5119 lines
157 KiB
C
5119 lines
157 KiB
C
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** The code in this file implements execution method of the
|
|
** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
|
|
** handles housekeeping details such as creating and deleting
|
|
** VDBE instances. This file is solely interested in executing
|
|
** the VDBE program.
|
|
**
|
|
** In the external interface, an "sqlite3_stmt*" is an opaque pointer
|
|
** to a VDBE.
|
|
**
|
|
** The SQL parser generates a program which is then executed by
|
|
** the VDBE to do the work of the SQL statement. VDBE programs are
|
|
** similar in form to assembly language. The program consists of
|
|
** a linear sequence of operations. Each operation has an opcode
|
|
** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
|
|
** is a null-terminated string. Operand P5 is an unsigned character.
|
|
** Few opcodes use all 5 operands.
|
|
**
|
|
** Computation results are stored on a set of registers numbered beginning
|
|
** with 1 and going up to Vdbe.nMem. Each register can store
|
|
** either an integer, a null-terminated string, a floating point
|
|
** number, or the SQL "NULL" value. An implicit conversion from one
|
|
** type to the other occurs as necessary.
|
|
**
|
|
** Most of the code in this file is taken up by the sqlite3VdbeExec()
|
|
** function which does the work of interpreting a VDBE program.
|
|
** But other routines are also provided to help in building up
|
|
** a program instruction by instruction.
|
|
**
|
|
** Various scripts scan this source file in order to generate HTML
|
|
** documentation, headers files, or other derived files. The formatting
|
|
** of the code in this file is, therefore, important. See other comments
|
|
** in this file for details. If in doubt, do not deviate from existing
|
|
** commenting and indentation practices when changing or adding code.
|
|
**
|
|
** $Id: vdbe.c,v 1.775 2008/08/13 19:11:48 drh Exp $
|
|
*/
|
|
#include "sqliteInt.h"
|
|
#include <ctype.h>
|
|
#include "vdbeInt.h"
|
|
|
|
/*
|
|
** The following global variable is incremented every time a cursor
|
|
** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes. The test
|
|
** procedures use this information to make sure that indices are
|
|
** working correctly. This variable has no function other than to
|
|
** help verify the correct operation of the library.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
int sqlite3_search_count = 0;
|
|
#endif
|
|
|
|
/*
|
|
** When this global variable is positive, it gets decremented once before
|
|
** each instruction in the VDBE. When reaches zero, the u1.isInterrupted
|
|
** field of the sqlite3 structure is set in order to simulate and interrupt.
|
|
**
|
|
** This facility is used for testing purposes only. It does not function
|
|
** in an ordinary build.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
int sqlite3_interrupt_count = 0;
|
|
#endif
|
|
|
|
/*
|
|
** The next global variable is incremented each type the OP_Sort opcode
|
|
** is executed. The test procedures use this information to make sure that
|
|
** sorting is occurring or not occurring at appropriate times. This variable
|
|
** has no function other than to help verify the correct operation of the
|
|
** library.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
int sqlite3_sort_count = 0;
|
|
#endif
|
|
|
|
/*
|
|
** The next global variable records the size of the largest MEM_Blob
|
|
** or MEM_Str that has been used by a VDBE opcode. The test procedures
|
|
** use this information to make sure that the zero-blob functionality
|
|
** is working correctly. This variable has no function other than to
|
|
** help verify the correct operation of the library.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
int sqlite3_max_blobsize = 0;
|
|
static void updateMaxBlobsize(Mem *p){
|
|
if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
|
|
sqlite3_max_blobsize = p->n;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Test a register to see if it exceeds the current maximum blob size.
|
|
** If it does, record the new maximum blob size.
|
|
*/
|
|
#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
|
|
# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
|
|
#else
|
|
# define UPDATE_MAX_BLOBSIZE(P)
|
|
#endif
|
|
|
|
/*
|
|
** Release the memory associated with a register. This
|
|
** leaves the Mem.flags field in an inconsistent state.
|
|
*/
|
|
#define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); }
|
|
|
|
/*
|
|
** Convert the given register into a string if it isn't one
|
|
** already. Return non-zero if a malloc() fails.
|
|
*/
|
|
#define Stringify(P, enc) \
|
|
if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
|
|
{ goto no_mem; }
|
|
|
|
/*
|
|
** An ephemeral string value (signified by the MEM_Ephem flag) contains
|
|
** a pointer to a dynamically allocated string where some other entity
|
|
** is responsible for deallocating that string. Because the register
|
|
** does not control the string, it might be deleted without the register
|
|
** knowing it.
|
|
**
|
|
** This routine converts an ephemeral string into a dynamically allocated
|
|
** string that the register itself controls. In other words, it
|
|
** converts an MEM_Ephem string into an MEM_Dyn string.
|
|
*/
|
|
#define Deephemeralize(P) \
|
|
if( ((P)->flags&MEM_Ephem)!=0 \
|
|
&& sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
|
|
|
|
/*
|
|
** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
|
|
** P if required.
|
|
*/
|
|
#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
|
|
|
|
/*
|
|
** Argument pMem points at a register that will be passed to a
|
|
** user-defined function or returned to the user as the result of a query.
|
|
** The second argument, 'db_enc' is the text encoding used by the vdbe for
|
|
** register variables. This routine sets the pMem->enc and pMem->type
|
|
** variables used by the sqlite3_value_*() routines.
|
|
*/
|
|
#define storeTypeInfo(A,B) _storeTypeInfo(A)
|
|
static void _storeTypeInfo(Mem *pMem){
|
|
int flags = pMem->flags;
|
|
if( flags & MEM_Null ){
|
|
pMem->type = SQLITE_NULL;
|
|
}
|
|
else if( flags & MEM_Int ){
|
|
pMem->type = SQLITE_INTEGER;
|
|
}
|
|
else if( flags & MEM_Real ){
|
|
pMem->type = SQLITE_FLOAT;
|
|
}
|
|
else if( flags & MEM_Str ){
|
|
pMem->type = SQLITE_TEXT;
|
|
}else{
|
|
pMem->type = SQLITE_BLOB;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Properties of opcodes. The OPFLG_INITIALIZER macro is
|
|
** created by mkopcodeh.awk during compilation. Data is obtained
|
|
** from the comments following the "case OP_xxxx:" statements in
|
|
** this file.
|
|
*/
|
|
static unsigned char opcodeProperty[] = OPFLG_INITIALIZER;
|
|
|
|
/*
|
|
** Return true if an opcode has any of the OPFLG_xxx properties
|
|
** specified by mask.
|
|
*/
|
|
int sqlite3VdbeOpcodeHasProperty(int opcode, int mask){
|
|
assert( opcode>0 && opcode<sizeof(opcodeProperty) );
|
|
return (opcodeProperty[opcode]&mask)!=0;
|
|
}
|
|
|
|
/*
|
|
** Allocate cursor number iCur. Return a pointer to it. Return NULL
|
|
** if we run out of memory.
|
|
*/
|
|
static Cursor *allocateCursor(
|
|
Vdbe *p,
|
|
int iCur,
|
|
Op *pOp,
|
|
int iDb,
|
|
int isBtreeCursor
|
|
){
|
|
/* Find the memory cell that will be used to store the blob of memory
|
|
** required for this Cursor structure. It is convenient to use a
|
|
** vdbe memory cell to manage the memory allocation required for a
|
|
** Cursor structure for the following reasons:
|
|
**
|
|
** * Sometimes cursor numbers are used for a couple of different
|
|
** purposes in a vdbe program. The different uses might require
|
|
** different sized allocations. Memory cells provide growable
|
|
** allocations.
|
|
**
|
|
** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
|
|
** be freed lazily via the sqlite3_release_memory() API. This
|
|
** minimizes the number of malloc calls made by the system.
|
|
**
|
|
** Memory cells for cursors are allocated at the top of the address
|
|
** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
|
|
** cursor 1 is managed by memory cell (p->nMem-1), etc.
|
|
*/
|
|
Mem *pMem = &p->aMem[p->nMem-iCur];
|
|
|
|
int nByte;
|
|
Cursor *pCx = 0;
|
|
/* If the opcode of pOp is OP_SetNumColumns, then pOp->p2 contains
|
|
** the number of fields in the records contained in the table or
|
|
** index being opened. Use this to reserve space for the
|
|
** Cursor.aType[] array.
|
|
*/
|
|
int nField = 0;
|
|
if( pOp->opcode==OP_SetNumColumns || pOp->opcode==OP_OpenEphemeral ){
|
|
nField = pOp->p2;
|
|
}
|
|
nByte =
|
|
sizeof(Cursor) +
|
|
(isBtreeCursor?sqlite3BtreeCursorSize():0) +
|
|
2*nField*sizeof(u32);
|
|
|
|
assert( iCur<p->nCursor );
|
|
if( p->apCsr[iCur] ){
|
|
sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
|
|
p->apCsr[iCur] = 0;
|
|
}
|
|
if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
|
|
p->apCsr[iCur] = pCx = (Cursor *)pMem->z;
|
|
memset(pMem->z, 0, nByte);
|
|
pCx->iDb = iDb;
|
|
pCx->nField = nField;
|
|
if( nField ){
|
|
pCx->aType = (u32 *)&pMem->z[sizeof(Cursor)];
|
|
}
|
|
if( isBtreeCursor ){
|
|
pCx->pCursor = (BtCursor *)&pMem->z[sizeof(Cursor)+2*nField*sizeof(u32)];
|
|
}
|
|
}
|
|
return pCx;
|
|
}
|
|
|
|
/*
|
|
** Try to convert a value into a numeric representation if we can
|
|
** do so without loss of information. In other words, if the string
|
|
** looks like a number, convert it into a number. If it does not
|
|
** look like a number, leave it alone.
|
|
*/
|
|
static void applyNumericAffinity(Mem *pRec){
|
|
if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
|
|
int realnum;
|
|
sqlite3VdbeMemNulTerminate(pRec);
|
|
if( (pRec->flags&MEM_Str)
|
|
&& sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){
|
|
i64 value;
|
|
sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8);
|
|
if( !realnum && sqlite3Atoi64(pRec->z, &value) ){
|
|
pRec->u.i = value;
|
|
MemSetTypeFlag(pRec, MEM_Int);
|
|
}else{
|
|
sqlite3VdbeMemRealify(pRec);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Processing is determine by the affinity parameter:
|
|
**
|
|
** SQLITE_AFF_INTEGER:
|
|
** SQLITE_AFF_REAL:
|
|
** SQLITE_AFF_NUMERIC:
|
|
** Try to convert pRec to an integer representation or a
|
|
** floating-point representation if an integer representation
|
|
** is not possible. Note that the integer representation is
|
|
** always preferred, even if the affinity is REAL, because
|
|
** an integer representation is more space efficient on disk.
|
|
**
|
|
** SQLITE_AFF_TEXT:
|
|
** Convert pRec to a text representation.
|
|
**
|
|
** SQLITE_AFF_NONE:
|
|
** No-op. pRec is unchanged.
|
|
*/
|
|
static void applyAffinity(
|
|
Mem *pRec, /* The value to apply affinity to */
|
|
char affinity, /* The affinity to be applied */
|
|
u8 enc /* Use this text encoding */
|
|
){
|
|
if( affinity==SQLITE_AFF_TEXT ){
|
|
/* Only attempt the conversion to TEXT if there is an integer or real
|
|
** representation (blob and NULL do not get converted) but no string
|
|
** representation.
|
|
*/
|
|
if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
|
|
sqlite3VdbeMemStringify(pRec, enc);
|
|
}
|
|
pRec->flags &= ~(MEM_Real|MEM_Int);
|
|
}else if( affinity!=SQLITE_AFF_NONE ){
|
|
assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
|
|
|| affinity==SQLITE_AFF_NUMERIC );
|
|
applyNumericAffinity(pRec);
|
|
if( pRec->flags & MEM_Real ){
|
|
sqlite3VdbeIntegerAffinity(pRec);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Try to convert the type of a function argument or a result column
|
|
** into a numeric representation. Use either INTEGER or REAL whichever
|
|
** is appropriate. But only do the conversion if it is possible without
|
|
** loss of information and return the revised type of the argument.
|
|
**
|
|
** This is an EXPERIMENTAL api and is subject to change or removal.
|
|
*/
|
|
int sqlite3_value_numeric_type(sqlite3_value *pVal){
|
|
Mem *pMem = (Mem*)pVal;
|
|
applyNumericAffinity(pMem);
|
|
storeTypeInfo(pMem, 0);
|
|
return pMem->type;
|
|
}
|
|
|
|
/*
|
|
** Exported version of applyAffinity(). This one works on sqlite3_value*,
|
|
** not the internal Mem* type.
|
|
*/
|
|
void sqlite3ValueApplyAffinity(
|
|
sqlite3_value *pVal,
|
|
u8 affinity,
|
|
u8 enc
|
|
){
|
|
applyAffinity((Mem *)pVal, affinity, enc);
|
|
}
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** Write a nice string representation of the contents of cell pMem
|
|
** into buffer zBuf, length nBuf.
|
|
*/
|
|
void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
|
|
char *zCsr = zBuf;
|
|
int f = pMem->flags;
|
|
|
|
static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
|
|
|
|
if( f&MEM_Blob ){
|
|
int i;
|
|
char c;
|
|
if( f & MEM_Dyn ){
|
|
c = 'z';
|
|
assert( (f & (MEM_Static|MEM_Ephem))==0 );
|
|
}else if( f & MEM_Static ){
|
|
c = 't';
|
|
assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
|
|
}else if( f & MEM_Ephem ){
|
|
c = 'e';
|
|
assert( (f & (MEM_Static|MEM_Dyn))==0 );
|
|
}else{
|
|
c = 's';
|
|
}
|
|
|
|
sqlite3_snprintf(100, zCsr, "%c", c);
|
|
zCsr += strlen(zCsr);
|
|
sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
|
|
zCsr += strlen(zCsr);
|
|
for(i=0; i<16 && i<pMem->n; i++){
|
|
sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
|
|
zCsr += strlen(zCsr);
|
|
}
|
|
for(i=0; i<16 && i<pMem->n; i++){
|
|
char z = pMem->z[i];
|
|
if( z<32 || z>126 ) *zCsr++ = '.';
|
|
else *zCsr++ = z;
|
|
}
|
|
|
|
sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
|
|
zCsr += strlen(zCsr);
|
|
if( f & MEM_Zero ){
|
|
sqlite3_snprintf(100, zCsr,"+%lldz",pMem->u.i);
|
|
zCsr += strlen(zCsr);
|
|
}
|
|
*zCsr = '\0';
|
|
}else if( f & MEM_Str ){
|
|
int j, k;
|
|
zBuf[0] = ' ';
|
|
if( f & MEM_Dyn ){
|
|
zBuf[1] = 'z';
|
|
assert( (f & (MEM_Static|MEM_Ephem))==0 );
|
|
}else if( f & MEM_Static ){
|
|
zBuf[1] = 't';
|
|
assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
|
|
}else if( f & MEM_Ephem ){
|
|
zBuf[1] = 'e';
|
|
assert( (f & (MEM_Static|MEM_Dyn))==0 );
|
|
}else{
|
|
zBuf[1] = 's';
|
|
}
|
|
k = 2;
|
|
sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
|
|
k += strlen(&zBuf[k]);
|
|
zBuf[k++] = '[';
|
|
for(j=0; j<15 && j<pMem->n; j++){
|
|
u8 c = pMem->z[j];
|
|
if( c>=0x20 && c<0x7f ){
|
|
zBuf[k++] = c;
|
|
}else{
|
|
zBuf[k++] = '.';
|
|
}
|
|
}
|
|
zBuf[k++] = ']';
|
|
sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
|
|
k += strlen(&zBuf[k]);
|
|
zBuf[k++] = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** Print the value of a register for tracing purposes:
|
|
*/
|
|
static void memTracePrint(FILE *out, Mem *p){
|
|
if( p->flags & MEM_Null ){
|
|
fprintf(out, " NULL");
|
|
}else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
|
|
fprintf(out, " si:%lld", p->u.i);
|
|
}else if( p->flags & MEM_Int ){
|
|
fprintf(out, " i:%lld", p->u.i);
|
|
}else if( p->flags & MEM_Real ){
|
|
fprintf(out, " r:%g", p->r);
|
|
}else{
|
|
char zBuf[200];
|
|
sqlite3VdbeMemPrettyPrint(p, zBuf);
|
|
fprintf(out, " ");
|
|
fprintf(out, "%s", zBuf);
|
|
}
|
|
}
|
|
static void registerTrace(FILE *out, int iReg, Mem *p){
|
|
fprintf(out, "REG[%d] = ", iReg);
|
|
memTracePrint(out, p);
|
|
fprintf(out, "\n");
|
|
}
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
# define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
|
|
#else
|
|
# define REGISTER_TRACE(R,M)
|
|
#endif
|
|
|
|
|
|
#ifdef VDBE_PROFILE
|
|
|
|
/*
|
|
** hwtime.h contains inline assembler code for implementing
|
|
** high-performance timing routines.
|
|
*/
|
|
#include "hwtime.h"
|
|
|
|
#endif
|
|
|
|
/*
|
|
** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
|
|
** sqlite3_interrupt() routine has been called. If it has been, then
|
|
** processing of the VDBE program is interrupted.
|
|
**
|
|
** This macro added to every instruction that does a jump in order to
|
|
** implement a loop. This test used to be on every single instruction,
|
|
** but that meant we more testing that we needed. By only testing the
|
|
** flag on jump instructions, we get a (small) speed improvement.
|
|
*/
|
|
#define CHECK_FOR_INTERRUPT \
|
|
if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
static int fileExists(sqlite3 *db, const char *zFile){
|
|
int res = 0;
|
|
int rc = SQLITE_OK;
|
|
#ifdef SQLITE_TEST
|
|
/* If we are currently testing IO errors, then do not call OsAccess() to
|
|
** test for the presence of zFile. This is because any IO error that
|
|
** occurs here will not be reported, causing the test to fail.
|
|
*/
|
|
extern int sqlite3_io_error_pending;
|
|
if( sqlite3_io_error_pending<=0 )
|
|
#endif
|
|
rc = sqlite3OsAccess(db->pVfs, zFile, SQLITE_ACCESS_EXISTS, &res);
|
|
return (res && rc==SQLITE_OK);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Execute as much of a VDBE program as we can then return.
|
|
**
|
|
** sqlite3VdbeMakeReady() must be called before this routine in order to
|
|
** close the program with a final OP_Halt and to set up the callbacks
|
|
** and the error message pointer.
|
|
**
|
|
** Whenever a row or result data is available, this routine will either
|
|
** invoke the result callback (if there is one) or return with
|
|
** SQLITE_ROW.
|
|
**
|
|
** If an attempt is made to open a locked database, then this routine
|
|
** will either invoke the busy callback (if there is one) or it will
|
|
** return SQLITE_BUSY.
|
|
**
|
|
** If an error occurs, an error message is written to memory obtained
|
|
** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
|
|
** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
|
|
**
|
|
** If the callback ever returns non-zero, then the program exits
|
|
** immediately. There will be no error message but the p->rc field is
|
|
** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
|
|
**
|
|
** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
|
|
** routine to return SQLITE_ERROR.
|
|
**
|
|
** Other fatal errors return SQLITE_ERROR.
|
|
**
|
|
** After this routine has finished, sqlite3VdbeFinalize() should be
|
|
** used to clean up the mess that was left behind.
|
|
*/
|
|
int sqlite3VdbeExec(
|
|
Vdbe *p /* The VDBE */
|
|
){
|
|
int pc; /* The program counter */
|
|
Op *pOp; /* Current operation */
|
|
int rc = SQLITE_OK; /* Value to return */
|
|
sqlite3 *db = p->db; /* The database */
|
|
u8 encoding = ENC(db); /* The database encoding */
|
|
Mem *pIn1, *pIn2, *pIn3; /* Input operands */
|
|
Mem *pOut; /* Output operand */
|
|
u8 opProperty;
|
|
int iCompare = 0; /* Result of last OP_Compare operation */
|
|
int *aPermute = 0; /* Permuation of columns for OP_Compare */
|
|
#ifdef VDBE_PROFILE
|
|
u64 start; /* CPU clock count at start of opcode */
|
|
int origPc; /* Program counter at start of opcode */
|
|
#endif
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
int nProgressOps = 0; /* Opcodes executed since progress callback. */
|
|
#endif
|
|
char zTempSpace[200]; /* Space to hold a transient UnpackedRecord */
|
|
|
|
|
|
assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
|
|
assert( db->magic==SQLITE_MAGIC_BUSY );
|
|
sqlite3BtreeMutexArrayEnter(&p->aMutex);
|
|
if( p->rc==SQLITE_NOMEM ){
|
|
/* This happens if a malloc() inside a call to sqlite3_column_text() or
|
|
** sqlite3_column_text16() failed. */
|
|
goto no_mem;
|
|
}
|
|
assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
|
|
p->rc = SQLITE_OK;
|
|
assert( p->explain==0 );
|
|
p->pResultSet = 0;
|
|
db->busyHandler.nBusy = 0;
|
|
CHECK_FOR_INTERRUPT;
|
|
sqlite3VdbeIOTraceSql(p);
|
|
#ifdef SQLITE_DEBUG
|
|
sqlite3BeginBenignMalloc();
|
|
if( p->pc==0
|
|
&& ((p->db->flags & SQLITE_VdbeListing) || fileExists(db, "vdbe_explain"))
|
|
){
|
|
int i;
|
|
printf("VDBE Program Listing:\n");
|
|
sqlite3VdbePrintSql(p);
|
|
for(i=0; i<p->nOp; i++){
|
|
sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
|
|
}
|
|
}
|
|
if( fileExists(db, "vdbe_trace") ){
|
|
p->trace = stdout;
|
|
}
|
|
sqlite3EndBenignMalloc();
|
|
#endif
|
|
for(pc=p->pc; rc==SQLITE_OK; pc++){
|
|
assert( pc>=0 && pc<p->nOp );
|
|
if( db->mallocFailed ) goto no_mem;
|
|
#ifdef VDBE_PROFILE
|
|
origPc = pc;
|
|
start = sqlite3Hwtime();
|
|
#endif
|
|
pOp = &p->aOp[pc];
|
|
|
|
/* Only allow tracing if SQLITE_DEBUG is defined.
|
|
*/
|
|
#ifdef SQLITE_DEBUG
|
|
if( p->trace ){
|
|
if( pc==0 ){
|
|
printf("VDBE Execution Trace:\n");
|
|
sqlite3VdbePrintSql(p);
|
|
}
|
|
sqlite3VdbePrintOp(p->trace, pc, pOp);
|
|
}
|
|
if( p->trace==0 && pc==0 ){
|
|
sqlite3BeginBenignMalloc();
|
|
if( fileExists(db, "vdbe_sqltrace") ){
|
|
sqlite3VdbePrintSql(p);
|
|
}
|
|
sqlite3EndBenignMalloc();
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Check to see if we need to simulate an interrupt. This only happens
|
|
** if we have a special test build.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
if( sqlite3_interrupt_count>0 ){
|
|
sqlite3_interrupt_count--;
|
|
if( sqlite3_interrupt_count==0 ){
|
|
sqlite3_interrupt(db);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
/* Call the progress callback if it is configured and the required number
|
|
** of VDBE ops have been executed (either since this invocation of
|
|
** sqlite3VdbeExec() or since last time the progress callback was called).
|
|
** If the progress callback returns non-zero, exit the virtual machine with
|
|
** a return code SQLITE_ABORT.
|
|
*/
|
|
if( db->xProgress ){
|
|
if( db->nProgressOps==nProgressOps ){
|
|
int prc;
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
prc =db->xProgress(db->pProgressArg);
|
|
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
if( prc!=0 ){
|
|
rc = SQLITE_INTERRUPT;
|
|
goto vdbe_error_halt;
|
|
}
|
|
nProgressOps = 0;
|
|
}
|
|
nProgressOps++;
|
|
}
|
|
#endif
|
|
|
|
/* Do common setup processing for any opcode that is marked
|
|
** with the "out2-prerelease" tag. Such opcodes have a single
|
|
** output which is specified by the P2 parameter. The P2 register
|
|
** is initialized to a NULL.
|
|
*/
|
|
opProperty = opcodeProperty[pOp->opcode];
|
|
if( (opProperty & OPFLG_OUT2_PRERELEASE)!=0 ){
|
|
assert( pOp->p2>0 );
|
|
assert( pOp->p2<=p->nMem );
|
|
pOut = &p->aMem[pOp->p2];
|
|
sqlite3VdbeMemReleaseExternal(pOut);
|
|
pOut->flags = MEM_Null;
|
|
}else
|
|
|
|
/* Do common setup for opcodes marked with one of the following
|
|
** combinations of properties.
|
|
**
|
|
** in1
|
|
** in1 in2
|
|
** in1 in2 out3
|
|
** in1 in3
|
|
**
|
|
** Variables pIn1, pIn2, and pIn3 are made to point to appropriate
|
|
** registers for inputs. Variable pOut points to the output register.
|
|
*/
|
|
if( (opProperty & OPFLG_IN1)!=0 ){
|
|
assert( pOp->p1>0 );
|
|
assert( pOp->p1<=p->nMem );
|
|
pIn1 = &p->aMem[pOp->p1];
|
|
REGISTER_TRACE(pOp->p1, pIn1);
|
|
if( (opProperty & OPFLG_IN2)!=0 ){
|
|
assert( pOp->p2>0 );
|
|
assert( pOp->p2<=p->nMem );
|
|
pIn2 = &p->aMem[pOp->p2];
|
|
REGISTER_TRACE(pOp->p2, pIn2);
|
|
if( (opProperty & OPFLG_OUT3)!=0 ){
|
|
assert( pOp->p3>0 );
|
|
assert( pOp->p3<=p->nMem );
|
|
pOut = &p->aMem[pOp->p3];
|
|
}
|
|
}else if( (opProperty & OPFLG_IN3)!=0 ){
|
|
assert( pOp->p3>0 );
|
|
assert( pOp->p3<=p->nMem );
|
|
pIn3 = &p->aMem[pOp->p3];
|
|
REGISTER_TRACE(pOp->p3, pIn3);
|
|
}
|
|
}else if( (opProperty & OPFLG_IN2)!=0 ){
|
|
assert( pOp->p2>0 );
|
|
assert( pOp->p2<=p->nMem );
|
|
pIn2 = &p->aMem[pOp->p2];
|
|
REGISTER_TRACE(pOp->p2, pIn2);
|
|
}else if( (opProperty & OPFLG_IN3)!=0 ){
|
|
assert( pOp->p3>0 );
|
|
assert( pOp->p3<=p->nMem );
|
|
pIn3 = &p->aMem[pOp->p3];
|
|
REGISTER_TRACE(pOp->p3, pIn3);
|
|
}
|
|
|
|
switch( pOp->opcode ){
|
|
|
|
/*****************************************************************************
|
|
** What follows is a massive switch statement where each case implements a
|
|
** separate instruction in the virtual machine. If we follow the usual
|
|
** indentation conventions, each case should be indented by 6 spaces. But
|
|
** that is a lot of wasted space on the left margin. So the code within
|
|
** the switch statement will break with convention and be flush-left. Another
|
|
** big comment (similar to this one) will mark the point in the code where
|
|
** we transition back to normal indentation.
|
|
**
|
|
** The formatting of each case is important. The makefile for SQLite
|
|
** generates two C files "opcodes.h" and "opcodes.c" by scanning this
|
|
** file looking for lines that begin with "case OP_". The opcodes.h files
|
|
** will be filled with #defines that give unique integer values to each
|
|
** opcode and the opcodes.c file is filled with an array of strings where
|
|
** each string is the symbolic name for the corresponding opcode. If the
|
|
** case statement is followed by a comment of the form "/# same as ... #/"
|
|
** that comment is used to determine the particular value of the opcode.
|
|
**
|
|
** Other keywords in the comment that follows each case are used to
|
|
** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
|
|
** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
|
|
** the mkopcodeh.awk script for additional information.
|
|
**
|
|
** Documentation about VDBE opcodes is generated by scanning this file
|
|
** for lines of that contain "Opcode:". That line and all subsequent
|
|
** comment lines are used in the generation of the opcode.html documentation
|
|
** file.
|
|
**
|
|
** SUMMARY:
|
|
**
|
|
** Formatting is important to scripts that scan this file.
|
|
** Do not deviate from the formatting style currently in use.
|
|
**
|
|
*****************************************************************************/
|
|
|
|
/* Opcode: Goto * P2 * * *
|
|
**
|
|
** An unconditional jump to address P2.
|
|
** The next instruction executed will be
|
|
** the one at index P2 from the beginning of
|
|
** the program.
|
|
*/
|
|
case OP_Goto: { /* jump */
|
|
CHECK_FOR_INTERRUPT;
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Gosub P1 P2 * * *
|
|
**
|
|
** Write the current address onto register P1
|
|
** and then jump to address P2.
|
|
*/
|
|
case OP_Gosub: { /* jump */
|
|
assert( pOp->p1>0 );
|
|
assert( pOp->p1<=p->nMem );
|
|
pIn1 = &p->aMem[pOp->p1];
|
|
assert( (pIn1->flags & MEM_Dyn)==0 );
|
|
pIn1->flags = MEM_Int;
|
|
pIn1->u.i = pc;
|
|
REGISTER_TRACE(pOp->p1, pIn1);
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Return P1 * * * *
|
|
**
|
|
** Jump to the next instruction after the address in register P1.
|
|
*/
|
|
case OP_Return: { /* in1 */
|
|
assert( pIn1->flags & MEM_Int );
|
|
pc = pIn1->u.i;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Yield P1 * * * *
|
|
**
|
|
** Swap the program counter with the value in register P1.
|
|
*/
|
|
case OP_Yield: {
|
|
int pcDest;
|
|
assert( pOp->p1>0 );
|
|
assert( pOp->p1<=p->nMem );
|
|
pIn1 = &p->aMem[pOp->p1];
|
|
assert( (pIn1->flags & MEM_Dyn)==0 );
|
|
pIn1->flags = MEM_Int;
|
|
pcDest = pIn1->u.i;
|
|
pIn1->u.i = pc;
|
|
REGISTER_TRACE(pOp->p1, pIn1);
|
|
pc = pcDest;
|
|
break;
|
|
}
|
|
|
|
|
|
/* Opcode: Halt P1 P2 * P4 *
|
|
**
|
|
** Exit immediately. All open cursors, Fifos, etc are closed
|
|
** automatically.
|
|
**
|
|
** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
|
|
** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
|
|
** For errors, it can be some other value. If P1!=0 then P2 will determine
|
|
** whether or not to rollback the current transaction. Do not rollback
|
|
** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
|
|
** then back out all changes that have occurred during this execution of the
|
|
** VDBE, but do not rollback the transaction.
|
|
**
|
|
** If P4 is not null then it is an error message string.
|
|
**
|
|
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
|
|
** every program. So a jump past the last instruction of the program
|
|
** is the same as executing Halt.
|
|
*/
|
|
case OP_Halt: {
|
|
p->rc = pOp->p1;
|
|
p->pc = pc;
|
|
p->errorAction = pOp->p2;
|
|
if( pOp->p4.z ){
|
|
sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
|
|
}
|
|
rc = sqlite3VdbeHalt(p);
|
|
assert( rc==SQLITE_BUSY || rc==SQLITE_OK );
|
|
if( rc==SQLITE_BUSY ){
|
|
p->rc = rc = SQLITE_BUSY;
|
|
}else{
|
|
rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
|
|
}
|
|
goto vdbe_return;
|
|
}
|
|
|
|
/* Opcode: Integer P1 P2 * * *
|
|
**
|
|
** The 32-bit integer value P1 is written into register P2.
|
|
*/
|
|
case OP_Integer: { /* out2-prerelease */
|
|
pOut->flags = MEM_Int;
|
|
pOut->u.i = pOp->p1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Int64 * P2 * P4 *
|
|
**
|
|
** P4 is a pointer to a 64-bit integer value.
|
|
** Write that value into register P2.
|
|
*/
|
|
case OP_Int64: { /* out2-prerelease */
|
|
assert( pOp->p4.pI64!=0 );
|
|
pOut->flags = MEM_Int;
|
|
pOut->u.i = *pOp->p4.pI64;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Real * P2 * P4 *
|
|
**
|
|
** P4 is a pointer to a 64-bit floating point value.
|
|
** Write that value into register P2.
|
|
*/
|
|
case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
|
|
pOut->flags = MEM_Real;
|
|
assert( !sqlite3IsNaN(*pOp->p4.pReal) );
|
|
pOut->r = *pOp->p4.pReal;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: String8 * P2 * P4 *
|
|
**
|
|
** P4 points to a nul terminated UTF-8 string. This opcode is transformed
|
|
** into an OP_String before it is executed for the first time.
|
|
*/
|
|
case OP_String8: { /* same as TK_STRING, out2-prerelease */
|
|
assert( pOp->p4.z!=0 );
|
|
pOp->opcode = OP_String;
|
|
pOp->p1 = strlen(pOp->p4.z);
|
|
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
if( encoding!=SQLITE_UTF8 ){
|
|
sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
|
|
if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
|
|
if( SQLITE_OK!=sqlite3VdbeMemMakeWriteable(pOut) ) goto no_mem;
|
|
pOut->zMalloc = 0;
|
|
pOut->flags |= MEM_Static;
|
|
pOut->flags &= ~MEM_Dyn;
|
|
if( pOp->p4type==P4_DYNAMIC ){
|
|
sqlite3DbFree(db, pOp->p4.z);
|
|
}
|
|
pOp->p4type = P4_DYNAMIC;
|
|
pOp->p4.z = pOut->z;
|
|
pOp->p1 = pOut->n;
|
|
if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
goto too_big;
|
|
}
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
#endif
|
|
if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
goto too_big;
|
|
}
|
|
/* Fall through to the next case, OP_String */
|
|
}
|
|
|
|
/* Opcode: String P1 P2 * P4 *
|
|
**
|
|
** The string value P4 of length P1 (bytes) is stored in register P2.
|
|
*/
|
|
case OP_String: { /* out2-prerelease */
|
|
assert( pOp->p4.z!=0 );
|
|
pOut->flags = MEM_Str|MEM_Static|MEM_Term;
|
|
pOut->z = pOp->p4.z;
|
|
pOut->n = pOp->p1;
|
|
pOut->enc = encoding;
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Null * P2 * * *
|
|
**
|
|
** Write a NULL into register P2.
|
|
*/
|
|
case OP_Null: { /* out2-prerelease */
|
|
break;
|
|
}
|
|
|
|
|
|
#ifndef SQLITE_OMIT_BLOB_LITERAL
|
|
/* Opcode: Blob P1 P2 * P4
|
|
**
|
|
** P4 points to a blob of data P1 bytes long. Store this
|
|
** blob in register P2. This instruction is not coded directly
|
|
** by the compiler. Instead, the compiler layer specifies
|
|
** an OP_HexBlob opcode, with the hex string representation of
|
|
** the blob as P4. This opcode is transformed to an OP_Blob
|
|
** the first time it is executed.
|
|
*/
|
|
case OP_Blob: { /* out2-prerelease */
|
|
assert( pOp->p1 <= SQLITE_MAX_LENGTH );
|
|
sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
|
|
pOut->enc = encoding;
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_BLOB_LITERAL */
|
|
|
|
/* Opcode: Variable P1 P2 * * *
|
|
**
|
|
** The value of variable P1 is written into register P2. A variable is
|
|
** an unknown in the original SQL string as handed to sqlite3_compile().
|
|
** Any occurrence of the '?' character in the original SQL is considered
|
|
** a variable. Variables in the SQL string are number from left to
|
|
** right beginning with 1. The values of variables are set using the
|
|
** sqlite3_bind() API.
|
|
*/
|
|
case OP_Variable: { /* out2-prerelease */
|
|
int j = pOp->p1 - 1;
|
|
Mem *pVar;
|
|
assert( j>=0 && j<p->nVar );
|
|
|
|
pVar = &p->aVar[j];
|
|
if( sqlite3VdbeMemTooBig(pVar) ){
|
|
goto too_big;
|
|
}
|
|
sqlite3VdbeMemShallowCopy(pOut, &p->aVar[j], MEM_Static);
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Move P1 P2 P3 * *
|
|
**
|
|
** Move the values in register P1..P1+P3-1 over into
|
|
** registers P2..P2+P3-1. Registers P1..P1+P1-1 are
|
|
** left holding a NULL. It is an error for register ranges
|
|
** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
|
|
*/
|
|
case OP_Move: {
|
|
char *zMalloc;
|
|
int n = pOp->p3;
|
|
int p1 = pOp->p1;
|
|
int p2 = pOp->p2;
|
|
assert( n>0 );
|
|
assert( p1>0 );
|
|
assert( p1+n<p->nMem );
|
|
pIn1 = &p->aMem[p1];
|
|
assert( p2>0 );
|
|
assert( p2+n<p->nMem );
|
|
pOut = &p->aMem[p2];
|
|
assert( p1+n<=p2 || p2+n<=p1 );
|
|
while( n-- ){
|
|
zMalloc = pOut->zMalloc;
|
|
pOut->zMalloc = 0;
|
|
sqlite3VdbeMemMove(pOut, pIn1);
|
|
pIn1->zMalloc = zMalloc;
|
|
REGISTER_TRACE(p2++, pOut);
|
|
pIn1++;
|
|
pOut++;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Copy P1 P2 * * *
|
|
**
|
|
** Make a copy of register P1 into register P2.
|
|
**
|
|
** This instruction makes a deep copy of the value. A duplicate
|
|
** is made of any string or blob constant. See also OP_SCopy.
|
|
*/
|
|
case OP_Copy: {
|
|
assert( pOp->p1>0 );
|
|
assert( pOp->p1<=p->nMem );
|
|
pIn1 = &p->aMem[pOp->p1];
|
|
assert( pOp->p2>0 );
|
|
assert( pOp->p2<=p->nMem );
|
|
pOut = &p->aMem[pOp->p2];
|
|
assert( pOut!=pIn1 );
|
|
sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
|
|
Deephemeralize(pOut);
|
|
REGISTER_TRACE(pOp->p2, pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SCopy P1 P2 * * *
|
|
**
|
|
** Make a shallow copy of register P1 into register P2.
|
|
**
|
|
** This instruction makes a shallow copy of the value. If the value
|
|
** is a string or blob, then the copy is only a pointer to the
|
|
** original and hence if the original changes so will the copy.
|
|
** Worse, if the original is deallocated, the copy becomes invalid.
|
|
** Thus the program must guarantee that the original will not change
|
|
** during the lifetime of the copy. Use OP_Copy to make a complete
|
|
** copy.
|
|
*/
|
|
case OP_SCopy: {
|
|
assert( pOp->p1>0 );
|
|
assert( pOp->p1<=p->nMem );
|
|
pIn1 = &p->aMem[pOp->p1];
|
|
REGISTER_TRACE(pOp->p1, pIn1);
|
|
assert( pOp->p2>0 );
|
|
assert( pOp->p2<=p->nMem );
|
|
pOut = &p->aMem[pOp->p2];
|
|
assert( pOut!=pIn1 );
|
|
sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
|
|
REGISTER_TRACE(pOp->p2, pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ResultRow P1 P2 * * *
|
|
**
|
|
** The registers P1 through P1+P2-1 contain a single row of
|
|
** results. This opcode causes the sqlite3_step() call to terminate
|
|
** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
|
|
** structure to provide access to the top P1 values as the result
|
|
** row.
|
|
*/
|
|
case OP_ResultRow: {
|
|
Mem *pMem;
|
|
int i;
|
|
assert( p->nResColumn==pOp->p2 );
|
|
assert( pOp->p1>0 );
|
|
assert( pOp->p1+pOp->p2<=p->nMem );
|
|
|
|
/* Invalidate all ephemeral cursor row caches */
|
|
p->cacheCtr = (p->cacheCtr + 2)|1;
|
|
|
|
/* Make sure the results of the current row are \000 terminated
|
|
** and have an assigned type. The results are de-ephemeralized as
|
|
** as side effect.
|
|
*/
|
|
pMem = p->pResultSet = &p->aMem[pOp->p1];
|
|
for(i=0; i<pOp->p2; i++){
|
|
sqlite3VdbeMemNulTerminate(&pMem[i]);
|
|
storeTypeInfo(&pMem[i], encoding);
|
|
REGISTER_TRACE(pOp->p1+i, &pMem[i]);
|
|
}
|
|
if( db->mallocFailed ) goto no_mem;
|
|
|
|
/* Return SQLITE_ROW
|
|
*/
|
|
p->nCallback++;
|
|
p->pc = pc + 1;
|
|
rc = SQLITE_ROW;
|
|
goto vdbe_return;
|
|
}
|
|
|
|
/* Opcode: Concat P1 P2 P3 * *
|
|
**
|
|
** Add the text in register P1 onto the end of the text in
|
|
** register P2 and store the result in register P3.
|
|
** If either the P1 or P2 text are NULL then store NULL in P3.
|
|
**
|
|
** P3 = P2 || P1
|
|
**
|
|
** It is illegal for P1 and P3 to be the same register. Sometimes,
|
|
** if P3 is the same register as P2, the implementation is able
|
|
** to avoid a memcpy().
|
|
*/
|
|
case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
|
|
i64 nByte;
|
|
|
|
assert( pIn1!=pOut );
|
|
if( (pIn1->flags | pIn2->flags) & MEM_Null ){
|
|
sqlite3VdbeMemSetNull(pOut);
|
|
break;
|
|
}
|
|
ExpandBlob(pIn1);
|
|
Stringify(pIn1, encoding);
|
|
ExpandBlob(pIn2);
|
|
Stringify(pIn2, encoding);
|
|
nByte = pIn1->n + pIn2->n;
|
|
if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
goto too_big;
|
|
}
|
|
MemSetTypeFlag(pOut, MEM_Str);
|
|
if( sqlite3VdbeMemGrow(pOut, nByte+2, pOut==pIn2) ){
|
|
goto no_mem;
|
|
}
|
|
if( pOut!=pIn2 ){
|
|
memcpy(pOut->z, pIn2->z, pIn2->n);
|
|
}
|
|
memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
|
|
pOut->z[nByte] = 0;
|
|
pOut->z[nByte+1] = 0;
|
|
pOut->flags |= MEM_Term;
|
|
pOut->n = nByte;
|
|
pOut->enc = encoding;
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Add P1 P2 P3 * *
|
|
**
|
|
** Add the value in register P1 to the value in register P2
|
|
** and store the result in register P3.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: Multiply P1 P2 P3 * *
|
|
**
|
|
**
|
|
** Multiply the value in register P1 by the value in register P2
|
|
** and store the result in register P3.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: Subtract P1 P2 P3 * *
|
|
**
|
|
** Subtract the value in register P1 from the value in register P2
|
|
** and store the result in register P3.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: Divide P1 P2 P3 * *
|
|
**
|
|
** Divide the value in register P1 by the value in register P2
|
|
** and store the result in register P3. If the value in register P2
|
|
** is zero, then the result is NULL.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: Remainder P1 P2 P3 * *
|
|
**
|
|
** Compute the remainder after integer division of the value in
|
|
** register P1 by the value in register P2 and store the result in P3.
|
|
** If the value in register P2 is zero the result is NULL.
|
|
** If either operand is NULL, the result is NULL.
|
|
*/
|
|
case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
|
|
case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
|
|
case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
|
|
case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
|
|
case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
|
|
int flags;
|
|
applyNumericAffinity(pIn1);
|
|
applyNumericAffinity(pIn2);
|
|
flags = pIn1->flags | pIn2->flags;
|
|
if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
|
|
if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
|
|
i64 a, b;
|
|
a = pIn1->u.i;
|
|
b = pIn2->u.i;
|
|
switch( pOp->opcode ){
|
|
case OP_Add: b += a; break;
|
|
case OP_Subtract: b -= a; break;
|
|
case OP_Multiply: b *= a; break;
|
|
case OP_Divide: {
|
|
if( a==0 ) goto arithmetic_result_is_null;
|
|
/* Dividing the largest possible negative 64-bit integer (1<<63) by
|
|
** -1 returns an integer too large to store in a 64-bit data-type. On
|
|
** some architectures, the value overflows to (1<<63). On others,
|
|
** a SIGFPE is issued. The following statement normalizes this
|
|
** behavior so that all architectures behave as if integer
|
|
** overflow occurred.
|
|
*/
|
|
if( a==-1 && b==SMALLEST_INT64 ) a = 1;
|
|
b /= a;
|
|
break;
|
|
}
|
|
default: {
|
|
if( a==0 ) goto arithmetic_result_is_null;
|
|
if( a==-1 ) a = 1;
|
|
b %= a;
|
|
break;
|
|
}
|
|
}
|
|
pOut->u.i = b;
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
|
}else{
|
|
double a, b;
|
|
a = sqlite3VdbeRealValue(pIn1);
|
|
b = sqlite3VdbeRealValue(pIn2);
|
|
switch( pOp->opcode ){
|
|
case OP_Add: b += a; break;
|
|
case OP_Subtract: b -= a; break;
|
|
case OP_Multiply: b *= a; break;
|
|
case OP_Divide: {
|
|
if( a==0.0 ) goto arithmetic_result_is_null;
|
|
b /= a;
|
|
break;
|
|
}
|
|
default: {
|
|
i64 ia = (i64)a;
|
|
i64 ib = (i64)b;
|
|
if( ia==0 ) goto arithmetic_result_is_null;
|
|
if( ia==-1 ) ia = 1;
|
|
b = ib % ia;
|
|
break;
|
|
}
|
|
}
|
|
if( sqlite3IsNaN(b) ){
|
|
goto arithmetic_result_is_null;
|
|
}
|
|
pOut->r = b;
|
|
MemSetTypeFlag(pOut, MEM_Real);
|
|
if( (flags & MEM_Real)==0 ){
|
|
sqlite3VdbeIntegerAffinity(pOut);
|
|
}
|
|
}
|
|
break;
|
|
|
|
arithmetic_result_is_null:
|
|
sqlite3VdbeMemSetNull(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: CollSeq * * P4
|
|
**
|
|
** P4 is a pointer to a CollSeq struct. If the next call to a user function
|
|
** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
|
|
** be returned. This is used by the built-in min(), max() and nullif()
|
|
** functions.
|
|
**
|
|
** The interface used by the implementation of the aforementioned functions
|
|
** to retrieve the collation sequence set by this opcode is not available
|
|
** publicly, only to user functions defined in func.c.
|
|
*/
|
|
case OP_CollSeq: {
|
|
assert( pOp->p4type==P4_COLLSEQ );
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Function P1 P2 P3 P4 P5
|
|
**
|
|
** Invoke a user function (P4 is a pointer to a Function structure that
|
|
** defines the function) with P5 arguments taken from register P2 and
|
|
** successors. The result of the function is stored in register P3.
|
|
** Register P3 must not be one of the function inputs.
|
|
**
|
|
** P1 is a 32-bit bitmask indicating whether or not each argument to the
|
|
** function was determined to be constant at compile time. If the first
|
|
** argument was constant then bit 0 of P1 is set. This is used to determine
|
|
** whether meta data associated with a user function argument using the
|
|
** sqlite3_set_auxdata() API may be safely retained until the next
|
|
** invocation of this opcode.
|
|
**
|
|
** See also: AggStep and AggFinal
|
|
*/
|
|
case OP_Function: {
|
|
int i;
|
|
Mem *pArg;
|
|
sqlite3_context ctx;
|
|
sqlite3_value **apVal;
|
|
int n = pOp->p5;
|
|
|
|
apVal = p->apArg;
|
|
assert( apVal || n==0 );
|
|
|
|
assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem) );
|
|
assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
|
|
pArg = &p->aMem[pOp->p2];
|
|
for(i=0; i<n; i++, pArg++){
|
|
apVal[i] = pArg;
|
|
storeTypeInfo(pArg, encoding);
|
|
REGISTER_TRACE(pOp->p2, pArg);
|
|
}
|
|
|
|
assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
|
|
if( pOp->p4type==P4_FUNCDEF ){
|
|
ctx.pFunc = pOp->p4.pFunc;
|
|
ctx.pVdbeFunc = 0;
|
|
}else{
|
|
ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
|
|
ctx.pFunc = ctx.pVdbeFunc->pFunc;
|
|
}
|
|
|
|
assert( pOp->p3>0 && pOp->p3<=p->nMem );
|
|
pOut = &p->aMem[pOp->p3];
|
|
ctx.s.flags = MEM_Null;
|
|
ctx.s.db = db;
|
|
ctx.s.xDel = 0;
|
|
ctx.s.zMalloc = 0;
|
|
|
|
/* The output cell may already have a buffer allocated. Move
|
|
** the pointer to ctx.s so in case the user-function can use
|
|
** the already allocated buffer instead of allocating a new one.
|
|
*/
|
|
sqlite3VdbeMemMove(&ctx.s, pOut);
|
|
MemSetTypeFlag(&ctx.s, MEM_Null);
|
|
|
|
ctx.isError = 0;
|
|
if( ctx.pFunc->needCollSeq ){
|
|
assert( pOp>p->aOp );
|
|
assert( pOp[-1].p4type==P4_COLLSEQ );
|
|
assert( pOp[-1].opcode==OP_CollSeq );
|
|
ctx.pColl = pOp[-1].p4.pColl;
|
|
}
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
(*ctx.pFunc->xFunc)(&ctx, n, apVal);
|
|
if( sqlite3SafetyOn(db) ){
|
|
sqlite3VdbeMemRelease(&ctx.s);
|
|
goto abort_due_to_misuse;
|
|
}
|
|
if( db->mallocFailed ){
|
|
/* Even though a malloc() has failed, the implementation of the
|
|
** user function may have called an sqlite3_result_XXX() function
|
|
** to return a value. The following call releases any resources
|
|
** associated with such a value.
|
|
**
|
|
** Note: Maybe MemRelease() should be called if sqlite3SafetyOn()
|
|
** fails also (the if(...) statement above). But if people are
|
|
** misusing sqlite, they have bigger problems than a leaked value.
|
|
*/
|
|
sqlite3VdbeMemRelease(&ctx.s);
|
|
goto no_mem;
|
|
}
|
|
|
|
/* If any auxiliary data functions have been called by this user function,
|
|
** immediately call the destructor for any non-static values.
|
|
*/
|
|
if( ctx.pVdbeFunc ){
|
|
sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
|
|
pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
|
|
pOp->p4type = P4_VDBEFUNC;
|
|
}
|
|
|
|
/* If the function returned an error, throw an exception */
|
|
if( ctx.isError ){
|
|
sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
|
|
rc = ctx.isError;
|
|
}
|
|
|
|
/* Copy the result of the function into register P3 */
|
|
sqlite3VdbeChangeEncoding(&ctx.s, encoding);
|
|
sqlite3VdbeMemMove(pOut, &ctx.s);
|
|
if( sqlite3VdbeMemTooBig(pOut) ){
|
|
goto too_big;
|
|
}
|
|
REGISTER_TRACE(pOp->p3, pOut);
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: BitAnd P1 P2 P3 * *
|
|
**
|
|
** Take the bit-wise AND of the values in register P1 and P2 and
|
|
** store the result in register P3.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: BitOr P1 P2 P3 * *
|
|
**
|
|
** Take the bit-wise OR of the values in register P1 and P2 and
|
|
** store the result in register P3.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: ShiftLeft P1 P2 P3 * *
|
|
**
|
|
** Shift the integer value in register P2 to the left by the
|
|
** number of bits specified by the integer in regiser P1.
|
|
** Store the result in register P3.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: ShiftRight P1 P2 P3 * *
|
|
**
|
|
** Shift the integer value in register P2 to the right by the
|
|
** number of bits specified by the integer in register P1.
|
|
** Store the result in register P3.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
|
|
case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
|
|
case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
|
|
case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
|
|
i64 a, b;
|
|
|
|
if( (pIn1->flags | pIn2->flags) & MEM_Null ){
|
|
sqlite3VdbeMemSetNull(pOut);
|
|
break;
|
|
}
|
|
a = sqlite3VdbeIntValue(pIn2);
|
|
b = sqlite3VdbeIntValue(pIn1);
|
|
switch( pOp->opcode ){
|
|
case OP_BitAnd: a &= b; break;
|
|
case OP_BitOr: a |= b; break;
|
|
case OP_ShiftLeft: a <<= b; break;
|
|
default: assert( pOp->opcode==OP_ShiftRight );
|
|
a >>= b; break;
|
|
}
|
|
pOut->u.i = a;
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AddImm P1 P2 * * *
|
|
**
|
|
** Add the constant P2 to the value in register P1.
|
|
** The result is always an integer.
|
|
**
|
|
** To force any register to be an integer, just add 0.
|
|
*/
|
|
case OP_AddImm: { /* in1 */
|
|
sqlite3VdbeMemIntegerify(pIn1);
|
|
pIn1->u.i += pOp->p2;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ForceInt P1 P2 P3 * *
|
|
**
|
|
** Convert value in register P1 into an integer. If the value
|
|
** in P1 is not numeric (meaning that is is a NULL or a string that
|
|
** does not look like an integer or floating point number) then
|
|
** jump to P2. If the value in P1 is numeric then
|
|
** convert it into the least integer that is greater than or equal to its
|
|
** current value if P3==0, or to the least integer that is strictly
|
|
** greater than its current value if P3==1.
|
|
*/
|
|
case OP_ForceInt: { /* jump, in1 */
|
|
i64 v;
|
|
applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
|
|
if( (pIn1->flags & (MEM_Int|MEM_Real))==0 ){
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
if( pIn1->flags & MEM_Int ){
|
|
v = pIn1->u.i + (pOp->p3!=0);
|
|
}else{
|
|
assert( pIn1->flags & MEM_Real );
|
|
v = (sqlite3_int64)pIn1->r;
|
|
if( pIn1->r>(double)v ) v++;
|
|
if( pOp->p3 && pIn1->r==(double)v ) v++;
|
|
}
|
|
pIn1->u.i = v;
|
|
MemSetTypeFlag(pIn1, MEM_Int);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: MustBeInt P1 P2 * * *
|
|
**
|
|
** Force the value in register P1 to be an integer. If the value
|
|
** in P1 is not an integer and cannot be converted into an integer
|
|
** without data loss, then jump immediately to P2, or if P2==0
|
|
** raise an SQLITE_MISMATCH exception.
|
|
*/
|
|
case OP_MustBeInt: { /* jump, in1 */
|
|
applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
|
|
if( (pIn1->flags & MEM_Int)==0 ){
|
|
if( pOp->p2==0 ){
|
|
rc = SQLITE_MISMATCH;
|
|
goto abort_due_to_error;
|
|
}else{
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
}else{
|
|
MemSetTypeFlag(pIn1, MEM_Int);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: RealAffinity P1 * * * *
|
|
**
|
|
** If register P1 holds an integer convert it to a real value.
|
|
**
|
|
** This opcode is used when extracting information from a column that
|
|
** has REAL affinity. Such column values may still be stored as
|
|
** integers, for space efficiency, but after extraction we want them
|
|
** to have only a real value.
|
|
*/
|
|
case OP_RealAffinity: { /* in1 */
|
|
if( pIn1->flags & MEM_Int ){
|
|
sqlite3VdbeMemRealify(pIn1);
|
|
}
|
|
break;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_CAST
|
|
/* Opcode: ToText P1 * * * *
|
|
**
|
|
** Force the value in register P1 to be text.
|
|
** If the value is numeric, convert it to a string using the
|
|
** equivalent of printf(). Blob values are unchanged and
|
|
** are afterwards simply interpreted as text.
|
|
**
|
|
** A NULL value is not changed by this routine. It remains NULL.
|
|
*/
|
|
case OP_ToText: { /* same as TK_TO_TEXT, in1 */
|
|
if( pIn1->flags & MEM_Null ) break;
|
|
assert( MEM_Str==(MEM_Blob>>3) );
|
|
pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
|
|
applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
|
|
rc = ExpandBlob(pIn1);
|
|
assert( pIn1->flags & MEM_Str || db->mallocFailed );
|
|
pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob);
|
|
UPDATE_MAX_BLOBSIZE(pIn1);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ToBlob P1 * * * *
|
|
**
|
|
** Force the value in register P1 to be a BLOB.
|
|
** If the value is numeric, convert it to a string first.
|
|
** Strings are simply reinterpreted as blobs with no change
|
|
** to the underlying data.
|
|
**
|
|
** A NULL value is not changed by this routine. It remains NULL.
|
|
*/
|
|
case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
|
|
if( pIn1->flags & MEM_Null ) break;
|
|
if( (pIn1->flags & MEM_Blob)==0 ){
|
|
applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
|
|
assert( pIn1->flags & MEM_Str || db->mallocFailed );
|
|
}
|
|
MemSetTypeFlag(pIn1, MEM_Blob);
|
|
UPDATE_MAX_BLOBSIZE(pIn1);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ToNumeric P1 * * * *
|
|
**
|
|
** Force the value in register P1 to be numeric (either an
|
|
** integer or a floating-point number.)
|
|
** If the value is text or blob, try to convert it to an using the
|
|
** equivalent of atoi() or atof() and store 0 if no such conversion
|
|
** is possible.
|
|
**
|
|
** A NULL value is not changed by this routine. It remains NULL.
|
|
*/
|
|
case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
|
|
if( (pIn1->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){
|
|
sqlite3VdbeMemNumerify(pIn1);
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_CAST */
|
|
|
|
/* Opcode: ToInt P1 * * * *
|
|
**
|
|
** Force the value in register P1 be an integer. If
|
|
** The value is currently a real number, drop its fractional part.
|
|
** If the value is text or blob, try to convert it to an integer using the
|
|
** equivalent of atoi() and store 0 if no such conversion is possible.
|
|
**
|
|
** A NULL value is not changed by this routine. It remains NULL.
|
|
*/
|
|
case OP_ToInt: { /* same as TK_TO_INT, in1 */
|
|
if( (pIn1->flags & MEM_Null)==0 ){
|
|
sqlite3VdbeMemIntegerify(pIn1);
|
|
}
|
|
break;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_CAST
|
|
/* Opcode: ToReal P1 * * * *
|
|
**
|
|
** Force the value in register P1 to be a floating point number.
|
|
** If The value is currently an integer, convert it.
|
|
** If the value is text or blob, try to convert it to an integer using the
|
|
** equivalent of atoi() and store 0.0 if no such conversion is possible.
|
|
**
|
|
** A NULL value is not changed by this routine. It remains NULL.
|
|
*/
|
|
case OP_ToReal: { /* same as TK_TO_REAL, in1 */
|
|
if( (pIn1->flags & MEM_Null)==0 ){
|
|
sqlite3VdbeMemRealify(pIn1);
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_CAST */
|
|
|
|
/* Opcode: Lt P1 P2 P3 P4 P5
|
|
**
|
|
** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
|
|
** jump to address P2.
|
|
**
|
|
** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
|
|
** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
|
|
** bit is clear then fall thru if either operand is NULL.
|
|
**
|
|
** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
|
|
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
|
|
** to coerce both inputs according to this affinity before the
|
|
** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
|
|
** affinity is used. Note that the affinity conversions are stored
|
|
** back into the input registers P1 and P3. So this opcode can cause
|
|
** persistent changes to registers P1 and P3.
|
|
**
|
|
** Once any conversions have taken place, and neither value is NULL,
|
|
** the values are compared. If both values are blobs then memcmp() is
|
|
** used to determine the results of the comparison. If both values
|
|
** are text, then the appropriate collating function specified in
|
|
** P4 is used to do the comparison. If P4 is not specified then
|
|
** memcmp() is used to compare text string. If both values are
|
|
** numeric, then a numeric comparison is used. If the two values
|
|
** are of different types, then numbers are considered less than
|
|
** strings and strings are considered less than blobs.
|
|
**
|
|
** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
|
|
** store a boolean result (either 0, or 1, or NULL) in register P2.
|
|
*/
|
|
/* Opcode: Ne P1 P2 P3 P4 P5
|
|
**
|
|
** This works just like the Lt opcode except that the jump is taken if
|
|
** the operands in registers P1 and P3 are not equal. See the Lt opcode for
|
|
** additional information.
|
|
*/
|
|
/* Opcode: Eq P1 P2 P3 P4 P5
|
|
**
|
|
** This works just like the Lt opcode except that the jump is taken if
|
|
** the operands in registers P1 and P3 are equal.
|
|
** See the Lt opcode for additional information.
|
|
*/
|
|
/* Opcode: Le P1 P2 P3 P4 P5
|
|
**
|
|
** This works just like the Lt opcode except that the jump is taken if
|
|
** the content of register P3 is less than or equal to the content of
|
|
** register P1. See the Lt opcode for additional information.
|
|
*/
|
|
/* Opcode: Gt P1 P2 P3 P4 P5
|
|
**
|
|
** This works just like the Lt opcode except that the jump is taken if
|
|
** the content of register P3 is greater than the content of
|
|
** register P1. See the Lt opcode for additional information.
|
|
*/
|
|
/* Opcode: Ge P1 P2 P3 P4 P5
|
|
**
|
|
** This works just like the Lt opcode except that the jump is taken if
|
|
** the content of register P3 is greater than or equal to the content of
|
|
** register P1. See the Lt opcode for additional information.
|
|
*/
|
|
case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
|
|
case OP_Ne: /* same as TK_NE, jump, in1, in3 */
|
|
case OP_Lt: /* same as TK_LT, jump, in1, in3 */
|
|
case OP_Le: /* same as TK_LE, jump, in1, in3 */
|
|
case OP_Gt: /* same as TK_GT, jump, in1, in3 */
|
|
case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
|
|
int flags;
|
|
int res;
|
|
char affinity;
|
|
|
|
flags = pIn1->flags|pIn3->flags;
|
|
|
|
if( flags&MEM_Null ){
|
|
/* If either operand is NULL then the result is always NULL.
|
|
** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
|
|
*/
|
|
if( pOp->p5 & SQLITE_STOREP2 ){
|
|
pOut = &p->aMem[pOp->p2];
|
|
MemSetTypeFlag(pOut, MEM_Null);
|
|
REGISTER_TRACE(pOp->p2, pOut);
|
|
}else if( pOp->p5 & SQLITE_JUMPIFNULL ){
|
|
pc = pOp->p2-1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
affinity = pOp->p5 & SQLITE_AFF_MASK;
|
|
if( affinity ){
|
|
applyAffinity(pIn1, affinity, encoding);
|
|
applyAffinity(pIn3, affinity, encoding);
|
|
}
|
|
|
|
assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
|
|
ExpandBlob(pIn1);
|
|
ExpandBlob(pIn3);
|
|
res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
|
|
switch( pOp->opcode ){
|
|
case OP_Eq: res = res==0; break;
|
|
case OP_Ne: res = res!=0; break;
|
|
case OP_Lt: res = res<0; break;
|
|
case OP_Le: res = res<=0; break;
|
|
case OP_Gt: res = res>0; break;
|
|
default: res = res>=0; break;
|
|
}
|
|
|
|
if( pOp->p5 & SQLITE_STOREP2 ){
|
|
pOut = &p->aMem[pOp->p2];
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
|
pOut->u.i = res;
|
|
REGISTER_TRACE(pOp->p2, pOut);
|
|
}else if( res ){
|
|
pc = pOp->p2-1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Permutation * * * P4 *
|
|
**
|
|
** Set the permuation used by the OP_Compare operator to be the array
|
|
** of integers in P4.
|
|
**
|
|
** The permutation is only valid until the next OP_Permutation, OP_Compare,
|
|
** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur
|
|
** immediately prior to the OP_Compare.
|
|
*/
|
|
case OP_Permutation: {
|
|
assert( pOp->p4type==P4_INTARRAY );
|
|
assert( pOp->p4.ai );
|
|
aPermute = pOp->p4.ai;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Compare P1 P2 P3 P4 *
|
|
**
|
|
** Compare to vectors of registers in reg(P1)..reg(P1+P3-1) (all this
|
|
** one "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
|
|
** the comparison for use by the next OP_Jump instruct.
|
|
**
|
|
** P4 is a KeyInfo structure that defines collating sequences and sort
|
|
** orders for the comparison. The permutation applies to registers
|
|
** only. The KeyInfo elements are used sequentially.
|
|
**
|
|
** The comparison is a sort comparison, so NULLs compare equal,
|
|
** NULLs are less than numbers, numbers are less than strings,
|
|
** and strings are less than blobs.
|
|
*/
|
|
case OP_Compare: {
|
|
int n = pOp->p3;
|
|
int i, p1, p2;
|
|
const KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
|
|
assert( n>0 );
|
|
assert( pKeyInfo!=0 );
|
|
p1 = pOp->p1;
|
|
assert( p1>0 && p1+n-1<p->nMem );
|
|
p2 = pOp->p2;
|
|
assert( p2>0 && p2+n-1<p->nMem );
|
|
for(i=0; i<n; i++){
|
|
int idx = aPermute ? aPermute[i] : i;
|
|
CollSeq *pColl; /* Collating sequence to use on this term */
|
|
int bRev; /* True for DESCENDING sort order */
|
|
REGISTER_TRACE(p1+idx, &p->aMem[p1+idx]);
|
|
REGISTER_TRACE(p2+idx, &p->aMem[p2+idx]);
|
|
assert( i<pKeyInfo->nField );
|
|
pColl = pKeyInfo->aColl[i];
|
|
bRev = pKeyInfo->aSortOrder[i];
|
|
iCompare = sqlite3MemCompare(&p->aMem[p1+idx], &p->aMem[p2+idx], pColl);
|
|
if( iCompare ){
|
|
if( bRev ) iCompare = -iCompare;
|
|
break;
|
|
}
|
|
}
|
|
aPermute = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Jump P1 P2 P3 * *
|
|
**
|
|
** Jump to the instruction at address P1, P2, or P3 depending on whether
|
|
** in the most recent OP_Compare instruction the P1 vector was less than
|
|
** equal to, or greater than the P2 vector, respectively.
|
|
*/
|
|
case OP_Jump: { /* jump */
|
|
if( iCompare<0 ){
|
|
pc = pOp->p1 - 1;
|
|
}else if( iCompare==0 ){
|
|
pc = pOp->p2 - 1;
|
|
}else{
|
|
pc = pOp->p3 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: And P1 P2 P3 * *
|
|
**
|
|
** Take the logical AND of the values in registers P1 and P2 and
|
|
** write the result into register P3.
|
|
**
|
|
** If either P1 or P2 is 0 (false) then the result is 0 even if
|
|
** the other input is NULL. A NULL and true or two NULLs give
|
|
** a NULL output.
|
|
*/
|
|
/* Opcode: Or P1 P2 P3 * *
|
|
**
|
|
** Take the logical OR of the values in register P1 and P2 and
|
|
** store the answer in register P3.
|
|
**
|
|
** If either P1 or P2 is nonzero (true) then the result is 1 (true)
|
|
** even if the other input is NULL. A NULL and false or two NULLs
|
|
** give a NULL output.
|
|
*/
|
|
case OP_And: /* same as TK_AND, in1, in2, out3 */
|
|
case OP_Or: { /* same as TK_OR, in1, in2, out3 */
|
|
int v1, v2; /* 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
|
|
|
|
if( pIn1->flags & MEM_Null ){
|
|
v1 = 2;
|
|
}else{
|
|
v1 = sqlite3VdbeIntValue(pIn1)!=0;
|
|
}
|
|
if( pIn2->flags & MEM_Null ){
|
|
v2 = 2;
|
|
}else{
|
|
v2 = sqlite3VdbeIntValue(pIn2)!=0;
|
|
}
|
|
if( pOp->opcode==OP_And ){
|
|
static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
|
|
v1 = and_logic[v1*3+v2];
|
|
}else{
|
|
static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
|
|
v1 = or_logic[v1*3+v2];
|
|
}
|
|
if( v1==2 ){
|
|
MemSetTypeFlag(pOut, MEM_Null);
|
|
}else{
|
|
pOut->u.i = v1;
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Not P1 * * * *
|
|
**
|
|
** Interpret the value in register P1 as a boolean value. Replace it
|
|
** with its complement. If the value in register P1 is NULL its value
|
|
** is unchanged.
|
|
*/
|
|
case OP_Not: { /* same as TK_NOT, in1 */
|
|
if( pIn1->flags & MEM_Null ) break; /* Do nothing to NULLs */
|
|
sqlite3VdbeMemIntegerify(pIn1);
|
|
pIn1->u.i = !pIn1->u.i;
|
|
assert( pIn1->flags&MEM_Int );
|
|
break;
|
|
}
|
|
|
|
/* Opcode: BitNot P1 * * * *
|
|
**
|
|
** Interpret the content of register P1 as an integer. Replace it
|
|
** with its ones-complement. If the value is originally NULL, leave
|
|
** it unchanged.
|
|
*/
|
|
case OP_BitNot: { /* same as TK_BITNOT, in1 */
|
|
if( pIn1->flags & MEM_Null ) break; /* Do nothing to NULLs */
|
|
sqlite3VdbeMemIntegerify(pIn1);
|
|
pIn1->u.i = ~pIn1->u.i;
|
|
assert( pIn1->flags&MEM_Int );
|
|
break;
|
|
}
|
|
|
|
/* Opcode: If P1 P2 P3 * *
|
|
**
|
|
** Jump to P2 if the value in register P1 is true. The value is
|
|
** is considered true if it is numeric and non-zero. If the value
|
|
** in P1 is NULL then take the jump if P3 is true.
|
|
*/
|
|
/* Opcode: IfNot P1 P2 P3 * *
|
|
**
|
|
** Jump to P2 if the value in register P1 is False. The value is
|
|
** is considered true if it has a numeric value of zero. If the value
|
|
** in P1 is NULL then take the jump if P3 is true.
|
|
*/
|
|
case OP_If: /* jump, in1 */
|
|
case OP_IfNot: { /* jump, in1 */
|
|
int c;
|
|
if( pIn1->flags & MEM_Null ){
|
|
c = pOp->p3;
|
|
}else{
|
|
#ifdef SQLITE_OMIT_FLOATING_POINT
|
|
c = sqlite3VdbeIntValue(pIn1);
|
|
#else
|
|
c = sqlite3VdbeRealValue(pIn1)!=0.0;
|
|
#endif
|
|
if( pOp->opcode==OP_IfNot ) c = !c;
|
|
}
|
|
if( c ){
|
|
pc = pOp->p2-1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IsNull P1 P2 P3 * *
|
|
**
|
|
** Jump to P2 if the value in register P1 is NULL. If P3 is greater
|
|
** than zero, then check all values reg(P1), reg(P1+1),
|
|
** reg(P1+2), ..., reg(P1+P3-1).
|
|
*/
|
|
case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
|
|
int n = pOp->p3;
|
|
assert( pOp->p3==0 || pOp->p1>0 );
|
|
do{
|
|
if( (pIn1->flags & MEM_Null)!=0 ){
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
pIn1++;
|
|
}while( --n > 0 );
|
|
break;
|
|
}
|
|
|
|
/* Opcode: NotNull P1 P2 * * *
|
|
**
|
|
** Jump to P2 if the value in register P1 is not NULL.
|
|
*/
|
|
case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
|
|
if( (pIn1->flags & MEM_Null)==0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SetNumColumns * P2 * * *
|
|
**
|
|
** This opcode sets the number of columns for the cursor opened by the
|
|
** following instruction to P2.
|
|
**
|
|
** An OP_SetNumColumns is only useful if it occurs immediately before
|
|
** one of the following opcodes:
|
|
**
|
|
** OpenRead
|
|
** OpenWrite
|
|
** OpenPseudo
|
|
**
|
|
** If the OP_Column opcode is to be executed on a cursor, then
|
|
** this opcode must be present immediately before the opcode that
|
|
** opens the cursor.
|
|
*/
|
|
case OP_SetNumColumns: {
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Column P1 P2 P3 P4 *
|
|
**
|
|
** Interpret the data that cursor P1 points to as a structure built using
|
|
** the MakeRecord instruction. (See the MakeRecord opcode for additional
|
|
** information about the format of the data.) Extract the P2-th column
|
|
** from this record. If there are less that (P2+1)
|
|
** values in the record, extract a NULL.
|
|
**
|
|
** The value extracted is stored in register P3.
|
|
**
|
|
** If the KeyAsData opcode has previously executed on this cursor, then the
|
|
** field might be extracted from the key rather than the data.
|
|
**
|
|
** If the column contains fewer than P2 fields, then extract a NULL. Or,
|
|
** if the P4 argument is a P4_MEM use the value of the P4 argument as
|
|
** the result.
|
|
*/
|
|
case OP_Column: {
|
|
u32 payloadSize; /* Number of bytes in the record */
|
|
int p1 = pOp->p1; /* P1 value of the opcode */
|
|
int p2 = pOp->p2; /* column number to retrieve */
|
|
Cursor *pC = 0; /* The VDBE cursor */
|
|
char *zRec; /* Pointer to complete record-data */
|
|
BtCursor *pCrsr; /* The BTree cursor */
|
|
u32 *aType; /* aType[i] holds the numeric type of the i-th column */
|
|
u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
|
|
u32 nField; /* number of fields in the record */
|
|
int len; /* The length of the serialized data for the column */
|
|
int i; /* Loop counter */
|
|
char *zData; /* Part of the record being decoded */
|
|
Mem *pDest; /* Where to write the extracted value */
|
|
Mem sMem; /* For storing the record being decoded */
|
|
|
|
sMem.flags = 0;
|
|
sMem.db = 0;
|
|
sMem.zMalloc = 0;
|
|
assert( p1<p->nCursor );
|
|
assert( pOp->p3>0 && pOp->p3<=p->nMem );
|
|
pDest = &p->aMem[pOp->p3];
|
|
MemSetTypeFlag(pDest, MEM_Null);
|
|
|
|
/* This block sets the variable payloadSize to be the total number of
|
|
** bytes in the record.
|
|
**
|
|
** zRec is set to be the complete text of the record if it is available.
|
|
** The complete record text is always available for pseudo-tables
|
|
** If the record is stored in a cursor, the complete record text
|
|
** might be available in the pC->aRow cache. Or it might not be.
|
|
** If the data is unavailable, zRec is set to NULL.
|
|
**
|
|
** We also compute the number of columns in the record. For cursors,
|
|
** the number of columns is stored in the Cursor.nField element.
|
|
*/
|
|
pC = p->apCsr[p1];
|
|
assert( pC!=0 );
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
assert( pC->pVtabCursor==0 );
|
|
#endif
|
|
if( pC->pCursor!=0 ){
|
|
/* The record is stored in a B-Tree */
|
|
rc = sqlite3VdbeCursorMoveto(pC);
|
|
if( rc ) goto abort_due_to_error;
|
|
zRec = 0;
|
|
pCrsr = pC->pCursor;
|
|
if( pC->nullRow ){
|
|
payloadSize = 0;
|
|
}else if( pC->cacheStatus==p->cacheCtr ){
|
|
payloadSize = pC->payloadSize;
|
|
zRec = (char*)pC->aRow;
|
|
}else if( pC->isIndex ){
|
|
i64 payloadSize64;
|
|
sqlite3BtreeKeySize(pCrsr, &payloadSize64);
|
|
payloadSize = payloadSize64;
|
|
}else{
|
|
sqlite3BtreeDataSize(pCrsr, &payloadSize);
|
|
}
|
|
nField = pC->nField;
|
|
}else{
|
|
assert( pC->pseudoTable );
|
|
/* The record is the sole entry of a pseudo-table */
|
|
payloadSize = pC->nData;
|
|
zRec = pC->pData;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
assert( payloadSize==0 || zRec!=0 );
|
|
nField = pC->nField;
|
|
pCrsr = 0;
|
|
}
|
|
|
|
/* If payloadSize is 0, then just store a NULL */
|
|
if( payloadSize==0 ){
|
|
assert( pDest->flags&MEM_Null );
|
|
goto op_column_out;
|
|
}
|
|
if( payloadSize>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
goto too_big;
|
|
}
|
|
|
|
assert( p2<nField );
|
|
|
|
/* Read and parse the table header. Store the results of the parse
|
|
** into the record header cache fields of the cursor.
|
|
*/
|
|
aType = pC->aType;
|
|
if( pC->cacheStatus==p->cacheCtr ){
|
|
aOffset = pC->aOffset;
|
|
}else{
|
|
u8 *zIdx; /* Index into header */
|
|
u8 *zEndHdr; /* Pointer to first byte after the header */
|
|
u32 offset; /* Offset into the data */
|
|
int szHdrSz; /* Size of the header size field at start of record */
|
|
int avail; /* Number of bytes of available data */
|
|
|
|
assert(aType);
|
|
pC->aOffset = aOffset = &aType[nField];
|
|
pC->payloadSize = payloadSize;
|
|
pC->cacheStatus = p->cacheCtr;
|
|
|
|
/* Figure out how many bytes are in the header */
|
|
if( zRec ){
|
|
zData = zRec;
|
|
}else{
|
|
if( pC->isIndex ){
|
|
zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
|
|
}else{
|
|
zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
|
|
}
|
|
/* If KeyFetch()/DataFetch() managed to get the entire payload,
|
|
** save the payload in the pC->aRow cache. That will save us from
|
|
** having to make additional calls to fetch the content portion of
|
|
** the record.
|
|
*/
|
|
if( avail>=payloadSize ){
|
|
zRec = zData;
|
|
pC->aRow = (u8*)zData;
|
|
}else{
|
|
pC->aRow = 0;
|
|
}
|
|
}
|
|
/* The following assert is true in all cases accept when
|
|
** the database file has been corrupted externally.
|
|
** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
|
|
szHdrSz = getVarint32((u8*)zData, offset);
|
|
|
|
/* The KeyFetch() or DataFetch() above are fast and will get the entire
|
|
** record header in most cases. But they will fail to get the complete
|
|
** record header if the record header does not fit on a single page
|
|
** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
|
|
** acquire the complete header text.
|
|
*/
|
|
if( !zRec && avail<offset ){
|
|
sMem.flags = 0;
|
|
sMem.db = 0;
|
|
rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem);
|
|
if( rc!=SQLITE_OK ){
|
|
goto op_column_out;
|
|
}
|
|
zData = sMem.z;
|
|
}
|
|
zEndHdr = (u8 *)&zData[offset];
|
|
zIdx = (u8 *)&zData[szHdrSz];
|
|
|
|
/* Scan the header and use it to fill in the aType[] and aOffset[]
|
|
** arrays. aType[i] will contain the type integer for the i-th
|
|
** column and aOffset[i] will contain the offset from the beginning
|
|
** of the record to the start of the data for the i-th column
|
|
*/
|
|
for(i=0; i<nField; i++){
|
|
if( zIdx<zEndHdr ){
|
|
aOffset[i] = offset;
|
|
zIdx += getVarint32(zIdx, aType[i]);
|
|
offset += sqlite3VdbeSerialTypeLen(aType[i]);
|
|
}else{
|
|
/* If i is less that nField, then there are less fields in this
|
|
** record than SetNumColumns indicated there are columns in the
|
|
** table. Set the offset for any extra columns not present in
|
|
** the record to 0. This tells code below to store a NULL
|
|
** instead of deserializing a value from the record.
|
|
*/
|
|
aOffset[i] = 0;
|
|
}
|
|
}
|
|
sqlite3VdbeMemRelease(&sMem);
|
|
sMem.flags = MEM_Null;
|
|
|
|
/* If we have read more header data than was contained in the header,
|
|
** or if the end of the last field appears to be past the end of the
|
|
** record, or if the end of the last field appears to be before the end
|
|
** of the record (when all fields present), then we must be dealing
|
|
** with a corrupt database.
|
|
*/
|
|
if( zIdx>zEndHdr || offset>payloadSize || (zIdx==zEndHdr && offset!=payloadSize) ){
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
goto op_column_out;
|
|
}
|
|
}
|
|
|
|
/* Get the column information. If aOffset[p2] is non-zero, then
|
|
** deserialize the value from the record. If aOffset[p2] is zero,
|
|
** then there are not enough fields in the record to satisfy the
|
|
** request. In this case, set the value NULL or to P4 if P4 is
|
|
** a pointer to a Mem object.
|
|
*/
|
|
if( aOffset[p2] ){
|
|
assert( rc==SQLITE_OK );
|
|
if( zRec ){
|
|
sqlite3VdbeMemReleaseExternal(pDest);
|
|
sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
|
|
}else{
|
|
len = sqlite3VdbeSerialTypeLen(aType[p2]);
|
|
sqlite3VdbeMemMove(&sMem, pDest);
|
|
rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
|
|
if( rc!=SQLITE_OK ){
|
|
goto op_column_out;
|
|
}
|
|
zData = sMem.z;
|
|
sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
|
|
}
|
|
pDest->enc = encoding;
|
|
}else{
|
|
if( pOp->p4type==P4_MEM ){
|
|
sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
|
|
}else{
|
|
assert( pDest->flags&MEM_Null );
|
|
}
|
|
}
|
|
|
|
/* If we dynamically allocated space to hold the data (in the
|
|
** sqlite3VdbeMemFromBtree() call above) then transfer control of that
|
|
** dynamically allocated space over to the pDest structure.
|
|
** This prevents a memory copy.
|
|
*/
|
|
if( sMem.zMalloc ){
|
|
assert( sMem.z==sMem.zMalloc );
|
|
assert( !(pDest->flags & MEM_Dyn) );
|
|
assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
|
|
pDest->flags &= ~(MEM_Ephem|MEM_Static);
|
|
pDest->flags |= MEM_Term;
|
|
pDest->z = sMem.z;
|
|
pDest->zMalloc = sMem.zMalloc;
|
|
}
|
|
|
|
rc = sqlite3VdbeMemMakeWriteable(pDest);
|
|
|
|
op_column_out:
|
|
UPDATE_MAX_BLOBSIZE(pDest);
|
|
REGISTER_TRACE(pOp->p3, pDest);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Affinity P1 P2 * P4 *
|
|
**
|
|
** Apply affinities to a range of P2 registers starting with P1.
|
|
**
|
|
** P4 is a string that is P2 characters long. The nth character of the
|
|
** string indicates the column affinity that should be used for the nth
|
|
** memory cell in the range.
|
|
*/
|
|
case OP_Affinity: {
|
|
char *zAffinity = pOp->p4.z;
|
|
Mem *pData0 = &p->aMem[pOp->p1];
|
|
Mem *pLast = &pData0[pOp->p2-1];
|
|
Mem *pRec;
|
|
|
|
for(pRec=pData0; pRec<=pLast; pRec++){
|
|
ExpandBlob(pRec);
|
|
applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: MakeRecord P1 P2 P3 P4 *
|
|
**
|
|
** Convert P2 registers beginning with P1 into a single entry
|
|
** suitable for use as a data record in a database table or as a key
|
|
** in an index. The details of the format are irrelevant as long as
|
|
** the OP_Column opcode can decode the record later.
|
|
** Refer to source code comments for the details of the record
|
|
** format.
|
|
**
|
|
** P4 may be a string that is P2 characters long. The nth character of the
|
|
** string indicates the column affinity that should be used for the nth
|
|
** field of the index key.
|
|
**
|
|
** The mapping from character to affinity is given by the SQLITE_AFF_
|
|
** macros defined in sqliteInt.h.
|
|
**
|
|
** If P4 is NULL then all index fields have the affinity NONE.
|
|
*/
|
|
case OP_MakeRecord: {
|
|
/* Assuming the record contains N fields, the record format looks
|
|
** like this:
|
|
**
|
|
** ------------------------------------------------------------------------
|
|
** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
|
|
** ------------------------------------------------------------------------
|
|
**
|
|
** Data(0) is taken from register P1. Data(1) comes from register P1+1
|
|
** and so froth.
|
|
**
|
|
** Each type field is a varint representing the serial type of the
|
|
** corresponding data element (see sqlite3VdbeSerialType()). The
|
|
** hdr-size field is also a varint which is the offset from the beginning
|
|
** of the record to data0.
|
|
*/
|
|
u8 *zNewRecord; /* A buffer to hold the data for the new record */
|
|
Mem *pRec; /* The new record */
|
|
u64 nData = 0; /* Number of bytes of data space */
|
|
int nHdr = 0; /* Number of bytes of header space */
|
|
u64 nByte = 0; /* Data space required for this record */
|
|
int nZero = 0; /* Number of zero bytes at the end of the record */
|
|
int nVarint; /* Number of bytes in a varint */
|
|
u32 serial_type; /* Type field */
|
|
Mem *pData0; /* First field to be combined into the record */
|
|
Mem *pLast; /* Last field of the record */
|
|
int nField; /* Number of fields in the record */
|
|
char *zAffinity; /* The affinity string for the record */
|
|
int file_format; /* File format to use for encoding */
|
|
int i; /* Space used in zNewRecord[] */
|
|
|
|
nField = pOp->p1;
|
|
zAffinity = pOp->p4.z;
|
|
assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem );
|
|
pData0 = &p->aMem[nField];
|
|
nField = pOp->p2;
|
|
pLast = &pData0[nField-1];
|
|
file_format = p->minWriteFileFormat;
|
|
|
|
/* Loop through the elements that will make up the record to figure
|
|
** out how much space is required for the new record.
|
|
*/
|
|
for(pRec=pData0; pRec<=pLast; pRec++){
|
|
int len;
|
|
if( zAffinity ){
|
|
applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
|
|
}
|
|
if( pRec->flags&MEM_Zero && pRec->n>0 ){
|
|
sqlite3VdbeMemExpandBlob(pRec);
|
|
}
|
|
serial_type = sqlite3VdbeSerialType(pRec, file_format);
|
|
len = sqlite3VdbeSerialTypeLen(serial_type);
|
|
nData += len;
|
|
nHdr += sqlite3VarintLen(serial_type);
|
|
if( pRec->flags & MEM_Zero ){
|
|
/* Only pure zero-filled BLOBs can be input to this Opcode.
|
|
** We do not allow blobs with a prefix and a zero-filled tail. */
|
|
nZero += pRec->u.i;
|
|
}else if( len ){
|
|
nZero = 0;
|
|
}
|
|
}
|
|
|
|
/* Add the initial header varint and total the size */
|
|
nHdr += nVarint = sqlite3VarintLen(nHdr);
|
|
if( nVarint<sqlite3VarintLen(nHdr) ){
|
|
nHdr++;
|
|
}
|
|
nByte = nHdr+nData-nZero;
|
|
if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
goto too_big;
|
|
}
|
|
|
|
/* Make sure the output register has a buffer large enough to store
|
|
** the new record. The output register (pOp->p3) is not allowed to
|
|
** be one of the input registers (because the following call to
|
|
** sqlite3VdbeMemGrow() could clobber the value before it is used).
|
|
*/
|
|
assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
|
|
pOut = &p->aMem[pOp->p3];
|
|
if( sqlite3VdbeMemGrow(pOut, nByte, 0) ){
|
|
goto no_mem;
|
|
}
|
|
zNewRecord = (u8 *)pOut->z;
|
|
|
|
/* Write the record */
|
|
i = putVarint32(zNewRecord, nHdr);
|
|
for(pRec=pData0; pRec<=pLast; pRec++){
|
|
serial_type = sqlite3VdbeSerialType(pRec, file_format);
|
|
i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
|
|
}
|
|
for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
|
|
i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRec, file_format);
|
|
}
|
|
assert( i==nByte );
|
|
|
|
assert( pOp->p3>0 && pOp->p3<=p->nMem );
|
|
pOut->n = nByte;
|
|
pOut->flags = MEM_Blob | MEM_Dyn;
|
|
pOut->xDel = 0;
|
|
if( nZero ){
|
|
pOut->u.i = nZero;
|
|
pOut->flags |= MEM_Zero;
|
|
}
|
|
pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
|
|
REGISTER_TRACE(pOp->p3, pOut);
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Statement P1 * * * *
|
|
**
|
|
** Begin an individual statement transaction which is part of a larger
|
|
** transaction. This is needed so that the statement
|
|
** can be rolled back after an error without having to roll back the
|
|
** entire transaction. The statement transaction will automatically
|
|
** commit when the VDBE halts.
|
|
**
|
|
** If the database connection is currently in autocommit mode (that
|
|
** is to say, if it is in between BEGIN and COMMIT)
|
|
** and if there are no other active statements on the same database
|
|
** connection, then this operation is a no-op. No statement transaction
|
|
** is needed since any error can use the normal ROLLBACK process to
|
|
** undo changes.
|
|
**
|
|
** If a statement transaction is started, then a statement journal file
|
|
** will be allocated and initialized.
|
|
**
|
|
** The statement is begun on the database file with index P1. The main
|
|
** database file has an index of 0 and the file used for temporary tables
|
|
** has an index of 1.
|
|
*/
|
|
case OP_Statement: {
|
|
if( db->autoCommit==0 || db->activeVdbeCnt>1 ){
|
|
int i = pOp->p1;
|
|
Btree *pBt;
|
|
assert( i>=0 && i<db->nDb );
|
|
assert( db->aDb[i].pBt!=0 );
|
|
pBt = db->aDb[i].pBt;
|
|
assert( sqlite3BtreeIsInTrans(pBt) );
|
|
assert( (p->btreeMask & (1<<i))!=0 );
|
|
if( !sqlite3BtreeIsInStmt(pBt) ){
|
|
rc = sqlite3BtreeBeginStmt(pBt);
|
|
p->openedStatement = 1;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AutoCommit P1 P2 * * *
|
|
**
|
|
** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
|
|
** back any currently active btree transactions. If there are any active
|
|
** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
|
|
**
|
|
** This instruction causes the VM to halt.
|
|
*/
|
|
case OP_AutoCommit: {
|
|
u8 i = pOp->p1;
|
|
u8 rollback = pOp->p2;
|
|
|
|
assert( i==1 || i==0 );
|
|
assert( i==1 || rollback==0 );
|
|
|
|
assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
|
|
|
|
if( db->activeVdbeCnt>1 && i && !db->autoCommit ){
|
|
/* If this instruction implements a COMMIT or ROLLBACK, other VMs are
|
|
** still running, and a transaction is active, return an error indicating
|
|
** that the other VMs must complete first.
|
|
*/
|
|
sqlite3SetString(&p->zErrMsg, db, "cannot %s transaction - "
|
|
"SQL statements in progress",
|
|
rollback ? "rollback" : "commit");
|
|
rc = SQLITE_ERROR;
|
|
}else if( i!=db->autoCommit ){
|
|
if( pOp->p2 ){
|
|
assert( i==1 );
|
|
sqlite3RollbackAll(db);
|
|
db->autoCommit = 1;
|
|
}else{
|
|
db->autoCommit = i;
|
|
if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
|
|
p->pc = pc;
|
|
db->autoCommit = 1-i;
|
|
p->rc = rc = SQLITE_BUSY;
|
|
goto vdbe_return;
|
|
}
|
|
}
|
|
if( p->rc==SQLITE_OK ){
|
|
rc = SQLITE_DONE;
|
|
}else{
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
goto vdbe_return;
|
|
}else{
|
|
sqlite3SetString(&p->zErrMsg, db,
|
|
(!i)?"cannot start a transaction within a transaction":(
|
|
(rollback)?"cannot rollback - no transaction is active":
|
|
"cannot commit - no transaction is active"));
|
|
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Transaction P1 P2 * * *
|
|
**
|
|
** Begin a transaction. The transaction ends when a Commit or Rollback
|
|
** opcode is encountered. Depending on the ON CONFLICT setting, the
|
|
** transaction might also be rolled back if an error is encountered.
|
|
**
|
|
** P1 is the index of the database file on which the transaction is
|
|
** started. Index 0 is the main database file and index 1 is the
|
|
** file used for temporary tables. Indices of 2 or more are used for
|
|
** attached databases.
|
|
**
|
|
** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
|
|
** obtained on the database file when a write-transaction is started. No
|
|
** other process can start another write transaction while this transaction is
|
|
** underway. Starting a write transaction also creates a rollback journal. A
|
|
** write transaction must be started before any changes can be made to the
|
|
** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
|
|
** on the file.
|
|
**
|
|
** If P2 is zero, then a read-lock is obtained on the database file.
|
|
*/
|
|
case OP_Transaction: {
|
|
int i = pOp->p1;
|
|
Btree *pBt;
|
|
|
|
assert( i>=0 && i<db->nDb );
|
|
assert( (p->btreeMask & (1<<i))!=0 );
|
|
pBt = db->aDb[i].pBt;
|
|
|
|
if( pBt ){
|
|
rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
|
|
if( rc==SQLITE_BUSY ){
|
|
p->pc = pc;
|
|
p->rc = rc = SQLITE_BUSY;
|
|
goto vdbe_return;
|
|
}
|
|
if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){
|
|
goto abort_due_to_error;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ReadCookie P1 P2 P3 * *
|
|
**
|
|
** Read cookie number P3 from database P1 and write it into register P2.
|
|
** P3==0 is the schema version. P3==1 is the database format.
|
|
** P3==2 is the recommended pager cache size, and so forth. P1==0 is
|
|
** the main database file and P1==1 is the database file used to store
|
|
** temporary tables.
|
|
**
|
|
** If P1 is negative, then this is a request to read the size of a
|
|
** databases free-list. P3 must be set to 1 in this case. The actual
|
|
** database accessed is ((P1+1)*-1). For example, a P1 parameter of -1
|
|
** corresponds to database 0 ("main"), a P1 of -2 is database 1 ("temp").
|
|
**
|
|
** There must be a read-lock on the database (either a transaction
|
|
** must be started or there must be an open cursor) before
|
|
** executing this instruction.
|
|
*/
|
|
case OP_ReadCookie: { /* out2-prerelease */
|
|
int iMeta;
|
|
int iDb = pOp->p1;
|
|
int iCookie = pOp->p3;
|
|
|
|
assert( pOp->p3<SQLITE_N_BTREE_META );
|
|
if( iDb<0 ){
|
|
iDb = (-1*(iDb+1));
|
|
iCookie *= -1;
|
|
}
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
assert( db->aDb[iDb].pBt!=0 );
|
|
assert( (p->btreeMask & (1<<iDb))!=0 );
|
|
/* The indexing of meta values at the schema layer is off by one from
|
|
** the indexing in the btree layer. The btree considers meta[0] to
|
|
** be the number of free pages in the database (a read-only value)
|
|
** and meta[1] to be the schema cookie. The schema layer considers
|
|
** meta[1] to be the schema cookie. So we have to shift the index
|
|
** by one in the following statement.
|
|
*/
|
|
rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta);
|
|
pOut->u.i = iMeta;
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SetCookie P1 P2 P3 * *
|
|
**
|
|
** Write the content of register P3 (interpreted as an integer)
|
|
** into cookie number P2 of database P1.
|
|
** P2==0 is the schema version. P2==1 is the database format.
|
|
** P2==2 is the recommended pager cache size, and so forth. P1==0 is
|
|
** the main database file and P1==1 is the database file used to store
|
|
** temporary tables.
|
|
**
|
|
** A transaction must be started before executing this opcode.
|
|
*/
|
|
case OP_SetCookie: { /* in3 */
|
|
Db *pDb;
|
|
assert( pOp->p2<SQLITE_N_BTREE_META );
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
assert( (p->btreeMask & (1<<pOp->p1))!=0 );
|
|
pDb = &db->aDb[pOp->p1];
|
|
assert( pDb->pBt!=0 );
|
|
sqlite3VdbeMemIntegerify(pIn3);
|
|
/* See note about index shifting on OP_ReadCookie */
|
|
rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pIn3->u.i);
|
|
if( pOp->p2==0 ){
|
|
/* When the schema cookie changes, record the new cookie internally */
|
|
pDb->pSchema->schema_cookie = pIn3->u.i;
|
|
db->flags |= SQLITE_InternChanges;
|
|
}else if( pOp->p2==1 ){
|
|
/* Record changes in the file format */
|
|
pDb->pSchema->file_format = pIn3->u.i;
|
|
}
|
|
if( pOp->p1==1 ){
|
|
/* Invalidate all prepared statements whenever the TEMP database
|
|
** schema is changed. Ticket #1644 */
|
|
sqlite3ExpirePreparedStatements(db);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: VerifyCookie P1 P2 *
|
|
**
|
|
** Check the value of global database parameter number 0 (the
|
|
** schema version) and make sure it is equal to P2.
|
|
** P1 is the database number which is 0 for the main database file
|
|
** and 1 for the file holding temporary tables and some higher number
|
|
** for auxiliary databases.
|
|
**
|
|
** The cookie changes its value whenever the database schema changes.
|
|
** This operation is used to detect when that the cookie has changed
|
|
** and that the current process needs to reread the schema.
|
|
**
|
|
** Either a transaction needs to have been started or an OP_Open needs
|
|
** to be executed (to establish a read lock) before this opcode is
|
|
** invoked.
|
|
*/
|
|
case OP_VerifyCookie: {
|
|
int iMeta;
|
|
Btree *pBt;
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
assert( (p->btreeMask & (1<<pOp->p1))!=0 );
|
|
pBt = db->aDb[pOp->p1].pBt;
|
|
if( pBt ){
|
|
rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta);
|
|
}else{
|
|
rc = SQLITE_OK;
|
|
iMeta = 0;
|
|
}
|
|
if( rc==SQLITE_OK && iMeta!=pOp->p2 ){
|
|
sqlite3DbFree(db, p->zErrMsg);
|
|
p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
|
|
/* If the schema-cookie from the database file matches the cookie
|
|
** stored with the in-memory representation of the schema, do
|
|
** not reload the schema from the database file.
|
|
**
|
|
** If virtual-tables are in use, this is not just an optimization.
|
|
** Often, v-tables store their data in other SQLite tables, which
|
|
** are queried from within xNext() and other v-table methods using
|
|
** prepared queries. If such a query is out-of-date, we do not want to
|
|
** discard the database schema, as the user code implementing the
|
|
** v-table would have to be ready for the sqlite3_vtab structure itself
|
|
** to be invalidated whenever sqlite3_step() is called from within
|
|
** a v-table method.
|
|
*/
|
|
if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
|
|
sqlite3ResetInternalSchema(db, pOp->p1);
|
|
}
|
|
|
|
sqlite3ExpirePreparedStatements(db);
|
|
rc = SQLITE_SCHEMA;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: OpenRead P1 P2 P3 P4 P5
|
|
**
|
|
** Open a read-only cursor for the database table whose root page is
|
|
** P2 in a database file. The database file is determined by P3.
|
|
** P3==0 means the main database, P3==1 means the database used for
|
|
** temporary tables, and P3>1 means used the corresponding attached
|
|
** database. Give the new cursor an identifier of P1. The P1
|
|
** values need not be contiguous but all P1 values should be small integers.
|
|
** It is an error for P1 to be negative.
|
|
**
|
|
** If P5!=0 then use the content of register P2 as the root page, not
|
|
** the value of P2 itself.
|
|
**
|
|
** There will be a read lock on the database whenever there is an
|
|
** open cursor. If the database was unlocked prior to this instruction
|
|
** then a read lock is acquired as part of this instruction. A read
|
|
** lock allows other processes to read the database but prohibits
|
|
** any other process from modifying the database. The read lock is
|
|
** released when all cursors are closed. If this instruction attempts
|
|
** to get a read lock but fails, the script terminates with an
|
|
** SQLITE_BUSY error code.
|
|
**
|
|
** The P4 value is a pointer to a KeyInfo structure that defines the
|
|
** content and collating sequence of indices. P4 is NULL for cursors
|
|
** that are not pointing to indices.
|
|
**
|
|
** See also OpenWrite.
|
|
*/
|
|
/* Opcode: OpenWrite P1 P2 P3 P4 P5
|
|
**
|
|
** Open a read/write cursor named P1 on the table or index whose root
|
|
** page is P2. Or if P5!=0 use the content of register P2 to find the
|
|
** root page.
|
|
**
|
|
** The P4 value is a pointer to a KeyInfo structure that defines the
|
|
** content and collating sequence of indices. P4 is NULL for cursors
|
|
** that are not pointing to indices.
|
|
**
|
|
** This instruction works just like OpenRead except that it opens the cursor
|
|
** in read/write mode. For a given table, there can be one or more read-only
|
|
** cursors or a single read/write cursor but not both.
|
|
**
|
|
** See also OpenRead.
|
|
*/
|
|
case OP_OpenRead:
|
|
case OP_OpenWrite: {
|
|
int i = pOp->p1;
|
|
int p2 = pOp->p2;
|
|
int iDb = pOp->p3;
|
|
int wrFlag;
|
|
Btree *pX;
|
|
Cursor *pCur;
|
|
Db *pDb;
|
|
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
assert( (p->btreeMask & (1<<iDb))!=0 );
|
|
pDb = &db->aDb[iDb];
|
|
pX = pDb->pBt;
|
|
assert( pX!=0 );
|
|
if( pOp->opcode==OP_OpenWrite ){
|
|
wrFlag = 1;
|
|
if( pDb->pSchema->file_format < p->minWriteFileFormat ){
|
|
p->minWriteFileFormat = pDb->pSchema->file_format;
|
|
}
|
|
}else{
|
|
wrFlag = 0;
|
|
}
|
|
if( pOp->p5 ){
|
|
assert( p2>0 );
|
|
assert( p2<=p->nMem );
|
|
pIn2 = &p->aMem[p2];
|
|
sqlite3VdbeMemIntegerify(pIn2);
|
|
p2 = pIn2->u.i;
|
|
assert( p2>=2 );
|
|
}
|
|
assert( i>=0 );
|
|
pCur = allocateCursor(p, i, &pOp[-1], iDb, 1);
|
|
if( pCur==0 ) goto no_mem;
|
|
pCur->nullRow = 1;
|
|
rc = sqlite3BtreeCursor(pX, p2, wrFlag, pOp->p4.p, pCur->pCursor);
|
|
if( pOp->p4type==P4_KEYINFO ){
|
|
pCur->pKeyInfo = pOp->p4.pKeyInfo;
|
|
pCur->pKeyInfo->enc = ENC(p->db);
|
|
}else{
|
|
pCur->pKeyInfo = 0;
|
|
}
|
|
switch( rc ){
|
|
case SQLITE_BUSY: {
|
|
p->pc = pc;
|
|
p->rc = rc = SQLITE_BUSY;
|
|
goto vdbe_return;
|
|
}
|
|
case SQLITE_OK: {
|
|
int flags = sqlite3BtreeFlags(pCur->pCursor);
|
|
/* Sanity checking. Only the lower four bits of the flags byte should
|
|
** be used. Bit 3 (mask 0x08) is unpredictable. The lower 3 bits
|
|
** (mask 0x07) should be either 5 (intkey+leafdata for tables) or
|
|
** 2 (zerodata for indices). If these conditions are not met it can
|
|
** only mean that we are dealing with a corrupt database file
|
|
*/
|
|
if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
goto abort_due_to_error;
|
|
}
|
|
pCur->isTable = (flags & BTREE_INTKEY)!=0;
|
|
pCur->isIndex = (flags & BTREE_ZERODATA)!=0;
|
|
/* If P4==0 it means we are expected to open a table. If P4!=0 then
|
|
** we expect to be opening an index. If this is not what happened,
|
|
** then the database is corrupt
|
|
*/
|
|
if( (pCur->isTable && pOp->p4type==P4_KEYINFO)
|
|
|| (pCur->isIndex && pOp->p4type!=P4_KEYINFO) ){
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
goto abort_due_to_error;
|
|
}
|
|
break;
|
|
}
|
|
case SQLITE_EMPTY: {
|
|
pCur->isTable = pOp->p4type!=P4_KEYINFO;
|
|
pCur->isIndex = !pCur->isTable;
|
|
pCur->pCursor = 0;
|
|
rc = SQLITE_OK;
|
|
break;
|
|
}
|
|
default: {
|
|
goto abort_due_to_error;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: OpenEphemeral P1 P2 * P4 *
|
|
**
|
|
** Open a new cursor P1 to a transient table.
|
|
** The cursor is always opened read/write even if
|
|
** the main database is read-only. The transient or virtual
|
|
** table is deleted automatically when the cursor is closed.
|
|
**
|
|
** P2 is the number of columns in the virtual table.
|
|
** The cursor points to a BTree table if P4==0 and to a BTree index
|
|
** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
|
|
** that defines the format of keys in the index.
|
|
**
|
|
** This opcode was once called OpenTemp. But that created
|
|
** confusion because the term "temp table", might refer either
|
|
** to a TEMP table at the SQL level, or to a table opened by
|
|
** this opcode. Then this opcode was call OpenVirtual. But
|
|
** that created confusion with the whole virtual-table idea.
|
|
*/
|
|
case OP_OpenEphemeral: {
|
|
int i = pOp->p1;
|
|
Cursor *pCx;
|
|
static const int openFlags =
|
|
SQLITE_OPEN_READWRITE |
|
|
SQLITE_OPEN_CREATE |
|
|
SQLITE_OPEN_EXCLUSIVE |
|
|
SQLITE_OPEN_DELETEONCLOSE |
|
|
SQLITE_OPEN_TRANSIENT_DB;
|
|
|
|
assert( i>=0 );
|
|
pCx = allocateCursor(p, i, pOp, -1, 1);
|
|
if( pCx==0 ) goto no_mem;
|
|
pCx->nullRow = 1;
|
|
rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
|
|
&pCx->pBt);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
/* If a transient index is required, create it by calling
|
|
** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
|
|
** opening it. If a transient table is required, just use the
|
|
** automatically created table with root-page 1 (an INTKEY table).
|
|
*/
|
|
if( pOp->p4.pKeyInfo ){
|
|
int pgno;
|
|
assert( pOp->p4type==P4_KEYINFO );
|
|
rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA);
|
|
if( rc==SQLITE_OK ){
|
|
assert( pgno==MASTER_ROOT+1 );
|
|
rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
|
|
(KeyInfo*)pOp->p4.z, pCx->pCursor);
|
|
pCx->pKeyInfo = pOp->p4.pKeyInfo;
|
|
pCx->pKeyInfo->enc = ENC(p->db);
|
|
}
|
|
pCx->isTable = 0;
|
|
}else{
|
|
rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
|
|
pCx->isTable = 1;
|
|
}
|
|
}
|
|
pCx->isIndex = !pCx->isTable;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: OpenPseudo P1 P2 * * *
|
|
**
|
|
** Open a new cursor that points to a fake table that contains a single
|
|
** row of data. Any attempt to write a second row of data causes the
|
|
** first row to be deleted. All data is deleted when the cursor is
|
|
** closed.
|
|
**
|
|
** A pseudo-table created by this opcode is useful for holding the
|
|
** NEW or OLD tables in a trigger. Also used to hold the a single
|
|
** row output from the sorter so that the row can be decomposed into
|
|
** individual columns using the OP_Column opcode.
|
|
**
|
|
** When OP_Insert is executed to insert a row in to the pseudo table,
|
|
** the pseudo-table cursor may or may not make it's own copy of the
|
|
** original row data. If P2 is 0, then the pseudo-table will copy the
|
|
** original row data. Otherwise, a pointer to the original memory cell
|
|
** is stored. In this case, the vdbe program must ensure that the
|
|
** memory cell containing the row data is not overwritten until the
|
|
** pseudo table is closed (or a new row is inserted into it).
|
|
*/
|
|
case OP_OpenPseudo: {
|
|
int i = pOp->p1;
|
|
Cursor *pCx;
|
|
assert( i>=0 );
|
|
pCx = allocateCursor(p, i, &pOp[-1], -1, 0);
|
|
if( pCx==0 ) goto no_mem;
|
|
pCx->nullRow = 1;
|
|
pCx->pseudoTable = 1;
|
|
pCx->ephemPseudoTable = pOp->p2;
|
|
pCx->isTable = 1;
|
|
pCx->isIndex = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Close P1 * * * *
|
|
**
|
|
** Close a cursor previously opened as P1. If P1 is not
|
|
** currently open, this instruction is a no-op.
|
|
*/
|
|
case OP_Close: {
|
|
int i = pOp->p1;
|
|
assert( i>=0 && i<p->nCursor );
|
|
sqlite3VdbeFreeCursor(p, p->apCsr[i]);
|
|
p->apCsr[i] = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: MoveGe P1 P2 P3 P4 *
|
|
**
|
|
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
|
|
** use the integer value in register P3 as a key. If cursor P1 refers
|
|
** to an SQL index, then P3 is the first in an array of P4 registers
|
|
** that are used as an unpacked index key.
|
|
**
|
|
** Reposition cursor P1 so that it points to the smallest entry that
|
|
** is greater than or equal to the key value. If there are no records
|
|
** greater than or equal to the key and P2 is not zero, then jump to P2.
|
|
**
|
|
** A special feature of this opcode (and different from the
|
|
** related OP_MoveGt, OP_MoveLt, and OP_MoveLe) is that if P2 is
|
|
** zero and P1 is an SQL table (a b-tree with integer keys) then
|
|
** the seek is deferred until it is actually needed. It might be
|
|
** the case that the cursor is never accessed. By deferring the
|
|
** seek, we avoid unnecessary seeks.
|
|
**
|
|
** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe
|
|
*/
|
|
/* Opcode: MoveGt P1 P2 P3 P4 *
|
|
**
|
|
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
|
|
** use the integer value in register P3 as a key. If cursor P1 refers
|
|
** to an SQL index, then P3 is the first in an array of P4 registers
|
|
** that are used as an unpacked index key.
|
|
**
|
|
** Reposition cursor P1 so that it points to the smallest entry that
|
|
** is greater than the key value. If there are no records greater than
|
|
** the key and P2 is not zero, then jump to P2.
|
|
**
|
|
** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe
|
|
*/
|
|
/* Opcode: MoveLt P1 P2 P3 P4 *
|
|
**
|
|
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
|
|
** use the integer value in register P3 as a key. If cursor P1 refers
|
|
** to an SQL index, then P3 is the first in an array of P4 registers
|
|
** that are used as an unpacked index key.
|
|
**
|
|
** Reposition cursor P1 so that it points to the largest entry that
|
|
** is less than the key value. If there are no records less than
|
|
** the key and P2 is not zero, then jump to P2.
|
|
**
|
|
** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe
|
|
*/
|
|
/* Opcode: MoveLe P1 P2 P3 P4 *
|
|
**
|
|
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
|
|
** use the integer value in register P3 as a key. If cursor P1 refers
|
|
** to an SQL index, then P3 is the first in an array of P4 registers
|
|
** that are used as an unpacked index key.
|
|
**
|
|
** Reposition cursor P1 so that it points to the largest entry that
|
|
** is less than or equal to the key value. If there are no records
|
|
** less than or equal to the key and P2 is not zero, then jump to P2.
|
|
**
|
|
** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
|
|
*/
|
|
case OP_MoveLt: /* jump, in3 */
|
|
case OP_MoveLe: /* jump, in3 */
|
|
case OP_MoveGe: /* jump, in3 */
|
|
case OP_MoveGt: { /* jump, in3 */
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
if( pC->pCursor!=0 ){
|
|
int res, oc;
|
|
oc = pOp->opcode;
|
|
pC->nullRow = 0;
|
|
if( pC->isTable ){
|
|
i64 iKey = sqlite3VdbeIntValue(pIn3);
|
|
if( pOp->p2==0 ){
|
|
assert( pOp->opcode==OP_MoveGe );
|
|
pC->movetoTarget = iKey;
|
|
pC->rowidIsValid = 0;
|
|
pC->deferredMoveto = 1;
|
|
break;
|
|
}
|
|
rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
pC->lastRowid = iKey;
|
|
pC->rowidIsValid = res==0;
|
|
}else{
|
|
UnpackedRecord r;
|
|
int nField = pOp->p4.i;
|
|
assert( pOp->p4type==P4_INT32 );
|
|
assert( nField>0 );
|
|
r.pKeyInfo = pC->pKeyInfo;
|
|
r.nField = nField;
|
|
if( oc==OP_MoveGt || oc==OP_MoveLe ){
|
|
r.flags = UNPACKED_INCRKEY;
|
|
}else{
|
|
r.flags = 0;
|
|
}
|
|
r.aMem = &p->aMem[pOp->p3];
|
|
rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
pC->rowidIsValid = 0;
|
|
}
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_search_count++;
|
|
#endif
|
|
if( oc==OP_MoveGe || oc==OP_MoveGt ){
|
|
if( res<0 ){
|
|
rc = sqlite3BtreeNext(pC->pCursor, &res);
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
pC->rowidIsValid = 0;
|
|
}else{
|
|
res = 0;
|
|
}
|
|
}else{
|
|
assert( oc==OP_MoveLt || oc==OP_MoveLe );
|
|
if( res>=0 ){
|
|
rc = sqlite3BtreePrevious(pC->pCursor, &res);
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
pC->rowidIsValid = 0;
|
|
}else{
|
|
/* res might be negative because the table is empty. Check to
|
|
** see if this is the case.
|
|
*/
|
|
res = sqlite3BtreeEof(pC->pCursor);
|
|
}
|
|
}
|
|
assert( pOp->p2>0 );
|
|
if( res ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
}else if( !pC->pseudoTable ){
|
|
/* This happens when attempting to open the sqlite3_master table
|
|
** for read access returns SQLITE_EMPTY. In this case always
|
|
** take the jump (since there are no records in the table).
|
|
*/
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Found P1 P2 P3 * *
|
|
**
|
|
** Register P3 holds a blob constructed by MakeRecord. P1 is an index.
|
|
** If an entry that matches the value in register p3 exists in P1 then
|
|
** jump to P2. If the P3 value does not match any entry in P1
|
|
** then fall thru. The P1 cursor is left pointing at the matching entry
|
|
** if it exists.
|
|
**
|
|
** This instruction is used to implement the IN operator where the
|
|
** left-hand side is a SELECT statement. P1 may be a true index, or it
|
|
** may be a temporary index that holds the results of the SELECT
|
|
** statement. This instruction is also used to implement the
|
|
** DISTINCT keyword in SELECT statements.
|
|
**
|
|
** This instruction checks if index P1 contains a record for which
|
|
** the first N serialized values exactly match the N serialized values
|
|
** in the record in register P3, where N is the total number of values in
|
|
** the P3 record (the P3 record is a prefix of the P1 record).
|
|
**
|
|
** See also: NotFound, MoveTo, IsUnique, NotExists
|
|
*/
|
|
/* Opcode: NotFound P1 P2 P3 * *
|
|
**
|
|
** Register P3 holds a blob constructed by MakeRecord. P1 is
|
|
** an index. If no entry exists in P1 that matches the blob then jump
|
|
** to P2. If an entry does existing, fall through. The cursor is left
|
|
** pointing to the entry that matches.
|
|
**
|
|
** See also: Found, MoveTo, NotExists, IsUnique
|
|
*/
|
|
case OP_NotFound: /* jump, in3 */
|
|
case OP_Found: { /* jump, in3 */
|
|
int i = pOp->p1;
|
|
int alreadyExists = 0;
|
|
Cursor *pC;
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
if( (pC = p->apCsr[i])->pCursor!=0 ){
|
|
int res;
|
|
UnpackedRecord *pIdxKey;
|
|
|
|
assert( pC->isTable==0 );
|
|
assert( pIn3->flags & MEM_Blob );
|
|
pIdxKey = sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z,
|
|
zTempSpace, sizeof(zTempSpace));
|
|
if( pIdxKey==0 ){
|
|
goto no_mem;
|
|
}
|
|
if( pOp->opcode==OP_Found ){
|
|
pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
|
|
}
|
|
rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
|
|
sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
|
|
if( rc!=SQLITE_OK ){
|
|
break;
|
|
}
|
|
alreadyExists = (res==0);
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
}
|
|
if( pOp->opcode==OP_Found ){
|
|
if( alreadyExists ) pc = pOp->p2 - 1;
|
|
}else{
|
|
if( !alreadyExists ) pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IsUnique P1 P2 P3 P4 *
|
|
**
|
|
** The P3 register contains an integer record number. Call this
|
|
** record number R. The P4 register contains an index key created
|
|
** using MakeRecord. Call it K.
|
|
**
|
|
** P1 is an index. So it has no data and its key consists of a
|
|
** record generated by OP_MakeRecord where the last field is the
|
|
** rowid of the entry that the index refers to.
|
|
**
|
|
** This instruction asks if there is an entry in P1 where the
|
|
** fields matches K but the rowid is different from R.
|
|
** If there is no such entry, then there is an immediate
|
|
** jump to P2. If any entry does exist where the index string
|
|
** matches K but the record number is not R, then the record
|
|
** number for that entry is written into P3 and control
|
|
** falls through to the next instruction.
|
|
**
|
|
** See also: NotFound, NotExists, Found
|
|
*/
|
|
case OP_IsUnique: { /* jump, in3 */
|
|
int i = pOp->p1;
|
|
Cursor *pCx;
|
|
BtCursor *pCrsr;
|
|
Mem *pK;
|
|
i64 R;
|
|
|
|
/* Pop the value R off the top of the stack
|
|
*/
|
|
assert( pOp->p4type==P4_INT32 );
|
|
assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
|
|
pK = &p->aMem[pOp->p4.i];
|
|
sqlite3VdbeMemIntegerify(pIn3);
|
|
R = pIn3->u.i;
|
|
assert( i>=0 && i<p->nCursor );
|
|
pCx = p->apCsr[i];
|
|
assert( pCx!=0 );
|
|
pCrsr = pCx->pCursor;
|
|
if( pCrsr!=0 ){
|
|
int res;
|
|
i64 v; /* The record number that matches K */
|
|
UnpackedRecord *pIdxKey; /* Unpacked version of P4 */
|
|
|
|
/* Make sure K is a string and make zKey point to K
|
|
*/
|
|
assert( pK->flags & MEM_Blob );
|
|
pIdxKey = sqlite3VdbeRecordUnpack(pCx->pKeyInfo, pK->n, pK->z,
|
|
zTempSpace, sizeof(zTempSpace));
|
|
if( pIdxKey==0 ){
|
|
goto no_mem;
|
|
}
|
|
pIdxKey->flags |= UNPACKED_IGNORE_ROWID;
|
|
|
|
/* Search for an entry in P1 where all but the last rowid match K
|
|
** If there is no such entry, jump immediately to P2.
|
|
*/
|
|
assert( pCx->deferredMoveto==0 );
|
|
pCx->cacheStatus = CACHE_STALE;
|
|
rc = sqlite3BtreeMovetoUnpacked(pCrsr, pIdxKey, 0, 0, &res);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
|
|
goto abort_due_to_error;
|
|
}
|
|
if( res<0 ){
|
|
rc = sqlite3BtreeNext(pCrsr, &res);
|
|
if( res ){
|
|
pc = pOp->p2 - 1;
|
|
sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
|
|
break;
|
|
}
|
|
}
|
|
rc = sqlite3VdbeIdxKeyCompare(pCx, pIdxKey, &res);
|
|
sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
if( res>0 ){
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
|
|
/* At this point, pCrsr is pointing to an entry in P1 where all but
|
|
** the final entry (the rowid) matches K. Check to see if the
|
|
** final rowid column is different from R. If it equals R then jump
|
|
** immediately to P2.
|
|
*/
|
|
rc = sqlite3VdbeIdxRowid(pCrsr, &v);
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
if( v==R ){
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
|
|
/* The final varint of the key is different from R. Store it back
|
|
** into register R3. (The record number of an entry that violates
|
|
** a UNIQUE constraint.)
|
|
*/
|
|
pIn3->u.i = v;
|
|
assert( pIn3->flags&MEM_Int );
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: NotExists P1 P2 P3 * *
|
|
**
|
|
** Use the content of register P3 as a integer key. If a record
|
|
** with that key does not exist in table of P1, then jump to P2.
|
|
** If the record does exist, then fall thru. The cursor is left
|
|
** pointing to the record if it exists.
|
|
**
|
|
** The difference between this operation and NotFound is that this
|
|
** operation assumes the key is an integer and that P1 is a table whereas
|
|
** NotFound assumes key is a blob constructed from MakeRecord and
|
|
** P1 is an index.
|
|
**
|
|
** See also: Found, MoveTo, NotFound, IsUnique
|
|
*/
|
|
case OP_NotExists: { /* jump, in3 */
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
BtCursor *pCrsr;
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
|
|
int res;
|
|
u64 iKey;
|
|
assert( pIn3->flags & MEM_Int );
|
|
assert( p->apCsr[i]->isTable );
|
|
iKey = intToKey(pIn3->u.i);
|
|
rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0,&res);
|
|
pC->lastRowid = pIn3->u.i;
|
|
pC->rowidIsValid = res==0;
|
|
pC->nullRow = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
/* res might be uninitialized if rc!=SQLITE_OK. But if rc!=SQLITE_OK
|
|
** processing is about to abort so we really do not care whether or not
|
|
** the following jump is taken. (In other words, do not stress over
|
|
** the error that valgrind sometimes shows on the next statement when
|
|
** running ioerr.test and similar failure-recovery test scripts.) */
|
|
if( res!=0 ){
|
|
pc = pOp->p2 - 1;
|
|
assert( pC->rowidIsValid==0 );
|
|
}
|
|
}else if( !pC->pseudoTable ){
|
|
/* This happens when an attempt to open a read cursor on the
|
|
** sqlite_master table returns SQLITE_EMPTY.
|
|
*/
|
|
assert( pC->isTable );
|
|
pc = pOp->p2 - 1;
|
|
assert( pC->rowidIsValid==0 );
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Sequence P1 P2 * * *
|
|
**
|
|
** Find the next available sequence number for cursor P1.
|
|
** Write the sequence number into register P2.
|
|
** The sequence number on the cursor is incremented after this
|
|
** instruction.
|
|
*/
|
|
case OP_Sequence: { /* out2-prerelease */
|
|
int i = pOp->p1;
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
pOut->u.i = p->apCsr[i]->seqCount++;
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
|
break;
|
|
}
|
|
|
|
|
|
/* Opcode: NewRowid P1 P2 P3 * *
|
|
**
|
|
** Get a new integer record number (a.k.a "rowid") used as the key to a table.
|
|
** The record number is not previously used as a key in the database
|
|
** table that cursor P1 points to. The new record number is written
|
|
** written to register P2.
|
|
**
|
|
** If P3>0 then P3 is a register that holds the largest previously
|
|
** generated record number. No new record numbers are allowed to be less
|
|
** than this value. When this value reaches its maximum, a SQLITE_FULL
|
|
** error is generated. The P3 register is updated with the generated
|
|
** record number. This P3 mechanism is used to help implement the
|
|
** AUTOINCREMENT feature.
|
|
*/
|
|
case OP_NewRowid: { /* out2-prerelease */
|
|
int i = pOp->p1;
|
|
i64 v = 0;
|
|
Cursor *pC;
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
if( (pC = p->apCsr[i])->pCursor==0 ){
|
|
/* The zero initialization above is all that is needed */
|
|
}else{
|
|
/* The next rowid or record number (different terms for the same
|
|
** thing) is obtained in a two-step algorithm.
|
|
**
|
|
** First we attempt to find the largest existing rowid and add one
|
|
** to that. But if the largest existing rowid is already the maximum
|
|
** positive integer, we have to fall through to the second
|
|
** probabilistic algorithm
|
|
**
|
|
** The second algorithm is to select a rowid at random and see if
|
|
** it already exists in the table. If it does not exist, we have
|
|
** succeeded. If the random rowid does exist, we select a new one
|
|
** and try again, up to 1000 times.
|
|
**
|
|
** For a table with less than 2 billion entries, the probability
|
|
** of not finding a unused rowid is about 1.0e-300. This is a
|
|
** non-zero probability, but it is still vanishingly small and should
|
|
** never cause a problem. You are much, much more likely to have a
|
|
** hardware failure than for this algorithm to fail.
|
|
**
|
|
** The analysis in the previous paragraph assumes that you have a good
|
|
** source of random numbers. Is a library function like lrand48()
|
|
** good enough? Maybe. Maybe not. It's hard to know whether there
|
|
** might be subtle bugs is some implementations of lrand48() that
|
|
** could cause problems. To avoid uncertainty, SQLite uses its own
|
|
** random number generator based on the RC4 algorithm.
|
|
**
|
|
** To promote locality of reference for repetitive inserts, the
|
|
** first few attempts at choosing a random rowid pick values just a little
|
|
** larger than the previous rowid. This has been shown experimentally
|
|
** to double the speed of the COPY operation.
|
|
*/
|
|
int res, rx=SQLITE_OK, cnt;
|
|
i64 x;
|
|
cnt = 0;
|
|
if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) !=
|
|
BTREE_INTKEY ){
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
goto abort_due_to_error;
|
|
}
|
|
assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 );
|
|
assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 );
|
|
|
|
#ifdef SQLITE_32BIT_ROWID
|
|
# define MAX_ROWID 0x7fffffff
|
|
#else
|
|
/* Some compilers complain about constants of the form 0x7fffffffffffffff.
|
|
** Others complain about 0x7ffffffffffffffffLL. The following macro seems
|
|
** to provide the constant while making all compilers happy.
|
|
*/
|
|
# define MAX_ROWID ( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
|
|
#endif
|
|
|
|
if( !pC->useRandomRowid ){
|
|
if( pC->nextRowidValid ){
|
|
v = pC->nextRowid;
|
|
}else{
|
|
rc = sqlite3BtreeLast(pC->pCursor, &res);
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
if( res ){
|
|
v = 1;
|
|
}else{
|
|
sqlite3BtreeKeySize(pC->pCursor, &v);
|
|
v = keyToInt(v);
|
|
if( v==MAX_ROWID ){
|
|
pC->useRandomRowid = 1;
|
|
}else{
|
|
v++;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
if( pOp->p3 ){
|
|
Mem *pMem;
|
|
assert( pOp->p3>0 && pOp->p3<=p->nMem ); /* P3 is a valid memory cell */
|
|
pMem = &p->aMem[pOp->p3];
|
|
REGISTER_TRACE(pOp->p3, pMem);
|
|
sqlite3VdbeMemIntegerify(pMem);
|
|
assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
|
|
if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
|
|
rc = SQLITE_FULL;
|
|
goto abort_due_to_error;
|
|
}
|
|
if( v<pMem->u.i+1 ){
|
|
v = pMem->u.i + 1;
|
|
}
|
|
pMem->u.i = v;
|
|
}
|
|
#endif
|
|
|
|
if( v<MAX_ROWID ){
|
|
pC->nextRowidValid = 1;
|
|
pC->nextRowid = v+1;
|
|
}else{
|
|
pC->nextRowidValid = 0;
|
|
}
|
|
}
|
|
if( pC->useRandomRowid ){
|
|
assert( pOp->p3==0 ); /* SQLITE_FULL must have occurred prior to this */
|
|
v = db->priorNewRowid;
|
|
cnt = 0;
|
|
do{
|
|
if( cnt==0 && (v&0xffffff)==v ){
|
|
v++;
|
|
}else{
|
|
sqlite3_randomness(sizeof(v), &v);
|
|
if( cnt<5 ) v &= 0xffffff;
|
|
}
|
|
if( v==0 ) continue;
|
|
x = intToKey(v);
|
|
rx = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)x, 0, &res);
|
|
cnt++;
|
|
}while( cnt<100 && rx==SQLITE_OK && res==0 );
|
|
db->priorNewRowid = v;
|
|
if( rx==SQLITE_OK && res==0 ){
|
|
rc = SQLITE_FULL;
|
|
goto abort_due_to_error;
|
|
}
|
|
}
|
|
pC->rowidIsValid = 0;
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
}
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
|
pOut->u.i = v;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Insert P1 P2 P3 P4 P5
|
|
**
|
|
** Write an entry into the table of cursor P1. A new entry is
|
|
** created if it doesn't already exist or the data for an existing
|
|
** entry is overwritten. The data is the value stored register
|
|
** number P2. The key is stored in register P3. The key must
|
|
** be an integer.
|
|
**
|
|
** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
|
|
** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
|
|
** then rowid is stored for subsequent return by the
|
|
** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
|
|
**
|
|
** Parameter P4 may point to a string containing the table-name, or
|
|
** may be NULL. If it is not NULL, then the update-hook
|
|
** (sqlite3.xUpdateCallback) is invoked following a successful insert.
|
|
**
|
|
** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
|
|
** allocated, then ownership of P2 is transferred to the pseudo-cursor
|
|
** and register P2 becomes ephemeral. If the cursor is changed, the
|
|
** value of register P2 will then change. Make sure this does not
|
|
** cause any problems.)
|
|
**
|
|
** This instruction only works on tables. The equivalent instruction
|
|
** for indices is OP_IdxInsert.
|
|
*/
|
|
case OP_Insert: {
|
|
Mem *pData = &p->aMem[pOp->p2];
|
|
Mem *pKey = &p->aMem[pOp->p3];
|
|
|
|
i64 iKey; /* The integer ROWID or key for the record to be inserted */
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
assert( pC->pCursor!=0 || pC->pseudoTable );
|
|
assert( pKey->flags & MEM_Int );
|
|
assert( pC->isTable );
|
|
REGISTER_TRACE(pOp->p2, pData);
|
|
REGISTER_TRACE(pOp->p3, pKey);
|
|
|
|
iKey = intToKey(pKey->u.i);
|
|
if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
|
|
if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = pKey->u.i;
|
|
if( pC->nextRowidValid && pKey->u.i>=pC->nextRowid ){
|
|
pC->nextRowidValid = 0;
|
|
}
|
|
if( pData->flags & MEM_Null ){
|
|
pData->z = 0;
|
|
pData->n = 0;
|
|
}else{
|
|
assert( pData->flags & (MEM_Blob|MEM_Str) );
|
|
}
|
|
if( pC->pseudoTable ){
|
|
if( !pC->ephemPseudoTable ){
|
|
sqlite3DbFree(db, pC->pData);
|
|
}
|
|
pC->iKey = iKey;
|
|
pC->nData = pData->n;
|
|
if( pData->z==pData->zMalloc || pC->ephemPseudoTable ){
|
|
pC->pData = pData->z;
|
|
if( !pC->ephemPseudoTable ){
|
|
pData->flags &= ~MEM_Dyn;
|
|
pData->flags |= MEM_Ephem;
|
|
pData->zMalloc = 0;
|
|
}
|
|
}else{
|
|
pC->pData = sqlite3Malloc( pC->nData+2 );
|
|
if( !pC->pData ) goto no_mem;
|
|
memcpy(pC->pData, pData->z, pC->nData);
|
|
pC->pData[pC->nData] = 0;
|
|
pC->pData[pC->nData+1] = 0;
|
|
}
|
|
pC->nullRow = 0;
|
|
}else{
|
|
int nZero;
|
|
if( pData->flags & MEM_Zero ){
|
|
nZero = pData->u.i;
|
|
}else{
|
|
nZero = 0;
|
|
}
|
|
rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
|
|
pData->z, pData->n, nZero,
|
|
pOp->p5 & OPFLAG_APPEND);
|
|
}
|
|
|
|
pC->rowidIsValid = 0;
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
|
|
/* Invoke the update-hook if required. */
|
|
if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
|
|
const char *zDb = db->aDb[pC->iDb].zName;
|
|
const char *zTbl = pOp->p4.z;
|
|
int op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
|
|
assert( pC->isTable );
|
|
db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
|
|
assert( pC->iDb>=0 );
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Delete P1 P2 * P4 *
|
|
**
|
|
** Delete the record at which the P1 cursor is currently pointing.
|
|
**
|
|
** The cursor will be left pointing at either the next or the previous
|
|
** record in the table. If it is left pointing at the next record, then
|
|
** the next Next instruction will be a no-op. Hence it is OK to delete
|
|
** a record from within an Next loop.
|
|
**
|
|
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
|
|
** incremented (otherwise not).
|
|
**
|
|
** P1 must not be pseudo-table. It has to be a real table with
|
|
** multiple rows.
|
|
**
|
|
** If P4 is not NULL, then it is the name of the table that P1 is
|
|
** pointing to. The update hook will be invoked, if it exists.
|
|
** If P4 is not NULL then the P1 cursor must have been positioned
|
|
** using OP_NotFound prior to invoking this opcode.
|
|
*/
|
|
case OP_Delete: {
|
|
int i = pOp->p1;
|
|
i64 iKey;
|
|
Cursor *pC;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
|
|
|
|
/* If the update-hook will be invoked, set iKey to the rowid of the
|
|
** row being deleted.
|
|
*/
|
|
if( db->xUpdateCallback && pOp->p4.z ){
|
|
assert( pC->isTable );
|
|
assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
|
|
iKey = pC->lastRowid;
|
|
}
|
|
|
|
rc = sqlite3VdbeCursorMoveto(pC);
|
|
if( rc ) goto abort_due_to_error;
|
|
rc = sqlite3BtreeDelete(pC->pCursor);
|
|
pC->nextRowidValid = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
|
|
/* Invoke the update-hook if required. */
|
|
if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
|
|
const char *zDb = db->aDb[pC->iDb].zName;
|
|
const char *zTbl = pOp->p4.z;
|
|
db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
|
|
assert( pC->iDb>=0 );
|
|
}
|
|
if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ResetCount P1 * *
|
|
**
|
|
** This opcode resets the VMs internal change counter to 0. If P1 is true,
|
|
** then the value of the change counter is copied to the database handle
|
|
** change counter (returned by subsequent calls to sqlite3_changes())
|
|
** before it is reset. This is used by trigger programs.
|
|
*/
|
|
case OP_ResetCount: {
|
|
if( pOp->p1 ){
|
|
sqlite3VdbeSetChanges(db, p->nChange);
|
|
}
|
|
p->nChange = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: RowData P1 P2 * * *
|
|
**
|
|
** Write into register P2 the complete row data for cursor P1.
|
|
** There is no interpretation of the data.
|
|
** It is just copied onto the P2 register exactly as
|
|
** it is found in the database file.
|
|
**
|
|
** If the P1 cursor must be pointing to a valid row (not a NULL row)
|
|
** of a real table, not a pseudo-table.
|
|
*/
|
|
/* Opcode: RowKey P1 P2 * * *
|
|
**
|
|
** Write into register P2 the complete row key for cursor P1.
|
|
** There is no interpretation of the data.
|
|
** The key is copied onto the P3 register exactly as
|
|
** it is found in the database file.
|
|
**
|
|
** If the P1 cursor must be pointing to a valid row (not a NULL row)
|
|
** of a real table, not a pseudo-table.
|
|
*/
|
|
case OP_RowKey:
|
|
case OP_RowData: {
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
BtCursor *pCrsr;
|
|
u32 n;
|
|
|
|
pOut = &p->aMem[pOp->p2];
|
|
|
|
/* Note that RowKey and RowData are really exactly the same instruction */
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC->isTable || pOp->opcode==OP_RowKey );
|
|
assert( pC->isIndex || pOp->opcode==OP_RowData );
|
|
assert( pC!=0 );
|
|
assert( pC->nullRow==0 );
|
|
assert( pC->pseudoTable==0 );
|
|
assert( pC->pCursor!=0 );
|
|
pCrsr = pC->pCursor;
|
|
rc = sqlite3VdbeCursorMoveto(pC);
|
|
if( rc ) goto abort_due_to_error;
|
|
if( pC->isIndex ){
|
|
i64 n64;
|
|
assert( !pC->isTable );
|
|
sqlite3BtreeKeySize(pCrsr, &n64);
|
|
if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
goto too_big;
|
|
}
|
|
n = n64;
|
|
}else{
|
|
sqlite3BtreeDataSize(pCrsr, &n);
|
|
if( n>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
goto too_big;
|
|
}
|
|
}
|
|
if( sqlite3VdbeMemGrow(pOut, n, 0) ){
|
|
goto no_mem;
|
|
}
|
|
pOut->n = n;
|
|
MemSetTypeFlag(pOut, MEM_Blob);
|
|
if( pC->isIndex ){
|
|
rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
|
|
}else{
|
|
rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
|
|
}
|
|
pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Rowid P1 P2 * * *
|
|
**
|
|
** Store in register P2 an integer which is the key of the table entry that
|
|
** P1 is currently point to.
|
|
*/
|
|
case OP_Rowid: { /* out2-prerelease */
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
i64 v;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
rc = sqlite3VdbeCursorMoveto(pC);
|
|
if( rc ) goto abort_due_to_error;
|
|
if( pC->rowidIsValid ){
|
|
v = pC->lastRowid;
|
|
}else if( pC->pseudoTable ){
|
|
v = keyToInt(pC->iKey);
|
|
}else if( pC->nullRow ){
|
|
/* Leave the rowid set to a NULL */
|
|
break;
|
|
}else{
|
|
assert( pC->pCursor!=0 );
|
|
sqlite3BtreeKeySize(pC->pCursor, &v);
|
|
v = keyToInt(v);
|
|
}
|
|
pOut->u.i = v;
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: NullRow P1 * * * *
|
|
**
|
|
** Move the cursor P1 to a null row. Any OP_Column operations
|
|
** that occur while the cursor is on the null row will always
|
|
** write a NULL.
|
|
*/
|
|
case OP_NullRow: {
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
pC->nullRow = 1;
|
|
pC->rowidIsValid = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Last P1 P2 * * *
|
|
**
|
|
** The next use of the Rowid or Column or Next instruction for P1
|
|
** will refer to the last entry in the database table or index.
|
|
** If the table or index is empty and P2>0, then jump immediately to P2.
|
|
** If P2 is 0 or if the table or index is not empty, fall through
|
|
** to the following instruction.
|
|
*/
|
|
case OP_Last: { /* jump */
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
BtCursor *pCrsr;
|
|
int res;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
pCrsr = pC->pCursor;
|
|
assert( pCrsr!=0 );
|
|
rc = sqlite3BtreeLast(pCrsr, &res);
|
|
pC->nullRow = res;
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
if( res && pOp->p2>0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
|
|
/* Opcode: Sort P1 P2 * * *
|
|
**
|
|
** This opcode does exactly the same thing as OP_Rewind except that
|
|
** it increments an undocumented global variable used for testing.
|
|
**
|
|
** Sorting is accomplished by writing records into a sorting index,
|
|
** then rewinding that index and playing it back from beginning to
|
|
** end. We use the OP_Sort opcode instead of OP_Rewind to do the
|
|
** rewinding so that the global variable will be incremented and
|
|
** regression tests can determine whether or not the optimizer is
|
|
** correctly optimizing out sorts.
|
|
*/
|
|
case OP_Sort: { /* jump */
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_sort_count++;
|
|
sqlite3_search_count--;
|
|
#endif
|
|
/* Fall through into OP_Rewind */
|
|
}
|
|
/* Opcode: Rewind P1 P2 * * *
|
|
**
|
|
** The next use of the Rowid or Column or Next instruction for P1
|
|
** will refer to the first entry in the database table or index.
|
|
** If the table or index is empty and P2>0, then jump immediately to P2.
|
|
** If P2 is 0 or if the table or index is not empty, fall through
|
|
** to the following instruction.
|
|
*/
|
|
case OP_Rewind: { /* jump */
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
BtCursor *pCrsr;
|
|
int res;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
if( (pCrsr = pC->pCursor)!=0 ){
|
|
rc = sqlite3BtreeFirst(pCrsr, &res);
|
|
pC->atFirst = res==0;
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
}else{
|
|
res = 1;
|
|
}
|
|
pC->nullRow = res;
|
|
assert( pOp->p2>0 && pOp->p2<p->nOp );
|
|
if( res ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Next P1 P2 * * *
|
|
**
|
|
** Advance cursor P1 so that it points to the next key/data pair in its
|
|
** table or index. If there are no more key/value pairs then fall through
|
|
** to the following instruction. But if the cursor advance was successful,
|
|
** jump immediately to P2.
|
|
**
|
|
** The P1 cursor must be for a real table, not a pseudo-table.
|
|
**
|
|
** See also: Prev
|
|
*/
|
|
/* Opcode: Prev P1 P2 * * *
|
|
**
|
|
** Back up cursor P1 so that it points to the previous key/data pair in its
|
|
** table or index. If there is no previous key/value pairs then fall through
|
|
** to the following instruction. But if the cursor backup was successful,
|
|
** jump immediately to P2.
|
|
**
|
|
** The P1 cursor must be for a real table, not a pseudo-table.
|
|
*/
|
|
case OP_Prev: /* jump */
|
|
case OP_Next: { /* jump */
|
|
Cursor *pC;
|
|
BtCursor *pCrsr;
|
|
int res;
|
|
|
|
CHECK_FOR_INTERRUPT;
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
pC = p->apCsr[pOp->p1];
|
|
if( pC==0 ){
|
|
break; /* See ticket #2273 */
|
|
}
|
|
pCrsr = pC->pCursor;
|
|
assert( pCrsr );
|
|
res = 1;
|
|
assert( pC->deferredMoveto==0 );
|
|
rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
|
|
sqlite3BtreePrevious(pCrsr, &res);
|
|
pC->nullRow = res;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
if( res==0 ){
|
|
pc = pOp->p2 - 1;
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_search_count++;
|
|
#endif
|
|
}
|
|
pC->rowidIsValid = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxInsert P1 P2 P3 * *
|
|
**
|
|
** Register P2 holds a SQL index key made using the
|
|
** MakeIdxRec instructions. This opcode writes that key
|
|
** into the index P1. Data for the entry is nil.
|
|
**
|
|
** P3 is a flag that provides a hint to the b-tree layer that this
|
|
** insert is likely to be an append.
|
|
**
|
|
** This instruction only works for indices. The equivalent instruction
|
|
** for tables is OP_Insert.
|
|
*/
|
|
case OP_IdxInsert: { /* in2 */
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
BtCursor *pCrsr;
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
assert( pIn2->flags & MEM_Blob );
|
|
if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
|
|
assert( pC->isTable==0 );
|
|
rc = ExpandBlob(pIn2);
|
|
if( rc==SQLITE_OK ){
|
|
int nKey = pIn2->n;
|
|
const char *zKey = pIn2->z;
|
|
rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3);
|
|
assert( pC->deferredMoveto==0 );
|
|
pC->cacheStatus = CACHE_STALE;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxDeleteM P1 P2 P3 * *
|
|
**
|
|
** The content of P3 registers starting at register P2 form
|
|
** an unpacked index key. This opcode removes that entry from the
|
|
** index opened by cursor P1.
|
|
*/
|
|
case OP_IdxDelete: {
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
BtCursor *pCrsr;
|
|
assert( pOp->p3>0 );
|
|
assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem );
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
|
|
int res;
|
|
UnpackedRecord r;
|
|
r.pKeyInfo = pC->pKeyInfo;
|
|
r.nField = pOp->p3;
|
|
r.flags = 0;
|
|
r.aMem = &p->aMem[pOp->p2];
|
|
rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
|
|
if( rc==SQLITE_OK && res==0 ){
|
|
rc = sqlite3BtreeDelete(pCrsr);
|
|
}
|
|
assert( pC->deferredMoveto==0 );
|
|
pC->cacheStatus = CACHE_STALE;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxRowid P1 P2 * * *
|
|
**
|
|
** Write into register P2 an integer which is the last entry in the record at
|
|
** the end of the index key pointed to by cursor P1. This integer should be
|
|
** the rowid of the table entry to which this index entry points.
|
|
**
|
|
** See also: Rowid, MakeIdxRec.
|
|
*/
|
|
case OP_IdxRowid: { /* out2-prerelease */
|
|
int i = pOp->p1;
|
|
BtCursor *pCrsr;
|
|
Cursor *pC;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
|
|
i64 rowid;
|
|
|
|
assert( pC->deferredMoveto==0 );
|
|
assert( pC->isTable==0 );
|
|
if( !pC->nullRow ){
|
|
rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
|
pOut->u.i = rowid;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxGE P1 P2 P3 P4 P5
|
|
**
|
|
** The P4 register values beginning with P3 form an unpacked index
|
|
** key that omits the ROWID. Compare this key value against the index
|
|
** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
|
|
**
|
|
** If the P1 index entry is greater than or equal to the key value
|
|
** then jump to P2. Otherwise fall through to the next instruction.
|
|
**
|
|
** If P5 is non-zero then the key value is increased by an epsilon
|
|
** prior to the comparison. This make the opcode work like IdxGT except
|
|
** that if the key from register P3 is a prefix of the key in the cursor,
|
|
** the result is false whereas it would be true with IdxGT.
|
|
*/
|
|
/* Opcode: IdxLT P1 P2 P3 * P5
|
|
**
|
|
** The P4 register values beginning with P3 form an unpacked index
|
|
** key that omits the ROWID. Compare this key value against the index
|
|
** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
|
|
**
|
|
** If the P1 index entry is less than the key value then jump to P2.
|
|
** Otherwise fall through to the next instruction.
|
|
**
|
|
** If P5 is non-zero then the key value is increased by an epsilon prior
|
|
** to the comparison. This makes the opcode work like IdxLE.
|
|
*/
|
|
case OP_IdxLT: /* jump, in3 */
|
|
case OP_IdxGE: { /* jump, in3 */
|
|
int i= pOp->p1;
|
|
Cursor *pC;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
if( (pC = p->apCsr[i])->pCursor!=0 ){
|
|
int res;
|
|
UnpackedRecord r;
|
|
assert( pC->deferredMoveto==0 );
|
|
assert( pOp->p5==0 || pOp->p5==1 );
|
|
assert( pOp->p4type==P4_INT32 );
|
|
r.pKeyInfo = pC->pKeyInfo;
|
|
r.nField = pOp->p4.i;
|
|
if( pOp->p5 ){
|
|
r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID;
|
|
}else{
|
|
r.flags = UNPACKED_IGNORE_ROWID;
|
|
}
|
|
r.aMem = &p->aMem[pOp->p3];
|
|
rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
|
|
if( pOp->opcode==OP_IdxLT ){
|
|
res = -res;
|
|
}else{
|
|
assert( pOp->opcode==OP_IdxGE );
|
|
res++;
|
|
}
|
|
if( res>0 ){
|
|
pc = pOp->p2 - 1 ;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Destroy P1 P2 P3 * *
|
|
**
|
|
** Delete an entire database table or index whose root page in the database
|
|
** file is given by P1.
|
|
**
|
|
** The table being destroyed is in the main database file if P3==0. If
|
|
** P3==1 then the table to be clear is in the auxiliary database file
|
|
** that is used to store tables create using CREATE TEMPORARY TABLE.
|
|
**
|
|
** If AUTOVACUUM is enabled then it is possible that another root page
|
|
** might be moved into the newly deleted root page in order to keep all
|
|
** root pages contiguous at the beginning of the database. The former
|
|
** value of the root page that moved - its value before the move occurred -
|
|
** is stored in register P2. If no page
|
|
** movement was required (because the table being dropped was already
|
|
** the last one in the database) then a zero is stored in register P2.
|
|
** If AUTOVACUUM is disabled then a zero is stored in register P2.
|
|
**
|
|
** See also: Clear
|
|
*/
|
|
case OP_Destroy: { /* out2-prerelease */
|
|
int iMoved;
|
|
int iCnt;
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
Vdbe *pVdbe;
|
|
iCnt = 0;
|
|
for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
|
|
if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
|
|
iCnt++;
|
|
}
|
|
}
|
|
#else
|
|
iCnt = db->activeVdbeCnt;
|
|
#endif
|
|
if( iCnt>1 ){
|
|
rc = SQLITE_LOCKED;
|
|
p->errorAction = OE_Abort;
|
|
}else{
|
|
int iDb = pOp->p3;
|
|
assert( iCnt==1 );
|
|
assert( (p->btreeMask & (1<<iDb))!=0 );
|
|
rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
|
pOut->u.i = iMoved;
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( rc==SQLITE_OK && iMoved!=0 ){
|
|
sqlite3RootPageMoved(&db->aDb[iDb], iMoved, pOp->p1);
|
|
}
|
|
#endif
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Clear P1 P2 *
|
|
**
|
|
** Delete all contents of the database table or index whose root page
|
|
** in the database file is given by P1. But, unlike Destroy, do not
|
|
** remove the table or index from the database file.
|
|
**
|
|
** The table being clear is in the main database file if P2==0. If
|
|
** P2==1 then the table to be clear is in the auxiliary database file
|
|
** that is used to store tables create using CREATE TEMPORARY TABLE.
|
|
**
|
|
** See also: Destroy
|
|
*/
|
|
case OP_Clear: {
|
|
assert( (p->btreeMask & (1<<pOp->p2))!=0 );
|
|
rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: CreateTable P1 P2 * * *
|
|
**
|
|
** Allocate a new table in the main database file if P1==0 or in the
|
|
** auxiliary database file if P1==1 or in an attached database if
|
|
** P1>1. Write the root page number of the new table into
|
|
** register P2
|
|
**
|
|
** The difference between a table and an index is this: A table must
|
|
** have a 4-byte integer key and can have arbitrary data. An index
|
|
** has an arbitrary key but no data.
|
|
**
|
|
** See also: CreateIndex
|
|
*/
|
|
/* Opcode: CreateIndex P1 P2 * * *
|
|
**
|
|
** Allocate a new index in the main database file if P1==0 or in the
|
|
** auxiliary database file if P1==1 or in an attached database if
|
|
** P1>1. Write the root page number of the new table into
|
|
** register P2.
|
|
**
|
|
** See documentation on OP_CreateTable for additional information.
|
|
*/
|
|
case OP_CreateIndex: /* out2-prerelease */
|
|
case OP_CreateTable: { /* out2-prerelease */
|
|
int pgno;
|
|
int flags;
|
|
Db *pDb;
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
assert( (p->btreeMask & (1<<pOp->p1))!=0 );
|
|
pDb = &db->aDb[pOp->p1];
|
|
assert( pDb->pBt!=0 );
|
|
if( pOp->opcode==OP_CreateTable ){
|
|
/* flags = BTREE_INTKEY; */
|
|
flags = BTREE_LEAFDATA|BTREE_INTKEY;
|
|
}else{
|
|
flags = BTREE_ZERODATA;
|
|
}
|
|
rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
|
|
if( rc==SQLITE_OK ){
|
|
pOut->u.i = pgno;
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ParseSchema P1 P2 * P4 *
|
|
**
|
|
** Read and parse all entries from the SQLITE_MASTER table of database P1
|
|
** that match the WHERE clause P4. P2 is the "force" flag. Always do
|
|
** the parsing if P2 is true. If P2 is false, then this routine is a
|
|
** no-op if the schema is not currently loaded. In other words, if P2
|
|
** is false, the SQLITE_MASTER table is only parsed if the rest of the
|
|
** schema is already loaded into the symbol table.
|
|
**
|
|
** This opcode invokes the parser to create a new virtual machine,
|
|
** then runs the new virtual machine. It is thus a re-entrant opcode.
|
|
*/
|
|
case OP_ParseSchema: {
|
|
char *zSql;
|
|
int iDb = pOp->p1;
|
|
const char *zMaster;
|
|
InitData initData;
|
|
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
if( !pOp->p2 && !DbHasProperty(db, iDb, DB_SchemaLoaded) ){
|
|
break;
|
|
}
|
|
zMaster = SCHEMA_TABLE(iDb);
|
|
initData.db = db;
|
|
initData.iDb = pOp->p1;
|
|
initData.pzErrMsg = &p->zErrMsg;
|
|
zSql = sqlite3MPrintf(db,
|
|
"SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
|
|
db->aDb[iDb].zName, zMaster, pOp->p4.z);
|
|
if( zSql==0 ) goto no_mem;
|
|
(void)sqlite3SafetyOff(db);
|
|
assert( db->init.busy==0 );
|
|
db->init.busy = 1;
|
|
initData.rc = SQLITE_OK;
|
|
assert( !db->mallocFailed );
|
|
rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
|
|
if( rc==SQLITE_OK ) rc = initData.rc;
|
|
sqlite3DbFree(db, zSql);
|
|
db->init.busy = 0;
|
|
(void)sqlite3SafetyOn(db);
|
|
if( rc==SQLITE_NOMEM ){
|
|
goto no_mem;
|
|
}
|
|
break;
|
|
}
|
|
|
|
#if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)
|
|
/* Opcode: LoadAnalysis P1 * * * *
|
|
**
|
|
** Read the sqlite_stat1 table for database P1 and load the content
|
|
** of that table into the internal index hash table. This will cause
|
|
** the analysis to be used when preparing all subsequent queries.
|
|
*/
|
|
case OP_LoadAnalysis: {
|
|
int iDb = pOp->p1;
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
rc = sqlite3AnalysisLoad(db, iDb);
|
|
break;
|
|
}
|
|
#endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER) */
|
|
|
|
/* Opcode: DropTable P1 * * P4 *
|
|
**
|
|
** Remove the internal (in-memory) data structures that describe
|
|
** the table named P4 in database P1. This is called after a table
|
|
** is dropped in order to keep the internal representation of the
|
|
** schema consistent with what is on disk.
|
|
*/
|
|
case OP_DropTable: {
|
|
sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: DropIndex P1 * * P4 *
|
|
**
|
|
** Remove the internal (in-memory) data structures that describe
|
|
** the index named P4 in database P1. This is called after an index
|
|
** is dropped in order to keep the internal representation of the
|
|
** schema consistent with what is on disk.
|
|
*/
|
|
case OP_DropIndex: {
|
|
sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: DropTrigger P1 * * P4 *
|
|
**
|
|
** Remove the internal (in-memory) data structures that describe
|
|
** the trigger named P4 in database P1. This is called after a trigger
|
|
** is dropped in order to keep the internal representation of the
|
|
** schema consistent with what is on disk.
|
|
*/
|
|
case OP_DropTrigger: {
|
|
sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
|
|
break;
|
|
}
|
|
|
|
|
|
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
|
|
/* Opcode: IntegrityCk P1 P2 P3 * P5
|
|
**
|
|
** Do an analysis of the currently open database. Store in
|
|
** register P1 the text of an error message describing any problems.
|
|
** If no problems are found, store a NULL in register P1.
|
|
**
|
|
** The register P3 contains the maximum number of allowed errors.
|
|
** At most reg(P3) errors will be reported.
|
|
** In other words, the analysis stops as soon as reg(P1) errors are
|
|
** seen. Reg(P1) is updated with the number of errors remaining.
|
|
**
|
|
** The root page numbers of all tables in the database are integer
|
|
** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
|
|
** total.
|
|
**
|
|
** If P5 is not zero, the check is done on the auxiliary database
|
|
** file, not the main database file.
|
|
**
|
|
** This opcode is used to implement the integrity_check pragma.
|
|
*/
|
|
case OP_IntegrityCk: {
|
|
int nRoot; /* Number of tables to check. (Number of root pages.) */
|
|
int *aRoot; /* Array of rootpage numbers for tables to be checked */
|
|
int j; /* Loop counter */
|
|
int nErr; /* Number of errors reported */
|
|
char *z; /* Text of the error report */
|
|
Mem *pnErr; /* Register keeping track of errors remaining */
|
|
|
|
nRoot = pOp->p2;
|
|
assert( nRoot>0 );
|
|
aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
|
|
if( aRoot==0 ) goto no_mem;
|
|
assert( pOp->p3>0 && pOp->p3<=p->nMem );
|
|
pnErr = &p->aMem[pOp->p3];
|
|
assert( (pnErr->flags & MEM_Int)!=0 );
|
|
assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
|
|
pIn1 = &p->aMem[pOp->p1];
|
|
for(j=0; j<nRoot; j++){
|
|
aRoot[j] = sqlite3VdbeIntValue(&pIn1[j]);
|
|
}
|
|
aRoot[j] = 0;
|
|
assert( pOp->p5<db->nDb );
|
|
assert( (p->btreeMask & (1<<pOp->p5))!=0 );
|
|
z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
|
|
pnErr->u.i, &nErr);
|
|
sqlite3DbFree(db, aRoot);
|
|
pnErr->u.i -= nErr;
|
|
sqlite3VdbeMemSetNull(pIn1);
|
|
if( nErr==0 ){
|
|
assert( z==0 );
|
|
}else if( z==0 ){
|
|
goto no_mem;
|
|
}else{
|
|
sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
|
|
}
|
|
UPDATE_MAX_BLOBSIZE(pIn1);
|
|
sqlite3VdbeChangeEncoding(pIn1, encoding);
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
|
|
|
/* Opcode: FifoWrite P1 * * * *
|
|
**
|
|
** Write the integer from register P1 into the Fifo.
|
|
*/
|
|
case OP_FifoWrite: { /* in1 */
|
|
p->sFifo.db = db;
|
|
if( sqlite3VdbeFifoPush(&p->sFifo, sqlite3VdbeIntValue(pIn1))==SQLITE_NOMEM ){
|
|
goto no_mem;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: FifoRead P1 P2 * * *
|
|
**
|
|
** Attempt to read a single integer from the Fifo. Store that
|
|
** integer in register P1.
|
|
**
|
|
** If the Fifo is empty jump to P2.
|
|
*/
|
|
case OP_FifoRead: { /* jump */
|
|
CHECK_FOR_INTERRUPT;
|
|
assert( pOp->p1>0 && pOp->p1<=p->nMem );
|
|
pOut = &p->aMem[pOp->p1];
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
|
if( sqlite3VdbeFifoPop(&p->sFifo, &pOut->u.i)==SQLITE_DONE ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
/* Opcode: ContextPush * * *
|
|
**
|
|
** Save the current Vdbe context such that it can be restored by a ContextPop
|
|
** opcode. The context stores the last insert row id, the last statement change
|
|
** count, and the current statement change count.
|
|
*/
|
|
case OP_ContextPush: {
|
|
int i = p->contextStackTop++;
|
|
Context *pContext;
|
|
|
|
assert( i>=0 );
|
|
/* FIX ME: This should be allocated as part of the vdbe at compile-time */
|
|
if( i>=p->contextStackDepth ){
|
|
p->contextStackDepth = i+1;
|
|
p->contextStack = sqlite3DbReallocOrFree(db, p->contextStack,
|
|
sizeof(Context)*(i+1));
|
|
if( p->contextStack==0 ) goto no_mem;
|
|
}
|
|
pContext = &p->contextStack[i];
|
|
pContext->lastRowid = db->lastRowid;
|
|
pContext->nChange = p->nChange;
|
|
pContext->sFifo = p->sFifo;
|
|
sqlite3VdbeFifoInit(&p->sFifo, db);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ContextPop * * *
|
|
**
|
|
** Restore the Vdbe context to the state it was in when contextPush was last
|
|
** executed. The context stores the last insert row id, the last statement
|
|
** change count, and the current statement change count.
|
|
*/
|
|
case OP_ContextPop: {
|
|
Context *pContext = &p->contextStack[--p->contextStackTop];
|
|
assert( p->contextStackTop>=0 );
|
|
db->lastRowid = pContext->lastRowid;
|
|
p->nChange = pContext->nChange;
|
|
sqlite3VdbeFifoClear(&p->sFifo);
|
|
p->sFifo = pContext->sFifo;
|
|
break;
|
|
}
|
|
#endif /* #ifndef SQLITE_OMIT_TRIGGER */
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
/* Opcode: MemMax P1 P2 * * *
|
|
**
|
|
** Set the value of register P1 to the maximum of its current value
|
|
** and the value in register P2.
|
|
**
|
|
** This instruction throws an error if the memory cell is not initially
|
|
** an integer.
|
|
*/
|
|
case OP_MemMax: { /* in1, in2 */
|
|
sqlite3VdbeMemIntegerify(pIn1);
|
|
sqlite3VdbeMemIntegerify(pIn2);
|
|
if( pIn1->u.i<pIn2->u.i){
|
|
pIn1->u.i = pIn2->u.i;
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_AUTOINCREMENT */
|
|
|
|
/* Opcode: IfPos P1 P2 * * *
|
|
**
|
|
** If the value of register P1 is 1 or greater, jump to P2.
|
|
**
|
|
** It is illegal to use this instruction on a register that does
|
|
** not contain an integer. An assertion fault will result if you try.
|
|
*/
|
|
case OP_IfPos: { /* jump, in1 */
|
|
assert( pIn1->flags&MEM_Int );
|
|
if( pIn1->u.i>0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IfNeg P1 P2 * * *
|
|
**
|
|
** If the value of register P1 is less than zero, jump to P2.
|
|
**
|
|
** It is illegal to use this instruction on a register that does
|
|
** not contain an integer. An assertion fault will result if you try.
|
|
*/
|
|
case OP_IfNeg: { /* jump, in1 */
|
|
assert( pIn1->flags&MEM_Int );
|
|
if( pIn1->u.i<0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IfZero P1 P2 * * *
|
|
**
|
|
** If the value of register P1 is exactly 0, jump to P2.
|
|
**
|
|
** It is illegal to use this instruction on a register that does
|
|
** not contain an integer. An assertion fault will result if you try.
|
|
*/
|
|
case OP_IfZero: { /* jump, in1 */
|
|
assert( pIn1->flags&MEM_Int );
|
|
if( pIn1->u.i==0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AggStep * P2 P3 P4 P5
|
|
**
|
|
** Execute the step function for an aggregate. The
|
|
** function has P5 arguments. P4 is a pointer to the FuncDef
|
|
** structure that specifies the function. Use register
|
|
** P3 as the accumulator.
|
|
**
|
|
** The P5 arguments are taken from register P2 and its
|
|
** successors.
|
|
*/
|
|
case OP_AggStep: {
|
|
int n = pOp->p5;
|
|
int i;
|
|
Mem *pMem, *pRec;
|
|
sqlite3_context ctx;
|
|
sqlite3_value **apVal;
|
|
|
|
assert( n>=0 );
|
|
pRec = &p->aMem[pOp->p2];
|
|
apVal = p->apArg;
|
|
assert( apVal || n==0 );
|
|
for(i=0; i<n; i++, pRec++){
|
|
apVal[i] = pRec;
|
|
storeTypeInfo(pRec, encoding);
|
|
}
|
|
ctx.pFunc = pOp->p4.pFunc;
|
|
assert( pOp->p3>0 && pOp->p3<=p->nMem );
|
|
ctx.pMem = pMem = &p->aMem[pOp->p3];
|
|
pMem->n++;
|
|
ctx.s.flags = MEM_Null;
|
|
ctx.s.z = 0;
|
|
ctx.s.zMalloc = 0;
|
|
ctx.s.xDel = 0;
|
|
ctx.s.db = db;
|
|
ctx.isError = 0;
|
|
ctx.pColl = 0;
|
|
if( ctx.pFunc->needCollSeq ){
|
|
assert( pOp>p->aOp );
|
|
assert( pOp[-1].p4type==P4_COLLSEQ );
|
|
assert( pOp[-1].opcode==OP_CollSeq );
|
|
ctx.pColl = pOp[-1].p4.pColl;
|
|
}
|
|
(ctx.pFunc->xStep)(&ctx, n, apVal);
|
|
if( ctx.isError ){
|
|
sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
|
|
rc = ctx.isError;
|
|
}
|
|
sqlite3VdbeMemRelease(&ctx.s);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AggFinal P1 P2 * P4 *
|
|
**
|
|
** Execute the finalizer function for an aggregate. P1 is
|
|
** the memory location that is the accumulator for the aggregate.
|
|
**
|
|
** P2 is the number of arguments that the step function takes and
|
|
** P4 is a pointer to the FuncDef for this function. The P2
|
|
** argument is not used by this opcode. It is only there to disambiguate
|
|
** functions that can take varying numbers of arguments. The
|
|
** P4 argument is only needed for the degenerate case where
|
|
** the step function was not previously called.
|
|
*/
|
|
case OP_AggFinal: {
|
|
Mem *pMem;
|
|
assert( pOp->p1>0 && pOp->p1<=p->nMem );
|
|
pMem = &p->aMem[pOp->p1];
|
|
assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
|
|
rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
|
|
if( rc==SQLITE_ERROR ){
|
|
sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
|
|
}
|
|
sqlite3VdbeChangeEncoding(pMem, encoding);
|
|
UPDATE_MAX_BLOBSIZE(pMem);
|
|
if( sqlite3VdbeMemTooBig(pMem) ){
|
|
goto too_big;
|
|
}
|
|
break;
|
|
}
|
|
|
|
|
|
#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
|
|
/* Opcode: Vacuum * * * * *
|
|
**
|
|
** Vacuum the entire database. This opcode will cause other virtual
|
|
** machines to be created and run. It may not be called from within
|
|
** a transaction.
|
|
*/
|
|
case OP_Vacuum: {
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
rc = sqlite3RunVacuum(&p->zErrMsg, db);
|
|
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#if !defined(SQLITE_OMIT_AUTOVACUUM)
|
|
/* Opcode: IncrVacuum P1 P2 * * *
|
|
**
|
|
** Perform a single step of the incremental vacuum procedure on
|
|
** the P1 database. If the vacuum has finished, jump to instruction
|
|
** P2. Otherwise, fall through to the next instruction.
|
|
*/
|
|
case OP_IncrVacuum: { /* jump */
|
|
Btree *pBt;
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
assert( (p->btreeMask & (1<<pOp->p1))!=0 );
|
|
pBt = db->aDb[pOp->p1].pBt;
|
|
rc = sqlite3BtreeIncrVacuum(pBt);
|
|
if( rc==SQLITE_DONE ){
|
|
pc = pOp->p2 - 1;
|
|
rc = SQLITE_OK;
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
/* Opcode: Expire P1 * * * *
|
|
**
|
|
** Cause precompiled statements to become expired. An expired statement
|
|
** fails with an error code of SQLITE_SCHEMA if it is ever executed
|
|
** (via sqlite3_step()).
|
|
**
|
|
** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
|
|
** then only the currently executing statement is affected.
|
|
*/
|
|
case OP_Expire: {
|
|
if( !pOp->p1 ){
|
|
sqlite3ExpirePreparedStatements(db);
|
|
}else{
|
|
p->expired = 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
/* Opcode: TableLock P1 P2 P3 P4 *
|
|
**
|
|
** Obtain a lock on a particular table. This instruction is only used when
|
|
** the shared-cache feature is enabled.
|
|
**
|
|
** If P1 is the index of the database in sqlite3.aDb[] of the database
|
|
** on which the lock is acquired. A readlock is obtained if P3==0 or
|
|
** a write lock if P3==1.
|
|
**
|
|
** P2 contains the root-page of the table to lock.
|
|
**
|
|
** P4 contains a pointer to the name of the table being locked. This is only
|
|
** used to generate an error message if the lock cannot be obtained.
|
|
*/
|
|
case OP_TableLock: {
|
|
int p1 = pOp->p1;
|
|
u8 isWriteLock = pOp->p3;
|
|
assert( p1>=0 && p1<db->nDb );
|
|
assert( (p->btreeMask & (1<<p1))!=0 );
|
|
assert( isWriteLock==0 || isWriteLock==1 );
|
|
rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
|
|
if( rc==SQLITE_LOCKED ){
|
|
const char *z = pOp->p4.z;
|
|
sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_SHARED_CACHE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VBegin * * * P4 *
|
|
**
|
|
** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
|
|
** xBegin method for that table.
|
|
**
|
|
** Also, whether or not P4 is set, check that this is not being called from
|
|
** within a callback to a virtual table xSync() method. If it is, set the
|
|
** error code to SQLITE_LOCKED.
|
|
*/
|
|
case OP_VBegin: {
|
|
sqlite3_vtab *pVtab = pOp->p4.pVtab;
|
|
rc = sqlite3VtabBegin(db, pVtab);
|
|
if( pVtab ){
|
|
sqlite3DbFree(db, p->zErrMsg);
|
|
p->zErrMsg = pVtab->zErrMsg;
|
|
pVtab->zErrMsg = 0;
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VCreate P1 * * P4 *
|
|
**
|
|
** P4 is the name of a virtual table in database P1. Call the xCreate method
|
|
** for that table.
|
|
*/
|
|
case OP_VCreate: {
|
|
rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VDestroy P1 * * P4 *
|
|
**
|
|
** P4 is the name of a virtual table in database P1. Call the xDestroy method
|
|
** of that table.
|
|
*/
|
|
case OP_VDestroy: {
|
|
p->inVtabMethod = 2;
|
|
rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
|
|
p->inVtabMethod = 0;
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VOpen P1 * * P4 *
|
|
**
|
|
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
|
|
** P1 is a cursor number. This opcode opens a cursor to the virtual
|
|
** table and stores that cursor in P1.
|
|
*/
|
|
case OP_VOpen: {
|
|
Cursor *pCur = 0;
|
|
sqlite3_vtab_cursor *pVtabCursor = 0;
|
|
|
|
sqlite3_vtab *pVtab = pOp->p4.pVtab;
|
|
sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
|
|
|
|
assert(pVtab && pModule);
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
rc = pModule->xOpen(pVtab, &pVtabCursor);
|
|
sqlite3DbFree(db, p->zErrMsg);
|
|
p->zErrMsg = pVtab->zErrMsg;
|
|
pVtab->zErrMsg = 0;
|
|
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
if( SQLITE_OK==rc ){
|
|
/* Initialize sqlite3_vtab_cursor base class */
|
|
pVtabCursor->pVtab = pVtab;
|
|
|
|
/* Initialise vdbe cursor object */
|
|
pCur = allocateCursor(p, pOp->p1, &pOp[-1], -1, 0);
|
|
if( pCur ){
|
|
pCur->pVtabCursor = pVtabCursor;
|
|
pCur->pModule = pVtabCursor->pVtab->pModule;
|
|
}else{
|
|
db->mallocFailed = 1;
|
|
pModule->xClose(pVtabCursor);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VFilter P1 P2 P3 P4 *
|
|
**
|
|
** P1 is a cursor opened using VOpen. P2 is an address to jump to if
|
|
** the filtered result set is empty.
|
|
**
|
|
** P4 is either NULL or a string that was generated by the xBestIndex
|
|
** method of the module. The interpretation of the P4 string is left
|
|
** to the module implementation.
|
|
**
|
|
** This opcode invokes the xFilter method on the virtual table specified
|
|
** by P1. The integer query plan parameter to xFilter is stored in register
|
|
** P3. Register P3+1 stores the argc parameter to be passed to the
|
|
** xFilter method. Registers P3+2..P3+1+argc are the argc
|
|
** additional parameters which are passed to
|
|
** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
|
|
**
|
|
** A jump is made to P2 if the result set after filtering would be empty.
|
|
*/
|
|
case OP_VFilter: { /* jump */
|
|
int nArg;
|
|
int iQuery;
|
|
const sqlite3_module *pModule;
|
|
Mem *pQuery = &p->aMem[pOp->p3];
|
|
Mem *pArgc = &pQuery[1];
|
|
sqlite3_vtab_cursor *pVtabCursor;
|
|
sqlite3_vtab *pVtab;
|
|
|
|
Cursor *pCur = p->apCsr[pOp->p1];
|
|
|
|
REGISTER_TRACE(pOp->p3, pQuery);
|
|
assert( pCur->pVtabCursor );
|
|
pVtabCursor = pCur->pVtabCursor;
|
|
pVtab = pVtabCursor->pVtab;
|
|
pModule = pVtab->pModule;
|
|
|
|
/* Grab the index number and argc parameters */
|
|
assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
|
|
nArg = pArgc->u.i;
|
|
iQuery = pQuery->u.i;
|
|
|
|
/* Invoke the xFilter method */
|
|
{
|
|
int res = 0;
|
|
int i;
|
|
Mem **apArg = p->apArg;
|
|
for(i = 0; i<nArg; i++){
|
|
apArg[i] = &pArgc[i+1];
|
|
storeTypeInfo(apArg[i], 0);
|
|
}
|
|
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
sqlite3VtabLock(pVtab);
|
|
p->inVtabMethod = 1;
|
|
rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
|
|
p->inVtabMethod = 0;
|
|
sqlite3DbFree(db, p->zErrMsg);
|
|
p->zErrMsg = pVtab->zErrMsg;
|
|
pVtab->zErrMsg = 0;
|
|
sqlite3VtabUnlock(db, pVtab);
|
|
if( rc==SQLITE_OK ){
|
|
res = pModule->xEof(pVtabCursor);
|
|
}
|
|
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
|
|
if( res ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
}
|
|
pCur->nullRow = 0;
|
|
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VRowid P1 P2 * * *
|
|
**
|
|
** Store into register P2 the rowid of
|
|
** the virtual-table that the P1 cursor is pointing to.
|
|
*/
|
|
case OP_VRowid: { /* out2-prerelease */
|
|
sqlite3_vtab *pVtab;
|
|
const sqlite3_module *pModule;
|
|
sqlite_int64 iRow;
|
|
Cursor *pCur = p->apCsr[pOp->p1];
|
|
|
|
assert( pCur->pVtabCursor );
|
|
if( pCur->nullRow ){
|
|
break;
|
|
}
|
|
pVtab = pCur->pVtabCursor->pVtab;
|
|
pModule = pVtab->pModule;
|
|
assert( pModule->xRowid );
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
rc = pModule->xRowid(pCur->pVtabCursor, &iRow);
|
|
sqlite3DbFree(db, p->zErrMsg);
|
|
p->zErrMsg = pVtab->zErrMsg;
|
|
pVtab->zErrMsg = 0;
|
|
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
|
pOut->u.i = iRow;
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VColumn P1 P2 P3 * *
|
|
**
|
|
** Store the value of the P2-th column of
|
|
** the row of the virtual-table that the
|
|
** P1 cursor is pointing to into register P3.
|
|
*/
|
|
case OP_VColumn: {
|
|
sqlite3_vtab *pVtab;
|
|
const sqlite3_module *pModule;
|
|
Mem *pDest;
|
|
sqlite3_context sContext;
|
|
|
|
Cursor *pCur = p->apCsr[pOp->p1];
|
|
assert( pCur->pVtabCursor );
|
|
assert( pOp->p3>0 && pOp->p3<=p->nMem );
|
|
pDest = &p->aMem[pOp->p3];
|
|
if( pCur->nullRow ){
|
|
sqlite3VdbeMemSetNull(pDest);
|
|
break;
|
|
}
|
|
pVtab = pCur->pVtabCursor->pVtab;
|
|
pModule = pVtab->pModule;
|
|
assert( pModule->xColumn );
|
|
memset(&sContext, 0, sizeof(sContext));
|
|
|
|
/* The output cell may already have a buffer allocated. Move
|
|
** the current contents to sContext.s so in case the user-function
|
|
** can use the already allocated buffer instead of allocating a
|
|
** new one.
|
|
*/
|
|
sqlite3VdbeMemMove(&sContext.s, pDest);
|
|
MemSetTypeFlag(&sContext.s, MEM_Null);
|
|
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
|
|
sqlite3DbFree(db, p->zErrMsg);
|
|
p->zErrMsg = pVtab->zErrMsg;
|
|
pVtab->zErrMsg = 0;
|
|
|
|
/* Copy the result of the function to the P3 register. We
|
|
** do this regardless of whether or not an error occured to ensure any
|
|
** dynamic allocation in sContext.s (a Mem struct) is released.
|
|
*/
|
|
sqlite3VdbeChangeEncoding(&sContext.s, encoding);
|
|
REGISTER_TRACE(pOp->p3, pDest);
|
|
sqlite3VdbeMemMove(pDest, &sContext.s);
|
|
UPDATE_MAX_BLOBSIZE(pDest);
|
|
|
|
if( sqlite3SafetyOn(db) ){
|
|
goto abort_due_to_misuse;
|
|
}
|
|
if( sqlite3VdbeMemTooBig(pDest) ){
|
|
goto too_big;
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VNext P1 P2 * * *
|
|
**
|
|
** Advance virtual table P1 to the next row in its result set and
|
|
** jump to instruction P2. Or, if the virtual table has reached
|
|
** the end of its result set, then fall through to the next instruction.
|
|
*/
|
|
case OP_VNext: { /* jump */
|
|
sqlite3_vtab *pVtab;
|
|
const sqlite3_module *pModule;
|
|
int res = 0;
|
|
|
|
Cursor *pCur = p->apCsr[pOp->p1];
|
|
assert( pCur->pVtabCursor );
|
|
if( pCur->nullRow ){
|
|
break;
|
|
}
|
|
pVtab = pCur->pVtabCursor->pVtab;
|
|
pModule = pVtab->pModule;
|
|
assert( pModule->xNext );
|
|
|
|
/* Invoke the xNext() method of the module. There is no way for the
|
|
** underlying implementation to return an error if one occurs during
|
|
** xNext(). Instead, if an error occurs, true is returned (indicating that
|
|
** data is available) and the error code returned when xColumn or
|
|
** some other method is next invoked on the save virtual table cursor.
|
|
*/
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
sqlite3VtabLock(pVtab);
|
|
p->inVtabMethod = 1;
|
|
rc = pModule->xNext(pCur->pVtabCursor);
|
|
p->inVtabMethod = 0;
|
|
sqlite3DbFree(db, p->zErrMsg);
|
|
p->zErrMsg = pVtab->zErrMsg;
|
|
pVtab->zErrMsg = 0;
|
|
sqlite3VtabUnlock(db, pVtab);
|
|
if( rc==SQLITE_OK ){
|
|
res = pModule->xEof(pCur->pVtabCursor);
|
|
}
|
|
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
|
|
if( !res ){
|
|
/* If there is data, jump to P2 */
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VRename P1 * * P4 *
|
|
**
|
|
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
|
|
** This opcode invokes the corresponding xRename method. The value
|
|
** in register P1 is passed as the zName argument to the xRename method.
|
|
*/
|
|
case OP_VRename: {
|
|
sqlite3_vtab *pVtab = pOp->p4.pVtab;
|
|
Mem *pName = &p->aMem[pOp->p1];
|
|
assert( pVtab->pModule->xRename );
|
|
REGISTER_TRACE(pOp->p1, pName);
|
|
|
|
Stringify(pName, encoding);
|
|
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
sqlite3VtabLock(pVtab);
|
|
rc = pVtab->pModule->xRename(pVtab, pName->z);
|
|
sqlite3DbFree(db, p->zErrMsg);
|
|
p->zErrMsg = pVtab->zErrMsg;
|
|
pVtab->zErrMsg = 0;
|
|
sqlite3VtabUnlock(db, pVtab);
|
|
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VUpdate P1 P2 P3 P4 *
|
|
**
|
|
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
|
|
** This opcode invokes the corresponding xUpdate method. P2 values
|
|
** are contiguous memory cells starting at P3 to pass to the xUpdate
|
|
** invocation. The value in register (P3+P2-1) corresponds to the
|
|
** p2th element of the argv array passed to xUpdate.
|
|
**
|
|
** The xUpdate method will do a DELETE or an INSERT or both.
|
|
** The argv[0] element (which corresponds to memory cell P3)
|
|
** is the rowid of a row to delete. If argv[0] is NULL then no
|
|
** deletion occurs. The argv[1] element is the rowid of the new
|
|
** row. This can be NULL to have the virtual table select the new
|
|
** rowid for itself. The subsequent elements in the array are
|
|
** the values of columns in the new row.
|
|
**
|
|
** If P2==1 then no insert is performed. argv[0] is the rowid of
|
|
** a row to delete.
|
|
**
|
|
** P1 is a boolean flag. If it is set to true and the xUpdate call
|
|
** is successful, then the value returned by sqlite3_last_insert_rowid()
|
|
** is set to the value of the rowid for the row just inserted.
|
|
*/
|
|
case OP_VUpdate: {
|
|
sqlite3_vtab *pVtab = pOp->p4.pVtab;
|
|
sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
|
|
int nArg = pOp->p2;
|
|
assert( pOp->p4type==P4_VTAB );
|
|
if( pModule->xUpdate==0 ){
|
|
sqlite3SetString(&p->zErrMsg, db, "read-only table");
|
|
rc = SQLITE_ERROR;
|
|
}else{
|
|
int i;
|
|
sqlite_int64 rowid;
|
|
Mem **apArg = p->apArg;
|
|
Mem *pX = &p->aMem[pOp->p3];
|
|
for(i=0; i<nArg; i++){
|
|
storeTypeInfo(pX, 0);
|
|
apArg[i] = pX;
|
|
pX++;
|
|
}
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
sqlite3VtabLock(pVtab);
|
|
rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
|
|
sqlite3DbFree(db, p->zErrMsg);
|
|
p->zErrMsg = pVtab->zErrMsg;
|
|
pVtab->zErrMsg = 0;
|
|
sqlite3VtabUnlock(db, pVtab);
|
|
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
if( pOp->p1 && rc==SQLITE_OK ){
|
|
assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
|
|
db->lastRowid = rowid;
|
|
}
|
|
p->nChange++;
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
/* Opcode: Pagecount P1 P2 * * *
|
|
**
|
|
** Write the current number of pages in database P1 to memory cell P2.
|
|
*/
|
|
case OP_Pagecount: { /* out2-prerelease */
|
|
int p1 = pOp->p1;
|
|
int nPage;
|
|
Pager *pPager = sqlite3BtreePager(db->aDb[p1].pBt);
|
|
|
|
rc = sqlite3PagerPagecount(pPager, &nPage);
|
|
if( rc==SQLITE_OK ){
|
|
pOut->flags = MEM_Int;
|
|
pOut->u.i = nPage;
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_TRACE
|
|
/* Opcode: Trace * * * P4 *
|
|
**
|
|
** If tracing is enabled (by the sqlite3_trace()) interface, then
|
|
** the UTF-8 string contained in P4 is emitted on the trace callback.
|
|
*/
|
|
case OP_Trace: {
|
|
if( pOp->p4.z ){
|
|
if( db->xTrace ){
|
|
db->xTrace(db->pTraceArg, pOp->p4.z);
|
|
}
|
|
#ifdef SQLITE_DEBUG
|
|
if( (db->flags & SQLITE_SqlTrace)!=0 ){
|
|
sqlite3DebugPrintf("SQL-trace: %s\n", pOp->p4.z);
|
|
}
|
|
#endif /* SQLITE_DEBUG */
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Opcode: Noop * * * * *
|
|
**
|
|
** Do nothing. This instruction is often useful as a jump
|
|
** destination.
|
|
*/
|
|
/*
|
|
** The magic Explain opcode are only inserted when explain==2 (which
|
|
** is to say when the EXPLAIN QUERY PLAN syntax is used.)
|
|
** This opcode records information from the optimizer. It is the
|
|
** the same as a no-op. This opcodesnever appears in a real VM program.
|
|
*/
|
|
default: { /* This is really OP_Noop and OP_Explain */
|
|
break;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
** The cases of the switch statement above this line should all be indented
|
|
** by 6 spaces. But the left-most 6 spaces have been removed to improve the
|
|
** readability. From this point on down, the normal indentation rules are
|
|
** restored.
|
|
*****************************************************************************/
|
|
}
|
|
|
|
#ifdef VDBE_PROFILE
|
|
{
|
|
u64 elapsed = sqlite3Hwtime() - start;
|
|
pOp->cycles += elapsed;
|
|
pOp->cnt++;
|
|
#if 0
|
|
fprintf(stdout, "%10llu ", elapsed);
|
|
sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/* The following code adds nothing to the actual functionality
|
|
** of the program. It is only here for testing and debugging.
|
|
** On the other hand, it does burn CPU cycles every time through
|
|
** the evaluator loop. So we can leave it out when NDEBUG is defined.
|
|
*/
|
|
#ifndef NDEBUG
|
|
assert( pc>=-1 && pc<p->nOp );
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
if( p->trace ){
|
|
if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
|
|
if( opProperty & OPFLG_OUT2_PRERELEASE ){
|
|
registerTrace(p->trace, pOp->p2, pOut);
|
|
}
|
|
if( opProperty & OPFLG_OUT3 ){
|
|
registerTrace(p->trace, pOp->p3, pOut);
|
|
}
|
|
}
|
|
#endif /* SQLITE_DEBUG */
|
|
#endif /* NDEBUG */
|
|
} /* The end of the for(;;) loop the loops through opcodes */
|
|
|
|
/* If we reach this point, it means that execution is finished with
|
|
** an error of some kind.
|
|
*/
|
|
vdbe_error_halt:
|
|
assert( rc );
|
|
p->rc = rc;
|
|
sqlite3VdbeHalt(p);
|
|
if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
|
|
rc = SQLITE_ERROR;
|
|
|
|
/* This is the only way out of this procedure. We have to
|
|
** release the mutexes on btrees that were acquired at the
|
|
** top. */
|
|
vdbe_return:
|
|
sqlite3BtreeMutexArrayLeave(&p->aMutex);
|
|
return rc;
|
|
|
|
/* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
|
|
** is encountered.
|
|
*/
|
|
too_big:
|
|
sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
|
|
rc = SQLITE_TOOBIG;
|
|
goto vdbe_error_halt;
|
|
|
|
/* Jump to here if a malloc() fails.
|
|
*/
|
|
no_mem:
|
|
db->mallocFailed = 1;
|
|
sqlite3SetString(&p->zErrMsg, db, "out of memory");
|
|
rc = SQLITE_NOMEM;
|
|
goto vdbe_error_halt;
|
|
|
|
/* Jump to here for an SQLITE_MISUSE error.
|
|
*/
|
|
abort_due_to_misuse:
|
|
rc = SQLITE_MISUSE;
|
|
/* Fall thru into abort_due_to_error */
|
|
|
|
/* Jump to here for any other kind of fatal error. The "rc" variable
|
|
** should hold the error number.
|
|
*/
|
|
abort_due_to_error:
|
|
assert( p->zErrMsg==0 );
|
|
if( db->mallocFailed ) rc = SQLITE_NOMEM;
|
|
if( rc!=SQLITE_IOERR_NOMEM ){
|
|
sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
|
|
}
|
|
goto vdbe_error_halt;
|
|
|
|
/* Jump to here if the sqlite3_interrupt() API sets the interrupt
|
|
** flag.
|
|
*/
|
|
abort_due_to_interrupt:
|
|
assert( db->u1.isInterrupted );
|
|
rc = SQLITE_INTERRUPT;
|
|
p->rc = rc;
|
|
sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
|
|
goto vdbe_error_halt;
|
|
}
|