sqlite/test/notify2.test
danielk1977 404ca07578 Add the sqlite3_unlock_notify() API. (CVS 6348)
FossilOrigin-Name: b649a6cc5bfefddd6a04b1183647d2923e0a0daa
2009-03-16 13:19:36 +00:00

208 lines
6.3 KiB
Plaintext

# 2009 March 04
#
# The author disclaims copyright to this source code. In place of
# a legal notice, here is a blessing:
#
# May you do good and not evil.
# May you find forgiveness for yourself and forgive others.
# May you share freely, never taking more than you give.
#
#***********************************************************************
#
# $Id: notify2.test,v 1.1 2009/03/16 13:19:36 danielk1977 Exp $
set testdir [file dirname $argv0]
source $testdir/tester.tcl
# The tests in this file test the sqlite3_blocking_step() function in
# test_thread.c. sqlite3_blocking_step() is not an SQLite API function,
# it is just a demonstration of how the sqlite3_unlock_notify() function
# can be used to synchronize multi-threaded access to SQLite databases
# in shared-cache mode.
#
# Since the implementation of sqlite3_blocking_step() is included on the
# website as example code, it is important to test that it works.
#
# notify2-1.*:
#
# This test uses $nThread threads. Each thread opens the main database
# and attaches two other databases. Each database contains a single table.
#
# Each thread repeats transactions over and over for 20 seconds. Each
# transaction consists of 3 operations. Each operation is either a read
# or a write of one of the tables. The read operations verify an invariant
# to make sure that things are working as expected. If an SQLITE_LOCKED
# error is returned the current transaction is rolled back immediately.
#
# This exercise is repeated twice, once using sqlite3_step(), and the
# other using sqlite3_blocking_step(). The results are compared to ensure
# that sqlite3_blocking_step() resulted in higher transaction throughput.
#
if {[info commands sqlite3_blocking_step] eq ""} {
finish_test
return
}
db close
set ::enable_shared_cache [sqlite3_enable_shared_cache 1]
source $testdir/thread_common.tcl
# Number of threads to run simultaneously.
#
set nThread 3
set nSecond 5
# The Tcl script executed by each of the $nThread threads used by this test.
#
set ThreadProgram {
# Proc used by threads to execute SQL.
#
proc execsql_blocking {db zSql} {
set lRes [list]
set rc SQLITE_OK
while {$rc=="SQLITE_OK" && $zSql ne ""} {
set STMT [sqlite3_prepare_v2 $db $zSql -1 zSql]
while {[set rc [$::xStep $STMT]] eq "SQLITE_ROW"} {
for {set i 0} {$i < [sqlite3_column_count $STMT]} {incr i} {
lappend lRes [sqlite3_column_text $STMT 0]
}
}
set rc [sqlite3_finalize $STMT]
}
if {$rc != "SQLITE_OK"} { error "$rc [sqlite3_errmsg $db]" }
return $lRes
}
proc select_one {args} {
set n [llength $args]
lindex $args [expr int($n*rand())]
}
# Open a database connection. Attach the two auxillary databases.
set ::DB [sqlite3_open test.db]
execsql_blocking $::DB {
ATTACH 'test2.db' AS aux2;
ATTACH 'test3.db' AS aux3;
}
# This loop runs for ~20 seconds.
#
set iStart [clock_seconds]
while { ([clock_seconds]-$iStart) < $nSecond } {
# Each transaction does 3 operations. Each operation is either a read
# or write of a randomly selected table (t1, t2 or t3). Set the variables
# $SQL(1), $SQL(2) and $SQL(3) to the SQL commands used to implement
# each operation.
#
for {set ii 1} {$ii <= 3} {incr ii} {
set SQL($ii) [string map [list xxx [select_one t1 t2 t3]] [select_one {
SELECT
(SELECT b FROM xxx WHERE a=(SELECT max(a) FROM xxx))==total(a)
FROM xxx WHERE a!=(SELECT max(a) FROM xxx);
} {
DELETE FROM xxx WHERE a<(SELECT max(a)-100 FROM xxx);
INSERT INTO xxx SELECT NULL, total(a) FROM xxx;
}]]
}
# Execute the SQL transaction.
#
set rc [catch { execsql_blocking $::DB "
BEGIN;
$SQL(1);
$SQL(2);
$SQL(3);
COMMIT;
"
} msg]
if {$rc && [string match "SQLITE_LOCKED*" $msg]} {
# Hit an SQLITE_LOCKED error. Rollback the current transaction.
execsql_blocking $::DB ROLLBACK
} elseif {$rc} {
# Hit some other kind of error. This is a malfunction.
error $msg
} else {
# No error occured. Check that any SELECT statements in the transaction
# returned "1". Otherwise, the invariant was false, indicating that
# some malfunction has occured.
foreach r $msg { if {$r != 1} { puts "Invariant check failed: $msg" } }
}
}
# Close the database connection and return 0.
#
sqlite3_close $::DB
expr 0
}
foreach {iTest xStep} {1 sqlite3_blocking_step 2 sqlite3_step} {
file delete -force test.db test2.db test3.db
set ThreadSetup "set xStep $xStep ; set nSecond $nSecond"
# Set up the database schema used by this test. Each thread opens file
# test.db as the main database, then attaches files test2.db and test3.db
# as auxillary databases. Each file contains a single table (t1, t2 and t3, in
# files test.db, test2.db and test3.db, respectively).
#
do_test notify2-$iTest.1.1 {
sqlite3 db test.db
execsql {
ATTACH 'test2.db' AS aux2;
ATTACH 'test3.db' AS aux3;
CREATE TABLE main.t1(a INTEGER PRIMARY KEY, b);
CREATE TABLE aux2.t2(a INTEGER PRIMARY KEY, b);
CREATE TABLE aux3.t3(a INTEGER PRIMARY KEY, b);
INSERT INTO t1 SELECT NULL, 0;
INSERT INTO t2 SELECT NULL, 0;
INSERT INTO t3 SELECT NULL, 0;
}
} {}
do_test notify2-$iTest.1.2 {
db close
} {}
# Launch $nThread threads. Then wait for them to finish.
#
puts "Running $xStep test for $nSecond seconds"
unset -nocomplain finished
for {set ii 0} {$ii < $nThread} {incr ii} {
thread_spawn finished($ii) $ThreadSetup $ThreadProgram
}
for {set ii 0} {$ii < $nThread} {incr ii} {
do_test notify2-$iTest.2.$ii {
if {![info exists finished($ii)]} { vwait finished($ii) }
set finished($ii)
} {0}
}
# Count the total number of succesful writes.
do_test notify2-$iTest.3.1 {
sqlite3 db test.db
execsql {
ATTACH 'test2.db' AS aux2;
ATTACH 'test3.db' AS aux3;
}
set anWrite($xStep) [execsql {
SELECT (SELECT max(a) FROM t1)
+ (SELECT max(a) FROM t2)
+ (SELECT max(a) FROM t3)
}]
db close
} {}
}
do_test notify2-3 {
expr {$anWrite(sqlite3_blocking_step) > $anWrite(sqlite3_step)}
} {1}
sqlite3_enable_shared_cache $::enable_shared_cache
finish_test