sqlite/tool/sqlite3_rsync.c
dan 19afe7ffd1 Have sqlite3_rsync avoid write-locking the origin database.
FossilOrigin-Name: b7eb6530505bf774cf3fa5de6ec4bc40f217796d4fa9a149372bd47488ed470f
2024-10-28 16:28:43 +00:00

1919 lines
57 KiB
C

/*
** 2024-09-10
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This is a utility program that makes a copy of a live SQLite database
** using a bandwidth-efficient protocol, similar to "rsync".
*/
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include <stdarg.h>
#include "sqlite3.h"
static const char zUsage[] =
"sqlite3_rsync ORIGIN REPLICA ?OPTIONS?\n"
"\n"
"One of ORIGIN or REPLICA is a pathname to a database on the local\n"
"machine and the other is of the form \"USER@HOST:PATH\" describing\n"
"a database on a remote machine. This utility makes REPLICA into a\n"
"copy of ORIGIN\n"
"\n"
"OPTIONS:\n"
"\n"
" --exe PATH Name of the sqlite3_rsync program on the remote side\n"
" --help Show this help screen\n"
" --ssh PATH Name of the SSH program used to reach the remote side\n"
" -v Verbose. Multiple v's for increasing output\n"
" --version Show detailed version information\n"
;
typedef unsigned char u8;
/* Context for the run */
typedef struct SQLiteRsync SQLiteRsync;
struct SQLiteRsync {
const char *zOrigin; /* Name of the origin */
const char *zReplica; /* Name of the replica */
const char *zErrFile; /* Append error messages to this file */
FILE *pOut; /* Transmit to the other side */
FILE *pIn; /* Receive from the other side */
FILE *pLog; /* Duplicate output here if not NULL */
sqlite3 *db; /* Database connection */
int nErr; /* Number of errors encountered */
int nWrErr; /* Number of failed attempts to write on the pipe */
u8 eVerbose; /* Bigger for more output. 0 means none. */
u8 bCommCheck; /* True to debug the communication protocol */
u8 isRemote; /* On the remote side of a connection */
u8 isReplica; /* True if running on the replica side */
u8 iProtocol; /* Protocol version number */
u8 wrongEncoding; /* ATTACH failed due to wrong encoding */
sqlite3_uint64 nOut; /* Bytes transmitted */
sqlite3_uint64 nIn; /* Bytes received */
unsigned int nPage; /* Total number of pages in the database */
unsigned int szPage; /* Database page size */
unsigned int nHashSent; /* Hashes sent (replica to origin) */
unsigned int nPageSent; /* Page contents sent (origin to replica) */
};
/* The version number of the protocol. Sent in the *_BEGIN message
** to verify that both sides speak the same dialect.
*/
#define PROTOCOL_VERSION 1
/* Magic numbers to identify particular messages sent over the wire.
*/
#define ORIGIN_BEGIN 0x41 /* Initial message */
#define ORIGIN_END 0x42 /* Time to quit */
#define ORIGIN_ERROR 0x43 /* Error message from the remote */
#define ORIGIN_PAGE 0x44 /* New page data */
#define ORIGIN_TXN 0x45 /* Transaction commit */
#define ORIGIN_MSG 0x46 /* Informational message */
#define REPLICA_BEGIN 0x61 /* Welcome message */
#define REPLICA_ERROR 0x62 /* Error. Report and quit. */
#define REPLICA_END 0x63 /* Replica wants to stop */
#define REPLICA_HASH 0x64 /* One or more pages hashes to report */
#define REPLICA_READY 0x65 /* Read to receive page content */
#define REPLICA_MSG 0x66 /* Informational message */
/****************************************************************************
** Beginning of the popen2() implementation copied from Fossil *************
****************************************************************************/
#ifdef _WIN32
#include <windows.h>
#include <io.h>
#include <fcntl.h>
/*
** Print a fatal error and quit.
*/
static void win32_fatal_error(const char *zMsg){
fprintf(stderr, "%s", zMsg);
exit(1);
}
extern int _open_osfhandle(intptr_t,int);
#else
#include <unistd.h>
#include <signal.h>
#include <sys/wait.h>
#endif
/*
** The following macros are used to cast pointers to integers and
** integers to pointers. The way you do this varies from one compiler
** to the next, so we have developed the following set of #if statements
** to generate appropriate macros for a wide range of compilers.
**
** The correct "ANSI" way to do this is to use the intptr_t type.
** Unfortunately, that typedef is not available on all compilers, or
** if it is available, it requires an #include of specific headers
** that vary from one machine to the next.
**
** This code is copied out of SQLite.
*/
#if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */
# define INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X))
# define PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X))
#elif !defined(__GNUC__) /* Works for compilers other than LLVM */
# define INT_TO_PTR(X) ((void*)&((char*)0)[X])
# define PTR_TO_INT(X) ((int)(((char*)X)-(char*)0))
#elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */
# define INT_TO_PTR(X) ((void*)(intptr_t)(X))
# define PTR_TO_INT(X) ((int)(intptr_t)(X))
#else /* Generates a warning - but it always works */
# define INT_TO_PTR(X) ((void*)(X))
# define PTR_TO_INT(X) ((int)(X))
#endif
/* Register SQL functions provided by ext/misc/sha1.c */
extern int sqlite3_sha_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
);
#ifdef _WIN32
/*
** On windows, create a child process and specify the stdin, stdout,
** and stderr channels for that process to use.
**
** Return the number of errors.
*/
static int win32_create_child_process(
wchar_t *zCmd, /* The command that the child process will run */
HANDLE hIn, /* Standard input */
HANDLE hOut, /* Standard output */
HANDLE hErr, /* Standard error */
DWORD *pChildPid /* OUT: Child process handle */
){
STARTUPINFOW si;
PROCESS_INFORMATION pi;
BOOL rc;
memset(&si, 0, sizeof(si));
si.cb = sizeof(si);
si.dwFlags = STARTF_USESTDHANDLES;
SetHandleInformation(hIn, HANDLE_FLAG_INHERIT, TRUE);
si.hStdInput = hIn;
SetHandleInformation(hOut, HANDLE_FLAG_INHERIT, TRUE);
si.hStdOutput = hOut;
SetHandleInformation(hErr, HANDLE_FLAG_INHERIT, TRUE);
si.hStdError = hErr;
rc = CreateProcessW(
NULL, /* Application Name */
zCmd, /* Command-line */
NULL, /* Process attributes */
NULL, /* Thread attributes */
TRUE, /* Inherit Handles */
0, /* Create flags */
NULL, /* Environment */
NULL, /* Current directory */
&si, /* Startup Info */
&pi /* Process Info */
);
if( rc ){
CloseHandle( pi.hProcess );
CloseHandle( pi.hThread );
*pChildPid = pi.dwProcessId;
}else{
win32_fatal_error("cannot create child process");
}
return rc!=0;
}
void *win32_utf8_to_unicode(const char *zUtf8){
int nByte = MultiByteToWideChar(CP_UTF8, 0, zUtf8, -1, 0, 0);
wchar_t *zUnicode = malloc( nByte*2 );
MultiByteToWideChar(CP_UTF8, 0, zUtf8, -1, zUnicode, nByte);
return zUnicode;
}
#endif
/*
** Create a child process running shell command "zCmd". *ppOut is
** a FILE that becomes the standard input of the child process.
** (The caller writes to *ppOut in order to send text to the child.)
** *ppIn is stdout from the child process. (The caller
** reads from *ppIn in order to receive input from the child.)
** Note that *ppIn is an unbuffered file descriptor, not a FILE.
** The process ID of the child is written into *pChildPid.
**
** Return the number of errors.
*/
static int popen2(
const char *zCmd, /* Command to run in the child process */
FILE **ppIn, /* Read from child using this file descriptor */
FILE **ppOut, /* Write to child using this file descriptor */
int *pChildPid, /* PID of the child process */
int bDirect /* 0: run zCmd as a shell cmd. 1: run directly */
){
#ifdef _WIN32
HANDLE hStdinRd, hStdinWr, hStdoutRd, hStdoutWr, hStderr;
SECURITY_ATTRIBUTES saAttr;
DWORD childPid = 0;
int fd;
saAttr.nLength = sizeof(saAttr);
saAttr.bInheritHandle = TRUE;
saAttr.lpSecurityDescriptor = NULL;
hStderr = GetStdHandle(STD_ERROR_HANDLE);
if( !CreatePipe(&hStdoutRd, &hStdoutWr, &saAttr, 4096) ){
win32_fatal_error("cannot create pipe for stdout");
}
SetHandleInformation( hStdoutRd, HANDLE_FLAG_INHERIT, FALSE);
if( !CreatePipe(&hStdinRd, &hStdinWr, &saAttr, 4096) ){
win32_fatal_error("cannot create pipe for stdin");
}
SetHandleInformation( hStdinWr, HANDLE_FLAG_INHERIT, FALSE);
win32_create_child_process(win32_utf8_to_unicode(zCmd),
hStdinRd, hStdoutWr, hStderr,&childPid);
*pChildPid = childPid;
fd = _open_osfhandle(PTR_TO_INT(hStdoutRd), 0);
*ppIn = fdopen(fd, "rb");
fd = _open_osfhandle(PTR_TO_INT(hStdinWr), 0);
*ppOut = _fdopen(fd, "wb");
CloseHandle(hStdinRd);
CloseHandle(hStdoutWr);
return 0;
#else
int pin[2], pout[2];
*ppIn = 0;
*ppOut = 0;
*pChildPid = 0;
if( pipe(pin)<0 ){
return 1;
}
if( pipe(pout)<0 ){
close(pin[0]);
close(pin[1]);
return 1;
}
*pChildPid = fork();
if( *pChildPid<0 ){
close(pin[0]);
close(pin[1]);
close(pout[0]);
close(pout[1]);
*pChildPid = 0;
return 1;
}
signal(SIGPIPE,SIG_IGN);
if( *pChildPid==0 ){
int fd;
/* This is the child process */
close(0);
fd = dup(pout[0]);
if( fd!=0 ) {
fprintf(stderr,"popen2() failed to open file descriptor 0");
exit(1);
}
close(pout[0]);
close(pout[1]);
close(1);
fd = dup(pin[1]);
if( fd!=1 ){
fprintf(stderr,"popen() failed to open file descriptor 1");
exit(1);
}
close(pin[0]);
close(pin[1]);
if( bDirect ){
execl(zCmd, zCmd, (char*)0);
}else{
execl("/bin/sh", "/bin/sh", "-c", zCmd, (char*)0);
}
return 1;
}else{
/* This is the parent process */
close(pin[1]);
*ppIn = fdopen(pin[0], "r");
close(pout[0]);
*ppOut = fdopen(pout[1], "w");
return 0;
}
#endif
}
/*
** Close the connection to a child process previously created using
** popen2().
*/
static void pclose2(FILE *pIn, FILE *pOut, int childPid){
#ifdef _WIN32
/* Not implemented, yet */
fclose(pIn);
fclose(pOut);
#else
fclose(pIn);
fclose(pOut);
while( waitpid(0, 0, WNOHANG)>0 ) {}
#endif
}
/*****************************************************************************
** End of the popen2() implementation copied from Fossil *********************
*****************************************************************************/
/*****************************************************************************
** Beginning of the append_escaped_arg() routine, adapted from the Fossil **
** subroutine nameed blob_append_escaped_arg() **
*****************************************************************************/
/*
** ASCII (for reference):
** x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf
** 0x ^` ^a ^b ^c ^d ^e ^f ^g \b \t \n () \f \r ^n ^o
** 1x ^p ^q ^r ^s ^t ^u ^v ^w ^x ^y ^z ^{ ^| ^} ^~ ^
** 2x () ! " # $ % & ' ( ) * + , - . /
** 3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
** 4x @ A B C D E F G H I J K L M N O
** 5x P Q R S T U V W X Y Z [ \ ] ^ _
** 6x ` a b c d e f g h i j k l m n o
** 7x p q r s t u v w x y z { | } ~ ^_
*/
/*
** Meanings for bytes in a filename:
**
** 0 Ordinary character. No encoding required
** 1 Needs to be escaped
** 2 Illegal character. Do not allow in a filename
** 3 First byte of a 2-byte UTF-8
** 4 First byte of a 3-byte UTF-8
** 5 First byte of a 4-byte UTF-8
*/
static const char aSafeChar[256] = {
#ifdef _WIN32
/* Windows
** Prohibit: all control characters, including tab, \r and \n.
** Escape: (space) " # $ % & ' ( ) * ; < > ? [ ] ^ ` { | }
*/
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf */
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 0x */
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 1x */
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 2x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, /* 3x */
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 4x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, /* 5x */
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 6x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, /* 7x */
#else
/* Unix
** Prohibit: all control characters, including tab, \r and \n
** Escape: (space) ! " # $ % & ' ( ) * ; < > ? [ \ ] ^ ` { | }
*/
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf */
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 0x */
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 1x */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 2x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, /* 3x */
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 4x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, /* 5x */
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 6x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, /* 7x */
#endif
/* all bytes 0x80 through 0xbf are unescaped, being secondary
** bytes to UTF8 characters. Bytes 0xc0 through 0xff are the
** first byte of a UTF8 character and do get escaped */
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 8x */
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 9x */
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* ax */
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* bx */
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, /* cx */
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, /* dx */
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, /* ex */
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 /* fx */
};
/*
** pStr is a shell command under construction. This routine safely
** appends filename argument zIn. It returns 0 on success or non-zero
** on any error.
**
** The argument is escaped if it contains white space or other characters
** that need to be escaped for the shell. If zIn contains characters
** that cannot be safely escaped, then throw a fatal error.
**
** If the isFilename argument is true, then the argument is expected
** to be a filename. As shell commands commonly have command-line
** options that begin with "-" and since we do not want an attacker
** to be able to invoke these switches using filenames that begin
** with "-", if zIn begins with "-", prepend an additional "./"
** (or ".\\" on Windows).
*/
int append_escaped_arg(sqlite3_str *pStr, const char *zIn, int isFilename){
int i;
unsigned char c;
int needEscape = 0;
int n = sqlite3_str_length(pStr);
char *z = sqlite3_str_value(pStr);
/* Look for illegal byte-sequences and byte-sequences that require
** escaping. No control-characters are allowed. All spaces and
** non-ASCII unicode characters and some punctuation characters require
** escaping. */
for(i=0; (c = (unsigned char)zIn[i])!=0; i++){
if( aSafeChar[c] ){
unsigned char x = aSafeChar[c];
needEscape = 1;
if( x==2 ){
/* Bad ASCII character */
return 1;
}else if( x>2 ){
if( (zIn[i+1]&0xc0)!=0x80
|| (x>=4 && (zIn[i+2]&0xc0)!=0x80)
|| (x==5 && (zIn[i+3]&0xc0)!=0x80)
){
/* Bad UTF8 character */
return 1;
}
i += x-2;
}
}
}
/* Separate from the previous argument by a space */
if( n>0 && !isspace(z[n-1]) ){
sqlite3_str_appendchar(pStr, 1, ' ');
}
/* Check for characters that need quoting */
if( !needEscape ){
if( isFilename && zIn[0]=='-' ){
sqlite3_str_appendchar(pStr, 1, '.');
#if defined(_WIN32)
sqlite3_str_appendchar(pStr, 1, '\\');
#else
sqlite3_str_appendchar(pStr, 1, '/');
#endif
}
sqlite3_str_appendall(pStr, zIn);
}else{
#if defined(_WIN32)
/* Quoting strategy for windows:
** Put the entire name inside of "...". Any " characters within
** the name get doubled.
*/
sqlite3_str_appendchar(pStr, 1, '"');
if( isFilename && zIn[0]=='-' ){
sqlite3_str_appendchar(pStr, 1, '.');
sqlite3_str_appendchar(pStr, 1, '\\');
}else if( zIn[0]=='/' ){
sqlite3_str_appendchar(pStr, 1, '.');
}
for(i=0; (c = (unsigned char)zIn[i])!=0; i++){
sqlite3_str_appendchar(pStr, 1, (char)c);
if( c=='"' ) sqlite3_str_appendchar(pStr, 1, '"');
if( c=='\\' ) sqlite3_str_appendchar(pStr, 1, '\\');
if( c=='%' && isFilename ) sqlite3_str_append(pStr, "%cd:~,%", 7);
}
sqlite3_str_appendchar(pStr, 1, '"');
#else
/* Quoting strategy for unix:
** If the name does not contain ', then surround the whole thing
** with '...'. If there is one or more ' characters within the
** name, then put \ before each special character.
*/
if( strchr(zIn,'\'') ){
if( isFilename && zIn[0]=='-' ){
sqlite3_str_appendchar(pStr, 1, '.');
sqlite3_str_appendchar(pStr, 1, '/');
}
for(i=0; (c = (unsigned char)zIn[i])!=0; i++){
if( aSafeChar[c] && aSafeChar[c]!=2 ){
sqlite3_str_appendchar(pStr, 1, '\\');
}
sqlite3_str_appendchar(pStr, 1, (char)c);
}
}else{
sqlite3_str_appendchar(pStr, 1, '\'');
if( isFilename && zIn[0]=='-' ){
sqlite3_str_appendchar(pStr, 1, '.');
sqlite3_str_appendchar(pStr, 1, '/');
}
sqlite3_str_appendall(pStr, zIn);
sqlite3_str_appendchar(pStr, 1, '\'');
}
#endif
}
return 0;
}
/*****************************************************************************
** End of the append_escaped_arg() routine, adapted from the Fossil **
*****************************************************************************/
/*****************************************************************************
** The Hash Engine
**
** This is basically SHA3, though with a 160-bit hash, and reducing the
** number of rounds in the KeccakF1600 step function from 24 to 6.
*/
/*
** Macros to determine whether the machine is big or little endian,
** and whether or not that determination is run-time or compile-time.
**
** For best performance, an attempt is made to guess at the byte-order
** using C-preprocessor macros. If that is unsuccessful, or if
** -DHash_BYTEORDER=0 is set, then byte-order is determined
** at run-time.
*/
#ifndef Hash_BYTEORDER
# if defined(i386) || defined(__i386__) || defined(_M_IX86) || \
defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \
defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \
defined(__arm__)
# define Hash_BYTEORDER 1234
# elif defined(sparc) || defined(__ppc__)
# define Hash_BYTEORDER 4321
# else
# define Hash_BYTEORDER 0
# endif
#endif
typedef sqlite3_uint64 u64;
/*
** State structure for a Hash hash in progress
*/
typedef struct HashContext HashContext;
struct HashContext {
union {
u64 s[25]; /* Keccak state. 5x5 lines of 64 bits each */
unsigned char x[1600]; /* ... or 1600 bytes */
} u;
unsigned nRate; /* Bytes of input accepted per Keccak iteration */
unsigned nLoaded; /* Input bytes loaded into u.x[] so far this cycle */
unsigned ixMask; /* Insert next input into u.x[nLoaded^ixMask]. */
unsigned iSize; /* 224, 256, 358, or 512 */
};
/*
** A single step of the Keccak mixing function for a 1600-bit state
*/
static void KeccakF1600Step(HashContext *p){
int i;
u64 b0, b1, b2, b3, b4;
u64 c0, c1, c2, c3, c4;
u64 d0, d1, d2, d3, d4;
static const u64 RC[] = {
0x0000000000000001ULL, 0x0000000000008082ULL,
0x800000000000808aULL, 0x8000000080008000ULL,
0x000000000000808bULL, 0x0000000080000001ULL,
0x8000000080008081ULL, 0x8000000000008009ULL,
0x000000000000008aULL, 0x0000000000000088ULL,
0x0000000080008009ULL, 0x000000008000000aULL,
0x000000008000808bULL, 0x800000000000008bULL,
0x8000000000008089ULL, 0x8000000000008003ULL,
0x8000000000008002ULL, 0x8000000000000080ULL,
0x000000000000800aULL, 0x800000008000000aULL,
0x8000000080008081ULL, 0x8000000000008080ULL,
0x0000000080000001ULL, 0x8000000080008008ULL
};
# define a00 (p->u.s[0])
# define a01 (p->u.s[1])
# define a02 (p->u.s[2])
# define a03 (p->u.s[3])
# define a04 (p->u.s[4])
# define a10 (p->u.s[5])
# define a11 (p->u.s[6])
# define a12 (p->u.s[7])
# define a13 (p->u.s[8])
# define a14 (p->u.s[9])
# define a20 (p->u.s[10])
# define a21 (p->u.s[11])
# define a22 (p->u.s[12])
# define a23 (p->u.s[13])
# define a24 (p->u.s[14])
# define a30 (p->u.s[15])
# define a31 (p->u.s[16])
# define a32 (p->u.s[17])
# define a33 (p->u.s[18])
# define a34 (p->u.s[19])
# define a40 (p->u.s[20])
# define a41 (p->u.s[21])
# define a42 (p->u.s[22])
# define a43 (p->u.s[23])
# define a44 (p->u.s[24])
# define ROL64(a,x) ((a<<x)|(a>>(64-x)))
/* v---- Number of rounds. SHA3 has 24 here. */
for(i=0; i<6; i++){
c0 = a00^a10^a20^a30^a40;
c1 = a01^a11^a21^a31^a41;
c2 = a02^a12^a22^a32^a42;
c3 = a03^a13^a23^a33^a43;
c4 = a04^a14^a24^a34^a44;
d0 = c4^ROL64(c1, 1);
d1 = c0^ROL64(c2, 1);
d2 = c1^ROL64(c3, 1);
d3 = c2^ROL64(c4, 1);
d4 = c3^ROL64(c0, 1);
b0 = (a00^d0);
b1 = ROL64((a11^d1), 44);
b2 = ROL64((a22^d2), 43);
b3 = ROL64((a33^d3), 21);
b4 = ROL64((a44^d4), 14);
a00 = b0 ^((~b1)& b2 );
a00 ^= RC[i];
a11 = b1 ^((~b2)& b3 );
a22 = b2 ^((~b3)& b4 );
a33 = b3 ^((~b4)& b0 );
a44 = b4 ^((~b0)& b1 );
b2 = ROL64((a20^d0), 3);
b3 = ROL64((a31^d1), 45);
b4 = ROL64((a42^d2), 61);
b0 = ROL64((a03^d3), 28);
b1 = ROL64((a14^d4), 20);
a20 = b0 ^((~b1)& b2 );
a31 = b1 ^((~b2)& b3 );
a42 = b2 ^((~b3)& b4 );
a03 = b3 ^((~b4)& b0 );
a14 = b4 ^((~b0)& b1 );
b4 = ROL64((a40^d0), 18);
b0 = ROL64((a01^d1), 1);
b1 = ROL64((a12^d2), 6);
b2 = ROL64((a23^d3), 25);
b3 = ROL64((a34^d4), 8);
a40 = b0 ^((~b1)& b2 );
a01 = b1 ^((~b2)& b3 );
a12 = b2 ^((~b3)& b4 );
a23 = b3 ^((~b4)& b0 );
a34 = b4 ^((~b0)& b1 );
b1 = ROL64((a10^d0), 36);
b2 = ROL64((a21^d1), 10);
b3 = ROL64((a32^d2), 15);
b4 = ROL64((a43^d3), 56);
b0 = ROL64((a04^d4), 27);
a10 = b0 ^((~b1)& b2 );
a21 = b1 ^((~b2)& b3 );
a32 = b2 ^((~b3)& b4 );
a43 = b3 ^((~b4)& b0 );
a04 = b4 ^((~b0)& b1 );
b3 = ROL64((a30^d0), 41);
b4 = ROL64((a41^d1), 2);
b0 = ROL64((a02^d2), 62);
b1 = ROL64((a13^d3), 55);
b2 = ROL64((a24^d4), 39);
a30 = b0 ^((~b1)& b2 );
a41 = b1 ^((~b2)& b3 );
a02 = b2 ^((~b3)& b4 );
a13 = b3 ^((~b4)& b0 );
a24 = b4 ^((~b0)& b1 );
}
}
/*
** Initialize a new hash. iSize determines the size of the hash
** in bits and should be one of 224, 256, 384, or 512. Or iSize
** can be zero to use the default hash size of 256 bits.
*/
static void HashInit(HashContext *p, int iSize){
memset(p, 0, sizeof(*p));
p->iSize = iSize;
if( iSize>=128 && iSize<=512 ){
p->nRate = (1600 - ((iSize + 31)&~31)*2)/8;
}else{
p->nRate = (1600 - 2*256)/8;
}
#if Hash_BYTEORDER==1234
/* Known to be little-endian at compile-time. No-op */
#elif Hash_BYTEORDER==4321
p->ixMask = 7; /* Big-endian */
#else
{
static unsigned int one = 1;
if( 1==*(unsigned char*)&one ){
/* Little endian. No byte swapping. */
p->ixMask = 0;
}else{
/* Big endian. Byte swap. */
p->ixMask = 7;
}
}
#endif
}
/*
** Make consecutive calls to the HashUpdate function to add new content
** to the hash
*/
static void HashUpdate(
HashContext *p,
const unsigned char *aData,
unsigned int nData
){
unsigned int i = 0;
if( aData==0 ) return;
#if Hash_BYTEORDER==1234
if( (p->nLoaded % 8)==0 && ((aData - (const unsigned char*)0)&7)==0 ){
for(; i+7<nData; i+=8){
p->u.s[p->nLoaded/8] ^= *(u64*)&aData[i];
p->nLoaded += 8;
if( p->nLoaded>=p->nRate ){
KeccakF1600Step(p);
p->nLoaded = 0;
}
}
}
#endif
for(; i<nData; i++){
#if Hash_BYTEORDER==1234
p->u.x[p->nLoaded] ^= aData[i];
#elif Hash_BYTEORDER==4321
p->u.x[p->nLoaded^0x07] ^= aData[i];
#else
p->u.x[p->nLoaded^p->ixMask] ^= aData[i];
#endif
p->nLoaded++;
if( p->nLoaded==p->nRate ){
KeccakF1600Step(p);
p->nLoaded = 0;
}
}
}
/*
** After all content has been added, invoke HashFinal() to compute
** the final hash. The function returns a pointer to the binary
** hash value.
*/
static unsigned char *HashFinal(HashContext *p){
unsigned int i;
if( p->nLoaded==p->nRate-1 ){
const unsigned char c1 = 0x86;
HashUpdate(p, &c1, 1);
}else{
const unsigned char c2 = 0x06;
const unsigned char c3 = 0x80;
HashUpdate(p, &c2, 1);
p->nLoaded = p->nRate - 1;
HashUpdate(p, &c3, 1);
}
for(i=0; i<p->nRate; i++){
p->u.x[i+p->nRate] = p->u.x[i^p->ixMask];
}
return &p->u.x[p->nRate];
}
/*
** Implementation of the hash(X) function.
**
** Return a 160-bit BLOB which is the hash of X.
*/
static void hashFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
HashContext cx;
int eType = sqlite3_value_type(argv[0]);
int nByte = sqlite3_value_bytes(argv[0]);
if( eType==SQLITE_NULL ) return;
HashInit(&cx, 160);
if( eType==SQLITE_BLOB ){
HashUpdate(&cx, sqlite3_value_blob(argv[0]), nByte);
}else{
HashUpdate(&cx, sqlite3_value_text(argv[0]), nByte);
}
sqlite3_result_blob(context, HashFinal(&cx), 160/8, SQLITE_TRANSIENT);
}
/* Register the hash function */
static int hashRegister(sqlite3 *db){
return sqlite3_create_function(db, "hash", 1,
SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC,
0, hashFunc, 0, 0);
}
/* End of the hashing logic
*****************************************************************************/
/*
** Return the tail of a file pathname. The tail is the last component
** of the path. For example, the tail of "/a/b/c.d" is "c.d".
*/
const char *file_tail(const char *z){
const char *zTail = z;
if( !zTail ) return 0;
while( z[0] ){
if( z[0]=='/' ) zTail = &z[1];
z++;
}
return zTail;
}
/*
** Append error message text to the error file, if an error file is
** specified. In any case, increment the error count.
*/
static void logError(SQLiteRsync *p, const char *zFormat, ...){
if( p->zErrFile ){
FILE *pErr = fopen(p->zErrFile, "a");
if( pErr ){
va_list ap;
va_start(ap, zFormat);
vfprintf(pErr, zFormat, ap);
va_end(ap);
fclose(pErr);
}
}
p->nErr++;
}
/* Read a single big-endian 32-bit unsigned integer from the input
** stream. Return 0 on success and 1 if there are any errors.
*/
static int readUint32(SQLiteRsync *p, unsigned int *pU){
unsigned char buf[4];
if( fread(buf, sizeof(buf), 1, p->pIn)==1 ){
*pU = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
p->nIn += 4;
return 0;
}else{
logError(p, "failed to read a 32-bit integer\n");
return 1;
}
}
/* Write a single big-endian 32-bit unsigned integer to the output stream.
** Return 0 on success and 1 if there are any errors.
*/
static int writeUint32(SQLiteRsync *p, unsigned int x){
unsigned char buf[4];
buf[3] = x & 0xff;
x >>= 8;
buf[2] = x & 0xff;
x >>= 8;
buf[1] = x & 0xff;
x >>= 8;
buf[0] = x;
if( p->pLog ) fwrite(buf, sizeof(buf), 1, p->pLog);
if( fwrite(buf, sizeof(buf), 1, p->pOut)!=1 ){
logError(p, "failed to write 32-bit integer 0x%x\n", x);
p->nWrErr++;
return 1;
}
p->nOut += 4;
return 0;
}
/* Read a single byte from the wire.
*/
int readByte(SQLiteRsync *p){
int c = fgetc(p->pIn);
if( c!=EOF ) p->nIn++;
return c;
}
/* Write a single byte into the wire.
*/
void writeByte(SQLiteRsync *p, int c){
if( p->pLog ) fputc(c, p->pLog);
fputc(c, p->pOut);
p->nOut++;
}
/* Read a power of two encoded as a single byte.
*/
int readPow2(SQLiteRsync *p){
int x = readByte(p);
if( x<0 || x>=32 ){
logError(p, "read invalid page size %d\n", x);
return 0;
}
return 1<<x;
}
/* Write a power-of-two value onto the wire as a single byte.
*/
void writePow2(SQLiteRsync *p, int c){
int n;
if( c<0 || (c&(c-1))!=0 ){
logError(p, "trying to read invalid page size %d\n", c);
}
for(n=0; c>1; n++){ c /= 2; }
writeByte(p, n);
}
/* Read an array of bytes from the wire.
*/
void readBytes(SQLiteRsync *p, int nByte, void *pData){
if( fread(pData, 1, nByte, p->pIn)==nByte ){
p->nIn += nByte;
}else{
logError(p, "failed to read %d bytes\n", nByte);
}
}
/* Write an array of bytes onto the wire.
*/
void writeBytes(SQLiteRsync *p, int nByte, const void *pData){
if( p->pLog ) fwrite(pData, 1, nByte, p->pLog);
if( fwrite(pData, 1, nByte, p->pOut)==nByte ){
p->nOut += nByte;
}else{
logError(p, "failed to write %d bytes\n", nByte);
p->nWrErr++;
}
}
/* Report an error.
**
** If this happens on the remote side, we send back a *_ERROR
** message. On the local side, the error message goes to stderr.
*/
static void reportError(SQLiteRsync *p, const char *zFormat, ...){
va_list ap;
char *zMsg;
unsigned int nMsg;
va_start(ap, zFormat);
zMsg = sqlite3_vmprintf(zFormat, ap);
va_end(ap);
nMsg = zMsg ? (unsigned int)strlen(zMsg) : 0;
if( p->isRemote ){
if( p->isReplica ){
putc(REPLICA_ERROR, p->pOut);
}else{
putc(ORIGIN_ERROR, p->pOut);
}
writeUint32(p, nMsg);
writeBytes(p, nMsg, zMsg);
fflush(p->pOut);
}else{
fprintf(stderr, "%s\n", zMsg);
}
logError(p, "%s\n", zMsg);
sqlite3_free(zMsg);
}
/* Send an informational message.
**
** If this happens on the remote side, we send back a *_MSG
** message. On the local side, the message goes to stdout.
*/
static void infoMsg(SQLiteRsync *p, const char *zFormat, ...){
va_list ap;
char *zMsg;
unsigned int nMsg;
va_start(ap, zFormat);
zMsg = sqlite3_vmprintf(zFormat, ap);
va_end(ap);
nMsg = zMsg ? (unsigned int)strlen(zMsg) : 0;
if( p->isRemote ){
if( p->isReplica ){
putc(REPLICA_MSG, p->pOut);
}else{
putc(ORIGIN_MSG, p->pOut);
}
writeUint32(p, nMsg);
writeBytes(p, nMsg, zMsg);
fflush(p->pOut);
}else{
printf("%s\n", zMsg);
}
sqlite3_free(zMsg);
}
/* Receive and report an error message coming from the other side.
*/
static void readAndDisplayMessage(SQLiteRsync *p, int c){
unsigned int n = 0;
char *zMsg;
const char *zPrefix;
if( c==ORIGIN_ERROR || c==REPLICA_ERROR ){
zPrefix = "ERROR: ";
}else{
zPrefix = "";
}
readUint32(p, &n);
if( n==0 ){
fprintf(stderr,"ERROR: unknown (possibly out-of-memory)\n");
}else{
zMsg = sqlite3_malloc64( n+1 );
if( zMsg==0 ){
fprintf(stderr, "ERROR: out-of-memory\n");
return;
}
memset(zMsg, 0, n+1);
readBytes(p, n, zMsg);
fprintf(stderr,"%s%s\n", zPrefix, zMsg);
if( zPrefix[0] ) logError(p, "%s%s\n", zPrefix, zMsg);
sqlite3_free(zMsg);
}
}
/* Construct a new prepared statement. Report an error and return NULL
** if anything goes wrong.
*/
static sqlite3_stmt *prepareStmtVA(
SQLiteRsync *p,
char *zFormat,
va_list ap
){
sqlite3_stmt *pStmt = 0;
char *zSql;
char *zToFree = 0;
int rc;
if( strchr(zFormat,'%') ){
zSql = sqlite3_vmprintf(zFormat, ap);
if( zSql==0 ){
reportError(p, "out-of-memory");
return 0;
}else{
zToFree = zSql;
}
}else{
zSql = zFormat;
}
rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
if( rc || pStmt==0 ){
reportError(p, "unable to prepare SQL [%s]: %s", zSql,
sqlite3_errmsg(p->db));
sqlite3_finalize(pStmt);
pStmt = 0;
}
if( zToFree ) sqlite3_free(zToFree);
return pStmt;
}
static sqlite3_stmt *prepareStmt(
SQLiteRsync *p,
char *zFormat,
...
){
sqlite3_stmt *pStmt;
va_list ap;
va_start(ap, zFormat);
pStmt = prepareStmtVA(p, zFormat, ap);
va_end(ap);
return pStmt;
}
/* Run a single SQL statement. Report an error if something goes
** wrong.
**
** As a special case, if the statement starts with "ATTACH" (but not
** "Attach") and if the error message is about an incorrect encoding,
** then do not report the error, but instead set the wrongEncoding flag.
** This is a kludgy work-around to the problem of attaching a database
** with a non-UTF8 encoding to the empty :memory: database that is
** opened on the replica.
*/
static void runSql(SQLiteRsync *p, char *zSql, ...){
sqlite3_stmt *pStmt;
va_list ap;
va_start(ap, zSql);
pStmt = prepareStmtVA(p, zSql, ap);
va_end(ap);
if( pStmt ){
int rc = sqlite3_step(pStmt);
if( rc==SQLITE_ROW ) rc = sqlite3_step(pStmt);
if( rc!=SQLITE_OK && rc!=SQLITE_DONE ){
const char *zErr = sqlite3_errmsg(p->db);
if( strncmp(zSql,"ATTACH ", 7)==0
&& strstr(zErr,"must use the same text encoding")!=0
){
p->wrongEncoding = 1;
}else{
reportError(p, "SQL statement [%s] failed: %s", zSql,
sqlite3_errmsg(p->db));
}
}
sqlite3_finalize(pStmt);
}
}
/* Run an SQL statement that returns a single unsigned 32-bit integer result
*/
static int runSqlReturnUInt(
SQLiteRsync *p,
unsigned int *pRes,
char *zSql,
...
){
sqlite3_stmt *pStmt;
int res = 0;
va_list ap;
va_start(ap, zSql);
pStmt = prepareStmtVA(p, zSql, ap);
va_end(ap);
if( pStmt==0 ){
res = 1;
}else{
int rc = sqlite3_step(pStmt);
if( rc==SQLITE_ROW ){
*pRes = (unsigned int)(sqlite3_column_int64(pStmt, 0)&0xffffffff);
}else{
reportError(p, "SQL statement [%s] failed: %s", zSql,
sqlite3_errmsg(p->db));
res = 1;
}
sqlite3_finalize(pStmt);
}
return res;
}
/* Run an SQL statement that returns a single TEXT value that is no more
** than 99 bytes in length.
*/
static int runSqlReturnText(
SQLiteRsync *p,
char *pRes,
char *zSql,
...
){
sqlite3_stmt *pStmt;
int res = 0;
va_list ap;
va_start(ap, zSql);
pStmt = prepareStmtVA(p, zSql, ap);
va_end(ap);
pRes[0] = 0;
if( pStmt==0 ){
res = 1;
}else{
int rc = sqlite3_step(pStmt);
if( rc==SQLITE_ROW ){
const unsigned char *a = sqlite3_column_text(pStmt, 0);
int n;
if( a==0 ){
pRes[0] = 0;
}else{
n = sqlite3_column_bytes(pStmt, 0);
if( n>99 ) n = 99;
memcpy(pRes, a, n);
pRes[n] = 0;
}
}else{
reportError(p, "SQL statement [%s] failed: %s", zSql,
sqlite3_errmsg(p->db));
res = 1;
}
sqlite3_finalize(pStmt);
}
return res;
}
/* Close the database connection associated with p
*/
static void closeDb(SQLiteRsync *p){
if( p->db ){
sqlite3_close(p->db);
p->db = 0;
}
}
/*
** Run the origin-side protocol.
**
** Begin by sending the ORIGIN_BEGIN message with two arguments,
** nPage, and szPage. Then enter a loop responding to message from
** the replica:
**
** REPLICA_ERROR size text
**
** Report an error from the replica and quit
**
** REPLICA_END
**
** The replica is terminating. Stop processing now.
**
** REPLICA_HASH hash
**
** The argument is the 20-byte SHA1 hash for the next page
** page hashes appear in sequential order with no gaps.
**
** REPLICA_READY
**
** The replica has sent all the hashes that it intends to send.
** This side (the origin) can now start responding with page
** content for pages that do not have a matching hash.
*/
static void originSide(SQLiteRsync *p){
int rc = 0;
int c = 0;
unsigned int nPage = 0;
unsigned int iPage = 0;
unsigned int lockBytePage = 0;
unsigned int szPg = 0;
sqlite3_stmt *pCkHash = 0;
sqlite3_stmt *pInsHash = 0;
char buf[200];
p->isReplica = 0;
if( p->bCommCheck ){
infoMsg(p, "origin zOrigin=%Q zReplica=%Q isRemote=%d protocol=%d",
p->zOrigin, p->zReplica, p->isRemote, PROTOCOL_VERSION);
writeByte(p, ORIGIN_END);
fflush(p->pOut);
}else{
/* Open the ORIGIN database. */
rc = sqlite3_open_v2(p->zOrigin, &p->db, SQLITE_OPEN_READWRITE, 0);
if( rc ){
reportError(p, "cannot open origin \"%s\": %s",
p->zOrigin, sqlite3_errmsg(p->db));
closeDb(p);
return;
}
hashRegister(p->db);
runSql(p, "BEGIN");
runSqlReturnText(p, buf, "PRAGMA journal_mode");
if( sqlite3_stricmp(buf,"wal")!=0 ){
reportError(p, "Origin database is not in WAL mode");
}
runSqlReturnUInt(p, &nPage, "PRAGMA page_count");
runSqlReturnUInt(p, &szPg, "PRAGMA page_size");
if( p->nErr==0 ){
/* Send the ORIGIN_BEGIN message */
writeByte(p, ORIGIN_BEGIN);
writeByte(p, PROTOCOL_VERSION);
writePow2(p, szPg);
writeUint32(p, nPage);
fflush(p->pOut);
p->nPage = nPage;
p->szPage = szPg;
p->iProtocol = PROTOCOL_VERSION;
lockBytePage = (1<<30)/szPg + 1;
}
}
/* Respond to message from the replica */
while( p->nErr<=p->nWrErr && (c = readByte(p))!=EOF && c!=REPLICA_END ){
switch( c ){
case REPLICA_BEGIN: {
/* This message is only sent if the replica received an origin-protocol
** that is larger than what it knows about. The replica sends back
** a counter-proposal of an earlier protocol which the origin can
** accept by resending a new ORIGIN_BEGIN. */
p->iProtocol = readByte(p);
writeByte(p, ORIGIN_BEGIN);
writeByte(p, p->iProtocol);
writePow2(p, p->szPage);
writeUint32(p, p->nPage);
break;
}
case REPLICA_MSG:
case REPLICA_ERROR: {
readAndDisplayMessage(p, c);
break;
}
case REPLICA_HASH: {
if( pCkHash==0 ){
runSql(p, "CREATE TEMP TABLE badHash(pgno INTEGER PRIMARY KEY)");
pCkHash = prepareStmt(p,
"SELECT pgno FROM sqlite_dbpage('main')"
" WHERE pgno=?1 AND hash(data)!=?2"
);
if( pCkHash==0 ) break;
pInsHash = prepareStmt(p, "INSERT INTO badHash VALUES(?)");
if( pInsHash==0 ) break;
}
p->nHashSent++;
iPage++;
sqlite3_bind_int64(pCkHash, 1, iPage);
readBytes(p, 20, buf);
sqlite3_bind_blob(pCkHash, 2, buf, 20, SQLITE_STATIC);
rc = sqlite3_step(pCkHash);
if( rc==SQLITE_ROW ){
sqlite3_bind_int64(pInsHash, 1, sqlite3_column_int64(pCkHash, 0));
rc = sqlite3_step(pInsHash);
if( rc!=SQLITE_DONE ){
reportError(p, "SQL statement [%s] failed: %s",
sqlite3_sql(pInsHash), sqlite3_errmsg(p->db));
}
sqlite3_reset(pInsHash);
}
else if( rc!=SQLITE_DONE ){
reportError(p, "SQL statement [%s] failed: %s",
sqlite3_sql(pCkHash), sqlite3_errmsg(p->db));
}
sqlite3_reset(pCkHash);
break;
}
case REPLICA_READY: {
sqlite3_stmt *pStmt;
sqlite3_finalize(pCkHash);
sqlite3_finalize(pInsHash);
pCkHash = 0;
pInsHash = 0;
if( iPage+1<p->nPage ){
runSql(p, "WITH RECURSIVE c(n) AS"
" (VALUES(%d) UNION ALL SELECT n+1 FROM c WHERE n<%d)"
" INSERT INTO badHash SELECT n FROM c",
iPage+1, p->nPage);
}
runSql(p, "DELETE FROM badHash WHERE pgno=%d", lockBytePage);
pStmt = prepareStmt(p,
"SELECT pgno, data"
" FROM badHash JOIN sqlite_dbpage('main') USING(pgno)");
if( pStmt==0 ) break;
while( sqlite3_step(pStmt)==SQLITE_ROW && p->nErr==0 && p->nWrErr==0 ){
unsigned int pgno = (unsigned int)sqlite3_column_int64(pStmt,0);
const void *pContent = sqlite3_column_blob(pStmt, 1);
writeByte(p, ORIGIN_PAGE);
writeUint32(p, pgno);
writeBytes(p, szPg, pContent);
p->nPageSent++;
}
sqlite3_finalize(pStmt);
writeByte(p, ORIGIN_TXN);
writeUint32(p, nPage);
writeByte(p, ORIGIN_END);
fflush(p->pOut);
break;
}
default: {
reportError(p, "Unknown message 0x%02x %lld bytes into conversation",
c, p->nIn);
break;
}
}
}
if( pCkHash ) sqlite3_finalize(pCkHash);
if( pInsHash ) sqlite3_finalize(pInsHash);
closeDb(p);
}
/*
** Run the replica-side protocol. The protocol is passive in the sense
** that it only response to message from the origin side.
**
** ORIGIN_BEGIN idProtocol szPage nPage
**
** The origin is reporting the protocol version number, the size of
** each page in the origin database (sent as a single-byte power-of-2),
** and the number of pages in the origin database.
** This procedure checks compatibility, and if everything is ok,
** it starts sending hashes of pages already present back to the origin.
**
** ORIGIN_ERROR size text
**
** Report the received error and quit.
**
** ORIGIN_PAGE pgno content
**
** Update the content of the given page.
**
** ORIGIN_TXN pgno
**
** Close the update transaction. The total database size is pgno
** pages.
**
** ORIGIN_END
**
** Expect no more transmissions from the origin.
*/
static void replicaSide(SQLiteRsync *p){
int c;
sqlite3_stmt *pIns = 0;
unsigned int szOPage = 0;
char buf[65536];
p->isReplica = 1;
if( p->bCommCheck ){
infoMsg(p, "replica zOrigin=%Q zReplica=%Q isRemote=%d protocol=%d",
p->zOrigin, p->zReplica, p->isRemote, PROTOCOL_VERSION);
writeByte(p, REPLICA_END);
fflush(p->pOut);
}
/* Respond to message from the origin. The origin will initiate the
** the conversation with an ORIGIN_BEGIN message.
*/
while( p->nErr<=p->nWrErr && (c = readByte(p))!=EOF && c!=ORIGIN_END ){
switch( c ){
case ORIGIN_MSG:
case ORIGIN_ERROR: {
readAndDisplayMessage(p, c);
break;
}
case ORIGIN_BEGIN: {
unsigned int nOPage = 0;
unsigned int nRPage = 0, szRPage = 0;
int rc = 0;
sqlite3_stmt *pStmt = 0;
closeDb(p);
p->iProtocol = readByte(p);
szOPage = readPow2(p);
readUint32(p, &nOPage);
if( p->nErr ) break;
if( p->iProtocol>PROTOCOL_VERSION ){
/* If the protocol version on the origin side is larger, send back
** a REPLICA_BEGIN message with the protocol version number of the
** replica side. This gives the origin an opportunity to resend
** a new ORIGIN_BEGIN with a reduced protocol version. */
writeByte(p, REPLICA_BEGIN);
writeByte(p, PROTOCOL_VERSION);
break;
}
p->nPage = nOPage;
p->szPage = szOPage;
rc = sqlite3_open(":memory:", &p->db);
if( rc ){
reportError(p, "cannot open in-memory database: %s",
sqlite3_errmsg(p->db));
closeDb(p);
break;
}
runSql(p, "ATTACH %Q AS 'replica'", p->zReplica);
if( p->wrongEncoding ){
p->wrongEncoding = 0;
runSql(p, "PRAGMA encoding=utf16le");
runSql(p, "ATTACH %Q AS 'replica'", p->zReplica);
if( p->wrongEncoding ){
p->wrongEncoding = 0;
runSql(p, "PRAGMA encoding=utf16be");
runSql(p, "Attach %Q AS 'replica'", p->zReplica);
}
}
if( p->nErr ){
closeDb(p);
break;
}
hashRegister(p->db);
if( runSqlReturnUInt(p, &nRPage, "PRAGMA replica.page_count") ){
break;
}
if( nRPage==0 ){
runSql(p, "PRAGMA replica.page_size=%u", szOPage);
runSql(p, "PRAGMA replica.journal_mode=WAL");
runSql(p, "SELECT * FROM replica.sqlite_schema");
}
runSql(p, "BEGIN IMMEDIATE");
runSqlReturnText(p, buf, "PRAGMA replica.journal_mode");
if( strcmp(buf, "wal")!=0 ){
reportError(p, "replica is not in WAL mode");
break;
}
runSqlReturnUInt(p, &nRPage, "PRAGMA replica.page_count");
runSqlReturnUInt(p, &szRPage, "PRAGMA replica.page_size");
if( szRPage!=szOPage ){
reportError(p, "page size mismatch; origin is %d bytes and "
"replica is %d bytes", szOPage, szRPage);
break;
}
pStmt = prepareStmt(p,
"SELECT hash(data) FROM sqlite_dbpage('replica')"
" WHERE pgno<=min(%d,%d)"
" ORDER BY pgno", nRPage, nOPage);
while( sqlite3_step(pStmt)==SQLITE_ROW && p->nErr==0 && p->nWrErr==0 ){
const unsigned char *a = sqlite3_column_blob(pStmt, 0);
writeByte(p, REPLICA_HASH);
writeBytes(p, 20, a);
p->nHashSent++;
}
sqlite3_finalize(pStmt);
writeByte(p, REPLICA_READY);
fflush(p->pOut);
runSql(p, "PRAGMA writable_schema=ON");
break;
}
case ORIGIN_TXN: {
unsigned int nOPage = 0;
readUint32(p, &nOPage);
if( pIns==0 ){
/* Nothing has changed */
runSql(p, "COMMIT");
}else if( p->nErr ){
runSql(p, "ROLLBACK");
}else{
if( nOPage<0xffffffff ){
int rc;
sqlite3_bind_int64(pIns, 1, nOPage+1);
sqlite3_bind_null(pIns, 2);
rc = sqlite3_step(pIns);
if( rc!=SQLITE_DONE ){
reportError(p,
"SQL statement [%s] failed (pgno=%u, data=NULL): %s",
sqlite3_sql(pIns), nOPage, sqlite3_errmsg(p->db));
}
sqlite3_reset(pIns);
}
p->nPage = nOPage;
runSql(p, "COMMIT");
}
break;
}
case ORIGIN_PAGE: {
unsigned int pgno = 0;
int rc;
readUint32(p, &pgno);
if( p->nErr ) break;
if( pIns==0 ){
pIns = prepareStmt(p,
"INSERT INTO sqlite_dbpage(pgno,data,schema)VALUES(?1,?2,'replica')"
);
if( pIns==0 ) break;
}
readBytes(p, szOPage, buf);
if( p->nErr ) break;
p->nPageSent++;
sqlite3_bind_int64(pIns, 1, pgno);
sqlite3_bind_blob(pIns, 2, buf, szOPage, SQLITE_STATIC);
rc = sqlite3_step(pIns);
if( rc!=SQLITE_DONE ){
reportError(p, "SQL statement [%s] failed (pgno=%u): %s",
sqlite3_sql(pIns), pgno, sqlite3_errmsg(p->db));
}
sqlite3_reset(pIns);
break;
}
default: {
reportError(p, "Unknown message 0x%02x %lld bytes into conversation",
c, p->nIn);
break;
}
}
}
if( pIns ) sqlite3_finalize(pIns);
closeDb(p);
}
/*
** The argument might be -vvv...vv with any number of "v"s. Return
** the number of "v"s. Return 0 if the argument is not a -vvv...v.
*/
static int numVs(const char *z){
int n = 0;
if( z[0]!='-' ) return 0;
z++;
if( z[0]=='-' ) z++;
while( z[0]=='v' ){ n++; z++; }
if( z[0]==0 ) return n;
return 0;
}
/*
** Get the argument to an --option. Throw an error and die if no argument
** is available.
*/
static const char *cmdline_option_value(int argc, const char * const*argv,
int i){
if( i==argc ){
fprintf(stderr,"%s: Error: missing argument to %s\n",
argv[0], argv[argc-1]);
exit(1);
}
return argv[i];
}
/*
** Return the current time in milliseconds since the Julian epoch.
*/
sqlite3_int64 currentTime(void){
sqlite3_int64 now = 0;
sqlite3_vfs *pVfs = sqlite3_vfs_find(0);
if( pVfs && pVfs->iVersion>=2 && pVfs->xCurrentTimeInt64!=0 ){
pVfs->xCurrentTimeInt64(pVfs, &now);
}
return now;
}
/*
** Input string zIn might be in any of these formats:
**
** (1) PATH
** (2) HOST:PATH
** (3) USER@HOST:PATH
**
** For format 1, return NULL. For formats 2 and 3, return
** a pointer to the ':' character that separates the hostname
** from the path.
*/
static char *hostSeparator(const char *zIn){
char *zPath = strchr(zIn, ':');
if( zPath==0 ) return 0;
#ifdef _WIN32
if( isalpha(zIn[0]) && zIn[1]==':' && (zIn[2]=='/' || zIn[2]=='\\') ){
return 0;
}
#endif
while( zIn<zPath ){
if( zIn[0]=='/' ) return 0;
if( zIn[0]=='\\' ) return 0;
zIn++;
}
return zPath;
}
/*
** Parse command-line arguments. Dispatch subroutines to do the
** requested work.
**
** Input formats:
**
** (1) sqlite3_rsync FILENAME1 USER@HOST:FILENAME2
**
** (2) sqlite3_rsync USER@HOST:FILENAME1 FILENAME2
**
** (3) sqlite3_rsync --origin FILENAME1
**
** (4) sqlite3_rsync --replica FILENAME2
**
** The user types (1) or (2). SSH launches (3) or (4).
**
** If (1) is seen then popen2 is used launch (4) on the remote and
** originSide() is called locally.
**
** If (2) is seen, then popen2() is used to launch (3) on the remote
** and replicaSide() is run locally.
**
** If (3) is seen, call originSide() on stdin and stdout.
**
q** If (4) is seen, call replicaSide() on stdin and stdout.
*/
int main(int argc, char const * const *argv){
int isOrigin = 0;
int isReplica = 0;
int i;
SQLiteRsync ctx;
char *zDiv;
FILE *pIn = 0;
FILE *pOut = 0;
int childPid = 0;
const char *zSsh = "ssh";
const char *zExe = "sqlite3_rsync";
char *zCmd = 0;
sqlite3_int64 tmStart;
sqlite3_int64 tmEnd;
sqlite3_int64 tmElapse;
const char *zRemoteErrFile = 0;
#define cli_opt_val cmdline_option_value(argc, argv, ++i)
memset(&ctx, 0, sizeof(ctx));
for(i=1; i<argc; i++){
const char *z = argv[i];
if( strcmp(z,"--origin")==0 ){
isOrigin = 1;
continue;
}
if( strcmp(z,"--replica")==0 ){
isReplica = 1;
continue;
}
if( numVs(z) ){
ctx.eVerbose += numVs(z);
continue;
}
if( strcmp(z, "--ssh")==0 ){
zSsh = cli_opt_val;
continue;
}
if( strcmp(z, "--exe")==0 ){
zExe = cli_opt_val;
continue;
}
if( strcmp(z, "--logfile")==0 ){
/* DEBUG OPTION: --logfile FILENAME
** Cause all local output traffic to be duplicated in FILENAME */
const char *zLog = cli_opt_val;
if( ctx.pLog ) fclose(ctx.pLog);
ctx.pLog = fopen(zLog, "wb");
if( ctx.pLog==0 ){
fprintf(stderr, "cannot open \"%s\" for writing\n", argv[i]);
return 1;
}
continue;
}
if( strcmp(z, "--errorfile")==0 ){
/* DEBUG OPTION: --errorfile FILENAME
** Error messages on the local side are written into FILENAME */
ctx.zErrFile = cli_opt_val;
continue;
}
if( strcmp(z, "--remote-errorfile")==0 ){
/* DEBUG OPTION: --remote-errorfile FILENAME
** Error messages on the remote side are written into FILENAME on
** the remote side. */
zRemoteErrFile = cli_opt_val;
continue;
}
if( strcmp(z, "-help")==0 || strcmp(z, "--help")==0
|| strcmp(z, "-?")==0
){
printf("%s", zUsage);
return 0;
}
if( strcmp(z, "--version")==0 ){
printf("%s\n", sqlite3_sourceid());
return 0;
}
if( z[0]=='-' ){
if( strcmp(z,"--commcheck")==0 ){ /* DEBUG ONLY */
/* Run a communication check with the remote side. Do not attempt
** to exchange any database connection */
ctx.bCommCheck = 1;
continue;
}
if( strcmp(z,"--arg-escape-check")==0 ){ /* DEBUG ONLY */
/* Test the append_escaped_arg() routine by using it to render a
** copy of the input command-line, assuming all arguments except
** this one are filenames. */
sqlite3_str *pStr = sqlite3_str_new(0);
int k;
for(k=0; k<argc; k++){
append_escaped_arg(pStr, argv[k], i!=k);
}
printf("%s\n", sqlite3_str_value(pStr));
return 0;
}
fprintf(stderr,
"unknown option: \"%s\". Use --help for more detail.\n", z);
return 1;
}
if( ctx.zOrigin==0 ){
ctx.zOrigin = z;
}else if( ctx.zReplica==0 ){
ctx.zReplica = z;
}else{
fprintf(stderr, "Unknown argument: \"%s\"\n", z);
return 1;
}
}
if( ctx.zOrigin==0 ){
fprintf(stderr, "missing ORIGIN database filename\n");
return 1;
}
if( ctx.zReplica==0 ){
fprintf(stderr, "missing REPLICA database filename\n");
return 1;
}
if( isOrigin && isReplica ){
fprintf(stderr, "bad option combination\n");
return 1;
}
if( isOrigin ){
ctx.pIn = stdin;
ctx.pOut = stdout;
ctx.isRemote = 1;
#ifdef _WIN32
_setmode(_fileno(ctx.pIn), _O_BINARY);
_setmode(_fileno(ctx.pOut), _O_BINARY);
#endif
originSide(&ctx);
return 0;
}
if( isReplica ){
ctx.pIn = stdin;
ctx.pOut = stdout;
ctx.isRemote = 1;
#ifdef _WIN32
_setmode(_fileno(ctx.pIn), _O_BINARY);
_setmode(_fileno(ctx.pOut), _O_BINARY);
#endif
replicaSide(&ctx);
return 0;
}
if( ctx.zReplica==0 ){
fprintf(stderr, "missing REPLICA database filename\n");
return 1;
}
tmStart = currentTime();
zDiv = hostSeparator(ctx.zOrigin);
if( zDiv ){
if( hostSeparator(ctx.zReplica)!=0 ){
fprintf(stderr,
"At least one of ORIGIN and REPLICA must be a local database\n"
"You provided two remote databases.\n");
return 1;
}
/* Remote ORIGIN and local REPLICA */
sqlite3_str *pStr = sqlite3_str_new(0);
append_escaped_arg(pStr, zSsh, 1);
sqlite3_str_appendf(pStr, " -e none");
*(zDiv++) = 0;
append_escaped_arg(pStr, ctx.zOrigin, 0);
append_escaped_arg(pStr, zExe, 1);
append_escaped_arg(pStr, "--origin", 0);
if( ctx.bCommCheck ){
append_escaped_arg(pStr, "--commcheck", 0);
if( ctx.eVerbose==0 ) ctx.eVerbose = 1;
}
if( zRemoteErrFile ){
append_escaped_arg(pStr, "--errorfile", 0);
append_escaped_arg(pStr, zRemoteErrFile, 1);
}
append_escaped_arg(pStr, zDiv, 1);
append_escaped_arg(pStr, file_tail(ctx.zReplica), 1);
zCmd = sqlite3_str_finish(pStr);
if( ctx.eVerbose>=2 ) printf("%s\n", zCmd);
if( popen2(zCmd, &ctx.pIn, &ctx.pOut, &childPid, 0) ){
fprintf(stderr, "Could not start auxiliary process: %s\n", zCmd);
return 1;
}
replicaSide(&ctx);
}else if( (zDiv = hostSeparator(ctx.zReplica))!=0 ){
/* Local ORIGIN and remote REPLICA */
sqlite3_str *pStr = sqlite3_str_new(0);
append_escaped_arg(pStr, zSsh, 1);
sqlite3_str_appendf(pStr, " -e none");
*(zDiv++) = 0;
append_escaped_arg(pStr, ctx.zReplica, 0);
append_escaped_arg(pStr, zExe, 1);
append_escaped_arg(pStr, "--replica", 0);
if( ctx.bCommCheck ){
append_escaped_arg(pStr, "--commcheck", 0);
if( ctx.eVerbose==0 ) ctx.eVerbose = 1;
}
if( zRemoteErrFile ){
append_escaped_arg(pStr, "--errorfile", 0);
append_escaped_arg(pStr, zRemoteErrFile, 1);
}
append_escaped_arg(pStr, file_tail(ctx.zOrigin), 1);
append_escaped_arg(pStr, zDiv, 1);
zCmd = sqlite3_str_finish(pStr);
if( ctx.eVerbose>=2 ) printf("%s\n", zCmd);
if( popen2(zCmd, &ctx.pIn, &ctx.pOut, &childPid, 0) ){
fprintf(stderr, "Could not start auxiliary process: %s\n", zCmd);
return 1;
}
originSide(&ctx);
}else{
/* Local ORIGIN and REPLICA */
sqlite3_str *pStr = sqlite3_str_new(0);
append_escaped_arg(pStr, argv[0], 1);
append_escaped_arg(pStr, "--replica", 0);
if( ctx.bCommCheck ){
append_escaped_arg(pStr, "--commcheck", 0);
}
if( zRemoteErrFile ){
append_escaped_arg(pStr, "--errorfile", 0);
append_escaped_arg(pStr, zRemoteErrFile, 1);
}
append_escaped_arg(pStr, ctx.zOrigin, 1);
append_escaped_arg(pStr, ctx.zReplica, 1);
zCmd = sqlite3_str_finish(pStr);
if( ctx.eVerbose>=2 ) printf("%s\n", zCmd);
if( popen2(zCmd, &ctx.pIn, &ctx.pOut, &childPid, 0) ){
fprintf(stderr, "Could not start auxiliary process: %s\n", zCmd);
return 1;
}
originSide(&ctx);
}
pclose2(ctx.pIn, ctx.pOut, childPid);
if( ctx.pLog ) fclose(ctx.pLog);
tmEnd = currentTime();
tmElapse = tmEnd - tmStart; /* Elapse time in milliseconds */
if( ctx.nErr ){
printf("Databases were not synced due to errors\n");
}
if( ctx.eVerbose>=1 ){
char *zMsg;
sqlite3_int64 szTotal = (sqlite3_int64)ctx.nPage*(sqlite3_int64)ctx.szPage;
sqlite3_int64 nIO = ctx.nOut +ctx.nIn;
zMsg = sqlite3_mprintf("sent %,lld bytes, received %,lld bytes",
ctx.nOut, ctx.nIn);
printf("%s", zMsg);
sqlite3_free(zMsg);
if( tmElapse>0 ){
zMsg = sqlite3_mprintf(", %,.2f bytes/sec",
1000.0*(double)nIO/(double)tmElapse);
printf("%s\n", zMsg);
sqlite3_free(zMsg);
}else{
printf("\n");
}
if( ctx.nErr==0 ){
if( nIO<=szTotal && nIO>0 ){
zMsg = sqlite3_mprintf("total size %,lld speedup is %.2f",
szTotal, (double)szTotal/(double)nIO);
}else{
zMsg = sqlite3_mprintf("total size %,lld", szTotal);
}
printf("%s\n", zMsg);
sqlite3_free(zMsg);
}
}
sqlite3_free(zCmd);
if( pIn!=0 && pOut!=0 ){
pclose2(pIn, pOut, childPid);
}
return ctx.nErr;
}