2087 lines
77 KiB
C
2087 lines
77 KiB
C
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains C code routines that are called by the parser
|
|
** to handle INSERT statements in SQLite.
|
|
*/
|
|
#include "sqliteInt.h"
|
|
|
|
/*
|
|
** Generate code that will
|
|
**
|
|
** (1) acquire a lock for table pTab then
|
|
** (2) open pTab as cursor iCur.
|
|
**
|
|
** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
|
|
** for that table that is actually opened.
|
|
*/
|
|
void sqlite3OpenTable(
|
|
Parse *pParse, /* Generate code into this VDBE */
|
|
int iCur, /* The cursor number of the table */
|
|
int iDb, /* The database index in sqlite3.aDb[] */
|
|
Table *pTab, /* The table to be opened */
|
|
int opcode /* OP_OpenRead or OP_OpenWrite */
|
|
){
|
|
Vdbe *v;
|
|
assert( !IsVirtual(pTab) );
|
|
v = sqlite3GetVdbe(pParse);
|
|
assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
|
|
sqlite3TableLock(pParse, iDb, pTab->tnum,
|
|
(opcode==OP_OpenWrite)?1:0, pTab->zName);
|
|
if( HasRowid(pTab) ){
|
|
sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol);
|
|
VdbeComment((v, "%s", pTab->zName));
|
|
}else{
|
|
Index *pPk = sqlite3PrimaryKeyIndex(pTab);
|
|
assert( pPk!=0 );
|
|
assert( pPk->tnum=pTab->tnum );
|
|
sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
|
|
sqlite3VdbeSetP4KeyInfo(pParse, pPk);
|
|
VdbeComment((v, "%s", pTab->zName));
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to the column affinity string associated with index
|
|
** pIdx. A column affinity string has one character for each column in
|
|
** the table, according to the affinity of the column:
|
|
**
|
|
** Character Column affinity
|
|
** ------------------------------
|
|
** 'a' TEXT
|
|
** 'b' NONE
|
|
** 'c' NUMERIC
|
|
** 'd' INTEGER
|
|
** 'e' REAL
|
|
**
|
|
** An extra 'd' is appended to the end of the string to cover the
|
|
** rowid that appears as the last column in every index.
|
|
**
|
|
** Memory for the buffer containing the column index affinity string
|
|
** is managed along with the rest of the Index structure. It will be
|
|
** released when sqlite3DeleteIndex() is called.
|
|
*/
|
|
const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
|
|
if( !pIdx->zColAff ){
|
|
/* The first time a column affinity string for a particular index is
|
|
** required, it is allocated and populated here. It is then stored as
|
|
** a member of the Index structure for subsequent use.
|
|
**
|
|
** The column affinity string will eventually be deleted by
|
|
** sqliteDeleteIndex() when the Index structure itself is cleaned
|
|
** up.
|
|
*/
|
|
int n;
|
|
Table *pTab = pIdx->pTable;
|
|
sqlite3 *db = sqlite3VdbeDb(v);
|
|
pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
|
|
if( !pIdx->zColAff ){
|
|
db->mallocFailed = 1;
|
|
return 0;
|
|
}
|
|
for(n=0; n<pIdx->nColumn; n++){
|
|
i16 x = pIdx->aiColumn[n];
|
|
pIdx->zColAff[n] = x<0 ? SQLITE_AFF_INTEGER : pTab->aCol[x].affinity;
|
|
}
|
|
pIdx->zColAff[n] = 0;
|
|
}
|
|
|
|
return pIdx->zColAff;
|
|
}
|
|
|
|
/*
|
|
** Set P4 of the most recently inserted opcode to a column affinity
|
|
** string for table pTab. A column affinity string has one character
|
|
** for each column indexed by the index, according to the affinity of the
|
|
** column:
|
|
**
|
|
** Character Column affinity
|
|
** ------------------------------
|
|
** 'a' TEXT
|
|
** 'b' NONE
|
|
** 'c' NUMERIC
|
|
** 'd' INTEGER
|
|
** 'e' REAL
|
|
*/
|
|
void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
|
|
/* The first time a column affinity string for a particular table
|
|
** is required, it is allocated and populated here. It is then
|
|
** stored as a member of the Table structure for subsequent use.
|
|
**
|
|
** The column affinity string will eventually be deleted by
|
|
** sqlite3DeleteTable() when the Table structure itself is cleaned up.
|
|
*/
|
|
if( !pTab->zColAff ){
|
|
char *zColAff;
|
|
int i;
|
|
sqlite3 *db = sqlite3VdbeDb(v);
|
|
|
|
zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
|
|
if( !zColAff ){
|
|
db->mallocFailed = 1;
|
|
return;
|
|
}
|
|
|
|
for(i=0; i<pTab->nCol; i++){
|
|
zColAff[i] = pTab->aCol[i].affinity;
|
|
}
|
|
zColAff[pTab->nCol] = '\0';
|
|
|
|
pTab->zColAff = zColAff;
|
|
}
|
|
|
|
sqlite3VdbeChangeP4(v, -1, pTab->zColAff, P4_TRANSIENT);
|
|
}
|
|
|
|
/*
|
|
** Return non-zero if the table pTab in database iDb or any of its indices
|
|
** have been opened at any point in the VDBE program beginning at location
|
|
** iStartAddr throught the end of the program. This is used to see if
|
|
** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
|
|
** run without using temporary table for the results of the SELECT.
|
|
*/
|
|
static int readsTable(Parse *p, int iStartAddr, int iDb, Table *pTab){
|
|
Vdbe *v = sqlite3GetVdbe(p);
|
|
int i;
|
|
int iEnd = sqlite3VdbeCurrentAddr(v);
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
|
|
#endif
|
|
|
|
for(i=iStartAddr; i<iEnd; i++){
|
|
VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
|
|
assert( pOp!=0 );
|
|
if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
|
|
Index *pIndex;
|
|
int tnum = pOp->p2;
|
|
if( tnum==pTab->tnum ){
|
|
return 1;
|
|
}
|
|
for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
|
|
if( tnum==pIndex->tnum ){
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
|
|
assert( pOp->p4.pVtab!=0 );
|
|
assert( pOp->p4type==P4_VTAB );
|
|
return 1;
|
|
}
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
/*
|
|
** Locate or create an AutoincInfo structure associated with table pTab
|
|
** which is in database iDb. Return the register number for the register
|
|
** that holds the maximum rowid.
|
|
**
|
|
** There is at most one AutoincInfo structure per table even if the
|
|
** same table is autoincremented multiple times due to inserts within
|
|
** triggers. A new AutoincInfo structure is created if this is the
|
|
** first use of table pTab. On 2nd and subsequent uses, the original
|
|
** AutoincInfo structure is used.
|
|
**
|
|
** Three memory locations are allocated:
|
|
**
|
|
** (1) Register to hold the name of the pTab table.
|
|
** (2) Register to hold the maximum ROWID of pTab.
|
|
** (3) Register to hold the rowid in sqlite_sequence of pTab
|
|
**
|
|
** The 2nd register is the one that is returned. That is all the
|
|
** insert routine needs to know about.
|
|
*/
|
|
static int autoIncBegin(
|
|
Parse *pParse, /* Parsing context */
|
|
int iDb, /* Index of the database holding pTab */
|
|
Table *pTab /* The table we are writing to */
|
|
){
|
|
int memId = 0; /* Register holding maximum rowid */
|
|
if( pTab->tabFlags & TF_Autoincrement ){
|
|
Parse *pToplevel = sqlite3ParseToplevel(pParse);
|
|
AutoincInfo *pInfo;
|
|
|
|
pInfo = pToplevel->pAinc;
|
|
while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
|
|
if( pInfo==0 ){
|
|
pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo));
|
|
if( pInfo==0 ) return 0;
|
|
pInfo->pNext = pToplevel->pAinc;
|
|
pToplevel->pAinc = pInfo;
|
|
pInfo->pTab = pTab;
|
|
pInfo->iDb = iDb;
|
|
pToplevel->nMem++; /* Register to hold name of table */
|
|
pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */
|
|
pToplevel->nMem++; /* Rowid in sqlite_sequence */
|
|
}
|
|
memId = pInfo->regCtr;
|
|
}
|
|
return memId;
|
|
}
|
|
|
|
/*
|
|
** This routine generates code that will initialize all of the
|
|
** register used by the autoincrement tracker.
|
|
*/
|
|
void sqlite3AutoincrementBegin(Parse *pParse){
|
|
AutoincInfo *p; /* Information about an AUTOINCREMENT */
|
|
sqlite3 *db = pParse->db; /* The database connection */
|
|
Db *pDb; /* Database only autoinc table */
|
|
int memId; /* Register holding max rowid */
|
|
int addr; /* A VDBE address */
|
|
Vdbe *v = pParse->pVdbe; /* VDBE under construction */
|
|
|
|
/* This routine is never called during trigger-generation. It is
|
|
** only called from the top-level */
|
|
assert( pParse->pTriggerTab==0 );
|
|
assert( pParse==sqlite3ParseToplevel(pParse) );
|
|
|
|
assert( v ); /* We failed long ago if this is not so */
|
|
for(p = pParse->pAinc; p; p = p->pNext){
|
|
pDb = &db->aDb[p->iDb];
|
|
memId = p->regCtr;
|
|
assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
|
|
sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
|
|
sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1);
|
|
addr = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0);
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9);
|
|
sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId);
|
|
sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
|
|
sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
|
|
sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
|
|
sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId);
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
|
|
sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
|
|
sqlite3VdbeAddOp0(v, OP_Close);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Update the maximum rowid for an autoincrement calculation.
|
|
**
|
|
** This routine should be called when the top of the stack holds a
|
|
** new rowid that is about to be inserted. If that new rowid is
|
|
** larger than the maximum rowid in the memId memory cell, then the
|
|
** memory cell is updated. The stack is unchanged.
|
|
*/
|
|
static void autoIncStep(Parse *pParse, int memId, int regRowid){
|
|
if( memId>0 ){
|
|
sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine generates the code needed to write autoincrement
|
|
** maximum rowid values back into the sqlite_sequence register.
|
|
** Every statement that might do an INSERT into an autoincrement
|
|
** table (either directly or through triggers) needs to call this
|
|
** routine just before the "exit" code.
|
|
*/
|
|
void sqlite3AutoincrementEnd(Parse *pParse){
|
|
AutoincInfo *p;
|
|
Vdbe *v = pParse->pVdbe;
|
|
sqlite3 *db = pParse->db;
|
|
|
|
assert( v );
|
|
for(p = pParse->pAinc; p; p = p->pNext){
|
|
Db *pDb = &db->aDb[p->iDb];
|
|
int j1, j2, j3, j4, j5;
|
|
int iRec;
|
|
int memId = p->regCtr;
|
|
|
|
iRec = sqlite3GetTempReg(pParse);
|
|
assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
|
|
sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
|
|
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
|
|
j2 = sqlite3VdbeAddOp0(v, OP_Rewind);
|
|
j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec);
|
|
j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec);
|
|
sqlite3VdbeAddOp2(v, OP_Next, 0, j3);
|
|
sqlite3VdbeJumpHere(v, j2);
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1);
|
|
j5 = sqlite3VdbeAddOp0(v, OP_Goto);
|
|
sqlite3VdbeJumpHere(v, j4);
|
|
sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
|
|
sqlite3VdbeJumpHere(v, j1);
|
|
sqlite3VdbeJumpHere(v, j5);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
|
sqlite3VdbeAddOp0(v, OP_Close);
|
|
sqlite3ReleaseTempReg(pParse, iRec);
|
|
}
|
|
}
|
|
#else
|
|
/*
|
|
** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
|
|
** above are all no-ops
|
|
*/
|
|
# define autoIncBegin(A,B,C) (0)
|
|
# define autoIncStep(A,B,C)
|
|
#endif /* SQLITE_OMIT_AUTOINCREMENT */
|
|
|
|
|
|
/*
|
|
** Generate code for a co-routine that will evaluate a subquery one
|
|
** row at a time.
|
|
**
|
|
** The pSelect parameter is the subquery that the co-routine will evaluation.
|
|
** Information about the location of co-routine and the registers it will use
|
|
** is returned by filling in the pDest object.
|
|
**
|
|
** Registers are allocated as follows:
|
|
**
|
|
** pDest->iSDParm The register holding the next entry-point of the
|
|
** co-routine. Run the co-routine to its next breakpoint
|
|
** by calling "OP_Yield $X" where $X is pDest->iSDParm.
|
|
**
|
|
** pDest->iSDParm+1 The register holding the "completed" flag for the
|
|
** co-routine. This register is 0 if the previous Yield
|
|
** generated a new result row, or 1 if the subquery
|
|
** has completed. If the Yield is called again
|
|
** after this register becomes 1, then the VDBE will
|
|
** halt with an SQLITE_INTERNAL error.
|
|
**
|
|
** pDest->iSdst First result register.
|
|
**
|
|
** pDest->nSdst Number of result registers.
|
|
**
|
|
** This routine handles all of the register allocation and fills in the
|
|
** pDest structure appropriately.
|
|
**
|
|
** Here is a schematic of the generated code assuming that X is the
|
|
** co-routine entry-point register reg[pDest->iSDParm], that EOF is the
|
|
** completed flag reg[pDest->iSDParm+1], and R and S are the range of
|
|
** registers that hold the result set, reg[pDest->iSdst] through
|
|
** reg[pDest->iSdst+pDest->nSdst-1]:
|
|
**
|
|
** X <- A
|
|
** EOF <- 0
|
|
** goto B
|
|
** A: setup for the SELECT
|
|
** loop rows in the SELECT
|
|
** load results into registers R..S
|
|
** yield X
|
|
** end loop
|
|
** cleanup after the SELECT
|
|
** EOF <- 1
|
|
** yield X
|
|
** halt-error
|
|
** B:
|
|
**
|
|
** To use this subroutine, the caller generates code as follows:
|
|
**
|
|
** [ Co-routine generated by this subroutine, shown above ]
|
|
** S: yield X
|
|
** if EOF goto E
|
|
** if skip this row, goto C
|
|
** if terminate loop, goto E
|
|
** deal with this row
|
|
** C: goto S
|
|
** E:
|
|
*/
|
|
int sqlite3CodeCoroutine(Parse *pParse, Select *pSelect, SelectDest *pDest){
|
|
int regYield; /* Register holding co-routine entry-point */
|
|
int regEof; /* Register holding co-routine completion flag */
|
|
int addrTop; /* Top of the co-routine */
|
|
int j1; /* Jump instruction */
|
|
int rc; /* Result code */
|
|
Vdbe *v; /* VDBE under construction */
|
|
|
|
regYield = ++pParse->nMem;
|
|
regEof = ++pParse->nMem;
|
|
v = sqlite3GetVdbe(pParse);
|
|
addrTop = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, addrTop+2, regYield); /* X <- A */
|
|
VdbeComment((v, "Co-routine entry point"));
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */
|
|
VdbeComment((v, "Co-routine completion flag"));
|
|
sqlite3SelectDestInit(pDest, SRT_Coroutine, regYield);
|
|
j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
|
|
rc = sqlite3Select(pParse, pSelect, pDest);
|
|
assert( pParse->nErr==0 || rc );
|
|
if( pParse->db->mallocFailed && rc==SQLITE_OK ) rc = SQLITE_NOMEM;
|
|
if( rc ) return rc;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */
|
|
sqlite3VdbeAddOp1(v, OP_Yield, regYield); /* yield X */
|
|
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
|
|
VdbeComment((v, "End of coroutine"));
|
|
sqlite3VdbeJumpHere(v, j1); /* label B: */
|
|
return rc;
|
|
}
|
|
|
|
|
|
|
|
/* Forward declaration */
|
|
static int xferOptimization(
|
|
Parse *pParse, /* Parser context */
|
|
Table *pDest, /* The table we are inserting into */
|
|
Select *pSelect, /* A SELECT statement to use as the data source */
|
|
int onError, /* How to handle constraint errors */
|
|
int iDbDest /* The database of pDest */
|
|
);
|
|
|
|
/*
|
|
** This routine is called to handle SQL of the following forms:
|
|
**
|
|
** insert into TABLE (IDLIST) values(EXPRLIST)
|
|
** insert into TABLE (IDLIST) select
|
|
**
|
|
** The IDLIST following the table name is always optional. If omitted,
|
|
** then a list of all columns for the table is substituted. The IDLIST
|
|
** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted.
|
|
**
|
|
** The pList parameter holds EXPRLIST in the first form of the INSERT
|
|
** statement above, and pSelect is NULL. For the second form, pList is
|
|
** NULL and pSelect is a pointer to the select statement used to generate
|
|
** data for the insert.
|
|
**
|
|
** The code generated follows one of four templates. For a simple
|
|
** insert with data coming from a VALUES clause, the code executes
|
|
** once straight down through. Pseudo-code follows (we call this
|
|
** the "1st template"):
|
|
**
|
|
** open write cursor to <table> and its indices
|
|
** put VALUES clause expressions into registers
|
|
** write the resulting record into <table>
|
|
** cleanup
|
|
**
|
|
** The three remaining templates assume the statement is of the form
|
|
**
|
|
** INSERT INTO <table> SELECT ...
|
|
**
|
|
** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
|
|
** in other words if the SELECT pulls all columns from a single table
|
|
** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
|
|
** if <table2> and <table1> are distinct tables but have identical
|
|
** schemas, including all the same indices, then a special optimization
|
|
** is invoked that copies raw records from <table2> over to <table1>.
|
|
** See the xferOptimization() function for the implementation of this
|
|
** template. This is the 2nd template.
|
|
**
|
|
** open a write cursor to <table>
|
|
** open read cursor on <table2>
|
|
** transfer all records in <table2> over to <table>
|
|
** close cursors
|
|
** foreach index on <table>
|
|
** open a write cursor on the <table> index
|
|
** open a read cursor on the corresponding <table2> index
|
|
** transfer all records from the read to the write cursors
|
|
** close cursors
|
|
** end foreach
|
|
**
|
|
** The 3rd template is for when the second template does not apply
|
|
** and the SELECT clause does not read from <table> at any time.
|
|
** The generated code follows this template:
|
|
**
|
|
** EOF <- 0
|
|
** X <- A
|
|
** goto B
|
|
** A: setup for the SELECT
|
|
** loop over the rows in the SELECT
|
|
** load values into registers R..R+n
|
|
** yield X
|
|
** end loop
|
|
** cleanup after the SELECT
|
|
** EOF <- 1
|
|
** yield X
|
|
** goto A
|
|
** B: open write cursor to <table> and its indices
|
|
** C: yield X
|
|
** if EOF goto D
|
|
** insert the select result into <table> from R..R+n
|
|
** goto C
|
|
** D: cleanup
|
|
**
|
|
** The 4th template is used if the insert statement takes its
|
|
** values from a SELECT but the data is being inserted into a table
|
|
** that is also read as part of the SELECT. In the third form,
|
|
** we have to use a intermediate table to store the results of
|
|
** the select. The template is like this:
|
|
**
|
|
** EOF <- 0
|
|
** X <- A
|
|
** goto B
|
|
** A: setup for the SELECT
|
|
** loop over the tables in the SELECT
|
|
** load value into register R..R+n
|
|
** yield X
|
|
** end loop
|
|
** cleanup after the SELECT
|
|
** EOF <- 1
|
|
** yield X
|
|
** halt-error
|
|
** B: open temp table
|
|
** L: yield X
|
|
** if EOF goto M
|
|
** insert row from R..R+n into temp table
|
|
** goto L
|
|
** M: open write cursor to <table> and its indices
|
|
** rewind temp table
|
|
** C: loop over rows of intermediate table
|
|
** transfer values form intermediate table into <table>
|
|
** end loop
|
|
** D: cleanup
|
|
*/
|
|
void sqlite3Insert(
|
|
Parse *pParse, /* Parser context */
|
|
SrcList *pTabList, /* Name of table into which we are inserting */
|
|
Select *pSelect, /* A SELECT statement to use as the data source */
|
|
IdList *pColumn, /* Column names corresponding to IDLIST. */
|
|
int onError /* How to handle constraint errors */
|
|
){
|
|
sqlite3 *db; /* The main database structure */
|
|
Table *pTab; /* The table to insert into. aka TABLE */
|
|
char *zTab; /* Name of the table into which we are inserting */
|
|
const char *zDb; /* Name of the database holding this table */
|
|
int i, j, idx; /* Loop counters */
|
|
Vdbe *v; /* Generate code into this virtual machine */
|
|
Index *pIdx; /* For looping over indices of the table */
|
|
int nColumn; /* Number of columns in the data */
|
|
int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
|
|
int iDataCur = 0; /* VDBE cursor that is the main data repository */
|
|
int iIdxCur = 0; /* First index cursor */
|
|
int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
|
|
int endOfLoop; /* Label for the end of the insertion loop */
|
|
int useTempTable = 0; /* Store SELECT results in intermediate table */
|
|
int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
|
|
int addrInsTop = 0; /* Jump to label "D" */
|
|
int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
|
|
int addrSelect = 0; /* Address of coroutine that implements the SELECT */
|
|
SelectDest dest; /* Destination for SELECT on rhs of INSERT */
|
|
int iDb; /* Index of database holding TABLE */
|
|
Db *pDb; /* The database containing table being inserted into */
|
|
int appendFlag = 0; /* True if the insert is likely to be an append */
|
|
int withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */
|
|
ExprList *pList = 0; /* List of VALUES() to be inserted */
|
|
|
|
/* Register allocations */
|
|
int regFromSelect = 0;/* Base register for data coming from SELECT */
|
|
int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
|
|
int regRowCount = 0; /* Memory cell used for the row counter */
|
|
int regIns; /* Block of regs holding rowid+data being inserted */
|
|
int regRowid; /* registers holding insert rowid */
|
|
int regData; /* register holding first column to insert */
|
|
int regEof = 0; /* Register recording end of SELECT data */
|
|
int *aRegIdx = 0; /* One register allocated to each index */
|
|
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
int isView; /* True if attempting to insert into a view */
|
|
Trigger *pTrigger; /* List of triggers on pTab, if required */
|
|
int tmask; /* Mask of trigger times */
|
|
#endif
|
|
|
|
db = pParse->db;
|
|
memset(&dest, 0, sizeof(dest));
|
|
if( pParse->nErr || db->mallocFailed ){
|
|
goto insert_cleanup;
|
|
}
|
|
|
|
/* If the Select object is really just a simple VALUES() list with a
|
|
** single row values (the common case) then keep that one row of values
|
|
** and go ahead and discard the Select object
|
|
*/
|
|
if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
|
|
pList = pSelect->pEList;
|
|
pSelect->pEList = 0;
|
|
sqlite3SelectDelete(db, pSelect);
|
|
pSelect = 0;
|
|
}
|
|
|
|
/* Locate the table into which we will be inserting new information.
|
|
*/
|
|
assert( pTabList->nSrc==1 );
|
|
zTab = pTabList->a[0].zName;
|
|
if( NEVER(zTab==0) ) goto insert_cleanup;
|
|
pTab = sqlite3SrcListLookup(pParse, pTabList);
|
|
if( pTab==0 ){
|
|
goto insert_cleanup;
|
|
}
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
assert( iDb<db->nDb );
|
|
pDb = &db->aDb[iDb];
|
|
zDb = pDb->zName;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
|
|
goto insert_cleanup;
|
|
}
|
|
withoutRowid = !HasRowid(pTab);
|
|
|
|
/* Figure out if we have any triggers and if the table being
|
|
** inserted into is a view
|
|
*/
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
|
|
isView = pTab->pSelect!=0;
|
|
#else
|
|
# define pTrigger 0
|
|
# define tmask 0
|
|
# define isView 0
|
|
#endif
|
|
#ifdef SQLITE_OMIT_VIEW
|
|
# undef isView
|
|
# define isView 0
|
|
#endif
|
|
assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
|
|
|
|
/* If pTab is really a view, make sure it has been initialized.
|
|
** ViewGetColumnNames() is a no-op if pTab is not a view.
|
|
*/
|
|
if( sqlite3ViewGetColumnNames(pParse, pTab) ){
|
|
goto insert_cleanup;
|
|
}
|
|
|
|
/* Cannot insert into a read-only table.
|
|
*/
|
|
if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
|
|
goto insert_cleanup;
|
|
}
|
|
|
|
/* Allocate a VDBE
|
|
*/
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) goto insert_cleanup;
|
|
if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
|
|
sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
|
|
|
|
#ifndef SQLITE_OMIT_XFER_OPT
|
|
/* If the statement is of the form
|
|
**
|
|
** INSERT INTO <table1> SELECT * FROM <table2>;
|
|
**
|
|
** Then special optimizations can be applied that make the transfer
|
|
** very fast and which reduce fragmentation of indices.
|
|
**
|
|
** This is the 2nd template.
|
|
*/
|
|
if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
|
|
assert( !pTrigger );
|
|
assert( pList==0 );
|
|
goto insert_end;
|
|
}
|
|
#endif /* SQLITE_OMIT_XFER_OPT */
|
|
|
|
/* If this is an AUTOINCREMENT table, look up the sequence number in the
|
|
** sqlite_sequence table and store it in memory cell regAutoinc.
|
|
*/
|
|
regAutoinc = autoIncBegin(pParse, iDb, pTab);
|
|
|
|
/* Figure out how many columns of data are supplied. If the data
|
|
** is coming from a SELECT statement, then generate a co-routine that
|
|
** produces a single row of the SELECT on each invocation. The
|
|
** co-routine is the common header to the 3rd and 4th templates.
|
|
*/
|
|
if( pSelect ){
|
|
/* Data is coming from a SELECT. Generate a co-routine to run the SELECT */
|
|
int rc = sqlite3CodeCoroutine(pParse, pSelect, &dest);
|
|
if( rc ) goto insert_cleanup;
|
|
|
|
regEof = dest.iSDParm + 1;
|
|
regFromSelect = dest.iSdst;
|
|
assert( pSelect->pEList );
|
|
nColumn = pSelect->pEList->nExpr;
|
|
assert( dest.nSdst==nColumn );
|
|
|
|
/* Set useTempTable to TRUE if the result of the SELECT statement
|
|
** should be written into a temporary table (template 4). Set to
|
|
** FALSE if each output row of the SELECT can be written directly into
|
|
** the destination table (template 3).
|
|
**
|
|
** A temp table must be used if the table being updated is also one
|
|
** of the tables being read by the SELECT statement. Also use a
|
|
** temp table in the case of row triggers.
|
|
*/
|
|
if( pTrigger || readsTable(pParse, addrSelect, iDb, pTab) ){
|
|
useTempTable = 1;
|
|
}
|
|
|
|
if( useTempTable ){
|
|
/* Invoke the coroutine to extract information from the SELECT
|
|
** and add it to a transient table srcTab. The code generated
|
|
** here is from the 4th template:
|
|
**
|
|
** B: open temp table
|
|
** L: yield X
|
|
** if EOF goto M
|
|
** insert row from R..R+n into temp table
|
|
** goto L
|
|
** M: ...
|
|
*/
|
|
int regRec; /* Register to hold packed record */
|
|
int regTempRowid; /* Register to hold temp table ROWID */
|
|
int addrTop; /* Label "L" */
|
|
int addrIf; /* Address of jump to M */
|
|
|
|
srcTab = pParse->nTab++;
|
|
regRec = sqlite3GetTempReg(pParse);
|
|
regTempRowid = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
|
|
addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
|
|
addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
|
|
sqlite3VdbeJumpHere(v, addrIf);
|
|
sqlite3ReleaseTempReg(pParse, regRec);
|
|
sqlite3ReleaseTempReg(pParse, regTempRowid);
|
|
}
|
|
}else{
|
|
/* This is the case if the data for the INSERT is coming from a VALUES
|
|
** clause
|
|
*/
|
|
NameContext sNC;
|
|
memset(&sNC, 0, sizeof(sNC));
|
|
sNC.pParse = pParse;
|
|
srcTab = -1;
|
|
assert( useTempTable==0 );
|
|
nColumn = pList ? pList->nExpr : 0;
|
|
for(i=0; i<nColumn; i++){
|
|
if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
|
|
goto insert_cleanup;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Make sure the number of columns in the source data matches the number
|
|
** of columns to be inserted into the table.
|
|
*/
|
|
if( IsVirtual(pTab) ){
|
|
for(i=0; i<pTab->nCol; i++){
|
|
nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
|
|
}
|
|
}
|
|
if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"table %S has %d columns but %d values were supplied",
|
|
pTabList, 0, pTab->nCol-nHidden, nColumn);
|
|
goto insert_cleanup;
|
|
}
|
|
if( pColumn!=0 && nColumn!=pColumn->nId ){
|
|
sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
|
|
goto insert_cleanup;
|
|
}
|
|
|
|
/* If the INSERT statement included an IDLIST term, then make sure
|
|
** all elements of the IDLIST really are columns of the table and
|
|
** remember the column indices.
|
|
**
|
|
** If the table has an INTEGER PRIMARY KEY column and that column
|
|
** is named in the IDLIST, then record in the ipkColumn variable
|
|
** the index into IDLIST of the primary key column. ipkColumn is
|
|
** the index of the primary key as it appears in IDLIST, not as
|
|
** is appears in the original table. (The index of the INTEGER
|
|
** PRIMARY KEY in the original table is pTab->iPKey.)
|
|
*/
|
|
if( pColumn ){
|
|
for(i=0; i<pColumn->nId; i++){
|
|
pColumn->a[i].idx = -1;
|
|
}
|
|
for(i=0; i<pColumn->nId; i++){
|
|
for(j=0; j<pTab->nCol; j++){
|
|
if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
|
|
pColumn->a[i].idx = j;
|
|
if( j==pTab->iPKey ){
|
|
ipkColumn = i; assert( !withoutRowid );
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if( j>=pTab->nCol ){
|
|
if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
|
|
ipkColumn = i;
|
|
}else{
|
|
sqlite3ErrorMsg(pParse, "table %S has no column named %s",
|
|
pTabList, 0, pColumn->a[i].zName);
|
|
pParse->checkSchema = 1;
|
|
goto insert_cleanup;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If there is no IDLIST term but the table has an integer primary
|
|
** key, the set the ipkColumn variable to the integer primary key
|
|
** column index in the original table definition.
|
|
*/
|
|
if( pColumn==0 && nColumn>0 ){
|
|
ipkColumn = pTab->iPKey;
|
|
}
|
|
|
|
/* Initialize the count of rows to be inserted
|
|
*/
|
|
if( db->flags & SQLITE_CountRows ){
|
|
regRowCount = ++pParse->nMem;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
|
|
}
|
|
|
|
/* If this is not a view, open the table and and all indices */
|
|
if( !isView ){
|
|
int nIdx;
|
|
nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, -1, 0,
|
|
&iDataCur, &iIdxCur);
|
|
aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
|
|
if( aRegIdx==0 ){
|
|
goto insert_cleanup;
|
|
}
|
|
for(i=0; i<nIdx; i++){
|
|
aRegIdx[i] = ++pParse->nMem;
|
|
}
|
|
}
|
|
|
|
/* This is the top of the main insertion loop */
|
|
if( useTempTable ){
|
|
/* This block codes the top of loop only. The complete loop is the
|
|
** following pseudocode (template 4):
|
|
**
|
|
** rewind temp table
|
|
** C: loop over rows of intermediate table
|
|
** transfer values form intermediate table into <table>
|
|
** end loop
|
|
** D: ...
|
|
*/
|
|
addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab);
|
|
addrCont = sqlite3VdbeCurrentAddr(v);
|
|
}else if( pSelect ){
|
|
/* This block codes the top of loop only. The complete loop is the
|
|
** following pseudocode (template 3):
|
|
**
|
|
** C: yield X
|
|
** if EOF goto D
|
|
** insert the select result into <table> from R..R+n
|
|
** goto C
|
|
** D: ...
|
|
*/
|
|
addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
|
|
addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof);
|
|
}
|
|
|
|
/* Allocate registers for holding the rowid of the new row,
|
|
** the content of the new row, and the assemblied row record.
|
|
*/
|
|
regRowid = regIns = pParse->nMem+1;
|
|
pParse->nMem += pTab->nCol + 1;
|
|
if( IsVirtual(pTab) ){
|
|
regRowid++;
|
|
pParse->nMem++;
|
|
}
|
|
regData = regRowid+1;
|
|
|
|
/* Run the BEFORE and INSTEAD OF triggers, if there are any
|
|
*/
|
|
endOfLoop = sqlite3VdbeMakeLabel(v);
|
|
if( tmask & TRIGGER_BEFORE ){
|
|
int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
|
|
|
|
/* build the NEW.* reference row. Note that if there is an INTEGER
|
|
** PRIMARY KEY into which a NULL is being inserted, that NULL will be
|
|
** translated into a unique ID for the row. But on a BEFORE trigger,
|
|
** we do not know what the unique ID will be (because the insert has
|
|
** not happened yet) so we substitute a rowid of -1
|
|
*/
|
|
if( ipkColumn<0 ){
|
|
sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
|
|
}else{
|
|
int j1;
|
|
assert( !withoutRowid );
|
|
if( useTempTable ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
|
|
}else{
|
|
assert( pSelect==0 ); /* Otherwise useTempTable is true */
|
|
sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
|
|
}
|
|
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
|
|
sqlite3VdbeJumpHere(v, j1);
|
|
sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols);
|
|
}
|
|
|
|
/* Cannot have triggers on a virtual table. If it were possible,
|
|
** this block would have to account for hidden column.
|
|
*/
|
|
assert( !IsVirtual(pTab) );
|
|
|
|
/* Create the new column data
|
|
*/
|
|
for(i=0; i<pTab->nCol; i++){
|
|
if( pColumn==0 ){
|
|
j = i;
|
|
}else{
|
|
for(j=0; j<pColumn->nId; j++){
|
|
if( pColumn->a[j].idx==i ) break;
|
|
}
|
|
}
|
|
if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){
|
|
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
|
|
}else if( useTempTable ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1);
|
|
}else{
|
|
assert( pSelect==0 ); /* Otherwise useTempTable is true */
|
|
sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
|
|
}
|
|
}
|
|
|
|
/* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
|
|
** do not attempt any conversions before assembling the record.
|
|
** If this is a real table, attempt conversions as required by the
|
|
** table column affinities.
|
|
*/
|
|
if( !isView ){
|
|
sqlite3VdbeAddOp2(v, OP_Affinity, regCols+1, pTab->nCol);
|
|
sqlite3TableAffinityStr(v, pTab);
|
|
}
|
|
|
|
/* Fire BEFORE or INSTEAD OF triggers */
|
|
sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
|
|
pTab, regCols-pTab->nCol-1, onError, endOfLoop);
|
|
|
|
sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
|
|
}
|
|
|
|
/* Compute the content of the next row to insert into a range of
|
|
** registers beginning at regIns.
|
|
*/
|
|
if( !isView ){
|
|
if( IsVirtual(pTab) ){
|
|
/* The row that the VUpdate opcode will delete: none */
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
|
|
}
|
|
if( ipkColumn>=0 ){
|
|
if( useTempTable ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
|
|
}else if( pSelect ){
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+ipkColumn, regRowid);
|
|
}else{
|
|
VdbeOp *pOp;
|
|
sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
|
|
pOp = sqlite3VdbeGetOp(v, -1);
|
|
if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
|
|
appendFlag = 1;
|
|
pOp->opcode = OP_NewRowid;
|
|
pOp->p1 = iDataCur;
|
|
pOp->p2 = regRowid;
|
|
pOp->p3 = regAutoinc;
|
|
}
|
|
}
|
|
/* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
|
|
** to generate a unique primary key value.
|
|
*/
|
|
if( !appendFlag ){
|
|
int j1;
|
|
if( !IsVirtual(pTab) ){
|
|
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
|
|
sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
|
|
sqlite3VdbeJumpHere(v, j1);
|
|
}else{
|
|
j1 = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2);
|
|
}
|
|
sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
|
|
}
|
|
}else if( IsVirtual(pTab) || withoutRowid ){
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
|
|
}else{
|
|
sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
|
|
appendFlag = 1;
|
|
}
|
|
autoIncStep(pParse, regAutoinc, regRowid);
|
|
|
|
/* Compute data for all columns of the new entry, beginning
|
|
** with the first column.
|
|
*/
|
|
nHidden = 0;
|
|
for(i=0; i<pTab->nCol; i++){
|
|
int iRegStore = regRowid+1+i;
|
|
if( i==pTab->iPKey ){
|
|
/* The value of the INTEGER PRIMARY KEY column is always a NULL.
|
|
** Whenever this column is read, the rowid will be substituted
|
|
** in its place. Hence, fill this column with a NULL to avoid
|
|
** taking up data space with information that will never be used. */
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
|
|
continue;
|
|
}
|
|
if( pColumn==0 ){
|
|
if( IsHiddenColumn(&pTab->aCol[i]) ){
|
|
assert( IsVirtual(pTab) );
|
|
j = -1;
|
|
nHidden++;
|
|
}else{
|
|
j = i - nHidden;
|
|
}
|
|
}else{
|
|
for(j=0; j<pColumn->nId; j++){
|
|
if( pColumn->a[j].idx==i ) break;
|
|
}
|
|
}
|
|
if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
|
|
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
|
|
}else if( useTempTable ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
|
|
}else if( pSelect ){
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
|
|
}else{
|
|
sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
|
|
}
|
|
}
|
|
|
|
/* Generate code to check constraints and generate index keys and
|
|
** do the insertion.
|
|
*/
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( IsVirtual(pTab) ){
|
|
const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
|
|
sqlite3VtabMakeWritable(pParse, pTab);
|
|
sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
|
|
sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
|
|
sqlite3MayAbort(pParse);
|
|
}else
|
|
#endif
|
|
{
|
|
int isReplace; /* Set to true if constraints may cause a replace */
|
|
sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
|
|
regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace
|
|
);
|
|
sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
|
|
sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
|
|
regIns, aRegIdx, 0, appendFlag, isReplace==0);
|
|
}
|
|
}
|
|
|
|
/* Update the count of rows that are inserted
|
|
*/
|
|
if( (db->flags & SQLITE_CountRows)!=0 ){
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
|
|
}
|
|
|
|
if( pTrigger ){
|
|
/* Code AFTER triggers */
|
|
sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
|
|
pTab, regData-2-pTab->nCol, onError, endOfLoop);
|
|
}
|
|
|
|
/* The bottom of the main insertion loop, if the data source
|
|
** is a SELECT statement.
|
|
*/
|
|
sqlite3VdbeResolveLabel(v, endOfLoop);
|
|
if( useTempTable ){
|
|
sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont);
|
|
sqlite3VdbeJumpHere(v, addrInsTop);
|
|
sqlite3VdbeAddOp1(v, OP_Close, srcTab);
|
|
}else if( pSelect ){
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
|
|
sqlite3VdbeJumpHere(v, addrInsTop);
|
|
}
|
|
|
|
if( !IsVirtual(pTab) && !isView ){
|
|
/* Close all tables opened */
|
|
if( iDataCur<iIdxCur ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur);
|
|
for(idx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
|
|
sqlite3VdbeAddOp1(v, OP_Close, idx+iIdxCur);
|
|
}
|
|
}
|
|
|
|
insert_end:
|
|
/* Update the sqlite_sequence table by storing the content of the
|
|
** maximum rowid counter values recorded while inserting into
|
|
** autoincrement tables.
|
|
*/
|
|
if( pParse->nested==0 && pParse->pTriggerTab==0 ){
|
|
sqlite3AutoincrementEnd(pParse);
|
|
}
|
|
|
|
/*
|
|
** Return the number of rows inserted. If this routine is
|
|
** generating code because of a call to sqlite3NestedParse(), do not
|
|
** invoke the callback function.
|
|
*/
|
|
if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
|
|
sqlite3VdbeSetNumCols(v, 1);
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
|
|
}
|
|
|
|
insert_cleanup:
|
|
sqlite3SrcListDelete(db, pTabList);
|
|
sqlite3ExprListDelete(db, pList);
|
|
sqlite3SelectDelete(db, pSelect);
|
|
sqlite3IdListDelete(db, pColumn);
|
|
sqlite3DbFree(db, aRegIdx);
|
|
}
|
|
|
|
/* Make sure "isView" and other macros defined above are undefined. Otherwise
|
|
** thely may interfere with compilation of other functions in this file
|
|
** (or in another file, if this file becomes part of the amalgamation). */
|
|
#ifdef isView
|
|
#undef isView
|
|
#endif
|
|
#ifdef pTrigger
|
|
#undef pTrigger
|
|
#endif
|
|
#ifdef tmask
|
|
#undef tmask
|
|
#endif
|
|
|
|
/*
|
|
** Generate code to do constraint checks prior to an INSERT or an UPDATE
|
|
** on table pTab.
|
|
**
|
|
** The regNewData parameter is the first register in a range that contains
|
|
** the data to be inserted or the data after the update. There will be
|
|
** pTab->nCol+1 registers in this range. The first register (the one
|
|
** that regNewData points to) will contain the new rowid, or NULL in the
|
|
** case of a WITHOUT ROWID table. The second register in the range will
|
|
** contain the content of the first table column. The third register will
|
|
** contain the content of the second table column. And so forth.
|
|
**
|
|
** The regOldData parameter is similar to regNewData except that it contains
|
|
** the data prior to an UPDATE rather than afterwards. regOldData is zero
|
|
** for an INSERT. This routine can distinguish between UPDATE and INSERT by
|
|
** checking regOldData for zero.
|
|
**
|
|
** For an UPDATE, the pkChng boolean is true if the true primary key (the
|
|
** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
|
|
** might be modified by the UPDATE. If pkChng is false, then the key of
|
|
** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
|
|
**
|
|
** For an INSERT, the pkChng boolean indicates whether or not the rowid
|
|
** was explicitly specified as part of the INSERT statement. If pkChng
|
|
** is zero, it means that the either rowid is computed automatically or
|
|
** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT,
|
|
** pkChng will only be true if the INSERT statement provides an integer
|
|
** value for either the rowid column or its INTEGER PRIMARY KEY alias.
|
|
**
|
|
** The code generated by this routine will store new index entries into
|
|
** registers identified by aRegIdx[]. No index entry is created for
|
|
** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
|
|
** the same as the order of indices on the linked list of indices
|
|
** at pTab->pIndex.
|
|
**
|
|
** The caller must have already opened writeable cursors on the main
|
|
** table and all applicable indices (that is to say, all indices for which
|
|
** aRegIdx[] is not zero). iDataCur is the cursor for the main table when
|
|
** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
|
|
** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor
|
|
** for the first index in the pTab->pIndex list. Cursors for other indices
|
|
** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
|
|
**
|
|
** This routine also generates code to check constraints. NOT NULL,
|
|
** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
|
|
** then the appropriate action is performed. There are five possible
|
|
** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
|
|
**
|
|
** Constraint type Action What Happens
|
|
** --------------- ---------- ----------------------------------------
|
|
** any ROLLBACK The current transaction is rolled back and
|
|
** sqlite3_step() returns immediately with a
|
|
** return code of SQLITE_CONSTRAINT.
|
|
**
|
|
** any ABORT Back out changes from the current command
|
|
** only (do not do a complete rollback) then
|
|
** cause sqlite3_step() to return immediately
|
|
** with SQLITE_CONSTRAINT.
|
|
**
|
|
** any FAIL Sqlite3_step() returns immediately with a
|
|
** return code of SQLITE_CONSTRAINT. The
|
|
** transaction is not rolled back and any
|
|
** changes to prior rows are retained.
|
|
**
|
|
** any IGNORE The attempt in insert or update the current
|
|
** row is skipped, without throwing an error.
|
|
** Processing continues with the next row.
|
|
** (There is an immediate jump to ignoreDest.)
|
|
**
|
|
** NOT NULL REPLACE The NULL value is replace by the default
|
|
** value for that column. If the default value
|
|
** is NULL, the action is the same as ABORT.
|
|
**
|
|
** UNIQUE REPLACE The other row that conflicts with the row
|
|
** being inserted is removed.
|
|
**
|
|
** CHECK REPLACE Illegal. The results in an exception.
|
|
**
|
|
** Which action to take is determined by the overrideError parameter.
|
|
** Or if overrideError==OE_Default, then the pParse->onError parameter
|
|
** is used. Or if pParse->onError==OE_Default then the onError value
|
|
** for the constraint is used.
|
|
*/
|
|
void sqlite3GenerateConstraintChecks(
|
|
Parse *pParse, /* The parser context */
|
|
Table *pTab, /* The table being inserted or updated */
|
|
int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */
|
|
int iDataCur, /* Canonical data cursor (main table or PK index) */
|
|
int iIdxCur, /* First index cursor */
|
|
int regNewData, /* First register in a range holding values to insert */
|
|
int regOldData, /* Previous content. 0 for INSERTs */
|
|
u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */
|
|
u8 overrideError, /* Override onError to this if not OE_Default */
|
|
int ignoreDest, /* Jump to this label on an OE_Ignore resolution */
|
|
int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */
|
|
){
|
|
Vdbe *v; /* VDBE under constrution */
|
|
Index *pIdx; /* Pointer to one of the indices */
|
|
Index *pPk = 0; /* The PRIMARY KEY index */
|
|
sqlite3 *db; /* Database connection */
|
|
int i; /* loop counter */
|
|
int ix; /* Index loop counter */
|
|
int nCol; /* Number of columns */
|
|
int onError; /* Conflict resolution strategy */
|
|
int j1; /* Addresss of jump instruction */
|
|
int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
|
|
int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
|
|
int ipkTop = 0; /* Top of the rowid change constraint check */
|
|
int ipkBottom = 0; /* Bottom of the rowid change constraint check */
|
|
u8 isUpdate; /* True if this is an UPDATE operation */
|
|
int regRowid = -1; /* Register holding ROWID value */
|
|
|
|
isUpdate = regOldData!=0;
|
|
db = pParse->db;
|
|
v = sqlite3GetVdbe(pParse);
|
|
assert( v!=0 );
|
|
assert( pTab->pSelect==0 ); /* This table is not a VIEW */
|
|
nCol = pTab->nCol;
|
|
|
|
/* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
|
|
** normal rowid tables. nPkField is the number of key fields in the
|
|
** pPk index or 1 for a rowid table. In other words, nPkField is the
|
|
** number of fields in the true primary key of the table. */
|
|
if( HasRowid(pTab) ){
|
|
pPk = 0;
|
|
nPkField = 1;
|
|
}else{
|
|
pPk = sqlite3PrimaryKeyIndex(pTab);
|
|
nPkField = pPk->nKeyCol;
|
|
}
|
|
|
|
/* Record that this module has started */
|
|
VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
|
|
iDataCur, iIdxCur, regNewData, regOldData, pkChng));
|
|
|
|
/* Test all NOT NULL constraints.
|
|
*/
|
|
for(i=0; i<nCol; i++){
|
|
if( i==pTab->iPKey ){
|
|
continue;
|
|
}
|
|
onError = pTab->aCol[i].notNull;
|
|
if( onError==OE_None ) continue;
|
|
if( overrideError!=OE_Default ){
|
|
onError = overrideError;
|
|
}else if( onError==OE_Default ){
|
|
onError = OE_Abort;
|
|
}
|
|
if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
|
|
onError = OE_Abort;
|
|
}
|
|
assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
|
|
|| onError==OE_Ignore || onError==OE_Replace );
|
|
switch( onError ){
|
|
case OE_Abort:
|
|
sqlite3MayAbort(pParse);
|
|
/* Fall through */
|
|
case OE_Rollback:
|
|
case OE_Fail: {
|
|
char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
|
|
pTab->aCol[i].zName);
|
|
sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError,
|
|
regNewData+1+i, zMsg, P4_DYNAMIC);
|
|
sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
|
|
break;
|
|
}
|
|
case OE_Ignore: {
|
|
sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest);
|
|
break;
|
|
}
|
|
default: {
|
|
assert( onError==OE_Replace );
|
|
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i);
|
|
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i);
|
|
sqlite3VdbeJumpHere(v, j1);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Test all CHECK constraints
|
|
*/
|
|
#ifndef SQLITE_OMIT_CHECK
|
|
if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
|
|
ExprList *pCheck = pTab->pCheck;
|
|
pParse->ckBase = regNewData+1;
|
|
onError = overrideError!=OE_Default ? overrideError : OE_Abort;
|
|
for(i=0; i<pCheck->nExpr; i++){
|
|
int allOk = sqlite3VdbeMakeLabel(v);
|
|
sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL);
|
|
if( onError==OE_Ignore ){
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
|
|
}else{
|
|
char *zName = pCheck->a[i].zName;
|
|
if( zName==0 ) zName = pTab->zName;
|
|
if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
|
|
sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
|
|
onError, zName, P4_TRANSIENT,
|
|
P5_ConstraintCheck);
|
|
}
|
|
sqlite3VdbeResolveLabel(v, allOk);
|
|
}
|
|
}
|
|
#endif /* !defined(SQLITE_OMIT_CHECK) */
|
|
|
|
/* If rowid is changing, make sure the new rowid does not previously
|
|
** exist in the table.
|
|
*/
|
|
if( pkChng && pPk==0 ){
|
|
int addrRowidOk = sqlite3VdbeMakeLabel(v);
|
|
|
|
/* Figure out what action to take in case of a rowid collision */
|
|
onError = pTab->keyConf;
|
|
if( overrideError!=OE_Default ){
|
|
onError = overrideError;
|
|
}else if( onError==OE_Default ){
|
|
onError = OE_Abort;
|
|
}
|
|
|
|
if( isUpdate ){
|
|
/* pkChng!=0 does not mean that the rowid has change, only that
|
|
** it might have changed. Skip the conflict logic below if the rowid
|
|
** is unchanged. */
|
|
sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
|
|
}
|
|
|
|
/* If the response to a rowid conflict is REPLACE but the response
|
|
** to some other UNIQUE constraint is FAIL or IGNORE, then we need
|
|
** to defer the running of the rowid conflict checking until after
|
|
** the UNIQUE constraints have run.
|
|
*/
|
|
if( onError==OE_Replace && overrideError!=OE_Replace ){
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){
|
|
ipkTop = sqlite3VdbeAddOp0(v, OP_Goto);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check to see if the new rowid already exists in the table. Skip
|
|
** the following conflict logic if it does not. */
|
|
sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
|
|
|
|
/* Generate code that deals with a rowid collision */
|
|
switch( onError ){
|
|
default: {
|
|
onError = OE_Abort;
|
|
/* Fall thru into the next case */
|
|
}
|
|
case OE_Rollback:
|
|
case OE_Abort:
|
|
case OE_Fail: {
|
|
sqlite3RowidConstraint(pParse, onError, pTab);
|
|
break;
|
|
}
|
|
case OE_Replace: {
|
|
/* If there are DELETE triggers on this table and the
|
|
** recursive-triggers flag is set, call GenerateRowDelete() to
|
|
** remove the conflicting row from the table. This will fire
|
|
** the triggers and remove both the table and index b-tree entries.
|
|
**
|
|
** Otherwise, if there are no triggers or the recursive-triggers
|
|
** flag is not set, but the table has one or more indexes, call
|
|
** GenerateRowIndexDelete(). This removes the index b-tree entries
|
|
** only. The table b-tree entry will be replaced by the new entry
|
|
** when it is inserted.
|
|
**
|
|
** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
|
|
** also invoke MultiWrite() to indicate that this VDBE may require
|
|
** statement rollback (if the statement is aborted after the delete
|
|
** takes place). Earlier versions called sqlite3MultiWrite() regardless,
|
|
** but being more selective here allows statements like:
|
|
**
|
|
** REPLACE INTO t(rowid) VALUES($newrowid)
|
|
**
|
|
** to run without a statement journal if there are no indexes on the
|
|
** table.
|
|
*/
|
|
Trigger *pTrigger = 0;
|
|
if( db->flags&SQLITE_RecTriggers ){
|
|
pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
|
|
}
|
|
if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
|
|
sqlite3MultiWrite(pParse);
|
|
sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
|
|
regNewData, 1, 0, OE_Replace, 1);
|
|
}else if( pTab->pIndex ){
|
|
sqlite3MultiWrite(pParse);
|
|
sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, 0);
|
|
}
|
|
seenReplace = 1;
|
|
break;
|
|
}
|
|
case OE_Ignore: {
|
|
/*assert( seenReplace==0 );*/
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
|
|
break;
|
|
}
|
|
}
|
|
sqlite3VdbeResolveLabel(v, addrRowidOk);
|
|
if( ipkTop ){
|
|
ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
|
|
sqlite3VdbeJumpHere(v, ipkTop);
|
|
}
|
|
}
|
|
|
|
/* Test all UNIQUE constraints by creating entries for each UNIQUE
|
|
** index and making sure that duplicate entries do not already exist.
|
|
** Compute the revised record entries for indices as we go.
|
|
**
|
|
** This loop also handles the case of the PRIMARY KEY index for a
|
|
** WITHOUT ROWID table.
|
|
*/
|
|
for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
|
|
int regIdx; /* Range of registers hold conent for pIdx */
|
|
int regR; /* Range of registers holding conflicting PK */
|
|
int iThisCur; /* Cursor for this UNIQUE index */
|
|
int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */
|
|
|
|
if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */
|
|
iThisCur = iIdxCur+ix;
|
|
addrUniqueOk = sqlite3VdbeMakeLabel(v);
|
|
|
|
/* Skip partial indices for which the WHERE clause is not true */
|
|
if( pIdx->pPartIdxWhere ){
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
|
|
pParse->ckBase = regNewData+1;
|
|
sqlite3ExprIfFalse(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
|
|
SQLITE_JUMPIFNULL);
|
|
pParse->ckBase = 0;
|
|
}
|
|
|
|
/* Create a record for this index entry as it should appear after
|
|
** the insert or update. Store that record in the aRegIdx[ix] register
|
|
*/
|
|
regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn);
|
|
for(i=0; i<pIdx->nColumn; i++){
|
|
int iField = pIdx->aiColumn[i];
|
|
int x;
|
|
if( iField<0 || iField==pTab->iPKey ){
|
|
if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */
|
|
x = regNewData;
|
|
regRowid = pIdx->pPartIdxWhere ? -1 : regIdx+i;
|
|
}else{
|
|
x = iField + regNewData + 1;
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
|
|
VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
|
|
sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), P4_TRANSIENT);
|
|
VdbeComment((v, "for %s", pIdx->zName));
|
|
sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn);
|
|
|
|
/* In an UPDATE operation, if this index is the PRIMARY KEY index
|
|
** of a WITHOUT ROWID table and there has been no change the
|
|
** primary key, then no collision is possible. The collision detection
|
|
** logic below can all be skipped. */
|
|
if( isUpdate && pPk==pIdx && pkChng==0 ){
|
|
sqlite3VdbeResolveLabel(v, addrUniqueOk);
|
|
continue;
|
|
}
|
|
|
|
/* Find out what action to take in case there is a uniqueness conflict */
|
|
onError = pIdx->onError;
|
|
if( onError==OE_None ){
|
|
sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
|
|
sqlite3VdbeResolveLabel(v, addrUniqueOk);
|
|
continue; /* pIdx is not a UNIQUE index */
|
|
}
|
|
if( overrideError!=OE_Default ){
|
|
onError = overrideError;
|
|
}else if( onError==OE_Default ){
|
|
onError = OE_Abort;
|
|
}
|
|
|
|
/* Check to see if the new index entry will be unique */
|
|
sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
|
|
regIdx, pIdx->nKeyCol);
|
|
|
|
/* Generate code to handle collisions */
|
|
regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
|
|
if( isUpdate || onError==OE_Replace ){
|
|
if( HasRowid(pTab) ){
|
|
sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
|
|
/* Conflict only if the rowid of the existing index entry
|
|
** is different from old-rowid */
|
|
if( isUpdate ){
|
|
sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
|
|
}
|
|
}else{
|
|
int x;
|
|
/* Extract the PRIMARY KEY from the end of the index entry and
|
|
** store it in registers regR..regR+nPk-1 */
|
|
if( pIdx!=pPk ){
|
|
for(i=0; i<pPk->nKeyCol; i++){
|
|
x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]);
|
|
sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
|
|
VdbeComment((v, "%s.%s", pTab->zName,
|
|
pTab->aCol[pPk->aiColumn[i]].zName));
|
|
}
|
|
}
|
|
if( isUpdate ){
|
|
/* If currently processing the PRIMARY KEY of a WITHOUT ROWID
|
|
** table, only conflict if the new PRIMARY KEY values are actually
|
|
** different from the old.
|
|
**
|
|
** For a UNIQUE index, only conflict if the PRIMARY KEY values
|
|
** of the matched index row are different from the original PRIMARY
|
|
** KEY values of this row before the update. */
|
|
int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
|
|
int op = OP_Ne;
|
|
int regCmp = (pIdx->autoIndex==2 ? regIdx : regR);
|
|
|
|
for(i=0; i<pPk->nKeyCol; i++){
|
|
char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
|
|
x = pPk->aiColumn[i];
|
|
if( i==(pPk->nKeyCol-1) ){
|
|
addrJump = addrUniqueOk;
|
|
op = OP_Eq;
|
|
}
|
|
sqlite3VdbeAddOp4(v, op,
|
|
regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Generate code that executes if the new index entry is not unique */
|
|
assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
|
|
|| onError==OE_Ignore || onError==OE_Replace );
|
|
switch( onError ){
|
|
case OE_Rollback:
|
|
case OE_Abort:
|
|
case OE_Fail: {
|
|
sqlite3UniqueConstraint(pParse, onError, pIdx);
|
|
break;
|
|
}
|
|
case OE_Ignore: {
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
|
|
break;
|
|
}
|
|
default: {
|
|
Trigger *pTrigger = 0;
|
|
assert( onError==OE_Replace );
|
|
sqlite3MultiWrite(pParse);
|
|
if( db->flags&SQLITE_RecTriggers ){
|
|
pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
|
|
}
|
|
sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
|
|
regR, nPkField, 0, OE_Replace, pIdx==pPk);
|
|
seenReplace = 1;
|
|
break;
|
|
}
|
|
}
|
|
sqlite3VdbeResolveLabel(v, addrUniqueOk);
|
|
sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
|
|
if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
|
|
}
|
|
if( ipkTop ){
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, ipkTop+1);
|
|
sqlite3VdbeJumpHere(v, ipkBottom);
|
|
}
|
|
|
|
*pbMayReplace = seenReplace;
|
|
VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
|
|
}
|
|
|
|
/*
|
|
** This routine generates code to finish the INSERT or UPDATE operation
|
|
** that was started by a prior call to sqlite3GenerateConstraintChecks.
|
|
** A consecutive range of registers starting at regNewData contains the
|
|
** rowid and the content to be inserted.
|
|
**
|
|
** The arguments to this routine should be the same as the first six
|
|
** arguments to sqlite3GenerateConstraintChecks.
|
|
*/
|
|
void sqlite3CompleteInsertion(
|
|
Parse *pParse, /* The parser context */
|
|
Table *pTab, /* the table into which we are inserting */
|
|
int iDataCur, /* Cursor of the canonical data source */
|
|
int iIdxCur, /* First index cursor */
|
|
int regNewData, /* Range of content */
|
|
int *aRegIdx, /* Register used by each index. 0 for unused indices */
|
|
int isUpdate, /* True for UPDATE, False for INSERT */
|
|
int appendBias, /* True if this is likely to be an append */
|
|
int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
|
|
){
|
|
Vdbe *v; /* Prepared statements under construction */
|
|
Index *pIdx; /* An index being inserted or updated */
|
|
u8 pik_flags; /* flag values passed to the btree insert */
|
|
int regData; /* Content registers (after the rowid) */
|
|
int regRec; /* Register holding assemblied record for the table */
|
|
int i; /* Loop counter */
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
assert( v!=0 );
|
|
assert( pTab->pSelect==0 ); /* This table is not a VIEW */
|
|
for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
|
if( aRegIdx[i]==0 ) continue;
|
|
if( pIdx->pPartIdxWhere ){
|
|
sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]);
|
|
pik_flags = 0;
|
|
if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT;
|
|
if( pIdx->autoIndex==2 && !HasRowid(pTab) ){
|
|
assert( pParse->nested==0 );
|
|
pik_flags |= OPFLAG_NCHANGE;
|
|
}
|
|
if( pik_flags ) sqlite3VdbeChangeP5(v, pik_flags);
|
|
}
|
|
if( !HasRowid(pTab) ) return;
|
|
regData = regNewData + 1;
|
|
regRec = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
|
|
sqlite3TableAffinityStr(v, pTab);
|
|
sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
|
|
if( pParse->nested ){
|
|
pik_flags = 0;
|
|
}else{
|
|
pik_flags = OPFLAG_NCHANGE;
|
|
pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
|
|
}
|
|
if( appendBias ){
|
|
pik_flags |= OPFLAG_APPEND;
|
|
}
|
|
if( useSeekResult ){
|
|
pik_flags |= OPFLAG_USESEEKRESULT;
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData);
|
|
if( !pParse->nested ){
|
|
sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT);
|
|
}
|
|
sqlite3VdbeChangeP5(v, pik_flags);
|
|
}
|
|
|
|
/*
|
|
** Allocate cursors for the pTab table and all its indices and generate
|
|
** code to open and initialized those cursors.
|
|
**
|
|
** The cursor for the object that contains the complete data (normally
|
|
** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
|
|
** ROWID table) is returned in *piDataCur. The first index cursor is
|
|
** returned in *piIdxCur. The number of indices is returned.
|
|
**
|
|
** Use iBase as the first cursor (either the *piDataCur for rowid tables
|
|
** or the first index for WITHOUT ROWID tables) if it is non-negative.
|
|
** If iBase is negative, then allocate the next available cursor.
|
|
**
|
|
** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
|
|
** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
|
|
** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
|
|
** pTab->pIndex list.
|
|
*/
|
|
int sqlite3OpenTableAndIndices(
|
|
Parse *pParse, /* Parsing context */
|
|
Table *pTab, /* Table to be opened */
|
|
int op, /* OP_OpenRead or OP_OpenWrite */
|
|
int iBase, /* Use this for the table cursor, if there is one */
|
|
u8 *aToOpen, /* If not NULL: boolean for each table and index */
|
|
int *piDataCur, /* Write the database source cursor number here */
|
|
int *piIdxCur /* Write the first index cursor number here */
|
|
){
|
|
int i;
|
|
int iDb;
|
|
int iDataCur;
|
|
Index *pIdx;
|
|
Vdbe *v;
|
|
|
|
assert( op==OP_OpenRead || op==OP_OpenWrite );
|
|
if( IsVirtual(pTab) ){
|
|
assert( aToOpen==0 );
|
|
*piDataCur = 0;
|
|
*piIdxCur = 1;
|
|
return 0;
|
|
}
|
|
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
v = sqlite3GetVdbe(pParse);
|
|
assert( v!=0 );
|
|
if( iBase<0 ) iBase = pParse->nTab;
|
|
iDataCur = iBase++;
|
|
if( piDataCur ) *piDataCur = iDataCur;
|
|
if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
|
|
sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
|
|
}else{
|
|
sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
|
|
}
|
|
if( piIdxCur ) *piIdxCur = iBase;
|
|
for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
|
int iIdxCur = iBase++;
|
|
assert( pIdx->pSchema==pTab->pSchema );
|
|
if( pIdx->autoIndex==2 && !HasRowid(pTab) && piDataCur ){
|
|
*piDataCur = iIdxCur;
|
|
}
|
|
if( aToOpen==0 || aToOpen[i+1] ){
|
|
sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
|
|
sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
|
|
VdbeComment((v, "%s", pIdx->zName));
|
|
}
|
|
}
|
|
if( iBase>pParse->nTab ) pParse->nTab = iBase;
|
|
return i;
|
|
}
|
|
|
|
|
|
#ifdef SQLITE_TEST
|
|
/*
|
|
** The following global variable is incremented whenever the
|
|
** transfer optimization is used. This is used for testing
|
|
** purposes only - to make sure the transfer optimization really
|
|
** is happening when it is suppose to.
|
|
*/
|
|
int sqlite3_xferopt_count;
|
|
#endif /* SQLITE_TEST */
|
|
|
|
|
|
#ifndef SQLITE_OMIT_XFER_OPT
|
|
/*
|
|
** Check to collation names to see if they are compatible.
|
|
*/
|
|
static int xferCompatibleCollation(const char *z1, const char *z2){
|
|
if( z1==0 ){
|
|
return z2==0;
|
|
}
|
|
if( z2==0 ){
|
|
return 0;
|
|
}
|
|
return sqlite3StrICmp(z1, z2)==0;
|
|
}
|
|
|
|
|
|
/*
|
|
** Check to see if index pSrc is compatible as a source of data
|
|
** for index pDest in an insert transfer optimization. The rules
|
|
** for a compatible index:
|
|
**
|
|
** * The index is over the same set of columns
|
|
** * The same DESC and ASC markings occurs on all columns
|
|
** * The same onError processing (OE_Abort, OE_Ignore, etc)
|
|
** * The same collating sequence on each column
|
|
** * The index has the exact same WHERE clause
|
|
*/
|
|
static int xferCompatibleIndex(Index *pDest, Index *pSrc){
|
|
int i;
|
|
assert( pDest && pSrc );
|
|
assert( pDest->pTable!=pSrc->pTable );
|
|
if( pDest->nKeyCol!=pSrc->nKeyCol ){
|
|
return 0; /* Different number of columns */
|
|
}
|
|
if( pDest->onError!=pSrc->onError ){
|
|
return 0; /* Different conflict resolution strategies */
|
|
}
|
|
for(i=0; i<pSrc->nKeyCol; i++){
|
|
if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
|
|
return 0; /* Different columns indexed */
|
|
}
|
|
if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
|
|
return 0; /* Different sort orders */
|
|
}
|
|
if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){
|
|
return 0; /* Different collating sequences */
|
|
}
|
|
}
|
|
if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
|
|
return 0; /* Different WHERE clauses */
|
|
}
|
|
|
|
/* If no test above fails then the indices must be compatible */
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Attempt the transfer optimization on INSERTs of the form
|
|
**
|
|
** INSERT INTO tab1 SELECT * FROM tab2;
|
|
**
|
|
** The xfer optimization transfers raw records from tab2 over to tab1.
|
|
** Columns are not decoded and reassemblied, which greatly improves
|
|
** performance. Raw index records are transferred in the same way.
|
|
**
|
|
** The xfer optimization is only attempted if tab1 and tab2 are compatible.
|
|
** There are lots of rules for determining compatibility - see comments
|
|
** embedded in the code for details.
|
|
**
|
|
** This routine returns TRUE if the optimization is guaranteed to be used.
|
|
** Sometimes the xfer optimization will only work if the destination table
|
|
** is empty - a factor that can only be determined at run-time. In that
|
|
** case, this routine generates code for the xfer optimization but also
|
|
** does a test to see if the destination table is empty and jumps over the
|
|
** xfer optimization code if the test fails. In that case, this routine
|
|
** returns FALSE so that the caller will know to go ahead and generate
|
|
** an unoptimized transfer. This routine also returns FALSE if there
|
|
** is no chance that the xfer optimization can be applied.
|
|
**
|
|
** This optimization is particularly useful at making VACUUM run faster.
|
|
*/
|
|
static int xferOptimization(
|
|
Parse *pParse, /* Parser context */
|
|
Table *pDest, /* The table we are inserting into */
|
|
Select *pSelect, /* A SELECT statement to use as the data source */
|
|
int onError, /* How to handle constraint errors */
|
|
int iDbDest /* The database of pDest */
|
|
){
|
|
ExprList *pEList; /* The result set of the SELECT */
|
|
Table *pSrc; /* The table in the FROM clause of SELECT */
|
|
Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
|
|
struct SrcList_item *pItem; /* An element of pSelect->pSrc */
|
|
int i; /* Loop counter */
|
|
int iDbSrc; /* The database of pSrc */
|
|
int iSrc, iDest; /* Cursors from source and destination */
|
|
int addr1, addr2; /* Loop addresses */
|
|
int emptyDestTest = 0; /* Address of test for empty pDest */
|
|
int emptySrcTest = 0; /* Address of test for empty pSrc */
|
|
Vdbe *v; /* The VDBE we are building */
|
|
int regAutoinc; /* Memory register used by AUTOINC */
|
|
int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
|
|
int regData, regRowid; /* Registers holding data and rowid */
|
|
|
|
if( pSelect==0 ){
|
|
return 0; /* Must be of the form INSERT INTO ... SELECT ... */
|
|
}
|
|
if( pParse->pWith || pSelect->pWith ){
|
|
/* Do not attempt to process this query if there are an WITH clauses
|
|
** attached to it. Proceeding may generate a false "no such table: xxx"
|
|
** error if pSelect reads from a CTE named "xxx". */
|
|
return 0;
|
|
}
|
|
if( sqlite3TriggerList(pParse, pDest) ){
|
|
return 0; /* tab1 must not have triggers */
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( pDest->tabFlags & TF_Virtual ){
|
|
return 0; /* tab1 must not be a virtual table */
|
|
}
|
|
#endif
|
|
if( onError==OE_Default ){
|
|
if( pDest->iPKey>=0 ) onError = pDest->keyConf;
|
|
if( onError==OE_Default ) onError = OE_Abort;
|
|
}
|
|
assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
|
|
if( pSelect->pSrc->nSrc!=1 ){
|
|
return 0; /* FROM clause must have exactly one term */
|
|
}
|
|
if( pSelect->pSrc->a[0].pSelect ){
|
|
return 0; /* FROM clause cannot contain a subquery */
|
|
}
|
|
if( pSelect->pWhere ){
|
|
return 0; /* SELECT may not have a WHERE clause */
|
|
}
|
|
if( pSelect->pOrderBy ){
|
|
return 0; /* SELECT may not have an ORDER BY clause */
|
|
}
|
|
/* Do not need to test for a HAVING clause. If HAVING is present but
|
|
** there is no ORDER BY, we will get an error. */
|
|
if( pSelect->pGroupBy ){
|
|
return 0; /* SELECT may not have a GROUP BY clause */
|
|
}
|
|
if( pSelect->pLimit ){
|
|
return 0; /* SELECT may not have a LIMIT clause */
|
|
}
|
|
assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */
|
|
if( pSelect->pPrior ){
|
|
return 0; /* SELECT may not be a compound query */
|
|
}
|
|
if( pSelect->selFlags & SF_Distinct ){
|
|
return 0; /* SELECT may not be DISTINCT */
|
|
}
|
|
pEList = pSelect->pEList;
|
|
assert( pEList!=0 );
|
|
if( pEList->nExpr!=1 ){
|
|
return 0; /* The result set must have exactly one column */
|
|
}
|
|
assert( pEList->a[0].pExpr );
|
|
if( pEList->a[0].pExpr->op!=TK_ALL ){
|
|
return 0; /* The result set must be the special operator "*" */
|
|
}
|
|
|
|
/* At this point we have established that the statement is of the
|
|
** correct syntactic form to participate in this optimization. Now
|
|
** we have to check the semantics.
|
|
*/
|
|
pItem = pSelect->pSrc->a;
|
|
pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
|
|
if( pSrc==0 ){
|
|
return 0; /* FROM clause does not contain a real table */
|
|
}
|
|
if( pSrc==pDest ){
|
|
return 0; /* tab1 and tab2 may not be the same table */
|
|
}
|
|
if( HasRowid(pDest)!=HasRowid(pSrc) ){
|
|
return 0; /* source and destination must both be WITHOUT ROWID or not */
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( pSrc->tabFlags & TF_Virtual ){
|
|
return 0; /* tab2 must not be a virtual table */
|
|
}
|
|
#endif
|
|
if( pSrc->pSelect ){
|
|
return 0; /* tab2 may not be a view */
|
|
}
|
|
if( pDest->nCol!=pSrc->nCol ){
|
|
return 0; /* Number of columns must be the same in tab1 and tab2 */
|
|
}
|
|
if( pDest->iPKey!=pSrc->iPKey ){
|
|
return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
|
|
}
|
|
for(i=0; i<pDest->nCol; i++){
|
|
if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
|
|
return 0; /* Affinity must be the same on all columns */
|
|
}
|
|
if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
|
|
return 0; /* Collating sequence must be the same on all columns */
|
|
}
|
|
if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
|
|
return 0; /* tab2 must be NOT NULL if tab1 is */
|
|
}
|
|
}
|
|
for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
|
|
if( pDestIdx->onError!=OE_None ){
|
|
destHasUniqueIdx = 1;
|
|
}
|
|
for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
|
|
if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
|
|
}
|
|
if( pSrcIdx==0 ){
|
|
return 0; /* pDestIdx has no corresponding index in pSrc */
|
|
}
|
|
}
|
|
#ifndef SQLITE_OMIT_CHECK
|
|
if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
|
|
return 0; /* Tables have different CHECK constraints. Ticket #2252 */
|
|
}
|
|
#endif
|
|
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
/* Disallow the transfer optimization if the destination table constains
|
|
** any foreign key constraints. This is more restrictive than necessary.
|
|
** But the main beneficiary of the transfer optimization is the VACUUM
|
|
** command, and the VACUUM command disables foreign key constraints. So
|
|
** the extra complication to make this rule less restrictive is probably
|
|
** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
|
|
*/
|
|
if( (pParse->db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
|
|
return 0;
|
|
}
|
|
#endif
|
|
if( (pParse->db->flags & SQLITE_CountRows)!=0 ){
|
|
return 0; /* xfer opt does not play well with PRAGMA count_changes */
|
|
}
|
|
|
|
/* If we get this far, it means that the xfer optimization is at
|
|
** least a possibility, though it might only work if the destination
|
|
** table (tab1) is initially empty.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_xferopt_count++;
|
|
#endif
|
|
iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
|
|
v = sqlite3GetVdbe(pParse);
|
|
sqlite3CodeVerifySchema(pParse, iDbSrc);
|
|
iSrc = pParse->nTab++;
|
|
iDest = pParse->nTab++;
|
|
regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
|
|
regData = sqlite3GetTempReg(pParse);
|
|
regRowid = sqlite3GetTempReg(pParse);
|
|
sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
|
|
assert( HasRowid(pDest) || destHasUniqueIdx );
|
|
if( (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */
|
|
|| destHasUniqueIdx /* (2) */
|
|
|| (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */
|
|
){
|
|
/* In some circumstances, we are able to run the xfer optimization
|
|
** only if the destination table is initially empty. This code makes
|
|
** that determination. Conditions under which the destination must
|
|
** be empty:
|
|
**
|
|
** (1) There is no INTEGER PRIMARY KEY but there are indices.
|
|
** (If the destination is not initially empty, the rowid fields
|
|
** of index entries might need to change.)
|
|
**
|
|
** (2) The destination has a unique index. (The xfer optimization
|
|
** is unable to test uniqueness.)
|
|
**
|
|
** (3) onError is something other than OE_Abort and OE_Rollback.
|
|
*/
|
|
addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
|
|
emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
}
|
|
if( HasRowid(pSrc) ){
|
|
sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
|
|
emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
|
|
if( pDest->iPKey>=0 ){
|
|
addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
|
|
addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
|
|
sqlite3RowidConstraint(pParse, onError, pDest);
|
|
sqlite3VdbeJumpHere(v, addr2);
|
|
autoIncStep(pParse, regAutoinc, regRowid);
|
|
}else if( pDest->pIndex==0 ){
|
|
addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
|
|
}else{
|
|
addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
|
|
assert( (pDest->tabFlags & TF_Autoincrement)==0 );
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
|
|
sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
|
|
sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
|
|
sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
|
|
sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
|
|
}else{
|
|
sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
|
|
sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
|
|
}
|
|
for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
|
|
for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
|
|
if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
|
|
}
|
|
assert( pSrcIdx );
|
|
sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
|
|
sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
|
|
VdbeComment((v, "%s", pSrcIdx->zName));
|
|
sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
|
|
sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
|
|
VdbeComment((v, "%s", pDestIdx->zName));
|
|
addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
|
|
sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
|
|
sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
|
|
sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
|
|
sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
|
|
}
|
|
sqlite3VdbeJumpHere(v, emptySrcTest);
|
|
sqlite3ReleaseTempReg(pParse, regRowid);
|
|
sqlite3ReleaseTempReg(pParse, regData);
|
|
if( emptyDestTest ){
|
|
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
|
|
sqlite3VdbeJumpHere(v, emptyDestTest);
|
|
sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
|
|
return 0;
|
|
}else{
|
|
return 1;
|
|
}
|
|
}
|
|
#endif /* SQLITE_OMIT_XFER_OPT */
|