abfd35ea03
function sqlite3PExpr(). FossilOrigin-Name: 2a81763e68cdf9b8c46389b1e1a87bc2084b53e7
1442 lines
52 KiB
C
1442 lines
52 KiB
C
/*
|
|
** 2015-06-08
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This module contains C code that generates VDBE code used to process
|
|
** the WHERE clause of SQL statements.
|
|
**
|
|
** This file was originally part of where.c but was split out to improve
|
|
** readability and editabiliity. This file contains utility routines for
|
|
** analyzing Expr objects in the WHERE clause.
|
|
*/
|
|
#include "sqliteInt.h"
|
|
#include "whereInt.h"
|
|
|
|
/* Forward declarations */
|
|
static void exprAnalyze(SrcList*, WhereClause*, int);
|
|
|
|
/*
|
|
** Deallocate all memory associated with a WhereOrInfo object.
|
|
*/
|
|
static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
|
|
sqlite3WhereClauseClear(&p->wc);
|
|
sqlite3DbFree(db, p);
|
|
}
|
|
|
|
/*
|
|
** Deallocate all memory associated with a WhereAndInfo object.
|
|
*/
|
|
static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
|
|
sqlite3WhereClauseClear(&p->wc);
|
|
sqlite3DbFree(db, p);
|
|
}
|
|
|
|
/*
|
|
** Add a single new WhereTerm entry to the WhereClause object pWC.
|
|
** The new WhereTerm object is constructed from Expr p and with wtFlags.
|
|
** The index in pWC->a[] of the new WhereTerm is returned on success.
|
|
** 0 is returned if the new WhereTerm could not be added due to a memory
|
|
** allocation error. The memory allocation failure will be recorded in
|
|
** the db->mallocFailed flag so that higher-level functions can detect it.
|
|
**
|
|
** This routine will increase the size of the pWC->a[] array as necessary.
|
|
**
|
|
** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
|
|
** for freeing the expression p is assumed by the WhereClause object pWC.
|
|
** This is true even if this routine fails to allocate a new WhereTerm.
|
|
**
|
|
** WARNING: This routine might reallocate the space used to store
|
|
** WhereTerms. All pointers to WhereTerms should be invalidated after
|
|
** calling this routine. Such pointers may be reinitialized by referencing
|
|
** the pWC->a[] array.
|
|
*/
|
|
static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){
|
|
WhereTerm *pTerm;
|
|
int idx;
|
|
testcase( wtFlags & TERM_VIRTUAL );
|
|
if( pWC->nTerm>=pWC->nSlot ){
|
|
WhereTerm *pOld = pWC->a;
|
|
sqlite3 *db = pWC->pWInfo->pParse->db;
|
|
pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
|
|
if( pWC->a==0 ){
|
|
if( wtFlags & TERM_DYNAMIC ){
|
|
sqlite3ExprDelete(db, p);
|
|
}
|
|
pWC->a = pOld;
|
|
return 0;
|
|
}
|
|
memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
|
|
if( pOld!=pWC->aStatic ){
|
|
sqlite3DbFree(db, pOld);
|
|
}
|
|
pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
|
|
}
|
|
pTerm = &pWC->a[idx = pWC->nTerm++];
|
|
if( p && ExprHasProperty(p, EP_Unlikely) ){
|
|
pTerm->truthProb = sqlite3LogEst(p->iTable) - 270;
|
|
}else{
|
|
pTerm->truthProb = 1;
|
|
}
|
|
pTerm->pExpr = sqlite3ExprSkipCollate(p);
|
|
pTerm->wtFlags = wtFlags;
|
|
pTerm->pWC = pWC;
|
|
pTerm->iParent = -1;
|
|
memset(&pTerm->eOperator, 0,
|
|
sizeof(WhereTerm) - offsetof(WhereTerm,eOperator));
|
|
return idx;
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if the given operator is one of the operators that is
|
|
** allowed for an indexable WHERE clause term. The allowed operators are
|
|
** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL"
|
|
*/
|
|
static int allowedOp(int op){
|
|
assert( TK_GT>TK_EQ && TK_GT<TK_GE );
|
|
assert( TK_LT>TK_EQ && TK_LT<TK_GE );
|
|
assert( TK_LE>TK_EQ && TK_LE<TK_GE );
|
|
assert( TK_GE==TK_EQ+4 );
|
|
return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS;
|
|
}
|
|
|
|
/*
|
|
** Commute a comparison operator. Expressions of the form "X op Y"
|
|
** are converted into "Y op X".
|
|
**
|
|
** If left/right precedence rules come into play when determining the
|
|
** collating sequence, then COLLATE operators are adjusted to ensure
|
|
** that the collating sequence does not change. For example:
|
|
** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on
|
|
** the left hand side of a comparison overrides any collation sequence
|
|
** attached to the right. For the same reason the EP_Collate flag
|
|
** is not commuted.
|
|
*/
|
|
static void exprCommute(Parse *pParse, Expr *pExpr){
|
|
u16 expRight = (pExpr->pRight->flags & EP_Collate);
|
|
u16 expLeft = (pExpr->pLeft->flags & EP_Collate);
|
|
assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
|
|
if( expRight==expLeft ){
|
|
/* Either X and Y both have COLLATE operator or neither do */
|
|
if( expRight ){
|
|
/* Both X and Y have COLLATE operators. Make sure X is always
|
|
** used by clearing the EP_Collate flag from Y. */
|
|
pExpr->pRight->flags &= ~EP_Collate;
|
|
}else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){
|
|
/* Neither X nor Y have COLLATE operators, but X has a non-default
|
|
** collating sequence. So add the EP_Collate marker on X to cause
|
|
** it to be searched first. */
|
|
pExpr->pLeft->flags |= EP_Collate;
|
|
}
|
|
}
|
|
SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
|
|
if( pExpr->op>=TK_GT ){
|
|
assert( TK_LT==TK_GT+2 );
|
|
assert( TK_GE==TK_LE+2 );
|
|
assert( TK_GT>TK_EQ );
|
|
assert( TK_GT<TK_LE );
|
|
assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
|
|
pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Translate from TK_xx operator to WO_xx bitmask.
|
|
*/
|
|
static u16 operatorMask(int op){
|
|
u16 c;
|
|
assert( allowedOp(op) );
|
|
if( op==TK_IN ){
|
|
c = WO_IN;
|
|
}else if( op==TK_ISNULL ){
|
|
c = WO_ISNULL;
|
|
}else if( op==TK_IS ){
|
|
c = WO_IS;
|
|
}else{
|
|
assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
|
|
c = (u16)(WO_EQ<<(op-TK_EQ));
|
|
}
|
|
assert( op!=TK_ISNULL || c==WO_ISNULL );
|
|
assert( op!=TK_IN || c==WO_IN );
|
|
assert( op!=TK_EQ || c==WO_EQ );
|
|
assert( op!=TK_LT || c==WO_LT );
|
|
assert( op!=TK_LE || c==WO_LE );
|
|
assert( op!=TK_GT || c==WO_GT );
|
|
assert( op!=TK_GE || c==WO_GE );
|
|
assert( op!=TK_IS || c==WO_IS );
|
|
return c;
|
|
}
|
|
|
|
|
|
#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
|
|
/*
|
|
** Check to see if the given expression is a LIKE or GLOB operator that
|
|
** can be optimized using inequality constraints. Return TRUE if it is
|
|
** so and false if not.
|
|
**
|
|
** In order for the operator to be optimizible, the RHS must be a string
|
|
** literal that does not begin with a wildcard. The LHS must be a column
|
|
** that may only be NULL, a string, or a BLOB, never a number. (This means
|
|
** that virtual tables cannot participate in the LIKE optimization.) The
|
|
** collating sequence for the column on the LHS must be appropriate for
|
|
** the operator.
|
|
*/
|
|
static int isLikeOrGlob(
|
|
Parse *pParse, /* Parsing and code generating context */
|
|
Expr *pExpr, /* Test this expression */
|
|
Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */
|
|
int *pisComplete, /* True if the only wildcard is % in the last character */
|
|
int *pnoCase /* True if uppercase is equivalent to lowercase */
|
|
){
|
|
const char *z = 0; /* String on RHS of LIKE operator */
|
|
Expr *pRight, *pLeft; /* Right and left size of LIKE operator */
|
|
ExprList *pList; /* List of operands to the LIKE operator */
|
|
int c; /* One character in z[] */
|
|
int cnt; /* Number of non-wildcard prefix characters */
|
|
char wc[3]; /* Wildcard characters */
|
|
sqlite3 *db = pParse->db; /* Database connection */
|
|
sqlite3_value *pVal = 0;
|
|
int op; /* Opcode of pRight */
|
|
int rc; /* Result code to return */
|
|
|
|
if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
|
|
return 0;
|
|
}
|
|
#ifdef SQLITE_EBCDIC
|
|
if( *pnoCase ) return 0;
|
|
#endif
|
|
pList = pExpr->x.pList;
|
|
pLeft = pList->a[1].pExpr;
|
|
if( pLeft->op!=TK_COLUMN
|
|
|| sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT
|
|
|| IsVirtual(pLeft->pTab) /* Value might be numeric */
|
|
){
|
|
/* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
|
|
** be the name of an indexed column with TEXT affinity. */
|
|
return 0;
|
|
}
|
|
assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */
|
|
|
|
pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr);
|
|
op = pRight->op;
|
|
if( op==TK_VARIABLE ){
|
|
Vdbe *pReprepare = pParse->pReprepare;
|
|
int iCol = pRight->iColumn;
|
|
pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB);
|
|
if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
|
|
z = (char *)sqlite3_value_text(pVal);
|
|
}
|
|
sqlite3VdbeSetVarmask(pParse->pVdbe, iCol);
|
|
assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
|
|
}else if( op==TK_STRING ){
|
|
z = pRight->u.zToken;
|
|
}
|
|
if( z ){
|
|
cnt = 0;
|
|
while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
|
|
cnt++;
|
|
}
|
|
if( cnt!=0 && 255!=(u8)z[cnt-1] ){
|
|
Expr *pPrefix;
|
|
*pisComplete = c==wc[0] && z[cnt+1]==0;
|
|
pPrefix = sqlite3Expr(db, TK_STRING, z);
|
|
if( pPrefix ) pPrefix->u.zToken[cnt] = 0;
|
|
*ppPrefix = pPrefix;
|
|
if( op==TK_VARIABLE ){
|
|
Vdbe *v = pParse->pVdbe;
|
|
sqlite3VdbeSetVarmask(v, pRight->iColumn);
|
|
if( *pisComplete && pRight->u.zToken[1] ){
|
|
/* If the rhs of the LIKE expression is a variable, and the current
|
|
** value of the variable means there is no need to invoke the LIKE
|
|
** function, then no OP_Variable will be added to the program.
|
|
** This causes problems for the sqlite3_bind_parameter_name()
|
|
** API. To work around them, add a dummy OP_Variable here.
|
|
*/
|
|
int r1 = sqlite3GetTempReg(pParse);
|
|
sqlite3ExprCodeTarget(pParse, pRight, r1);
|
|
sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
}
|
|
}
|
|
}else{
|
|
z = 0;
|
|
}
|
|
}
|
|
|
|
rc = (z!=0);
|
|
sqlite3ValueFree(pVal);
|
|
return rc;
|
|
}
|
|
#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
|
|
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/*
|
|
** Check to see if the given expression is of the form
|
|
**
|
|
** column OP expr
|
|
**
|
|
** where OP is one of MATCH, GLOB, LIKE or REGEXP and "column" is a
|
|
** column of a virtual table.
|
|
**
|
|
** If it is then return TRUE. If not, return FALSE.
|
|
*/
|
|
static int isMatchOfColumn(
|
|
Expr *pExpr, /* Test this expression */
|
|
unsigned char *peOp2 /* OUT: 0 for MATCH, or else an op2 value */
|
|
){
|
|
static const struct Op2 {
|
|
const char *zOp;
|
|
unsigned char eOp2;
|
|
} aOp[] = {
|
|
{ "match", SQLITE_INDEX_CONSTRAINT_MATCH },
|
|
{ "glob", SQLITE_INDEX_CONSTRAINT_GLOB },
|
|
{ "like", SQLITE_INDEX_CONSTRAINT_LIKE },
|
|
{ "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP }
|
|
};
|
|
ExprList *pList;
|
|
Expr *pCol; /* Column reference */
|
|
int i;
|
|
|
|
if( pExpr->op!=TK_FUNCTION ){
|
|
return 0;
|
|
}
|
|
pList = pExpr->x.pList;
|
|
if( pList==0 || pList->nExpr!=2 ){
|
|
return 0;
|
|
}
|
|
pCol = pList->a[1].pExpr;
|
|
if( pCol->op!=TK_COLUMN || !IsVirtual(pCol->pTab) ){
|
|
return 0;
|
|
}
|
|
for(i=0; i<ArraySize(aOp); i++){
|
|
if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){
|
|
*peOp2 = aOp[i].eOp2;
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
/*
|
|
** If the pBase expression originated in the ON or USING clause of
|
|
** a join, then transfer the appropriate markings over to derived.
|
|
*/
|
|
static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
|
|
if( pDerived ){
|
|
pDerived->flags |= pBase->flags & EP_FromJoin;
|
|
pDerived->iRightJoinTable = pBase->iRightJoinTable;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Mark term iChild as being a child of term iParent
|
|
*/
|
|
static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){
|
|
pWC->a[iChild].iParent = iParent;
|
|
pWC->a[iChild].truthProb = pWC->a[iParent].truthProb;
|
|
pWC->a[iParent].nChild++;
|
|
}
|
|
|
|
/*
|
|
** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not
|
|
** a conjunction, then return just pTerm when N==0. If N is exceeds
|
|
** the number of available subterms, return NULL.
|
|
*/
|
|
static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){
|
|
if( pTerm->eOperator!=WO_AND ){
|
|
return N==0 ? pTerm : 0;
|
|
}
|
|
if( N<pTerm->u.pAndInfo->wc.nTerm ){
|
|
return &pTerm->u.pAndInfo->wc.a[N];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Subterms pOne and pTwo are contained within WHERE clause pWC. The
|
|
** two subterms are in disjunction - they are OR-ed together.
|
|
**
|
|
** If these two terms are both of the form: "A op B" with the same
|
|
** A and B values but different operators and if the operators are
|
|
** compatible (if one is = and the other is <, for example) then
|
|
** add a new virtual AND term to pWC that is the combination of the
|
|
** two.
|
|
**
|
|
** Some examples:
|
|
**
|
|
** x<y OR x=y --> x<=y
|
|
** x=y OR x=y --> x=y
|
|
** x<=y OR x<y --> x<=y
|
|
**
|
|
** The following is NOT generated:
|
|
**
|
|
** x<y OR x>y --> x!=y
|
|
*/
|
|
static void whereCombineDisjuncts(
|
|
SrcList *pSrc, /* the FROM clause */
|
|
WhereClause *pWC, /* The complete WHERE clause */
|
|
WhereTerm *pOne, /* First disjunct */
|
|
WhereTerm *pTwo /* Second disjunct */
|
|
){
|
|
u16 eOp = pOne->eOperator | pTwo->eOperator;
|
|
sqlite3 *db; /* Database connection (for malloc) */
|
|
Expr *pNew; /* New virtual expression */
|
|
int op; /* Operator for the combined expression */
|
|
int idxNew; /* Index in pWC of the next virtual term */
|
|
|
|
if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
|
|
if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
|
|
if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp
|
|
&& (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return;
|
|
assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 );
|
|
assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 );
|
|
if( sqlite3ExprCompare(pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return;
|
|
if( sqlite3ExprCompare(pOne->pExpr->pRight, pTwo->pExpr->pRight, -1) )return;
|
|
/* If we reach this point, it means the two subterms can be combined */
|
|
if( (eOp & (eOp-1))!=0 ){
|
|
if( eOp & (WO_LT|WO_LE) ){
|
|
eOp = WO_LE;
|
|
}else{
|
|
assert( eOp & (WO_GT|WO_GE) );
|
|
eOp = WO_GE;
|
|
}
|
|
}
|
|
db = pWC->pWInfo->pParse->db;
|
|
pNew = sqlite3ExprDup(db, pOne->pExpr, 0);
|
|
if( pNew==0 ) return;
|
|
for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); }
|
|
pNew->op = op;
|
|
idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
|
|
exprAnalyze(pSrc, pWC, idxNew);
|
|
}
|
|
|
|
#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
|
|
/*
|
|
** Analyze a term that consists of two or more OR-connected
|
|
** subterms. So in:
|
|
**
|
|
** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
|
|
** ^^^^^^^^^^^^^^^^^^^^
|
|
**
|
|
** This routine analyzes terms such as the middle term in the above example.
|
|
** A WhereOrTerm object is computed and attached to the term under
|
|
** analysis, regardless of the outcome of the analysis. Hence:
|
|
**
|
|
** WhereTerm.wtFlags |= TERM_ORINFO
|
|
** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
|
|
**
|
|
** The term being analyzed must have two or more of OR-connected subterms.
|
|
** A single subterm might be a set of AND-connected sub-subterms.
|
|
** Examples of terms under analysis:
|
|
**
|
|
** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
|
|
** (B) x=expr1 OR expr2=x OR x=expr3
|
|
** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
|
|
** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
|
|
** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
|
|
** (F) x>A OR (x=A AND y>=B)
|
|
**
|
|
** CASE 1:
|
|
**
|
|
** If all subterms are of the form T.C=expr for some single column of C and
|
|
** a single table T (as shown in example B above) then create a new virtual
|
|
** term that is an equivalent IN expression. In other words, if the term
|
|
** being analyzed is:
|
|
**
|
|
** x = expr1 OR expr2 = x OR x = expr3
|
|
**
|
|
** then create a new virtual term like this:
|
|
**
|
|
** x IN (expr1,expr2,expr3)
|
|
**
|
|
** CASE 2:
|
|
**
|
|
** If there are exactly two disjuncts and one side has x>A and the other side
|
|
** has x=A (for the same x and A) then add a new virtual conjunct term to the
|
|
** WHERE clause of the form "x>=A". Example:
|
|
**
|
|
** x>A OR (x=A AND y>B) adds: x>=A
|
|
**
|
|
** The added conjunct can sometimes be helpful in query planning.
|
|
**
|
|
** CASE 3:
|
|
**
|
|
** If all subterms are indexable by a single table T, then set
|
|
**
|
|
** WhereTerm.eOperator = WO_OR
|
|
** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
|
|
**
|
|
** A subterm is "indexable" if it is of the form
|
|
** "T.C <op> <expr>" where C is any column of table T and
|
|
** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
|
|
** A subterm is also indexable if it is an AND of two or more
|
|
** subsubterms at least one of which is indexable. Indexable AND
|
|
** subterms have their eOperator set to WO_AND and they have
|
|
** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
|
|
**
|
|
** From another point of view, "indexable" means that the subterm could
|
|
** potentially be used with an index if an appropriate index exists.
|
|
** This analysis does not consider whether or not the index exists; that
|
|
** is decided elsewhere. This analysis only looks at whether subterms
|
|
** appropriate for indexing exist.
|
|
**
|
|
** All examples A through E above satisfy case 3. But if a term
|
|
** also satisfies case 1 (such as B) we know that the optimizer will
|
|
** always prefer case 1, so in that case we pretend that case 3 is not
|
|
** satisfied.
|
|
**
|
|
** It might be the case that multiple tables are indexable. For example,
|
|
** (E) above is indexable on tables P, Q, and R.
|
|
**
|
|
** Terms that satisfy case 3 are candidates for lookup by using
|
|
** separate indices to find rowids for each subterm and composing
|
|
** the union of all rowids using a RowSet object. This is similar
|
|
** to "bitmap indices" in other database engines.
|
|
**
|
|
** OTHERWISE:
|
|
**
|
|
** If none of cases 1, 2, or 3 apply, then leave the eOperator set to
|
|
** zero. This term is not useful for search.
|
|
*/
|
|
static void exprAnalyzeOrTerm(
|
|
SrcList *pSrc, /* the FROM clause */
|
|
WhereClause *pWC, /* the complete WHERE clause */
|
|
int idxTerm /* Index of the OR-term to be analyzed */
|
|
){
|
|
WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
|
|
Parse *pParse = pWInfo->pParse; /* Parser context */
|
|
sqlite3 *db = pParse->db; /* Database connection */
|
|
WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */
|
|
Expr *pExpr = pTerm->pExpr; /* The expression of the term */
|
|
int i; /* Loop counters */
|
|
WhereClause *pOrWc; /* Breakup of pTerm into subterms */
|
|
WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */
|
|
WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */
|
|
Bitmask chngToIN; /* Tables that might satisfy case 1 */
|
|
Bitmask indexable; /* Tables that are indexable, satisfying case 2 */
|
|
|
|
/*
|
|
** Break the OR clause into its separate subterms. The subterms are
|
|
** stored in a WhereClause structure containing within the WhereOrInfo
|
|
** object that is attached to the original OR clause term.
|
|
*/
|
|
assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
|
|
assert( pExpr->op==TK_OR );
|
|
pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
|
|
if( pOrInfo==0 ) return;
|
|
pTerm->wtFlags |= TERM_ORINFO;
|
|
pOrWc = &pOrInfo->wc;
|
|
memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic));
|
|
sqlite3WhereClauseInit(pOrWc, pWInfo);
|
|
sqlite3WhereSplit(pOrWc, pExpr, TK_OR);
|
|
sqlite3WhereExprAnalyze(pSrc, pOrWc);
|
|
if( db->mallocFailed ) return;
|
|
assert( pOrWc->nTerm>=2 );
|
|
|
|
/*
|
|
** Compute the set of tables that might satisfy cases 1 or 3.
|
|
*/
|
|
indexable = ~(Bitmask)0;
|
|
chngToIN = ~(Bitmask)0;
|
|
for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
|
|
if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
|
|
WhereAndInfo *pAndInfo;
|
|
assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
|
|
chngToIN = 0;
|
|
pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo));
|
|
if( pAndInfo ){
|
|
WhereClause *pAndWC;
|
|
WhereTerm *pAndTerm;
|
|
int j;
|
|
Bitmask b = 0;
|
|
pOrTerm->u.pAndInfo = pAndInfo;
|
|
pOrTerm->wtFlags |= TERM_ANDINFO;
|
|
pOrTerm->eOperator = WO_AND;
|
|
pAndWC = &pAndInfo->wc;
|
|
memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic));
|
|
sqlite3WhereClauseInit(pAndWC, pWC->pWInfo);
|
|
sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
|
|
sqlite3WhereExprAnalyze(pSrc, pAndWC);
|
|
pAndWC->pOuter = pWC;
|
|
if( !db->mallocFailed ){
|
|
for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
|
|
assert( pAndTerm->pExpr );
|
|
if( allowedOp(pAndTerm->pExpr->op)
|
|
|| pAndTerm->eOperator==WO_MATCH
|
|
){
|
|
b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor);
|
|
}
|
|
}
|
|
}
|
|
indexable &= b;
|
|
}
|
|
}else if( pOrTerm->wtFlags & TERM_COPIED ){
|
|
/* Skip this term for now. We revisit it when we process the
|
|
** corresponding TERM_VIRTUAL term */
|
|
}else{
|
|
Bitmask b;
|
|
b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor);
|
|
if( pOrTerm->wtFlags & TERM_VIRTUAL ){
|
|
WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
|
|
b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor);
|
|
}
|
|
indexable &= b;
|
|
if( (pOrTerm->eOperator & WO_EQ)==0 ){
|
|
chngToIN = 0;
|
|
}else{
|
|
chngToIN &= b;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Record the set of tables that satisfy case 3. The set might be
|
|
** empty.
|
|
*/
|
|
pOrInfo->indexable = indexable;
|
|
pTerm->eOperator = indexable==0 ? 0 : WO_OR;
|
|
|
|
/* For a two-way OR, attempt to implementation case 2.
|
|
*/
|
|
if( indexable && pOrWc->nTerm==2 ){
|
|
int iOne = 0;
|
|
WhereTerm *pOne;
|
|
while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){
|
|
int iTwo = 0;
|
|
WhereTerm *pTwo;
|
|
while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){
|
|
whereCombineDisjuncts(pSrc, pWC, pOne, pTwo);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** chngToIN holds a set of tables that *might* satisfy case 1. But
|
|
** we have to do some additional checking to see if case 1 really
|
|
** is satisfied.
|
|
**
|
|
** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
|
|
** that there is no possibility of transforming the OR clause into an
|
|
** IN operator because one or more terms in the OR clause contain
|
|
** something other than == on a column in the single table. The 1-bit
|
|
** case means that every term of the OR clause is of the form
|
|
** "table.column=expr" for some single table. The one bit that is set
|
|
** will correspond to the common table. We still need to check to make
|
|
** sure the same column is used on all terms. The 2-bit case is when
|
|
** the all terms are of the form "table1.column=table2.column". It
|
|
** might be possible to form an IN operator with either table1.column
|
|
** or table2.column as the LHS if either is common to every term of
|
|
** the OR clause.
|
|
**
|
|
** Note that terms of the form "table.column1=table.column2" (the
|
|
** same table on both sizes of the ==) cannot be optimized.
|
|
*/
|
|
if( chngToIN ){
|
|
int okToChngToIN = 0; /* True if the conversion to IN is valid */
|
|
int iColumn = -1; /* Column index on lhs of IN operator */
|
|
int iCursor = -1; /* Table cursor common to all terms */
|
|
int j = 0; /* Loop counter */
|
|
|
|
/* Search for a table and column that appears on one side or the
|
|
** other of the == operator in every subterm. That table and column
|
|
** will be recorded in iCursor and iColumn. There might not be any
|
|
** such table and column. Set okToChngToIN if an appropriate table
|
|
** and column is found but leave okToChngToIN false if not found.
|
|
*/
|
|
for(j=0; j<2 && !okToChngToIN; j++){
|
|
pOrTerm = pOrWc->a;
|
|
for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
|
|
assert( pOrTerm->eOperator & WO_EQ );
|
|
pOrTerm->wtFlags &= ~TERM_OR_OK;
|
|
if( pOrTerm->leftCursor==iCursor ){
|
|
/* This is the 2-bit case and we are on the second iteration and
|
|
** current term is from the first iteration. So skip this term. */
|
|
assert( j==1 );
|
|
continue;
|
|
}
|
|
if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet,
|
|
pOrTerm->leftCursor))==0 ){
|
|
/* This term must be of the form t1.a==t2.b where t2 is in the
|
|
** chngToIN set but t1 is not. This term will be either preceded
|
|
** or follwed by an inverted copy (t2.b==t1.a). Skip this term
|
|
** and use its inversion. */
|
|
testcase( pOrTerm->wtFlags & TERM_COPIED );
|
|
testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
|
|
assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
|
|
continue;
|
|
}
|
|
iColumn = pOrTerm->u.leftColumn;
|
|
iCursor = pOrTerm->leftCursor;
|
|
break;
|
|
}
|
|
if( i<0 ){
|
|
/* No candidate table+column was found. This can only occur
|
|
** on the second iteration */
|
|
assert( j==1 );
|
|
assert( IsPowerOfTwo(chngToIN) );
|
|
assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) );
|
|
break;
|
|
}
|
|
testcase( j==1 );
|
|
|
|
/* We have found a candidate table and column. Check to see if that
|
|
** table and column is common to every term in the OR clause */
|
|
okToChngToIN = 1;
|
|
for(; i>=0 && okToChngToIN; i--, pOrTerm++){
|
|
assert( pOrTerm->eOperator & WO_EQ );
|
|
if( pOrTerm->leftCursor!=iCursor ){
|
|
pOrTerm->wtFlags &= ~TERM_OR_OK;
|
|
}else if( pOrTerm->u.leftColumn!=iColumn ){
|
|
okToChngToIN = 0;
|
|
}else{
|
|
int affLeft, affRight;
|
|
/* If the right-hand side is also a column, then the affinities
|
|
** of both right and left sides must be such that no type
|
|
** conversions are required on the right. (Ticket #2249)
|
|
*/
|
|
affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
|
|
affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
|
|
if( affRight!=0 && affRight!=affLeft ){
|
|
okToChngToIN = 0;
|
|
}else{
|
|
pOrTerm->wtFlags |= TERM_OR_OK;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* At this point, okToChngToIN is true if original pTerm satisfies
|
|
** case 1. In that case, construct a new virtual term that is
|
|
** pTerm converted into an IN operator.
|
|
*/
|
|
if( okToChngToIN ){
|
|
Expr *pDup; /* A transient duplicate expression */
|
|
ExprList *pList = 0; /* The RHS of the IN operator */
|
|
Expr *pLeft = 0; /* The LHS of the IN operator */
|
|
Expr *pNew; /* The complete IN operator */
|
|
|
|
for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
|
|
if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
|
|
assert( pOrTerm->eOperator & WO_EQ );
|
|
assert( pOrTerm->leftCursor==iCursor );
|
|
assert( pOrTerm->u.leftColumn==iColumn );
|
|
pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
|
|
pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup);
|
|
pLeft = pOrTerm->pExpr->pLeft;
|
|
}
|
|
assert( pLeft!=0 );
|
|
pDup = sqlite3ExprDup(db, pLeft, 0);
|
|
pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0);
|
|
if( pNew ){
|
|
int idxNew;
|
|
transferJoinMarkings(pNew, pExpr);
|
|
assert( !ExprHasProperty(pNew, EP_xIsSelect) );
|
|
pNew->x.pList = pList;
|
|
idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
|
|
testcase( idxNew==0 );
|
|
exprAnalyze(pSrc, pWC, idxNew);
|
|
pTerm = &pWC->a[idxTerm];
|
|
markTermAsChild(pWC, idxNew, idxTerm);
|
|
}else{
|
|
sqlite3ExprListDelete(db, pList);
|
|
}
|
|
pTerm->eOperator = WO_NOOP; /* case 1 trumps case 3 */
|
|
}
|
|
}
|
|
}
|
|
#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
|
|
|
|
/*
|
|
** We already know that pExpr is a binary operator where both operands are
|
|
** column references. This routine checks to see if pExpr is an equivalence
|
|
** relation:
|
|
** 1. The SQLITE_Transitive optimization must be enabled
|
|
** 2. Must be either an == or an IS operator
|
|
** 3. Not originating in the ON clause of an OUTER JOIN
|
|
** 4. The affinities of A and B must be compatible
|
|
** 5a. Both operands use the same collating sequence OR
|
|
** 5b. The overall collating sequence is BINARY
|
|
** If this routine returns TRUE, that means that the RHS can be substituted
|
|
** for the LHS anyplace else in the WHERE clause where the LHS column occurs.
|
|
** This is an optimization. No harm comes from returning 0. But if 1 is
|
|
** returned when it should not be, then incorrect answers might result.
|
|
*/
|
|
static int termIsEquivalence(Parse *pParse, Expr *pExpr){
|
|
char aff1, aff2;
|
|
CollSeq *pColl;
|
|
const char *zColl1, *zColl2;
|
|
if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0;
|
|
if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0;
|
|
if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0;
|
|
aff1 = sqlite3ExprAffinity(pExpr->pLeft);
|
|
aff2 = sqlite3ExprAffinity(pExpr->pRight);
|
|
if( aff1!=aff2
|
|
&& (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2))
|
|
){
|
|
return 0;
|
|
}
|
|
pColl = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight);
|
|
if( pColl==0 || sqlite3StrICmp(pColl->zName, "BINARY")==0 ) return 1;
|
|
pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
|
|
zColl1 = pColl ? pColl->zName : 0;
|
|
pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
|
|
zColl2 = pColl ? pColl->zName : 0;
|
|
return sqlite3_stricmp(zColl1, zColl2)==0;
|
|
}
|
|
|
|
/*
|
|
** Recursively walk the expressions of a SELECT statement and generate
|
|
** a bitmask indicating which tables are used in that expression
|
|
** tree.
|
|
*/
|
|
static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){
|
|
Bitmask mask = 0;
|
|
while( pS ){
|
|
SrcList *pSrc = pS->pSrc;
|
|
mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList);
|
|
mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy);
|
|
mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy);
|
|
mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere);
|
|
mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving);
|
|
if( ALWAYS(pSrc!=0) ){
|
|
int i;
|
|
for(i=0; i<pSrc->nSrc; i++){
|
|
mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect);
|
|
mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn);
|
|
}
|
|
}
|
|
pS = pS->pPrior;
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
/*
|
|
** Expression pExpr is one operand of a comparison operator that might
|
|
** be useful for indexing. This routine checks to see if pExpr appears
|
|
** in any index. Return TRUE (1) if pExpr is an indexed term and return
|
|
** FALSE (0) if not. If TRUE is returned, also set *piCur to the cursor
|
|
** number of the table that is indexed and *piColumn to the column number
|
|
** of the column that is indexed, or XN_EXPR (-2) if an expression is being
|
|
** indexed.
|
|
**
|
|
** If pExpr is a TK_COLUMN column reference, then this routine always returns
|
|
** true even if that particular column is not indexed, because the column
|
|
** might be added to an automatic index later.
|
|
*/
|
|
static int exprMightBeIndexed(
|
|
SrcList *pFrom, /* The FROM clause */
|
|
int op, /* The specific comparison operator */
|
|
Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */
|
|
Expr *pExpr, /* An operand of a comparison operator */
|
|
int *piCur, /* Write the referenced table cursor number here */
|
|
int *piColumn /* Write the referenced table column number here */
|
|
){
|
|
Index *pIdx;
|
|
int i;
|
|
int iCur;
|
|
|
|
/* If this expression is a vector to the left or right of a
|
|
** inequality constraint (>, <, >= or <=), perform the processing
|
|
** on the first element of the vector. */
|
|
assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE );
|
|
assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE );
|
|
assert( op<=TK_GE );
|
|
if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){
|
|
pExpr = pExpr->x.pList->a[0].pExpr;
|
|
}
|
|
|
|
if( pExpr->op==TK_COLUMN ){
|
|
*piCur = pExpr->iTable;
|
|
*piColumn = pExpr->iColumn;
|
|
return 1;
|
|
}
|
|
if( mPrereq==0 ) return 0; /* No table references */
|
|
if( (mPrereq&(mPrereq-1))!=0 ) return 0; /* Refs more than one table */
|
|
for(i=0; mPrereq>1; i++, mPrereq>>=1){}
|
|
iCur = pFrom->a[i].iCursor;
|
|
for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
if( pIdx->aColExpr==0 ) continue;
|
|
for(i=0; i<pIdx->nKeyCol; i++){
|
|
if( pIdx->aiColumn[i]!=XN_EXPR ) continue;
|
|
if( sqlite3ExprCompare(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){
|
|
*piCur = iCur;
|
|
*piColumn = XN_EXPR;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** The input to this routine is an WhereTerm structure with only the
|
|
** "pExpr" field filled in. The job of this routine is to analyze the
|
|
** subexpression and populate all the other fields of the WhereTerm
|
|
** structure.
|
|
**
|
|
** If the expression is of the form "<expr> <op> X" it gets commuted
|
|
** to the standard form of "X <op> <expr>".
|
|
**
|
|
** If the expression is of the form "X <op> Y" where both X and Y are
|
|
** columns, then the original expression is unchanged and a new virtual
|
|
** term of the form "Y <op> X" is added to the WHERE clause and
|
|
** analyzed separately. The original term is marked with TERM_COPIED
|
|
** and the new term is marked with TERM_DYNAMIC (because it's pExpr
|
|
** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
|
|
** is a commuted copy of a prior term.) The original term has nChild=1
|
|
** and the copy has idxParent set to the index of the original term.
|
|
*/
|
|
static void exprAnalyze(
|
|
SrcList *pSrc, /* the FROM clause */
|
|
WhereClause *pWC, /* the WHERE clause */
|
|
int idxTerm /* Index of the term to be analyzed */
|
|
){
|
|
WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
|
|
WhereTerm *pTerm; /* The term to be analyzed */
|
|
WhereMaskSet *pMaskSet; /* Set of table index masks */
|
|
Expr *pExpr; /* The expression to be analyzed */
|
|
Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */
|
|
Bitmask prereqAll; /* Prerequesites of pExpr */
|
|
Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */
|
|
Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */
|
|
int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */
|
|
int noCase = 0; /* uppercase equivalent to lowercase */
|
|
int op; /* Top-level operator. pExpr->op */
|
|
Parse *pParse = pWInfo->pParse; /* Parsing context */
|
|
sqlite3 *db = pParse->db; /* Database connection */
|
|
unsigned char eOp2; /* op2 value for LIKE/REGEXP/GLOB */
|
|
|
|
if( db->mallocFailed ){
|
|
return;
|
|
}
|
|
pTerm = &pWC->a[idxTerm];
|
|
pMaskSet = &pWInfo->sMaskSet;
|
|
pExpr = pTerm->pExpr;
|
|
assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
|
|
prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft);
|
|
op = pExpr->op;
|
|
if( op==TK_IN ){
|
|
assert( pExpr->pRight==0 );
|
|
if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
|
|
if( ExprHasProperty(pExpr, EP_xIsSelect) ){
|
|
pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect);
|
|
}else{
|
|
pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList);
|
|
}
|
|
}else if( op==TK_ISNULL ){
|
|
pTerm->prereqRight = 0;
|
|
}else{
|
|
pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight);
|
|
}
|
|
prereqAll = sqlite3WhereExprUsage(pMaskSet, pExpr);
|
|
if( ExprHasProperty(pExpr, EP_FromJoin) ){
|
|
Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable);
|
|
prereqAll |= x;
|
|
extraRight = x-1; /* ON clause terms may not be used with an index
|
|
** on left table of a LEFT JOIN. Ticket #3015 */
|
|
}
|
|
pTerm->prereqAll = prereqAll;
|
|
pTerm->leftCursor = -1;
|
|
pTerm->iParent = -1;
|
|
pTerm->eOperator = 0;
|
|
if( allowedOp(op) ){
|
|
int iCur, iColumn;
|
|
Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
|
|
Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
|
|
u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;
|
|
|
|
if( pTerm->iField>0 ){
|
|
assert( op==TK_IN );
|
|
assert( pLeft->op==TK_VECTOR );
|
|
pLeft = pLeft->x.pList->a[pTerm->iField-1].pExpr;
|
|
}
|
|
|
|
if( exprMightBeIndexed(pSrc, op, prereqLeft, pLeft, &iCur, &iColumn) ){
|
|
pTerm->leftCursor = iCur;
|
|
pTerm->u.leftColumn = iColumn;
|
|
pTerm->eOperator = operatorMask(op) & opMask;
|
|
}
|
|
if( op==TK_IS ) pTerm->wtFlags |= TERM_IS;
|
|
if( pRight
|
|
&& exprMightBeIndexed(pSrc, op, pTerm->prereqRight, pRight, &iCur,&iColumn)
|
|
){
|
|
WhereTerm *pNew;
|
|
Expr *pDup;
|
|
u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */
|
|
assert( pTerm->iField==0 );
|
|
if( pTerm->leftCursor>=0 ){
|
|
int idxNew;
|
|
pDup = sqlite3ExprDup(db, pExpr, 0);
|
|
if( db->mallocFailed ){
|
|
sqlite3ExprDelete(db, pDup);
|
|
return;
|
|
}
|
|
idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
|
|
if( idxNew==0 ) return;
|
|
pNew = &pWC->a[idxNew];
|
|
markTermAsChild(pWC, idxNew, idxTerm);
|
|
if( op==TK_IS ) pNew->wtFlags |= TERM_IS;
|
|
pTerm = &pWC->a[idxTerm];
|
|
pTerm->wtFlags |= TERM_COPIED;
|
|
|
|
if( termIsEquivalence(pParse, pDup) ){
|
|
pTerm->eOperator |= WO_EQUIV;
|
|
eExtraOp = WO_EQUIV;
|
|
}
|
|
}else{
|
|
pDup = pExpr;
|
|
pNew = pTerm;
|
|
}
|
|
exprCommute(pParse, pDup);
|
|
pNew->leftCursor = iCur;
|
|
pNew->u.leftColumn = iColumn;
|
|
testcase( (prereqLeft | extraRight) != prereqLeft );
|
|
pNew->prereqRight = prereqLeft | extraRight;
|
|
pNew->prereqAll = prereqAll;
|
|
pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
|
|
}
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
|
|
/* If a term is the BETWEEN operator, create two new virtual terms
|
|
** that define the range that the BETWEEN implements. For example:
|
|
**
|
|
** a BETWEEN b AND c
|
|
**
|
|
** is converted into:
|
|
**
|
|
** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
|
|
**
|
|
** The two new terms are added onto the end of the WhereClause object.
|
|
** The new terms are "dynamic" and are children of the original BETWEEN
|
|
** term. That means that if the BETWEEN term is coded, the children are
|
|
** skipped. Or, if the children are satisfied by an index, the original
|
|
** BETWEEN term is skipped.
|
|
*/
|
|
else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
|
|
ExprList *pList = pExpr->x.pList;
|
|
int i;
|
|
static const u8 ops[] = {TK_GE, TK_LE};
|
|
assert( pList!=0 );
|
|
assert( pList->nExpr==2 );
|
|
for(i=0; i<2; i++){
|
|
Expr *pNewExpr;
|
|
int idxNew;
|
|
pNewExpr = sqlite3PExpr(pParse, ops[i],
|
|
sqlite3ExprDup(db, pExpr->pLeft, 0),
|
|
sqlite3ExprDup(db, pList->a[i].pExpr, 0));
|
|
transferJoinMarkings(pNewExpr, pExpr);
|
|
idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
|
|
testcase( idxNew==0 );
|
|
exprAnalyze(pSrc, pWC, idxNew);
|
|
pTerm = &pWC->a[idxTerm];
|
|
markTermAsChild(pWC, idxNew, idxTerm);
|
|
}
|
|
}
|
|
#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
|
|
|
|
#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
|
|
/* Analyze a term that is composed of two or more subterms connected by
|
|
** an OR operator.
|
|
*/
|
|
else if( pExpr->op==TK_OR ){
|
|
assert( pWC->op==TK_AND );
|
|
exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
|
|
pTerm = &pWC->a[idxTerm];
|
|
}
|
|
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
|
|
|
|
#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
|
|
/* Add constraints to reduce the search space on a LIKE or GLOB
|
|
** operator.
|
|
**
|
|
** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints
|
|
**
|
|
** x>='ABC' AND x<'abd' AND x LIKE 'aBc%'
|
|
**
|
|
** The last character of the prefix "abc" is incremented to form the
|
|
** termination condition "abd". If case is not significant (the default
|
|
** for LIKE) then the lower-bound is made all uppercase and the upper-
|
|
** bound is made all lowercase so that the bounds also work when comparing
|
|
** BLOBs.
|
|
*/
|
|
if( pWC->op==TK_AND
|
|
&& isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
|
|
){
|
|
Expr *pLeft; /* LHS of LIKE/GLOB operator */
|
|
Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */
|
|
Expr *pNewExpr1;
|
|
Expr *pNewExpr2;
|
|
int idxNew1;
|
|
int idxNew2;
|
|
const char *zCollSeqName; /* Name of collating sequence */
|
|
const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC;
|
|
|
|
pLeft = pExpr->x.pList->a[1].pExpr;
|
|
pStr2 = sqlite3ExprDup(db, pStr1, 0);
|
|
|
|
/* Convert the lower bound to upper-case and the upper bound to
|
|
** lower-case (upper-case is less than lower-case in ASCII) so that
|
|
** the range constraints also work for BLOBs
|
|
*/
|
|
if( noCase && !pParse->db->mallocFailed ){
|
|
int i;
|
|
char c;
|
|
pTerm->wtFlags |= TERM_LIKE;
|
|
for(i=0; (c = pStr1->u.zToken[i])!=0; i++){
|
|
pStr1->u.zToken[i] = sqlite3Toupper(c);
|
|
pStr2->u.zToken[i] = sqlite3Tolower(c);
|
|
}
|
|
}
|
|
|
|
if( !db->mallocFailed ){
|
|
u8 c, *pC; /* Last character before the first wildcard */
|
|
pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
|
|
c = *pC;
|
|
if( noCase ){
|
|
/* The point is to increment the last character before the first
|
|
** wildcard. But if we increment '@', that will push it into the
|
|
** alphabetic range where case conversions will mess up the
|
|
** inequality. To avoid this, make sure to also run the full
|
|
** LIKE on all candidate expressions by clearing the isComplete flag
|
|
*/
|
|
if( c=='A'-1 ) isComplete = 0;
|
|
c = sqlite3UpperToLower[c];
|
|
}
|
|
*pC = c + 1;
|
|
}
|
|
zCollSeqName = noCase ? "NOCASE" : "BINARY";
|
|
pNewExpr1 = sqlite3ExprDup(db, pLeft, 0);
|
|
pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
|
|
sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName),
|
|
pStr1);
|
|
transferJoinMarkings(pNewExpr1, pExpr);
|
|
idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags);
|
|
testcase( idxNew1==0 );
|
|
exprAnalyze(pSrc, pWC, idxNew1);
|
|
pNewExpr2 = sqlite3ExprDup(db, pLeft, 0);
|
|
pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
|
|
sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName),
|
|
pStr2);
|
|
transferJoinMarkings(pNewExpr2, pExpr);
|
|
idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags);
|
|
testcase( idxNew2==0 );
|
|
exprAnalyze(pSrc, pWC, idxNew2);
|
|
pTerm = &pWC->a[idxTerm];
|
|
if( isComplete ){
|
|
markTermAsChild(pWC, idxNew1, idxTerm);
|
|
markTermAsChild(pWC, idxNew2, idxTerm);
|
|
}
|
|
}
|
|
#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Add a WO_MATCH auxiliary term to the constraint set if the
|
|
** current expression is of the form: column MATCH expr.
|
|
** This information is used by the xBestIndex methods of
|
|
** virtual tables. The native query optimizer does not attempt
|
|
** to do anything with MATCH functions.
|
|
*/
|
|
if( pWC->op==TK_AND && isMatchOfColumn(pExpr, &eOp2) ){
|
|
int idxNew;
|
|
Expr *pRight, *pLeft;
|
|
WhereTerm *pNewTerm;
|
|
Bitmask prereqColumn, prereqExpr;
|
|
|
|
pRight = pExpr->x.pList->a[0].pExpr;
|
|
pLeft = pExpr->x.pList->a[1].pExpr;
|
|
prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight);
|
|
prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft);
|
|
if( (prereqExpr & prereqColumn)==0 ){
|
|
Expr *pNewExpr;
|
|
pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
|
|
0, sqlite3ExprDup(db, pRight, 0));
|
|
idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
|
|
testcase( idxNew==0 );
|
|
pNewTerm = &pWC->a[idxNew];
|
|
pNewTerm->prereqRight = prereqExpr;
|
|
pNewTerm->leftCursor = pLeft->iTable;
|
|
pNewTerm->u.leftColumn = pLeft->iColumn;
|
|
pNewTerm->eOperator = WO_MATCH;
|
|
pNewTerm->eMatchOp = eOp2;
|
|
markTermAsChild(pWC, idxNew, idxTerm);
|
|
pTerm = &pWC->a[idxTerm];
|
|
pTerm->wtFlags |= TERM_COPIED;
|
|
pNewTerm->prereqAll = pTerm->prereqAll;
|
|
}
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
/* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create
|
|
** new terms for each component comparison - "a = ?" and "b = ?". The
|
|
** new terms completely replace the original vector comparison, which is
|
|
** no longer used.
|
|
**
|
|
** This is only required if at least one side of the comparison operation
|
|
** is not a sub-select. */
|
|
if( pWC->op==TK_AND
|
|
&& (pExpr->op==TK_EQ || pExpr->op==TK_IS)
|
|
&& sqlite3ExprIsVector(pExpr->pLeft)
|
|
&& ( (pExpr->pLeft->flags & EP_xIsSelect)==0
|
|
|| (pExpr->pRight->flags & EP_xIsSelect)==0
|
|
)){
|
|
int nLeft = sqlite3ExprVectorSize(pExpr->pLeft);
|
|
int i;
|
|
assert( nLeft==sqlite3ExprVectorSize(pExpr->pRight) );
|
|
for(i=0; i<nLeft; i++){
|
|
int idxNew;
|
|
Expr *pNew;
|
|
Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i);
|
|
Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i);
|
|
|
|
pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight);
|
|
transferJoinMarkings(pNew, pExpr);
|
|
idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC);
|
|
exprAnalyze(pSrc, pWC, idxNew);
|
|
}
|
|
pTerm = &pWC->a[idxTerm];
|
|
pTerm->wtFlags = TERM_CODED|TERM_VIRTUAL; /* Disable the original */
|
|
pTerm->eOperator = 0;
|
|
}
|
|
|
|
/* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create
|
|
** a virtual term for each vector component. The expression object
|
|
** used by each such virtual term is pExpr (the full vector IN(...)
|
|
** expression). The WhereTerm.iField variable identifies the index within
|
|
** the vector on the LHS that the virtual term represents.
|
|
**
|
|
** This only works if the RHS is a simple SELECT, not a compound
|
|
*/
|
|
if( pWC->op==TK_AND && pExpr->op==TK_IN && pTerm->iField==0
|
|
&& pExpr->pLeft->op==TK_VECTOR
|
|
&& pExpr->x.pSelect->pPrior==0
|
|
){
|
|
int i;
|
|
for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){
|
|
int idxNew;
|
|
idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL);
|
|
pWC->a[idxNew].iField = i+1;
|
|
exprAnalyze(pSrc, pWC, idxNew);
|
|
markTermAsChild(pWC, idxNew, idxTerm);
|
|
}
|
|
}
|
|
|
|
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
|
|
/* When sqlite_stat3 histogram data is available an operator of the
|
|
** form "x IS NOT NULL" can sometimes be evaluated more efficiently
|
|
** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a
|
|
** virtual term of that form.
|
|
**
|
|
** Note that the virtual term must be tagged with TERM_VNULL.
|
|
*/
|
|
if( pExpr->op==TK_NOTNULL
|
|
&& pExpr->pLeft->op==TK_COLUMN
|
|
&& pExpr->pLeft->iColumn>=0
|
|
&& OptimizationEnabled(db, SQLITE_Stat34)
|
|
){
|
|
Expr *pNewExpr;
|
|
Expr *pLeft = pExpr->pLeft;
|
|
int idxNew;
|
|
WhereTerm *pNewTerm;
|
|
|
|
pNewExpr = sqlite3PExpr(pParse, TK_GT,
|
|
sqlite3ExprDup(db, pLeft, 0),
|
|
sqlite3ExprAlloc(db, TK_NULL, 0, 0));
|
|
|
|
idxNew = whereClauseInsert(pWC, pNewExpr,
|
|
TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
|
|
if( idxNew ){
|
|
pNewTerm = &pWC->a[idxNew];
|
|
pNewTerm->prereqRight = 0;
|
|
pNewTerm->leftCursor = pLeft->iTable;
|
|
pNewTerm->u.leftColumn = pLeft->iColumn;
|
|
pNewTerm->eOperator = WO_GT;
|
|
markTermAsChild(pWC, idxNew, idxTerm);
|
|
pTerm = &pWC->a[idxTerm];
|
|
pTerm->wtFlags |= TERM_COPIED;
|
|
pNewTerm->prereqAll = pTerm->prereqAll;
|
|
}
|
|
}
|
|
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
|
|
|
|
/* Prevent ON clause terms of a LEFT JOIN from being used to drive
|
|
** an index for tables to the left of the join.
|
|
*/
|
|
testcase( pTerm!=&pWC->a[idxTerm] );
|
|
pTerm = &pWC->a[idxTerm];
|
|
pTerm->prereqRight |= extraRight;
|
|
}
|
|
|
|
/***************************************************************************
|
|
** Routines with file scope above. Interface to the rest of the where.c
|
|
** subsystem follows.
|
|
***************************************************************************/
|
|
|
|
/*
|
|
** This routine identifies subexpressions in the WHERE clause where
|
|
** each subexpression is separated by the AND operator or some other
|
|
** operator specified in the op parameter. The WhereClause structure
|
|
** is filled with pointers to subexpressions. For example:
|
|
**
|
|
** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
|
|
** \________/ \_______________/ \________________/
|
|
** slot[0] slot[1] slot[2]
|
|
**
|
|
** The original WHERE clause in pExpr is unaltered. All this routine
|
|
** does is make slot[] entries point to substructure within pExpr.
|
|
**
|
|
** In the previous sentence and in the diagram, "slot[]" refers to
|
|
** the WhereClause.a[] array. The slot[] array grows as needed to contain
|
|
** all terms of the WHERE clause.
|
|
*/
|
|
void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){
|
|
Expr *pE2 = sqlite3ExprSkipCollate(pExpr);
|
|
pWC->op = op;
|
|
if( pE2==0 ) return;
|
|
if( pE2->op!=op ){
|
|
whereClauseInsert(pWC, pExpr, 0);
|
|
}else{
|
|
sqlite3WhereSplit(pWC, pE2->pLeft, op);
|
|
sqlite3WhereSplit(pWC, pE2->pRight, op);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Initialize a preallocated WhereClause structure.
|
|
*/
|
|
void sqlite3WhereClauseInit(
|
|
WhereClause *pWC, /* The WhereClause to be initialized */
|
|
WhereInfo *pWInfo /* The WHERE processing context */
|
|
){
|
|
pWC->pWInfo = pWInfo;
|
|
pWC->pOuter = 0;
|
|
pWC->nTerm = 0;
|
|
pWC->nSlot = ArraySize(pWC->aStatic);
|
|
pWC->a = pWC->aStatic;
|
|
}
|
|
|
|
/*
|
|
** Deallocate a WhereClause structure. The WhereClause structure
|
|
** itself is not freed. This routine is the inverse of
|
|
** sqlite3WhereClauseInit().
|
|
*/
|
|
void sqlite3WhereClauseClear(WhereClause *pWC){
|
|
int i;
|
|
WhereTerm *a;
|
|
sqlite3 *db = pWC->pWInfo->pParse->db;
|
|
for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
|
|
if( a->wtFlags & TERM_DYNAMIC ){
|
|
sqlite3ExprDelete(db, a->pExpr);
|
|
}
|
|
if( a->wtFlags & TERM_ORINFO ){
|
|
whereOrInfoDelete(db, a->u.pOrInfo);
|
|
}else if( a->wtFlags & TERM_ANDINFO ){
|
|
whereAndInfoDelete(db, a->u.pAndInfo);
|
|
}
|
|
}
|
|
if( pWC->a!=pWC->aStatic ){
|
|
sqlite3DbFree(db, pWC->a);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** These routines walk (recursively) an expression tree and generate
|
|
** a bitmask indicating which tables are used in that expression
|
|
** tree.
|
|
*/
|
|
Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){
|
|
Bitmask mask;
|
|
if( p==0 ) return 0;
|
|
if( p->op==TK_COLUMN ){
|
|
mask = sqlite3WhereGetMask(pMaskSet, p->iTable);
|
|
return mask;
|
|
}
|
|
assert( !ExprHasProperty(p, EP_TokenOnly) );
|
|
mask = p->pRight ? sqlite3WhereExprUsage(pMaskSet, p->pRight) : 0;
|
|
if( p->pLeft ) mask |= sqlite3WhereExprUsage(pMaskSet, p->pLeft);
|
|
if( ExprHasProperty(p, EP_xIsSelect) ){
|
|
mask |= exprSelectUsage(pMaskSet, p->x.pSelect);
|
|
}else if( p->x.pList ){
|
|
mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList);
|
|
}
|
|
return mask;
|
|
}
|
|
Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){
|
|
int i;
|
|
Bitmask mask = 0;
|
|
if( pList ){
|
|
for(i=0; i<pList->nExpr; i++){
|
|
mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr);
|
|
}
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
|
|
/*
|
|
** Call exprAnalyze on all terms in a WHERE clause.
|
|
**
|
|
** Note that exprAnalyze() might add new virtual terms onto the
|
|
** end of the WHERE clause. We do not want to analyze these new
|
|
** virtual terms, so start analyzing at the end and work forward
|
|
** so that the added virtual terms are never processed.
|
|
*/
|
|
void sqlite3WhereExprAnalyze(
|
|
SrcList *pTabList, /* the FROM clause */
|
|
WhereClause *pWC /* the WHERE clause to be analyzed */
|
|
){
|
|
int i;
|
|
for(i=pWC->nTerm-1; i>=0; i--){
|
|
exprAnalyze(pTabList, pWC, i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** For table-valued-functions, transform the function arguments into
|
|
** new WHERE clause terms.
|
|
**
|
|
** Each function argument translates into an equality constraint against
|
|
** a HIDDEN column in the table.
|
|
*/
|
|
void sqlite3WhereTabFuncArgs(
|
|
Parse *pParse, /* Parsing context */
|
|
struct SrcList_item *pItem, /* The FROM clause term to process */
|
|
WhereClause *pWC /* Xfer function arguments to here */
|
|
){
|
|
Table *pTab;
|
|
int j, k;
|
|
ExprList *pArgs;
|
|
Expr *pColRef;
|
|
Expr *pTerm;
|
|
if( pItem->fg.isTabFunc==0 ) return;
|
|
pTab = pItem->pTab;
|
|
assert( pTab!=0 );
|
|
pArgs = pItem->u1.pFuncArg;
|
|
if( pArgs==0 ) return;
|
|
for(j=k=0; j<pArgs->nExpr; j++){
|
|
while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;}
|
|
if( k>=pTab->nCol ){
|
|
sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d",
|
|
pTab->zName, j);
|
|
return;
|
|
}
|
|
pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0);
|
|
if( pColRef==0 ) return;
|
|
pColRef->iTable = pItem->iCursor;
|
|
pColRef->iColumn = k++;
|
|
pColRef->pTab = pTab;
|
|
pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef,
|
|
sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0));
|
|
whereClauseInsert(pWC, pTerm, TERM_DYNAMIC);
|
|
}
|
|
}
|