = p->pSrc->a[0].pSelect;
|
|
if( pSub==0 ) return 0; /* The FROM is a subquery */
|
|
if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */
|
|
do{
|
|
if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */
|
|
if( pSub->pWhere ) return 0; /* No WHERE clause */
|
|
if( pSub->pLimit ) return 0; /* No LIMIT clause */
|
|
if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */
|
|
pSub = pSub->pPrior; /* Repeat over compound */
|
|
}while( pSub );
|
|
|
|
/* If we reach this point then it is OK to perform the transformation */
|
|
|
|
db = pParse->db;
|
|
pCount = pExpr;
|
|
pExpr = 0;
|
|
pSub = p->pSrc->a[0].pSelect;
|
|
p->pSrc->a[0].pSelect = 0;
|
|
sqlite3SrcListDelete(db, p->pSrc);
|
|
p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
|
|
while( pSub ){
|
|
Expr *pTerm;
|
|
pPrior = pSub->pPrior;
|
|
pSub->pPrior = 0;
|
|
pSub->pNext = 0;
|
|
pSub->selFlags |= SF_Aggregate;
|
|
pSub->selFlags &= ~SF_Compound;
|
|
pSub->nSelectRow = 0;
|
|
sqlite3ExprListDelete(db, pSub->pEList);
|
|
pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
|
|
pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
|
|
pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
|
|
sqlite3PExprAddSelect(pParse, pTerm, pSub);
|
|
if( pExpr==0 ){
|
|
pExpr = pTerm;
|
|
}else{
|
|
pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
|
|
}
|
|
pSub = pPrior;
|
|
}
|
|
p->pEList->a[0].pExpr = pExpr;
|
|
p->selFlags &= ~SF_Aggregate;
|
|
|
|
#if SELECTTRACE_ENABLED
|
|
if( sqlite3SelectTrace & 0x400 ){
|
|
SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
|
|
sqlite3TreeViewSelect(0, p, 0);
|
|
}
|
|
#endif
|
|
return 1;
|
|
}
|
|
#endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
|
|
|
|
/*
|
|
** Generate code for the SELECT statement given in the p argument.
|
|
**
|
|
** The results are returned according to the SelectDest structure.
|
|
** See comments in sqliteInt.h for further information.
|
|
**
|
|
** This routine returns the number of errors. If any errors are
|
|
** encountered, then an appropriate error message is left in
|
|
** pParse->zErrMsg.
|
|
**
|
|
** This routine does NOT free the Select structure passed in. The
|
|
** calling function needs to do that.
|
|
*/
|
|
int sqlite3Select(
|
|
Parse *pParse, /* The parser context */
|
|
Select *p, /* The SELECT statement being coded. */
|
|
SelectDest *pDest /* What to do with the query results */
|
|
){
|
|
int i, j; /* Loop counters */
|
|
WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
|
|
Vdbe *v; /* The virtual machine under construction */
|
|
int isAgg; /* True for select lists like "count(*)" */
|
|
ExprList *pEList = 0; /* List of columns to extract. */
|
|
SrcList *pTabList; /* List of tables to select from */
|
|
Expr *pWhere; /* The WHERE clause. May be NULL */
|
|
ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
|
|
Expr *pHaving; /* The HAVING clause. May be NULL */
|
|
int rc = 1; /* Value to return from this function */
|
|
DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
|
|
SortCtx sSort; /* Info on how to code the ORDER BY clause */
|
|
AggInfo sAggInfo; /* Information used by aggregate queries */
|
|
int iEnd; /* Address of the end of the query */
|
|
sqlite3 *db; /* The database connection */
|
|
ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */
|
|
u8 minMaxFlag; /* Flag for min/max queries */
|
|
|
|
db = pParse->db;
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( p==0 || db->mallocFailed || pParse->nErr ){
|
|
return 1;
|
|
}
|
|
if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
|
|
memset(&sAggInfo, 0, sizeof(sAggInfo));
|
|
#if SELECTTRACE_ENABLED
|
|
SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
|
|
if( sqlite3SelectTrace & 0x100 ){
|
|
sqlite3TreeViewSelect(0, p, 0);
|
|
}
|
|
#endif
|
|
|
|
assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
|
|
assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
|
|
assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
|
|
assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
|
|
if( IgnorableOrderby(pDest) ){
|
|
assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
|
|
pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
|
|
pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo ||
|
|
pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
|
|
/* If ORDER BY makes no difference in the output then neither does
|
|
** DISTINCT so it can be removed too. */
|
|
sqlite3ExprListDelete(db, p->pOrderBy);
|
|
p->pOrderBy = 0;
|
|
p->selFlags &= ~SF_Distinct;
|
|
}
|
|
sqlite3SelectPrep(pParse, p, 0);
|
|
if( pParse->nErr || db->mallocFailed ){
|
|
goto select_end;
|
|
}
|
|
assert( p->pEList!=0 );
|
|
#if SELECTTRACE_ENABLED
|
|
if( sqlite3SelectTrace & 0x104 ){
|
|
SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
|
|
sqlite3TreeViewSelect(0, p, 0);
|
|
}
|
|
#endif
|
|
|
|
if( pDest->eDest==SRT_Output ){
|
|
generateColumnNames(pParse, p);
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
rc = sqlite3WindowRewrite(pParse, p);
|
|
if( rc ){
|
|
assert( db->mallocFailed || pParse->nErr>0 );
|
|
goto select_end;
|
|
}
|
|
#if SELECTTRACE_ENABLED
|
|
if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){
|
|
SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
|
|
sqlite3TreeViewSelect(0, p, 0);
|
|
}
|
|
#endif
|
|
#endif /* SQLITE_OMIT_WINDOWFUNC */
|
|
pTabList = p->pSrc;
|
|
isAgg = (p->selFlags & SF_Aggregate)!=0;
|
|
memset(&sSort, 0, sizeof(sSort));
|
|
sSort.pOrderBy = p->pOrderBy;
|
|
|
|
/* Try to various optimizations (flattening subqueries, and strength
|
|
** reduction of join operators) in the FROM clause up into the main query
|
|
*/
|
|
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
|
|
for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
|
|
struct SrcList_item *pItem = &pTabList->a[i];
|
|
Select *pSub = pItem->pSelect;
|
|
Table *pTab = pItem->pTab;
|
|
|
|
/* Convert LEFT JOIN into JOIN if there are terms of the right table
|
|
** of the LEFT JOIN used in the WHERE clause.
|
|
*/
|
|
if( (pItem->fg.jointype & JT_LEFT)!=0
|
|
&& sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
|
|
&& OptimizationEnabled(db, SQLITE_SimplifyJoin)
|
|
){
|
|
SELECTTRACE(0x100,pParse,p,
|
|
("LEFT-JOIN simplifies to JOIN on term %d\n",i));
|
|
pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
|
|
unsetJoinExpr(p->pWhere, pItem->iCursor);
|
|
}
|
|
|
|
/* No futher action if this term of the FROM clause is no a subquery */
|
|
if( pSub==0 ) continue;
|
|
|
|
/* Catch mismatch in the declared columns of a view and the number of
|
|
** columns in the SELECT on the RHS */
|
|
if( pTab->nCol!=pSub->pEList->nExpr ){
|
|
sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
|
|
pTab->nCol, pTab->zName, pSub->pEList->nExpr);
|
|
goto select_end;
|
|
}
|
|
|
|
/* Do not try to flatten an aggregate subquery.
|
|
**
|
|
** Flattening an aggregate subquery is only possible if the outer query
|
|
** is not a join. But if the outer query is not a join, then the subquery
|
|
** will be implemented as a co-routine and there is no advantage to
|
|
** flattening in that case.
|
|
*/
|
|
if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
|
|
assert( pSub->pGroupBy==0 );
|
|
|
|
/* If the outer query contains a "complex" result set (that is,
|
|
** if the result set of the outer query uses functions or subqueries)
|
|
** and if the subquery contains an ORDER BY clause and if
|
|
** it will be implemented as a co-routine, then do not flatten. This
|
|
** restriction allows SQL constructs like this:
|
|
**
|
|
** SELECT expensive_function(x)
|
|
** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
|
|
**
|
|
** The expensive_function() is only computed on the 10 rows that
|
|
** are output, rather than every row of the table.
|
|
**
|
|
** The requirement that the outer query have a complex result set
|
|
** means that flattening does occur on simpler SQL constraints without
|
|
** the expensive_function() like:
|
|
**
|
|
** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
|
|
*/
|
|
if( pSub->pOrderBy!=0
|
|
&& i==0
|
|
&& (p->selFlags & SF_ComplexResult)!=0
|
|
&& (pTabList->nSrc==1
|
|
|| (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
|
|
){
|
|
continue;
|
|
}
|
|
|
|
if( flattenSubquery(pParse, p, i, isAgg) ){
|
|
if( pParse->nErr ) goto select_end;
|
|
/* This subquery can be absorbed into its parent. */
|
|
i = -1;
|
|
}
|
|
pTabList = p->pSrc;
|
|
if( db->mallocFailed ) goto select_end;
|
|
if( !IgnorableOrderby(pDest) ){
|
|
sSort.pOrderBy = p->pOrderBy;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_COMPOUND_SELECT
|
|
/* Handle compound SELECT statements using the separate multiSelect()
|
|
** procedure.
|
|
*/
|
|
if( p->pPrior ){
|
|
rc = multiSelect(pParse, p, pDest);
|
|
#if SELECTTRACE_ENABLED
|
|
SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
|
|
if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
|
|
sqlite3TreeViewSelect(0, p, 0);
|
|
}
|
|
#endif
|
|
if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
|
|
return rc;
|
|
}
|
|
#endif
|
|
|
|
/* Do the WHERE-clause constant propagation optimization if this is
|
|
** a join. No need to speed time on this operation for non-join queries
|
|
** as the equivalent optimization will be handled by query planner in
|
|
** sqlite3WhereBegin().
|
|
*/
|
|
if( pTabList->nSrc>1
|
|
&& OptimizationEnabled(db, SQLITE_PropagateConst)
|
|
&& propagateConstants(pParse, p)
|
|
){
|
|
#if SELECTTRACE_ENABLED
|
|
if( sqlite3SelectTrace & 0x100 ){
|
|
SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
|
|
sqlite3TreeViewSelect(0, p, 0);
|
|
}
|
|
#endif
|
|
}else{
|
|
SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
|
|
}
|
|
|
|
#ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
|
|
if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
|
|
&& countOfViewOptimization(pParse, p)
|
|
){
|
|
if( db->mallocFailed ) goto select_end;
|
|
pEList = p->pEList;
|
|
pTabList = p->pSrc;
|
|
}
|
|
#endif
|
|
|
|
/* For each term in the FROM clause, do two things:
|
|
** (1) Authorized unreferenced tables
|
|
** (2) Generate code for all sub-queries
|
|
*/
|
|
for(i=0; i<pTabList->nSrc; i++){
|
|
struct SrcList_item *pItem = &pTabList->a[i];
|
|
SelectDest dest;
|
|
Select *pSub;
|
|
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
|
|
const char *zSavedAuthContext;
|
|
#endif
|
|
|
|
/* Issue SQLITE_READ authorizations with a fake column name for any
|
|
** tables that are referenced but from which no values are extracted.
|
|
** Examples of where these kinds of null SQLITE_READ authorizations
|
|
** would occur:
|
|
**
|
|
** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
|
|
** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
|
|
**
|
|
** The fake column name is an empty string. It is possible for a table to
|
|
** have a column named by the empty string, in which case there is no way to
|
|
** distinguish between an unreferenced table and an actual reference to the
|
|
** "" column. The original design was for the fake column name to be a NULL,
|
|
** which would be unambiguous. But legacy authorization callbacks might
|
|
** assume the column name is non-NULL and segfault. The use of an empty
|
|
** string for the fake column name seems safer.
|
|
*/
|
|
if( pItem->colUsed==0 && pItem->zName!=0 ){
|
|
sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
|
|
}
|
|
|
|
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
|
|
/* Generate code for all sub-queries in the FROM clause
|
|
*/
|
|
pSub = pItem->pSelect;
|
|
if( pSub==0 ) continue;
|
|
|
|
/* The code for a subquery should only be generated once, though it is
|
|
** technically harmless for it to be generated multiple times. The
|
|
** following assert() will detect if something changes to cause
|
|
** the same subquery to be coded multiple times, as a signal to the
|
|
** developers to try to optimize the situation.
|
|
**
|
|
** Update 2019-07-24:
|
|
** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40.
|
|
** The dbsqlfuzz fuzzer found a case where the same subquery gets
|
|
** coded twice. So this assert() now becomes a testcase(). It should
|
|
** be very rare, though.
|
|
*/
|
|
testcase( pItem->addrFillSub!=0 );
|
|
|
|
/* Increment Parse.nHeight by the height of the largest expression
|
|
** tree referred to by this, the parent select. The child select
|
|
** may contain expression trees of at most
|
|
** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
|
|
** more conservative than necessary, but much easier than enforcing
|
|
** an exact limit.
|
|
*/
|
|
pParse->nHeight += sqlite3SelectExprHeight(p);
|
|
|
|
/* Make copies of constant WHERE-clause terms in the outer query down
|
|
** inside the subquery. This can help the subquery to run more efficiently.
|
|
*/
|
|
if( OptimizationEnabled(db, SQLITE_PushDown)
|
|
&& pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
|
|
(pItem->fg.jointype & JT_OUTER)!=0)
|
|
){
|
|
#if SELECTTRACE_ENABLED
|
|
if( sqlite3SelectTrace & 0x100 ){
|
|
SELECTTRACE(0x100,pParse,p,
|
|
("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
|
|
sqlite3TreeViewSelect(0, p, 0);
|
|
}
|
|
#endif
|
|
}else{
|
|
SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
|
|
}
|
|
|
|
zSavedAuthContext = pParse->zAuthContext;
|
|
pParse->zAuthContext = pItem->zName;
|
|
|
|
/* Generate code to implement the subquery
|
|
**
|
|
** The subquery is implemented as a co-routine if the subquery is
|
|
** guaranteed to be the outer loop (so that it does not need to be
|
|
** computed more than once)
|
|
**
|
|
** TODO: Are there other reasons beside (1) to use a co-routine
|
|
** implementation?
|
|
*/
|
|
if( i==0
|
|
&& (pTabList->nSrc==1
|
|
|| (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */
|
|
){
|
|
/* Implement a co-routine that will return a single row of the result
|
|
** set on each invocation.
|
|
*/
|
|
int addrTop = sqlite3VdbeCurrentAddr(v)+1;
|
|
|
|
pItem->regReturn = ++pParse->nMem;
|
|
sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
|
|
VdbeComment((v, "%s", pItem->pTab->zName));
|
|
pItem->addrFillSub = addrTop;
|
|
sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
|
|
ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId));
|
|
sqlite3Select(pParse, pSub, &dest);
|
|
pItem->pTab->nRowLogEst = pSub->nSelectRow;
|
|
pItem->fg.viaCoroutine = 1;
|
|
pItem->regResult = dest.iSdst;
|
|
sqlite3VdbeEndCoroutine(v, pItem->regReturn);
|
|
sqlite3VdbeJumpHere(v, addrTop-1);
|
|
sqlite3ClearTempRegCache(pParse);
|
|
}else{
|
|
/* Generate a subroutine that will fill an ephemeral table with
|
|
** the content of this subquery. pItem->addrFillSub will point
|
|
** to the address of the generated subroutine. pItem->regReturn
|
|
** is a register allocated to hold the subroutine return address
|
|
*/
|
|
int topAddr;
|
|
int onceAddr = 0;
|
|
int retAddr;
|
|
struct SrcList_item *pPrior;
|
|
|
|
testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */
|
|
pItem->regReturn = ++pParse->nMem;
|
|
topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
|
|
pItem->addrFillSub = topAddr+1;
|
|
if( pItem->fg.isCorrelated==0 ){
|
|
/* If the subquery is not correlated and if we are not inside of
|
|
** a trigger, then we only need to compute the value of the subquery
|
|
** once. */
|
|
onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
|
|
VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
|
|
}else{
|
|
VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
|
|
}
|
|
pPrior = isSelfJoinView(pTabList, pItem);
|
|
if( pPrior ){
|
|
sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
|
|
assert( pPrior->pSelect!=0 );
|
|
pSub->nSelectRow = pPrior->pSelect->nSelectRow;
|
|
}else{
|
|
sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
|
|
ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId));
|
|
sqlite3Select(pParse, pSub, &dest);
|
|
}
|
|
pItem->pTab->nRowLogEst = pSub->nSelectRow;
|
|
if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
|
|
retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
|
|
VdbeComment((v, "end %s", pItem->pTab->zName));
|
|
sqlite3VdbeChangeP1(v, topAddr, retAddr);
|
|
sqlite3ClearTempRegCache(pParse);
|
|
}
|
|
if( db->mallocFailed ) goto select_end;
|
|
pParse->nHeight -= sqlite3SelectExprHeight(p);
|
|
pParse->zAuthContext = zSavedAuthContext;
|
|
#endif
|
|
}
|
|
|
|
/* Various elements of the SELECT copied into local variables for
|
|
** convenience */
|
|
pEList = p->pEList;
|
|
pWhere = p->pWhere;
|
|
pGroupBy = p->pGroupBy;
|
|
pHaving = p->pHaving;
|
|
sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
|
|
|
|
#if SELECTTRACE_ENABLED
|
|
if( sqlite3SelectTrace & 0x400 ){
|
|
SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
|
|
sqlite3TreeViewSelect(0, p, 0);
|
|
}
|
|
#endif
|
|
|
|
/* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
|
|
** if the select-list is the same as the ORDER BY list, then this query
|
|
** can be rewritten as a GROUP BY. In other words, this:
|
|
**
|
|
** SELECT DISTINCT xyz FROM ... ORDER BY xyz
|
|
**
|
|
** is transformed to:
|
|
**
|
|
** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
|
|
**
|
|
** The second form is preferred as a single index (or temp-table) may be
|
|
** used for both the ORDER BY and DISTINCT processing. As originally
|
|
** written the query must use a temp-table for at least one of the ORDER
|
|
** BY and DISTINCT, and an index or separate temp-table for the other.
|
|
*/
|
|
if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
|
|
&& sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
&& p->pWin==0
|
|
#endif
|
|
){
|
|
p->selFlags &= ~SF_Distinct;
|
|
pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
|
|
p->selFlags |= SF_Aggregate;
|
|
/* Notice that even thought SF_Distinct has been cleared from p->selFlags,
|
|
** the sDistinct.isTnct is still set. Hence, isTnct represents the
|
|
** original setting of the SF_Distinct flag, not the current setting */
|
|
assert( sDistinct.isTnct );
|
|
|
|
#if SELECTTRACE_ENABLED
|
|
if( sqlite3SelectTrace & 0x400 ){
|
|
SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
|
|
sqlite3TreeViewSelect(0, p, 0);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* If there is an ORDER BY clause, then create an ephemeral index to
|
|
** do the sorting. But this sorting ephemeral index might end up
|
|
** being unused if the data can be extracted in pre-sorted order.
|
|
** If that is the case, then the OP_OpenEphemeral instruction will be
|
|
** changed to an OP_Noop once we figure out that the sorting index is
|
|
** not needed. The sSort.addrSortIndex variable is used to facilitate
|
|
** that change.
|
|
*/
|
|
if( sSort.pOrderBy ){
|
|
KeyInfo *pKeyInfo;
|
|
pKeyInfo = sqlite3KeyInfoFromExprList(
|
|
pParse, sSort.pOrderBy, 0, pEList->nExpr);
|
|
sSort.iECursor = pParse->nTab++;
|
|
sSort.addrSortIndex =
|
|
sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
|
|
sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
|
|
(char*)pKeyInfo, P4_KEYINFO
|
|
);
|
|
}else{
|
|
sSort.addrSortIndex = -1;
|
|
}
|
|
|
|
/* If the output is destined for a temporary table, open that table.
|
|
*/
|
|
if( pDest->eDest==SRT_EphemTab ){
|
|
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
|
|
}
|
|
|
|
/* Set the limiter.
|
|
*/
|
|
iEnd = sqlite3VdbeMakeLabel(pParse);
|
|
if( (p->selFlags & SF_FixedLimit)==0 ){
|
|
p->nSelectRow = 320; /* 4 billion rows */
|
|
}
|
|
computeLimitRegisters(pParse, p, iEnd);
|
|
if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
|
|
sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
|
|
sSort.sortFlags |= SORTFLAG_UseSorter;
|
|
}
|
|
|
|
/* Open an ephemeral index to use for the distinct set.
|
|
*/
|
|
if( p->selFlags & SF_Distinct ){
|
|
sDistinct.tabTnct = pParse->nTab++;
|
|
sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
|
|
sDistinct.tabTnct, 0, 0,
|
|
(char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
|
|
P4_KEYINFO);
|
|
sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
|
|
sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
|
|
}else{
|
|
sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
|
|
}
|
|
|
|
if( !isAgg && pGroupBy==0 ){
|
|
/* No aggregate functions and no GROUP BY clause */
|
|
u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
|
|
| (p->selFlags & SF_FixedLimit);
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
Window *pWin = p->pWin; /* Master window object (or NULL) */
|
|
if( pWin ){
|
|
sqlite3WindowCodeInit(pParse, p);
|
|
}
|
|
#endif
|
|
assert( WHERE_USE_LIMIT==SF_FixedLimit );
|
|
|
|
|
|
/* Begin the database scan. */
|
|
SELECTTRACE(1,pParse,p,("WhereBegin\n"));
|
|
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
|
|
p->pEList, wctrlFlags, p->nSelectRow);
|
|
if( pWInfo==0 ) goto select_end;
|
|
if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
|
|
p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
|
|
}
|
|
if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
|
|
sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
|
|
}
|
|
if( sSort.pOrderBy ){
|
|
sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
|
|
sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
|
|
if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
|
|
sSort.pOrderBy = 0;
|
|
}
|
|
}
|
|
|
|
/* If sorting index that was created by a prior OP_OpenEphemeral
|
|
** instruction ended up not being needed, then change the OP_OpenEphemeral
|
|
** into an OP_Noop.
|
|
*/
|
|
if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
|
|
sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
|
|
}
|
|
|
|
assert( p->pEList==pEList );
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
if( pWin ){
|
|
int addrGosub = sqlite3VdbeMakeLabel(pParse);
|
|
int iCont = sqlite3VdbeMakeLabel(pParse);
|
|
int iBreak = sqlite3VdbeMakeLabel(pParse);
|
|
int regGosub = ++pParse->nMem;
|
|
|
|
sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
|
|
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
|
|
sqlite3VdbeResolveLabel(v, addrGosub);
|
|
VdbeNoopComment((v, "inner-loop subroutine"));
|
|
sSort.labelOBLopt = 0;
|
|
selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
|
|
sqlite3VdbeResolveLabel(v, iCont);
|
|
sqlite3VdbeAddOp1(v, OP_Return, regGosub);
|
|
VdbeComment((v, "end inner-loop subroutine"));
|
|
sqlite3VdbeResolveLabel(v, iBreak);
|
|
}else
|
|
#endif /* SQLITE_OMIT_WINDOWFUNC */
|
|
{
|
|
/* Use the standard inner loop. */
|
|
selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
|
|
sqlite3WhereContinueLabel(pWInfo),
|
|
sqlite3WhereBreakLabel(pWInfo));
|
|
|
|
/* End the database scan loop.
|
|
*/
|
|
sqlite3WhereEnd(pWInfo);
|
|
}
|
|
}else{
|
|
/* This case when there exist aggregate functions or a GROUP BY clause
|
|
** or both */
|
|
NameContext sNC; /* Name context for processing aggregate information */
|
|
int iAMem; /* First Mem address for storing current GROUP BY */
|
|
int iBMem; /* First Mem address for previous GROUP BY */
|
|
int iUseFlag; /* Mem address holding flag indicating that at least
|
|
** one row of the input to the aggregator has been
|
|
** processed */
|
|
int iAbortFlag; /* Mem address which causes query abort if positive */
|
|
int groupBySort; /* Rows come from source in GROUP BY order */
|
|
int addrEnd; /* End of processing for this SELECT */
|
|
int sortPTab = 0; /* Pseudotable used to decode sorting results */
|
|
int sortOut = 0; /* Output register from the sorter */
|
|
int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
|
|
|
|
/* Remove any and all aliases between the result set and the
|
|
** GROUP BY clause.
|
|
*/
|
|
if( pGroupBy ){
|
|
int k; /* Loop counter */
|
|
struct ExprList_item *pItem; /* For looping over expression in a list */
|
|
|
|
for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
|
|
pItem->u.x.iAlias = 0;
|
|
}
|
|
for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
|
|
pItem->u.x.iAlias = 0;
|
|
}
|
|
assert( 66==sqlite3LogEst(100) );
|
|
if( p->nSelectRow>66 ) p->nSelectRow = 66;
|
|
|
|
/* If there is both a GROUP BY and an ORDER BY clause and they are
|
|
** identical, then it may be possible to disable the ORDER BY clause
|
|
** on the grounds that the GROUP BY will cause elements to come out
|
|
** in the correct order. It also may not - the GROUP BY might use a
|
|
** database index that causes rows to be grouped together as required
|
|
** but not actually sorted. Either way, record the fact that the
|
|
** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
|
|
** variable. */
|
|
if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
|
|
int ii;
|
|
/* The GROUP BY processing doesn't care whether rows are delivered in
|
|
** ASC or DESC order - only that each group is returned contiguously.
|
|
** So set the ASC/DESC flags in the GROUP BY to match those in the
|
|
** ORDER BY to maximize the chances of rows being delivered in an
|
|
** order that makes the ORDER BY redundant. */
|
|
for(ii=0; ii<pGroupBy->nExpr; ii++){
|
|
u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
|
|
pGroupBy->a[ii].sortFlags = sortFlags;
|
|
}
|
|
if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
|
|
orderByGrp = 1;
|
|
}
|
|
}
|
|
}else{
|
|
assert( 0==sqlite3LogEst(1) );
|
|
p->nSelectRow = 0;
|
|
}
|
|
|
|
/* Create a label to jump to when we want to abort the query */
|
|
addrEnd = sqlite3VdbeMakeLabel(pParse);
|
|
|
|
/* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
|
|
** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
|
|
** SELECT statement.
|
|
*/
|
|
memset(&sNC, 0, sizeof(sNC));
|
|
sNC.pParse = pParse;
|
|
sNC.pSrcList = pTabList;
|
|
sNC.uNC.pAggInfo = &sAggInfo;
|
|
VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
|
|
sAggInfo.mnReg = pParse->nMem+1;
|
|
sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
|
|
sAggInfo.pGroupBy = pGroupBy;
|
|
sqlite3ExprAnalyzeAggList(&sNC, pEList);
|
|
sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
|
|
if( pHaving ){
|
|
if( pGroupBy ){
|
|
assert( pWhere==p->pWhere );
|
|
assert( pHaving==p->pHaving );
|
|
assert( pGroupBy==p->pGroupBy );
|
|
havingToWhere(pParse, p);
|
|
pWhere = p->pWhere;
|
|
}
|
|
sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
|
|
}
|
|
sAggInfo.nAccumulator = sAggInfo.nColumn;
|
|
if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
|
|
minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
|
|
}else{
|
|
minMaxFlag = WHERE_ORDERBY_NORMAL;
|
|
}
|
|
for(i=0; i<sAggInfo.nFunc; i++){
|
|
Expr *pExpr = sAggInfo.aFunc[i].pExpr;
|
|
assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
|
sNC.ncFlags |= NC_InAggFunc;
|
|
sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
assert( !IsWindowFunc(pExpr) );
|
|
if( ExprHasProperty(pExpr, EP_WinFunc) ){
|
|
sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
|
|
}
|
|
#endif
|
|
sNC.ncFlags &= ~NC_InAggFunc;
|
|
}
|
|
sAggInfo.mxReg = pParse->nMem;
|
|
if( db->mallocFailed ) goto select_end;
|
|
#if SELECTTRACE_ENABLED
|
|
if( sqlite3SelectTrace & 0x400 ){
|
|
int ii;
|
|
SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
|
|
sqlite3TreeViewSelect(0, p, 0);
|
|
for(ii=0; ii<sAggInfo.nColumn; ii++){
|
|
sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
|
|
ii, sAggInfo.aCol[ii].iMem);
|
|
sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
|
|
}
|
|
for(ii=0; ii<sAggInfo.nFunc; ii++){
|
|
sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
|
|
ii, sAggInfo.aFunc[ii].iMem);
|
|
sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Processing for aggregates with GROUP BY is very different and
|
|
** much more complex than aggregates without a GROUP BY.
|
|
*/
|
|
if( pGroupBy ){
|
|
KeyInfo *pKeyInfo; /* Keying information for the group by clause */
|
|
int addr1; /* A-vs-B comparision jump */
|
|
int addrOutputRow; /* Start of subroutine that outputs a result row */
|
|
int regOutputRow; /* Return address register for output subroutine */
|
|
int addrSetAbort; /* Set the abort flag and return */
|
|
int addrTopOfLoop; /* Top of the input loop */
|
|
int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
|
|
int addrReset; /* Subroutine for resetting the accumulator */
|
|
int regReset; /* Return address register for reset subroutine */
|
|
|
|
/* If there is a GROUP BY clause we might need a sorting index to
|
|
** implement it. Allocate that sorting index now. If it turns out
|
|
** that we do not need it after all, the OP_SorterOpen instruction
|
|
** will be converted into a Noop.
|
|
*/
|
|
sAggInfo.sortingIdx = pParse->nTab++;
|
|
pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn);
|
|
addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
|
|
sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
|
|
0, (char*)pKeyInfo, P4_KEYINFO);
|
|
|
|
/* Initialize memory locations used by GROUP BY aggregate processing
|
|
*/
|
|
iUseFlag = ++pParse->nMem;
|
|
iAbortFlag = ++pParse->nMem;
|
|
regOutputRow = ++pParse->nMem;
|
|
addrOutputRow = sqlite3VdbeMakeLabel(pParse);
|
|
regReset = ++pParse->nMem;
|
|
addrReset = sqlite3VdbeMakeLabel(pParse);
|
|
iAMem = pParse->nMem + 1;
|
|
pParse->nMem += pGroupBy->nExpr;
|
|
iBMem = pParse->nMem + 1;
|
|
pParse->nMem += pGroupBy->nExpr;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
|
|
VdbeComment((v, "clear abort flag"));
|
|
sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
|
|
|
|
/* Begin a loop that will extract all source rows in GROUP BY order.
|
|
** This might involve two separate loops with an OP_Sort in between, or
|
|
** it might be a single loop that uses an index to extract information
|
|
** in the right order to begin with.
|
|
*/
|
|
sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
|
|
SELECTTRACE(1,pParse,p,("WhereBegin\n"));
|
|
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
|
|
WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
|
|
);
|
|
if( pWInfo==0 ) goto select_end;
|
|
if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
|
|
/* The optimizer is able to deliver rows in group by order so
|
|
** we do not have to sort. The OP_OpenEphemeral table will be
|
|
** cancelled later because we still need to use the pKeyInfo
|
|
*/
|
|
groupBySort = 0;
|
|
}else{
|
|
/* Rows are coming out in undetermined order. We have to push
|
|
** each row into a sorting index, terminate the first loop,
|
|
** then loop over the sorting index in order to get the output
|
|
** in sorted order
|
|
*/
|
|
int regBase;
|
|
int regRecord;
|
|
int nCol;
|
|
int nGroupBy;
|
|
|
|
explainTempTable(pParse,
|
|
(sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
|
|
"DISTINCT" : "GROUP BY");
|
|
|
|
groupBySort = 1;
|
|
nGroupBy = pGroupBy->nExpr;
|
|
nCol = nGroupBy;
|
|
j = nGroupBy;
|
|
for(i=0; i<sAggInfo.nColumn; i++){
|
|
if( sAggInfo.aCol[i].iSorterColumn>=j ){
|
|
nCol++;
|
|
j++;
|
|
}
|
|
}
|
|
regBase = sqlite3GetTempRange(pParse, nCol);
|
|
sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
|
|
j = nGroupBy;
|
|
for(i=0; i<sAggInfo.nColumn; i++){
|
|
struct AggInfo_col *pCol = &sAggInfo.aCol[i];
|
|
if( pCol->iSorterColumn>=j ){
|
|
int r1 = j + regBase;
|
|
sqlite3ExprCodeGetColumnOfTable(v,
|
|
pCol->pTab, pCol->iTable, pCol->iColumn, r1);
|
|
j++;
|
|
}
|
|
}
|
|
regRecord = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
|
|
sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
|
|
sqlite3ReleaseTempReg(pParse, regRecord);
|
|
sqlite3ReleaseTempRange(pParse, regBase, nCol);
|
|
sqlite3WhereEnd(pWInfo);
|
|
sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
|
|
sortOut = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
|
|
sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
|
|
VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
|
|
sAggInfo.useSortingIdx = 1;
|
|
}
|
|
|
|
/* If the index or temporary table used by the GROUP BY sort
|
|
** will naturally deliver rows in the order required by the ORDER BY
|
|
** clause, cancel the ephemeral table open coded earlier.
|
|
**
|
|
** This is an optimization - the correct answer should result regardless.
|
|
** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
|
|
** disable this optimization for testing purposes. */
|
|
if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
|
|
&& (groupBySort || sqlite3WhereIsSorted(pWInfo))
|
|
){
|
|
sSort.pOrderBy = 0;
|
|
sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
|
|
}
|
|
|
|
/* Evaluate the current GROUP BY terms and store in b0, b1, b2...
|
|
** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
|
|
** Then compare the current GROUP BY terms against the GROUP BY terms
|
|
** from the previous row currently stored in a0, a1, a2...
|
|
*/
|
|
addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
|
|
if( groupBySort ){
|
|
sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
|
|
sortOut, sortPTab);
|
|
}
|
|
for(j=0; j<pGroupBy->nExpr; j++){
|
|
if( groupBySort ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
|
|
}else{
|
|
sAggInfo.directMode = 1;
|
|
sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
|
|
}
|
|
}
|
|
sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
|
|
(char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
|
|
addr1 = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
|
|
|
|
/* Generate code that runs whenever the GROUP BY changes.
|
|
** Changes in the GROUP BY are detected by the previous code
|
|
** block. If there were no changes, this block is skipped.
|
|
**
|
|
** This code copies current group by terms in b0,b1,b2,...
|
|
** over to a0,a1,a2. It then calls the output subroutine
|
|
** and resets the aggregate accumulator registers in preparation
|
|
** for the next GROUP BY batch.
|
|
*/
|
|
sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
|
|
sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
|
|
VdbeComment((v, "output one row"));
|
|
sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
|
|
VdbeComment((v, "check abort flag"));
|
|
sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
|
|
VdbeComment((v, "reset accumulator"));
|
|
|
|
/* Update the aggregate accumulators based on the content of
|
|
** the current row
|
|
*/
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
updateAccumulator(pParse, iUseFlag, &sAggInfo);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
|
|
VdbeComment((v, "indicate data in accumulator"));
|
|
|
|
/* End of the loop
|
|
*/
|
|
if( groupBySort ){
|
|
sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
|
|
VdbeCoverage(v);
|
|
}else{
|
|
sqlite3WhereEnd(pWInfo);
|
|
sqlite3VdbeChangeToNoop(v, addrSortingIdx);
|
|
}
|
|
|
|
/* Output the final row of result
|
|
*/
|
|
sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
|
|
VdbeComment((v, "output final row"));
|
|
|
|
/* Jump over the subroutines
|
|
*/
|
|
sqlite3VdbeGoto(v, addrEnd);
|
|
|
|
/* Generate a subroutine that outputs a single row of the result
|
|
** set. This subroutine first looks at the iUseFlag. If iUseFlag
|
|
** is less than or equal to zero, the subroutine is a no-op. If
|
|
** the processing calls for the query to abort, this subroutine
|
|
** increments the iAbortFlag memory location before returning in
|
|
** order to signal the caller to abort.
|
|
*/
|
|
addrSetAbort = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
|
|
VdbeComment((v, "set abort flag"));
|
|
sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
|
|
sqlite3VdbeResolveLabel(v, addrOutputRow);
|
|
addrOutputRow = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
|
|
VdbeCoverage(v);
|
|
VdbeComment((v, "Groupby result generator entry point"));
|
|
sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
|
|
finalizeAggFunctions(pParse, &sAggInfo);
|
|
sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
|
|
selectInnerLoop(pParse, p, -1, &sSort,
|
|
&sDistinct, pDest,
|
|
addrOutputRow+1, addrSetAbort);
|
|
sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
|
|
VdbeComment((v, "end groupby result generator"));
|
|
|
|
/* Generate a subroutine that will reset the group-by accumulator
|
|
*/
|
|
sqlite3VdbeResolveLabel(v, addrReset);
|
|
resetAccumulator(pParse, &sAggInfo);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
|
|
VdbeComment((v, "indicate accumulator empty"));
|
|
sqlite3VdbeAddOp1(v, OP_Return, regReset);
|
|
|
|
} /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
|
|
else {
|
|
#ifndef SQLITE_OMIT_BTREECOUNT
|
|
Table *pTab;
|
|
if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
|
|
/* If isSimpleCount() returns a pointer to a Table structure, then
|
|
** the SQL statement is of the form:
|
|
**
|
|
** SELECT count(*) FROM <tbl>
|
|
**
|
|
** where the Table structure returned represents table <tbl>.
|
|
**
|
|
** This statement is so common that it is optimized specially. The
|
|
** OP_Count instruction is executed either on the intkey table that
|
|
** contains the data for table <tbl> or on one of its indexes. It
|
|
** is better to execute the op on an index, as indexes are almost
|
|
** always spread across less pages than their corresponding tables.
|
|
*/
|
|
const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
|
|
Index *pIdx; /* Iterator variable */
|
|
KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
|
|
Index *pBest = 0; /* Best index found so far */
|
|
int iRoot = pTab->tnum; /* Root page of scanned b-tree */
|
|
|
|
sqlite3CodeVerifySchema(pParse, iDb);
|
|
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
|
|
|
|
/* Search for the index that has the lowest scan cost.
|
|
**
|
|
** (2011-04-15) Do not do a full scan of an unordered index.
|
|
**
|
|
** (2013-10-03) Do not count the entries in a partial index.
|
|
**
|
|
** In practice the KeyInfo structure will not be used. It is only
|
|
** passed to keep OP_OpenRead happy.
|
|
*/
|
|
if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
if( pIdx->bUnordered==0
|
|
&& pIdx->szIdxRow<pTab->szTabRow
|
|
&& pIdx->pPartIdxWhere==0
|
|
&& (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
|
|
){
|
|
pBest = pIdx;
|
|
}
|
|
}
|
|
if( pBest ){
|
|
iRoot = pBest->tnum;
|
|
pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
|
|
}
|
|
|
|
/* Open a read-only cursor, execute the OP_Count, close the cursor. */
|
|
sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
|
|
if( pKeyInfo ){
|
|
sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
|
|
sqlite3VdbeAddOp1(v, OP_Close, iCsr);
|
|
explainSimpleCount(pParse, pTab, pBest);
|
|
}else
|
|
#endif /* SQLITE_OMIT_BTREECOUNT */
|
|
{
|
|
int regAcc = 0; /* "populate accumulators" flag */
|
|
|
|
/* If there are accumulator registers but no min() or max() functions
|
|
** without FILTER clauses, allocate register regAcc. Register regAcc
|
|
** will contain 0 the first time the inner loop runs, and 1 thereafter.
|
|
** The code generated by updateAccumulator() uses this to ensure
|
|
** that the accumulator registers are (a) updated only once if
|
|
** there are no min() or max functions or (b) always updated for the
|
|
** first row visited by the aggregate, so that they are updated at
|
|
** least once even if the FILTER clause means the min() or max()
|
|
** function visits zero rows. */
|
|
if( sAggInfo.nAccumulator ){
|
|
for(i=0; i<sAggInfo.nFunc; i++){
|
|
if( ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_WinFunc) ) continue;
|
|
if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break;
|
|
}
|
|
if( i==sAggInfo.nFunc ){
|
|
regAcc = ++pParse->nMem;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
|
|
}
|
|
}
|
|
|
|
/* This case runs if the aggregate has no GROUP BY clause. The
|
|
** processing is much simpler since there is only a single row
|
|
** of output.
|
|
*/
|
|
assert( p->pGroupBy==0 );
|
|
resetAccumulator(pParse, &sAggInfo);
|
|
|
|
/* If this query is a candidate for the min/max optimization, then
|
|
** minMaxFlag will have been previously set to either
|
|
** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
|
|
** be an appropriate ORDER BY expression for the optimization.
|
|
*/
|
|
assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
|
|
assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
|
|
|
|
SELECTTRACE(1,pParse,p,("WhereBegin\n"));
|
|
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
|
|
0, minMaxFlag, 0);
|
|
if( pWInfo==0 ){
|
|
goto select_end;
|
|
}
|
|
updateAccumulator(pParse, regAcc, &sAggInfo);
|
|
if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
|
|
if( sqlite3WhereIsOrdered(pWInfo)>0 ){
|
|
sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
|
|
VdbeComment((v, "%s() by index",
|
|
(minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
|
|
}
|
|
sqlite3WhereEnd(pWInfo);
|
|
finalizeAggFunctions(pParse, &sAggInfo);
|
|
}
|
|
|
|
sSort.pOrderBy = 0;
|
|
sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
|
|
selectInnerLoop(pParse, p, -1, 0, 0,
|
|
pDest, addrEnd, addrEnd);
|
|
}
|
|
sqlite3VdbeResolveLabel(v, addrEnd);
|
|
|
|
} /* endif aggregate query */
|
|
|
|
if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
|
|
explainTempTable(pParse, "DISTINCT");
|
|
}
|
|
|
|
/* If there is an ORDER BY clause, then we need to sort the results
|
|
** and send them to the callback one by one.
|
|
*/
|
|
if( sSort.pOrderBy ){
|
|
explainTempTable(pParse,
|
|
sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
|
|
assert( p->pEList==pEList );
|
|
generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
|
|
}
|
|
|
|
/* Jump here to skip this query
|
|
*/
|
|
sqlite3VdbeResolveLabel(v, iEnd);
|
|
|
|
/* The SELECT has been coded. If there is an error in the Parse structure,
|
|
** set the return code to 1. Otherwise 0. */
|
|
rc = (pParse->nErr>0);
|
|
|
|
/* Control jumps to here if an error is encountered above, or upon
|
|
** successful coding of the SELECT.
|
|
*/
|
|
select_end:
|
|
sqlite3ExprListDelete(db, pMinMaxOrderBy);
|
|
sqlite3DbFree(db, sAggInfo.aCol);
|
|
sqlite3DbFree(db, sAggInfo.aFunc);
|
|
#if SELECTTRACE_ENABLED
|
|
SELECTTRACE(0x1,pParse,p,("end processing\n"));
|
|
if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
|
|
sqlite3TreeViewSelect(0, p, 0);
|
|
}
|
|
#endif
|
|
ExplainQueryPlanPop(pParse);
|
|
return rc;
|
|
}
|