sqlite/test/sort4.test
drh 028696c4cc Remove the SQLITE_CONFIG_WORKER_THREADS configuration parameter. The number
of worker threads in the sorter is now determined only by the
PRAGMA threads=N setting.

FossilOrigin-Name: e3305d4b4efcbe06945ce7f6ec0f2e864244aaf9
2014-08-25 23:44:44 +00:00

190 lines
6.0 KiB
Plaintext

# 2014 May 6.
#
# The author disclaims copyright to this source code. In place of
# a legal notice, here is a blessing:
#
# May you do good and not evil.
# May you find forgiveness for yourself and forgive others.
# May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#
# The tests in this file are brute force tests of the multi-threaded
# sorter.
#
set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix sort4
# Configure the sorter to use 3 background threads.
db eval {PRAGMA threads=3}
# Minimum number of seconds to run for. If the value is 0, each test
# is run exactly once. Otherwise, tests are repeated until the timeout
# expires.
set SORT4TIMEOUT 0
if {[permutation] == "multithread"} { set SORT4TIMEOUT 300 }
#--------------------------------------------------------------------
# Set up a table "t1" containing $nRow rows. Each row contains also
# contains blob fields that collectively contain at least $nPayload
# bytes of content. The table schema is as follows:
#
# CREATE TABLE t1(a INTEGER, <extra-columns>, b INTEGER);
#
# For each row, the values of columns "a" and "b" are set to the same
# pseudo-randomly selected integer. The "extra-columns", of which there
# are at most eight, are named c0, c1, c2 etc. Column c0 contains a 4
# byte string. Column c1 an 8 byte string. Field c2 16 bytes, and so on.
#
# This table is intended to be used for testing queries of the form:
#
# SELECT a, <cols>, b FROM t1 ORDER BY a;
#
# The test code checks that rows are returned in order, and that the
# values of "a" and "b" are the same for each row (the idea being that
# if field "b" at the end of the sorter record has not been corrupted,
# the rest of the record is probably Ok as well).
#
proc populate_table {nRow nPayload} {
set nCol 0
set n 0
for {set nCol 0} {$n < $nPayload} {incr nCol} {
incr n [expr (4 << $nCol)]
}
set cols [lrange [list xxx c0 c1 c2 c3 c4 c5 c6 c7] 1 $nCol]
set data [lrange [list xxx \
randomblob(4) randomblob(8) randomblob(16) randomblob(32) \
randomblob(64) randomblob(128) randomblob(256) randomblob(512) \
] 1 $nCol]
execsql { DROP TABLE IF EXISTS t1 }
db transaction {
execsql "CREATE TABLE t1(a, [join $cols ,], b);"
set insert "INSERT INTO t1 VALUES(:k, [join $data ,], :k)"
for {set i 0} {$i < $nRow} {incr i} {
set k [expr int(rand()*1000000000)]
execsql $insert
}
}
}
# Helper for [do_sorter_test]
#
proc sorter_test {nRow nRead nPayload} {
set res [list]
set nLoad [expr ($nRow > $nRead) ? $nRead : $nRow]
set nPayload [expr (($nPayload+3)/4) * 4]
set cols [list]
foreach {mask col} {
0x04 c0 0x08 c1 0x10 c2 0x20 c3
0x40 c4 0x80 c5 0x100 c6 0x200 c7
} {
if {$nPayload & $mask} { lappend cols $col }
}
# Create two SELECT statements. Statement $sql1 uses the sorter to sort
# $nRow records of a bit over $nPayload bytes each read from the "t1"
# table created by [populate_table] proc above. Rows are sorted in order
# of the integer field in each "t1" record.
#
# The second SQL statement sorts the same set of rows as the first, but
# uses a LIMIT clause, causing SQLite to use a temp table instead of the
# sorter for sorting.
#
set sql1 "SELECT a, [join $cols ,], b FROM t1 WHERE rowid<=$nRow ORDER BY a"
set sql2 "SELECT a FROM t1 WHERE rowid<=$nRow ORDER BY a LIMIT $nRead"
# Pass the two SQL statements to a helper command written in C. This
# command steps statement $sql1 $nRead times and compares the integer
# values in the rows returned with the results of executing $sql2. If
# the comparison fails (indicating some bug in the sorter), a Tcl
# exception is thrown.
#
sorter_test_sort4_helper db $sql1 $nRead $sql2
set {} {}
}
# Usage:
#
# do_sorter_test <testname> <args>...
#
# where <args> are any of the following switches:
#
# -rows N (number of rows to have sorter sort)
# -read N (number of rows to read out of sorter)
# -payload N (bytes of payload to read with each row)
# -cachesize N (Value for "PRAGMA cache_size = ?")
# -repeats N (number of times to repeat test)
# -fakeheap BOOL (true to use separate allocations for in-memory records)
#
proc do_sorter_test {tn args} {
set a(-rows) 1000
set a(-repeats) 1
set a(-read) 100
set a(-payload) 100
set a(-cachesize) 100
set a(-fakeheap) 0
foreach {s val} $args {
if {[info exists a($s)]==0} {
unset a(-cachesize)
set optlist "[join [array names a] ,] or -cachesize"
error "Unknown option $s, expected $optlist"
}
set a($s) $val
}
if {[permutation] == "memsys3" || [permutation] == "memsys5"} {
set a(-fakeheap) 0
}
if {$a(-fakeheap)} { sorter_test_fakeheap 1 }
db eval "PRAGMA cache_size = $a(-cachesize)"
do_test $tn [subst -nocommands {
for {set i 0} {[set i] < $a(-repeats)} {incr i} {
sorter_test $a(-rows) $a(-read) $a(-payload)
}
}] {}
if {$a(-fakeheap)} { sorter_test_fakeheap 0 }
}
proc clock_seconds {} {
db one {SELECT strftime('%s')}
}
#-------------------------------------------------------------------------
# Begin tests here.
# Create a test database.
do_test 1 {
execsql "PRAGMA page_size = 4096"
populate_table 100000 500
} {}
set iTimeLimit [expr [clock_seconds] + $SORT4TIMEOUT]
for {set t 2} {1} {incr tn} {
do_sorter_test $t.2 -repeats 10 -rows 1000 -read 100
do_sorter_test $t.3 -repeats 10 -rows 100000 -read 1000
do_sorter_test $t.4 -repeats 10 -rows 100000 -read 1000 -payload 500
do_sorter_test $t.5 -repeats 10 -rows 100000 -read 100000 -payload 8
do_sorter_test $t.6 -repeats 10 -rows 100000 -read 10 -payload 8
do_sorter_test $t.7 -repeats 10 -rows 10000 -read 10000 -payload 8 -fakeheap 1
do_sorter_test $t.8 -repeats 10 -rows 100000 -read 10000 -cachesize 250
set iNow [clock_seconds]
if {$iNow>=$iTimeLimit} break
do_test "$testprefix-([expr $iTimeLimit-$iNow] seconds remain)" {} {}
}
finish_test