sqlite/test/types.test
drh a34c62d866 Fix bugs in test scripts that came of of sse testing. (CVS 2879)
FossilOrigin-Name: 22bf1a2ffac503020dfa78d228b561d1cf6f3894
2006-01-06 22:11:20 +00:00

311 lines
8.1 KiB
Plaintext

# 2001 September 15
#
# The author disclaims copyright to this source code. In place of
# a legal notice, here is a blessing:
#
# May you do good and not evil.
# May you find forgiveness for yourself and forgive others.
# May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library. Specfically
# it tests that the different storage classes (integer, real, text etc.)
# all work correctly.
#
# $Id: types.test,v 1.18 2006/01/06 22:11:21 drh Exp $
set testdir [file dirname $argv0]
source $testdir/tester.tcl
# Tests in this file are organized roughly as follows:
#
# types-1.*.*: Test that values are stored using the expected storage
# classes when various forms of literals are inserted into
# columns with different affinities.
# types-1.1.*: INSERT INTO <table> VALUES(...)
# types-1.2.*: INSERT INTO <table> SELECT...
# types-1.3.*: UPDATE <table> SET...
#
# types-2.*.*: Check that values can be stored and retrieving using the
# various storage classes.
# types-2.1.*: INTEGER
# types-2.2.*: REAL
# types-2.3.*: NULL
# types-2.4.*: TEXT
# types-2.5.*: Records with a few different storage classes.
#
# types-3.*: Test that the '=' operator respects manifest types.
#
# Disable encryption on the database for this test.
db close
set DB [sqlite3 db test.db; sqlite3_connection_pointer db]
sqlite3_rekey $DB {}
# Create a table with one column for each type of affinity
do_test types-1.1.0 {
execsql {
CREATE TABLE t1(i integer, n numeric, t text, o blob);
}
} {}
# Each element of the following list represents one test case.
#
# The first value of each sub-list is an SQL literal. The following
# four value are the storage classes that would be used if the
# literal were inserted into a column with affinity INTEGER, NUMERIC, TEXT
# or NONE, respectively.
set values {
{ 5.0 integer integer text real }
{ 5.1 real real text real }
{ 5 integer integer text integer }
{ '5.0' integer integer text text }
{ '5.1' real real text text }
{ '-5.0' integer integer text text }
{ '-5.0' integer integer text text }
{ '5' integer integer text text }
{ 'abc' text text text text }
{ NULL null null null null }
}
ifcapable {bloblit} {
lappend values { X'00' blob blob blob blob }
}
# This code tests that the storage classes specified above (in the $values
# table) are correctly assigned when values are inserted using a statement
# of the form:
#
# INSERT INTO <table> VALUE(<values>);
#
set tnum 1
foreach val $values {
set lit [lindex $val 0]
execsql "DELETE FROM t1;"
execsql "INSERT INTO t1 VALUES($lit, $lit, $lit, $lit);"
do_test types-1.1.$tnum {
execsql {
SELECT typeof(i), typeof(n), typeof(t), typeof(o) FROM t1;
}
} [lrange $val 1 end]
incr tnum
}
# This code tests that the storage classes specified above (in the $values
# table) are correctly assigned when values are inserted using a statement
# of the form:
#
# INSERT INTO t1 SELECT ....
#
set tnum 1
foreach val $values {
set lit [lindex $val 0]
execsql "DELETE FROM t1;"
execsql "INSERT INTO t1 SELECT $lit, $lit, $lit, $lit;"
do_test types-1.2.$tnum {
execsql {
SELECT typeof(i), typeof(n), typeof(t), typeof(o) FROM t1;
}
} [lrange $val 1 end]
incr tnum
}
# This code tests that the storage classes specified above (in the $values
# table) are correctly assigned when values are inserted using a statement
# of the form:
#
# UPDATE <table> SET <column> = <value>;
#
set tnum 1
foreach val $values {
set lit [lindex $val 0]
execsql "UPDATE t1 SET i = $lit, n = $lit, t = $lit, o = $lit;"
do_test types-1.3.$tnum {
execsql {
SELECT typeof(i), typeof(n), typeof(t), typeof(o) FROM t1;
}
} [lrange $val 1 end]
incr tnum
}
execsql {
DROP TABLE t1;
}
# Open the table with root-page $rootpage at the btree
# level. Return a list that is the length of each record
# in the table, in the tables default scanning order.
proc record_sizes {rootpage} {
set bt [btree_open test.db 10 0]
set c [btree_cursor $bt $rootpage 0]
btree_first $c
while 1 {
lappend res [btree_payload_size $c]
if {[btree_next $c]} break
}
btree_close_cursor $c
btree_close $bt
set res
}
# Create a table and insert some 1-byte integers. Make sure they
# can be read back OK. These should be 3 byte records.
do_test types-2.1.1 {
execsql {
CREATE TABLE t1(a integer);
INSERT INTO t1 VALUES(0);
INSERT INTO t1 VALUES(120);
INSERT INTO t1 VALUES(-120);
}
} {}
do_test types-2.1.2 {
execsql {
SELECT a FROM t1;
}
} {0 120 -120}
# Try some 2-byte integers (4 byte records)
do_test types-2.1.3 {
execsql {
INSERT INTO t1 VALUES(30000);
INSERT INTO t1 VALUES(-30000);
}
} {}
do_test types-2.1.4 {
execsql {
SELECT a FROM t1;
}
} {0 120 -120 30000 -30000}
# 4-byte integers (6 byte records)
do_test types-2.1.5 {
execsql {
INSERT INTO t1 VALUES(2100000000);
INSERT INTO t1 VALUES(-2100000000);
}
} {}
do_test types-2.1.6 {
execsql {
SELECT a FROM t1;
}
} {0 120 -120 30000 -30000 2100000000 -2100000000}
# 8-byte integers (10 byte records)
do_test types-2.1.7 {
execsql {
INSERT INTO t1 VALUES(9000000*1000000*1000000);
INSERT INTO t1 VALUES(-9000000*1000000*1000000);
}
} {}
do_test types-2.1.8 {
execsql {
SELECT a FROM t1;
}
} [list 0 120 -120 30000 -30000 2100000000 -2100000000 \
9000000000000000000 -9000000000000000000]
# Check that all the record sizes are as we expected.
do_test types-2.1.9 {
set root [db eval {select rootpage from sqlite_master where name = 't1'}]
record_sizes $root
} {2 3 3 4 4 6 6 10 10}
# Insert some reals. These should be 10 byte records.
do_test types-2.2.1 {
execsql {
CREATE TABLE t2(a float);
INSERT INTO t2 VALUES(0.0);
INSERT INTO t2 VALUES(12345.678);
INSERT INTO t2 VALUES(-12345.678);
}
} {}
do_test types-2.2.2 {
execsql {
SELECT a FROM t2;
}
} {0.0 12345.678 -12345.678}
# Check that all the record sizes are as we expected.
do_test types-2.2.3 {
set root [db eval {select rootpage from sqlite_master where name = 't2'}]
record_sizes $root
} {2 10 10}
# Insert a NULL. This should be a two byte record.
do_test types-2.3.1 {
execsql {
CREATE TABLE t3(a nullvalue);
INSERT INTO t3 VALUES(NULL);
}
} {}
do_test types-2.3.2 {
execsql {
SELECT a ISNULL FROM t3;
}
} {1}
# Check that all the record sizes are as we expected.
do_test types-2.3.3 {
set root [db eval {select rootpage from sqlite_master where name = 't3'}]
record_sizes $root
} {2}
# Insert a couple of strings.
do_test types-2.4.1 {
set string10 abcdefghij
set string500 [string repeat $string10 50]
set string500000 [string repeat $string10 50000]
execsql "
CREATE TABLE t4(a string);
INSERT INTO t4 VALUES('$string10');
INSERT INTO t4 VALUES('$string500');
INSERT INTO t4 VALUES('$string500000');
"
} {}
do_test types-2.4.2 {
execsql {
SELECT a FROM t4;
}
} [list $string10 $string500 $string500000]
# Check that all the record sizes are as we expected. This is dependant on
# the database encoding.
if { $sqlite_options(utf16)==0 || [execsql {pragma encoding}] == "UTF-8" } {
do_test types-2.4.3 {
set root [db eval {select rootpage from sqlite_master where name = 't4'}]
record_sizes $root
} {12 503 500004}
} else {
do_test types-2.4.3 {
set root [db eval {select rootpage from sqlite_master where name = 't4'}]
record_sizes $root
} {22 1003 1000004}
}
do_test types-2.5.1 {
execsql {
DROP TABLE t1;
DROP TABLE t2;
DROP TABLE t3;
DROP TABLE t4;
CREATE TABLE t1(a, b, c);
}
} {}
do_test types-2.5.2 {
set string10 abcdefghij
set string500 [string repeat $string10 50]
set string500000 [string repeat $string10 50000]
execsql "INSERT INTO t1 VALUES(NULL, '$string10', 4000);"
execsql "INSERT INTO t1 VALUES('$string500', 4000, NULL);"
execsql "INSERT INTO t1 VALUES(4000, NULL, '$string500000');"
} {}
do_test types-2.5.3 {
execsql {
SELECT * FROM t1;
}
} [list {} $string10 4000 $string500 4000 {} 4000 {} $string500000]
finish_test