sqlite/test/shared.test
danielk1977 eecfb3eebc Fix a problem with shared-schemas and temp triggers. (CVS 2901)
FossilOrigin-Name: 9c18a1ce1e7ff6a02eb0f9ce344cab9660819740
2006-01-10 12:31:39 +00:00

664 lines
18 KiB
Plaintext

# 2005 December 30
#
# The author disclaims copyright to this source code. In place of
# a legal notice, here is a blessing:
#
# May you do good and not evil.
# May you find forgiveness for yourself and forgive others.
# May you share freely, never taking more than you give.
#
#***********************************************************************
#
# $Id: shared.test,v 1.9 2006/01/10 12:31:41 danielk1977 Exp $
set testdir [file dirname $argv0]
source $testdir/tester.tcl
db close
ifcapable !shared_cache {
finish_test
return
}
set ::enable_shared_cache [sqlite3_enable_shared_cache 1]
# Test organization:
#
# shared-1.*: Simple test to verify basic sanity of table level locking when
# two connections share a pager cache.
# shared-2.*: Test that a read transaction can co-exist with a
# write-transaction, including a simple test to ensure the
# external locking protocol is still working.
# shared-3.*: Simple test of read-uncommitted mode.
# shared-4.*: Check that the schema is locked and unlocked correctly.
# shared-5.*: Test that creating/dropping schema items works when databases
# are attached in different orders to different handles.
# shared-6.*: Locking, UNION ALL queries and sub-queries.
# shared-7.*: Autovacuum and shared-cache.
#
do_test shared-1.1 {
# Open a second database on the file test.db. It should use the same pager
# cache and schema as the original connection. Verify that only 1 file is
# opened.
sqlite3 db2 test.db
sqlite3 db test.db
set ::sqlite_open_file_count
} {1}
do_test shared-1.2 {
# Add a table and a single row of data via the first connection.
# Ensure that the second connection can see them.
execsql {
CREATE TABLE abc(a, b, c);
INSERT INTO abc VALUES(1, 2, 3);
} db
execsql {
SELECT * FROM abc;
} db2
} {1 2 3}
do_test shared-1.3 {
# Have the first connection begin a transaction and obtain a read-lock
# on table abc. This should not prevent the second connection from
# querying abc.
execsql {
BEGIN;
SELECT * FROM abc;
}
execsql {
SELECT * FROM abc;
} db2
} {1 2 3}
do_test shared-1.4 {
# Try to insert a row into abc via connection 2. This should fail because
# of the read-lock connection 1 is holding on table abc (obtained in the
# previous test case).
catchsql {
INSERT INTO abc VALUES(4, 5, 6);
} db2
} {1 {database table is locked: abc}}
do_test shared-1.5 {
# Using connection 2 (the one without the open transaction), try to create
# a new table. This should fail because of the open read transaction
# held by connection 1.
catchsql {
CREATE TABLE def(d, e, f);
} db2
} {1 {database table is locked: sqlite_master}}
do_test shared-1.6 {
# Upgrade connection 1's transaction to a write transaction. Create
# a new table - def - and insert a row into it. Because the connection 1
# transaction modifies the schema, it should not be possible for
# connection 2 to access the database at all until the connection 1
# has finished the transaction.
execsql {
CREATE TABLE def(d, e, f);
INSERT INTO def VALUES('IV', 'V', 'VI');
}
} {}
do_test shared-1.7 {
# Read from the sqlite_master table with connection 1 (inside the
# transaction). Then test that we can not do this with connection 2. This
# is because of the schema-modified lock established by connection 1
# in the previous test case.
execsql {
SELECT * FROM sqlite_master;
}
catchsql {
SELECT * FROM sqlite_master;
} db2
} {1 {database schema is locked: main}}
do_test shared-1.8 {
# Commit the connection 1 transaction.
execsql {
COMMIT;
}
} {}
do_test shared-2.1 {
# Open connection db3 to the database. Use a different path to the same
# file so that db3 does *not* share the same pager cache as db and db2
# (there should be two open file handles).
sqlite3 db3 ./test.db
set ::sqlite_open_file_count
} {2}
do_test shared-2.2 {
# Start read transactions on db and db2 (the shared pager cache). Ensure
# db3 cannot write to the database.
execsql {
BEGIN;
SELECT * FROM abc;
}
execsql {
BEGIN;
SELECT * FROM abc;
} db2
catchsql {
INSERT INTO abc VALUES(1, 2, 3);
} db2
} {1 {database table is locked: abc}}
do_test shared-2.3 {
# Turn db's transaction into a write-transaction. db3 should still be
# able to read from table def (but will not see the new row). Connection
# db2 should not be able to read def (because of the write-lock).
# Todo: The failed "INSERT INTO abc ..." statement in the above test
# has started a write-transaction on db2 (should this be so?). This
# would prevent connection db from starting a write-transaction. So roll the
# db2 transaction back and replace it with a new read transaction.
execsql {
ROLLBACK;
BEGIN;
SELECT * FROM abc;
} db2
execsql {
INSERT INTO def VALUES('VII', 'VIII', 'IX');
}
concat [
catchsql { SELECT * FROM def; } db3
] [
catchsql { SELECT * FROM def; } db2
]
} {0 {IV V VI} 1 {database table is locked: def}}
do_test shared-2.4 {
# Commit the open transaction on db. db2 still holds a read-transaction.
# This should prevent db3 from writing to the database, but not from
# reading.
execsql {
COMMIT;
}
concat [
catchsql { SELECT * FROM def; } db3
] [
catchsql { INSERT INTO def VALUES('X', 'XI', 'XII'); } db3
]
} {0 {IV V VI VII VIII IX} 1 {database is locked}}
catchsql COMMIT db2
do_test shared-3.1.1 {
# This test case starts a linear scan of table 'seq' using a
# read-uncommitted connection. In the middle of the scan, rows are added
# to the end of the seq table (ahead of the current cursor position).
# The uncommitted rows should be included in the results of the scan.
execsql "
CREATE TABLE seq(i, x);
INSERT INTO seq VALUES(1, '[string repeat X 500]');
INSERT INTO seq VALUES(2, '[string repeat X 500]');
"
execsql {SELECT * FROM sqlite_master} db2
execsql {PRAGMA read_uncommitted = 1} db2
set ret [list]
db2 eval {SELECT i FROM seq} {
if {$i < 4} {
execsql {
INSERT INTO seq SELECT i + (SELECT max(i) FROM seq), x FROM seq;
}
}
lappend ret $i
}
set ret
} {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16}
do_test shared-3.1.2 {
# Another linear scan through table seq using a read-uncommitted connection.
# This time, delete each row as it is read. Should not affect the results of
# the scan, but the table should be empty after the scan is concluded
# (test 3.1.3 verifies this).
set ret [list]
db2 eval {SELECT i FROM seq} {
db eval {DELETE FROM seq WHERE i = $i}
lappend ret $i
}
set ret
} {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16}
do_test shared-3.1.3 {
execsql {
SELECT * FROM seq;
}
} {}
catch {db close}
catch {db2 close}
catch {db3 close}
#--------------------------------------------------------------------------
# Tests shared-4.* test that the schema locking rules are applied
# correctly. i.e.:
#
# 1. All transactions require a read-lock on the schemas of databases they
# access.
# 2. Transactions that modify a database schema require a write-lock on that
# schema.
# 3. It is not possible to compile a statement while another handle has a
# write-lock on the schema.
#
# Open two database handles db and db2. Each has a single attach database
# (as well as main):
#
# db.main -> ./test.db
# db.test2 -> ./test2.db
# db2.main -> ./test2.db
# db2.test -> ./test.db
#
file delete -force test.db
file delete -force test2.db
file delete -force test2.db-journal
sqlite3 db test.db
sqlite3 db2 test2.db
do_test shared-4.1.1 {
set sqlite_open_file_count
} {2}
do_test shared-4.1.2 {
execsql {ATTACH 'test2.db' AS test2}
set sqlite_open_file_count
} {2}
do_test shared-4.1.3 {
execsql {ATTACH 'test.db' AS test} db2
set sqlite_open_file_count
} {2}
# Sanity check: Create a table in ./test.db via handle db, and test that handle
# db2 can "see" the new table immediately. A handle using a seperate pager
# cache would have to reload the database schema before this were possible.
#
do_test shared-4.2.1 {
execsql {
CREATE TABLE abc(a, b, c);
CREATE TABLE def(d, e, f);
INSERT INTO abc VALUES('i', 'ii', 'iii');
INSERT INTO def VALUES('I', 'II', 'III');
}
} {}
do_test shared-4.2.2 {
execsql {
SELECT * FROM test.abc;
} db2
} {i ii iii}
# Open a read-transaction and read from table abc via handle 2. Check that
# handle 1 can read table abc. Check that handle 1 cannot modify table abc
# or the database schema. Then check that handle 1 can modify table def.
#
do_test shared-4.3.1 {
execsql {
BEGIN;
SELECT * FROM test.abc;
} db2
} {i ii iii}
do_test shared-4.3.2 {
catchsql {
INSERT INTO abc VALUES('iv', 'v', 'vi');
}
} {1 {database table is locked: abc}}
do_test shared-4.3.3 {
catchsql {
CREATE TABLE ghi(g, h, i);
}
} {1 {database table is locked: sqlite_master}}
do_test shared-4.3.3 {
catchsql {
INSERT INTO def VALUES('IV', 'V', 'VI');
}
} {0 {}}
do_test shared-4.3.4 {
# Cleanup: commit the transaction opened by db2.
execsql {
COMMIT
} db2
} {}
# Open a write-transaction using handle 1 and modify the database schema.
# Then try to execute a compiled statement to read from the same
# database via handle 2 (fails to get the lock on sqlite_master). Also
# try to compile a read of the same database using handle 2 (also fails).
# Finally, compile a read of the other database using handle 2. This
# should also fail.
#
do_test shared-4.4.1.2 {
# Sanity check 1: Check that the schema is what we think it is when viewed
# via handle 1.
execsql {
CREATE TABLE test2.ghi(g, h, i);
SELECT 'test.db:'||name FROM sqlite_master
UNION ALL
SELECT 'test2.db:'||name FROM test2.sqlite_master;
}
} {test.db:abc test.db:def test2.db:ghi}
do_test shared-4.4.1.2 {
# Sanity check 2: Check that the schema is what we think it is when viewed
# via handle 2.
execsql {
SELECT 'test2.db:'||name FROM sqlite_master
UNION ALL
SELECT 'test.db:'||name FROM test.sqlite_master;
} db2
} {test2.db:ghi test.db:abc test.db:def}
do_test shared-4.4.2 {
set ::DB2 [sqlite3_connection_pointer db2]
set sql {SELECT * FROM abc}
set ::STMT1 [sqlite3_prepare $::DB2 $sql -1 DUMMY]
execsql {
BEGIN;
CREATE TABLE jkl(j, k, l);
}
sqlite3_step $::STMT1
} {SQLITE_ERROR}
do_test shared-4.4.3 {
sqlite3_finalize $::STMT1
} {SQLITE_LOCKED}
do_test shared-4.4.4 {
set rc [catch {
set ::STMT1 [sqlite3_prepare $::DB2 $sql -1 DUMMY]
} msg]
list $rc $msg
} {1 {(6) database schema is locked: test}}
do_test shared-4.4.5 {
set rc [catch {
set ::STMT1 [sqlite3_prepare $::DB2 "SELECT * FROM ghi" -1 DUMMY]
} msg]
list $rc $msg
} {1 {(6) database schema is locked: test}}
catch {db2 close}
catch {db close}
#--------------------------------------------------------------------------
# Tests shared-5.*
#
foreach db [list test.db test1.db test2.db test3.db] {
file delete -force $db ${db}-journal
}
do_test shared-5.1.1 {
sqlite3 db1 test.db
sqlite3 db2 test.db
execsql {
ATTACH 'test1.db' AS test1;
ATTACH 'test2.db' AS test2;
ATTACH 'test3.db' AS test3;
} db1
execsql {
ATTACH 'test3.db' AS test3;
ATTACH 'test2.db' AS test2;
ATTACH 'test1.db' AS test1;
} db2
} {}
do_test shared-5.1.2 {
execsql {
CREATE TABLE test1.t1(a, b);
CREATE INDEX test1.i1 ON t1(a, b);
CREATE VIEW test1.v1 AS SELECT * FROM t1;
CREATE TRIGGER test1.trig1 AFTER INSERT ON t1 BEGIN
INSERT INTO t1 VALUES(new.a, new.b);
END;
} db1
execsql {
DROP INDEX i1;
DROP VIEW v1;
DROP TRIGGER trig1;
DROP TABLE t1;
} db2
} {}
do_test shared-5.1.2 {
execsql {
SELECT * FROM sqlite_master UNION ALL SELECT * FROM test1.sqlite_master
} db1
} {}
#--------------------------------------------------------------------------
# Tests shared-6.* test that a query obtains all the read-locks it needs
# before starting execution of the query. This means that there is no chance
# some rows of data will be returned before a lock fails and SQLITE_LOCK
# is returned.
#
do_test shared-6.1.1 {
execsql {
CREATE TABLE t1(a, b);
CREATE TABLE t2(a, b);
INSERT INTO t1 VALUES(1, 2);
INSERT INTO t2 VALUES(3, 4);
} db1
execsql {
SELECT * FROM t1 UNION ALL SELECT * FROM t2;
} db2
} {1 2 3 4}
do_test shared-6.1.2 {
# Establish a write lock on table t2 via connection db2. Then make a
# UNION all query using connection db1 that first accesses t1, followed
# by t2. If the locks are grabbed at the start of the statement (as
# they should be), no rows are returned. If (as was previously the case)
# they are grabbed as the tables are accessed, the t1 rows will be
# returned before the query fails.
#
execsql {
BEGIN;
INSERT INTO t2 VALUES(5, 6);
} db2
set ret [list]
catch {
db1 eval {SELECT * FROM t1 UNION ALL SELECT * FROM t2} {
lappend ret $a $b
}
}
set ret
} {}
do_test shared-6.1.3 {
execsql {
COMMIT;
BEGIN;
INSERT INTO t1 VALUES(7, 8);
} db2
set ret [list]
catch {
db1 eval {
SELECT (CASE WHEN a>4 THEN (SELECT a FROM t1) ELSE 0 END) AS d FROM t2;
} {
lappend ret $d
}
}
set ret
} {}
catch {db1 close}
catch {db2 close}
foreach f [list test.db test2.db] {
file delete -force $f ${f}-journal
}
#--------------------------------------------------------------------------
# Tests shared-7.* test auto-vacuum does not invalidate cursors from
# other shared-cache users when it reorganizes the database on
# COMMIT.
#
do_test shared-7.1 {
# This test case sets up a test database in auto-vacuum mode consisting
# of two tables, t1 and t2. Both have a single index. Table t1 is
# populated first (so consists of pages toward the start of the db file),
# t2 second (pages toward the end of the file).
sqlite3 db test.db
sqlite3 db2 test.db
execsql {
PRAGMA auto_vacuum = 1;
BEGIN;
CREATE TABLE t1(a PRIMARY KEY, b);
CREATE TABLE t2(a PRIMARY KEY, b);
}
for {set i 0} {$i < 100} {incr i} {
set a [string repeat "$i " 20]
set b [string repeat "$i " 20]
db eval {
INSERT INTO t1 VALUES($a, $b);
}
lappend ::contents [list [expr $i+1] $a $b]
}
execsql {
INSERT INTO t2 SELECT * FROM t1;
COMMIT;
}
execsql {
PRAGMA auto_vacuum;
}
} {1}
do_test shared-7.2 {
# This test case deletes the contents of table t1 (the one at the start of
# the file) while many cursors are open on table t2 and it's index. All of
# the non-root pages will be moved from the end to the start of the file
# when the DELETE is committed - this test verifies that moving the pages
# does not disturb the open cursors.
#
proc lockrow {db tbl oids body} {
set ret [list]
db eval "SELECT oid AS i, a, b FROM $tbl ORDER BY a" {
if {$i==[lindex $oids 0]} {
set noids [lrange $oids 1 end]
if {[llength $noids]==0} {
set subret [eval $body]
} else {
set subret [lockrow $db $tbl $noids $body]
}
}
lappend ret [list $i $a $b]
}
return [linsert $subret 0 $ret]
}
proc locktblrows {db tbl body} {
set oids [db eval "SELECT oid FROM $tbl"]
lockrow $db $tbl $oids $body
}
set scans [locktblrows db t2 {
execsql {
DELETE FROM t1;
} db2
}]
set error 0
# Test that each SELECT query returned the expected contents of t2.
foreach s $scans {
if {[lsort -integer -index 0 $s]!=$::contents} {
set error 1
}
}
set error
} {0}
catch {db close}
catch {db2 close}
#--------------------------------------------------------------------------
# The following tests try to trick the shared-cache code into assuming
# the wrong encoding for a database.
#
file delete -force test.db test.db-journal
do_test shared-8.1.1 {
sqlite3 db test.db
execsql {
PRAGMA encoding = 'UTF-16';
SELECT * FROM sqlite_master;
}
} {}
do_test shared-8.1.2 {
string range [execsql {PRAGMA encoding;}] 0 end-2
} {UTF-16}
do_test shared-8.1.3 {
sqlite3 db2 test.db
execsql {
PRAGMA encoding = 'UTF-8';
CREATE TABLE abc(a, b, c);
} db2
} {}
do_test shared-8.1.4 {
execsql {
SELECT * FROM sqlite_master;
}
} "table abc abc [expr $AUTOVACUUM?3:2] {CREATE TABLE abc(a, b, c)}"
do_test shared-8.1.5 {
db2 close
execsql {
PRAGMA encoding;
}
} {UTF-8}
file delete -force test2.db test2.db-journal
do_test shared-8.2.1 {
execsql {
ATTACH 'test2.db' AS aux;
SELECT * FROM aux.sqlite_master;
}
} {}
do_test shared-8.2.2 {
sqlite3 db2 test2.db
execsql {
PRAGMA encoding = 'UTF-16';
CREATE TABLE def(d, e, f);
} db2
string range [execsql {PRAGMA encoding;} db2] 0 end-2
} {UTF-16}
do_test shared-8.2.3 {
catchsql {
SELECT * FROM aux.sqlite_master;
}
} {1 {attached databases must use the same text encoding as main database}}
catch {db close}
catch {db2 close}
file delete -force test.db test2.db
if 0 {
do_test shared-9.1 {
sqlite3 db test.db
} {}
do_test shared-9.2 {
execsql {CREATE TABLE t1(a);}
} {}
file delete -force test.db
sqlite3 db test.db; set DB [sqlite3_connection_pointer db]
do_test shared-9.3 {
execsql {
CREATE TABLE t5(a);
INSERT INTO t5 VALUES('one');
} db
} {}
}
#---------------------------------------------------------------------------
# The following tests - shared-9.* - test interactions between TEMP triggers
# and shared-schemas.
#
ifcapable trigger&&tempdb {
do_test shared-9.1 {
sqlite3 db test.db
sqlite3 db2 test.db
execsql {
CREATE TABLE abc(a, b, c);
CREATE TABLE abc_mirror(a, b, c);
CREATE TEMP TRIGGER BEFORE INSERT ON abc BEGIN
INSERT INTO abc_mirror(a, b, c) VALUES(new.a, new.b, new.c);
END;
INSERT INTO abc VALUES(1, 2, 3);
SELECT * FROM abc_mirror;
}
} {1 2 3}
do_test shared-9.2 {
execsql {
INSERT INTO abc VALUES(4, 5, 6);
SELECT * FROM abc_mirror;
} db2
} {1 2 3}
do_test shared-9.3 {
db close
db2 close
} {}
} ; # End shared-9.*
finish_test
sqlite3_enable_shared_cache $::enable_shared_cache