dc5b047ec3
statement; one for btrees used and another for btrees that require locks. Only try to lock the btrees identified by the second mask. FossilOrigin-Name: 614de91a504d2231009a9de1305e31fce1b1c5a6
288 lines
8.3 KiB
C
288 lines
8.3 KiB
C
/*
|
|
** 2007 August 27
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
**
|
|
** This file contains code used to implement mutexes on Btree objects.
|
|
** This code really belongs in btree.c. But btree.c is getting too
|
|
** big and we want to break it down some. This packaged seemed like
|
|
** a good breakout.
|
|
*/
|
|
#include "btreeInt.h"
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
#if SQLITE_THREADSAFE
|
|
|
|
/*
|
|
** Obtain the BtShared mutex associated with B-Tree handle p. Also,
|
|
** set BtShared.db to the database handle associated with p and the
|
|
** p->locked boolean to true.
|
|
*/
|
|
static void lockBtreeMutex(Btree *p){
|
|
assert( p->locked==0 );
|
|
assert( sqlite3_mutex_notheld(p->pBt->mutex) );
|
|
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
|
|
sqlite3_mutex_enter(p->pBt->mutex);
|
|
p->pBt->db = p->db;
|
|
p->locked = 1;
|
|
}
|
|
|
|
/*
|
|
** Release the BtShared mutex associated with B-Tree handle p and
|
|
** clear the p->locked boolean.
|
|
*/
|
|
static void unlockBtreeMutex(Btree *p){
|
|
BtShared *pBt = p->pBt;
|
|
assert( p->locked==1 );
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
assert( p->db==pBt->db );
|
|
|
|
sqlite3_mutex_leave(pBt->mutex);
|
|
p->locked = 0;
|
|
}
|
|
|
|
/*
|
|
** Enter a mutex on the given BTree object.
|
|
**
|
|
** If the object is not sharable, then no mutex is ever required
|
|
** and this routine is a no-op. The underlying mutex is non-recursive.
|
|
** But we keep a reference count in Btree.wantToLock so the behavior
|
|
** of this interface is recursive.
|
|
**
|
|
** To avoid deadlocks, multiple Btrees are locked in the same order
|
|
** by all database connections. The p->pNext is a list of other
|
|
** Btrees belonging to the same database connection as the p Btree
|
|
** which need to be locked after p. If we cannot get a lock on
|
|
** p, then first unlock all of the others on p->pNext, then wait
|
|
** for the lock to become available on p, then relock all of the
|
|
** subsequent Btrees that desire a lock.
|
|
*/
|
|
void sqlite3BtreeEnter(Btree *p){
|
|
Btree *pLater;
|
|
|
|
/* Some basic sanity checking on the Btree. The list of Btrees
|
|
** connected by pNext and pPrev should be in sorted order by
|
|
** Btree.pBt value. All elements of the list should belong to
|
|
** the same connection. Only shared Btrees are on the list. */
|
|
assert( p->pNext==0 || p->pNext->pBt>p->pBt );
|
|
assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
|
|
assert( p->pNext==0 || p->pNext->db==p->db );
|
|
assert( p->pPrev==0 || p->pPrev->db==p->db );
|
|
assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
|
|
|
|
/* Check for locking consistency */
|
|
assert( !p->locked || p->wantToLock>0 );
|
|
assert( p->sharable || p->wantToLock==0 );
|
|
|
|
/* We should already hold a lock on the database connection */
|
|
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
|
|
/* Unless the database is sharable and unlocked, then BtShared.db
|
|
** should already be set correctly. */
|
|
assert( (p->locked==0 && p->sharable) || p->pBt->db==p->db );
|
|
|
|
if( !p->sharable ) return;
|
|
p->wantToLock++;
|
|
if( p->locked ) return;
|
|
|
|
/* In most cases, we should be able to acquire the lock we
|
|
** want without having to go throught the ascending lock
|
|
** procedure that follows. Just be sure not to block.
|
|
*/
|
|
if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
|
|
p->pBt->db = p->db;
|
|
p->locked = 1;
|
|
return;
|
|
}
|
|
|
|
/* To avoid deadlock, first release all locks with a larger
|
|
** BtShared address. Then acquire our lock. Then reacquire
|
|
** the other BtShared locks that we used to hold in ascending
|
|
** order.
|
|
*/
|
|
for(pLater=p->pNext; pLater; pLater=pLater->pNext){
|
|
assert( pLater->sharable );
|
|
assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
|
|
assert( !pLater->locked || pLater->wantToLock>0 );
|
|
if( pLater->locked ){
|
|
unlockBtreeMutex(pLater);
|
|
}
|
|
}
|
|
lockBtreeMutex(p);
|
|
for(pLater=p->pNext; pLater; pLater=pLater->pNext){
|
|
if( pLater->wantToLock ){
|
|
lockBtreeMutex(pLater);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Exit the recursive mutex on a Btree.
|
|
*/
|
|
void sqlite3BtreeLeave(Btree *p){
|
|
if( p->sharable ){
|
|
assert( p->wantToLock>0 );
|
|
p->wantToLock--;
|
|
if( p->wantToLock==0 ){
|
|
unlockBtreeMutex(p);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/*
|
|
** Return true if the BtShared mutex is held on the btree, or if the
|
|
** B-Tree is not marked as sharable.
|
|
**
|
|
** This routine is used only from within assert() statements.
|
|
*/
|
|
int sqlite3BtreeHoldsMutex(Btree *p){
|
|
assert( p->sharable==0 || p->locked==0 || p->wantToLock>0 );
|
|
assert( p->sharable==0 || p->locked==0 || p->db==p->pBt->db );
|
|
assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) );
|
|
assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) );
|
|
|
|
return (p->sharable==0 || p->locked);
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifndef SQLITE_OMIT_INCRBLOB
|
|
/*
|
|
** Enter and leave a mutex on a Btree given a cursor owned by that
|
|
** Btree. These entry points are used by incremental I/O and can be
|
|
** omitted if that module is not used.
|
|
*/
|
|
void sqlite3BtreeEnterCursor(BtCursor *pCur){
|
|
sqlite3BtreeEnter(pCur->pBtree);
|
|
}
|
|
void sqlite3BtreeLeaveCursor(BtCursor *pCur){
|
|
sqlite3BtreeLeave(pCur->pBtree);
|
|
}
|
|
#endif /* SQLITE_OMIT_INCRBLOB */
|
|
|
|
|
|
/*
|
|
** Enter the mutex on every Btree associated with a database
|
|
** connection. This is needed (for example) prior to parsing
|
|
** a statement since we will be comparing table and column names
|
|
** against all schemas and we do not want those schemas being
|
|
** reset out from under us.
|
|
**
|
|
** There is a corresponding leave-all procedures.
|
|
**
|
|
** Enter the mutexes in accending order by BtShared pointer address
|
|
** to avoid the possibility of deadlock when two threads with
|
|
** two or more btrees in common both try to lock all their btrees
|
|
** at the same instant.
|
|
*/
|
|
void sqlite3BtreeEnterAll(sqlite3 *db){
|
|
int i;
|
|
Btree *p;
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
for(i=0; i<db->nDb; i++){
|
|
p = db->aDb[i].pBt;
|
|
if( p ) sqlite3BtreeEnter(p);
|
|
}
|
|
}
|
|
void sqlite3BtreeLeaveAll(sqlite3 *db){
|
|
int i;
|
|
Btree *p;
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
for(i=0; i<db->nDb; i++){
|
|
p = db->aDb[i].pBt;
|
|
if( p ) sqlite3BtreeLeave(p);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return true if a particular Btree requires a lock. Return FALSE if
|
|
** no lock is ever required since it is not sharable.
|
|
*/
|
|
int sqlite3BtreeSharable(Btree *p){
|
|
return p->sharable;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/*
|
|
** Return true if the current thread holds the database connection
|
|
** mutex and all required BtShared mutexes.
|
|
**
|
|
** This routine is used inside assert() statements only.
|
|
*/
|
|
int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
|
|
int i;
|
|
if( !sqlite3_mutex_held(db->mutex) ){
|
|
return 0;
|
|
}
|
|
for(i=0; i<db->nDb; i++){
|
|
Btree *p;
|
|
p = db->aDb[i].pBt;
|
|
if( p && p->sharable &&
|
|
(p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
#endif /* NDEBUG */
|
|
|
|
#ifndef NDEBUG
|
|
/*
|
|
** Return true if the correct mutexes are held for accessing the
|
|
** db->aDb[iDb].pSchema structure. The mutexes required for schema
|
|
** access are:
|
|
**
|
|
** (1) The mutex on db
|
|
** (2) if iDb!=1, then the mutex on db->aDb[iDb].pBt.
|
|
**
|
|
** If pSchema is not NULL, then iDb is computed from pSchema and
|
|
** db using sqlite3SchemaToIndex().
|
|
*/
|
|
int sqlite3SchemaMutexHeld(sqlite3 *db, int iDb, Schema *pSchema){
|
|
Btree *p;
|
|
assert( db!=0 );
|
|
if( pSchema ) iDb = sqlite3SchemaToIndex(db, pSchema);
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
if( !sqlite3_mutex_held(db->mutex) ) return 0;
|
|
if( iDb==1 ) return 1;
|
|
p = db->aDb[iDb].pBt;
|
|
assert( p!=0 );
|
|
return p->sharable==0 || p->locked==1;
|
|
}
|
|
#endif /* NDEBUG */
|
|
|
|
#else /* SQLITE_THREADSAFE>0 above. SQLITE_THREADSAFE==0 below */
|
|
/*
|
|
** The following are special cases for mutex enter routines for use
|
|
** in single threaded applications that use shared cache. Except for
|
|
** these two routines, all mutex operations are no-ops in that case and
|
|
** are null #defines in btree.h.
|
|
**
|
|
** If shared cache is disabled, then all btree mutex routines, including
|
|
** the ones below, are no-ops and are null #defines in btree.h.
|
|
*/
|
|
|
|
void sqlite3BtreeEnter(Btree *p){
|
|
p->pBt->db = p->db;
|
|
}
|
|
void sqlite3BtreeEnterAll(sqlite3 *db){
|
|
int i;
|
|
for(i=0; i<db->nDb; i++){
|
|
Btree *p = db->aDb[i].pBt;
|
|
if( p ){
|
|
p->pBt->db = p->db;
|
|
}
|
|
}
|
|
}
|
|
#endif /* if SQLITE_THREADSAFE */
|
|
#endif /* ifndef SQLITE_OMIT_SHARED_CACHE */
|