sqlite/test/pager1.test
dan e91a54e1be Add test file pager1.test, containing tests of inter-process locking in non-wal mode.
FossilOrigin-Name: 6e43eed9310bae9ca5e91f8fd9eafc45a16b7019
2010-06-15 17:44:47 +00:00

195 lines
7.1 KiB
Plaintext

# 2010 June 15
#
# The author disclaims copyright to this source code. In place of
# a legal notice, here is a blessing:
#
# May you do good and not evil.
# May you find forgiveness for yourself and forgive others.
# May you share freely, never taking more than you give.
#
#***********************************************************************
#
set testdir [file dirname $argv0]
source $testdir/tester.tcl
source $testdir/lock_common.tcl
source $testdir/malloc_common.tcl
foreach code [list {
set ::code2_chan [launch_testfixture]
set ::code3_chan [launch_testfixture]
proc code2 {tcl} { testfixture $::code2_chan $tcl }
proc code3 {tcl} { testfixture $::code3_chan $tcl }
set tn 1
} {
proc code2 {tcl} { uplevel #0 $tcl }
proc code3 {tcl} { uplevel #0 $tcl }
set tn 2
}] {
faultsim_delete_and_reopen
# Open connections [db2] and [db3]. Depending on which iteration this
# is, the connections may be created in this interpreter, or in
# interpreters running in other OS processes. As such, the [db2] and [db3]
# commands should only be accessed within [code2] and [code3] blocks,
# respectively.
#
eval $code
code2 { sqlite3 db2 test.db }
code3 { sqlite3 db3 test.db }
# Shorthand commands. Execute SQL using database connection [db2] or
# [db3]. Return the results.
#
proc sql1 {sql} { db eval $sql }
proc sql2 {sql} { code2 [list db2 eval $sql] }
proc sql3 {sql} { code3 [list db3 eval $sql] }
proc csql1 {sql} { list [catch { sql1 $sql } msg] $msg }
proc csql2 {sql} { list [catch { sql2 $sql } msg] $msg }
proc csql3 {sql} { list [catch { sql3 $sql } msg] $msg }
# Create and populate a database table using connection [db]. Check
# that connections [db2] and [db3] can see the schema and content.
#
do_test pager1-$tn.1 {
sql1 {
CREATE TABLE t1(a PRIMARY KEY, b);
CREATE INDEX i1 ON t1(b);
INSERT INTO t1 VALUES(1, 'one');
INSERT INTO t1 VALUES(2, 'two');
}
} {}
do_test pager1-$tn.2 { sql2 { SELECT * FROM t1 } } {1 one 2 two}
do_test pager1-$tn.3 { sql3 { SELECT * FROM t1 } } {1 one 2 two}
# Open a transaction and add a row using [db]. This puts [db] in
# RESERVED state. Check that connections [db2] and [db3] can still
# read the database content as it was before the transaction was
# opened. [db] should see the inserted row.
#
do_test pager1-$tn.4 {
sql1 {
BEGIN;
INSERT INTO t1 VALUES(3, 'three');
}
} {}
do_test pager1-$tn.5 { sql2 { SELECT * FROM t1 } } {1 one 2 two}
do_test pager1-$tn.6 { sql3 { SELECT * FROM t1 } } {1 one 2 two}
do_test pager1-$tn.7 { sql1 { SELECT * FROM t1 } } {1 one 2 two 3 three}
# [db] still has an open write transaction. Check that this prevents
# other connections (specifically [db2]) from writing to the database.
#
# Even if [db2] opens a transaction first, it may not write to the
# database. After the attempt to write the db within a transaction,
# [db2] is left with an open transaction, but not a read-lock on
# the main database. So it does not prevent [db] from committing.
#
do_test pager1-$tn.8 {
csql2 { UPDATE t1 SET a = a + 10 }
} {1 {database is locked}}
do_test pager1-$tn.9 {
csql2 {
BEGIN;
UPDATE t1 SET a = a + 10;
}
} {1 {database is locked}}
# Have [db] commit its transactions. Check the other connections can
# now see the new database content.
#
do_test pager1-$tn.10 { sql1 { COMMIT } } {}
do_test pager1-$tn.11 { sql1 { SELECT * FROM t1 } } {1 one 2 two 3 three}
do_test pager1-$tn.12 { sql2 { SELECT * FROM t1 } } {1 one 2 two 3 three}
do_test pager1-$tn.13 { sql3 { SELECT * FROM t1 } } {1 one 2 two 3 three}
# Check that, as noted above, [db2] really did keep an open transaction
# after the attempt to write the database failed.
#
do_test pager1-$tn.14 {
csql2 { BEGIN }
} {1 {cannot start a transaction within a transaction}}
do_test pager1-$tn.15 { sql2 { ROLLBACK } } {}
# Have [db2] open a transaction and take a read-lock on the database.
# Check that this prevents [db] from writing to the database (outside
# of any transaction). After this fails, check that [db3] can read
# the db (showing that [db] did not take a PENDING lock etc.)
#
do_test pager1-$tn.15 {
sql2 { BEGIN; SELECT * FROM t1; }
} {1 one 2 two 3 three}
do_test pager1-$tn.16 {
csql1 { UPDATE t1 SET a = a + 10 }
} {1 {database is locked}}
do_test pager1-$tn.17 { sql3 { SELECT * FROM t1 } } {1 one 2 two 3 three}
# This time, have [db] open a transaction before writing the database.
# This works - [db] gets a RESERVED lock which does not conflict with
# the SHARED lock [db2] is holding.
#
do_test pager1-$tn.18 {
sql1 {
BEGIN;
UPDATE t1 SET a = a + 10;
}
} {}
do_test pager1-$tn-19 {
sql1 { PRAGMA lock_status }
} {main reserved temp closed}
do_test pager1-$tn-20 {
sql2 { PRAGMA lock_status }
} {main shared temp closed}
# Check that all connections can still read the database. Only [db] sees
# the updated content (as the transaction has not been committed yet).
#
do_test pager1-$tn.21 { sql1 { SELECT * FROM t1 } } {11 one 12 two 13 three}
do_test pager1-$tn.22 { sql2 { SELECT * FROM t1 } } {1 one 2 two 3 three}
do_test pager1-$tn.23 { sql3 { SELECT * FROM t1 } } {1 one 2 two 3 three}
# Because [db2] still has the SHARED lock, [db] is unable to commit the
# transaction. If it tries, an error is returned and the connection
# upgrades to a PENDING lock.
#
# Once this happens, [db] can read the database and see the new content,
# [db2] (still holding SHARED) can still read the old content, but [db3]
# (not holding any lock) is prevented by [db]'s PENDING from reading
# the database.
#
do_test pager1-$tn.24 { csql1 { COMMIT } } {1 {database is locked}}
do_test pager1-$tn-25 {
sql1 { PRAGMA lock_status }
} {main pending temp closed}
do_test pager1-$tn.26 { sql1 { SELECT * FROM t1 } } {11 one 12 two 13 three}
do_test pager1-$tn.27 { sql2 { SELECT * FROM t1 } } {1 one 2 two 3 three}
do_test pager1-$tn.28 { csql3 { SELECT * FROM t1 } } {1 {database is locked}}
# Have [db2] commit its read transaction, releasing the SHARED lock it
# is holding. Now, neither [db2] nor [db3] may read the database (as [db]
# is still holding a PENDING).
#
do_test pager1-$tn.29 { sql2 { COMMIT } } {}
do_test pager1-$tn.30 { csql2 { SELECT * FROM t1 } } {1 {database is locked}}
do_test pager1-$tn.31 { csql3 { SELECT * FROM t1 } } {1 {database is locked}}
# [db] is now able to commit the transaction. Once the transaction is
# committed, all three connections can read the new content.
#
do_test pager1-$tn.25 { sql1 { UPDATE t1 SET a = a+10 } } {}
do_test pager1-$tn.26 { sql1 { COMMIT } } {}
do_test pager1-$tn.27 { sql1 { SELECT * FROM t1 } } {21 one 22 two 23 three}
do_test pager1-$tn.27 { sql2 { SELECT * FROM t1 } } {21 one 22 two 23 three}
do_test pager1-$tn.28 { sql3 { SELECT * FROM t1 } } {21 one 22 two 23 three}
code2 { db2 close }
code3 { db3 close }
catch { close $::code2_chan }
catch { close $::code3_chan }
}
finish_test