sqlite/src/main.c
drh 92e71573ce Remove all use of the "long double" data type from SQLite, as hardware support
for long double is increasingly rare and the use of long double creates
challenges for some compilers.

FossilOrigin-Name: 761d8fd18b0ee8681b12998f01a2eca1b796807a5174a1270cfb9bdc841424ac
2024-10-02 13:26:17 +00:00

5078 lines
162 KiB
C

/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** Main file for the SQLite library. The routines in this file
** implement the programmer interface to the library. Routines in
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
*/
#include "sqliteInt.h"
#ifdef SQLITE_ENABLE_FTS3
# include "fts3.h"
#endif
#ifdef SQLITE_ENABLE_RTREE
# include "rtree.h"
#endif
#if defined(SQLITE_ENABLE_ICU) || defined(SQLITE_ENABLE_ICU_COLLATIONS)
# include "sqliteicu.h"
#endif
/*
** This is an extension initializer that is a no-op and always
** succeeds, except that it fails if the fault-simulation is set
** to 500.
*/
static int sqlite3TestExtInit(sqlite3 *db){
(void)db;
return sqlite3FaultSim(500);
}
/*
** Forward declarations of external module initializer functions
** for modules that need them.
*/
#ifdef SQLITE_ENABLE_FTS5
int sqlite3Fts5Init(sqlite3*);
#endif
#ifdef SQLITE_ENABLE_STMTVTAB
int sqlite3StmtVtabInit(sqlite3*);
#endif
#ifdef SQLITE_EXTRA_AUTOEXT
int SQLITE_EXTRA_AUTOEXT(sqlite3*);
#endif
/*
** An array of pointers to extension initializer functions for
** built-in extensions.
*/
static int (*const sqlite3BuiltinExtensions[])(sqlite3*) = {
#ifdef SQLITE_ENABLE_FTS3
sqlite3Fts3Init,
#endif
#ifdef SQLITE_ENABLE_FTS5
sqlite3Fts5Init,
#endif
#if defined(SQLITE_ENABLE_ICU) || defined(SQLITE_ENABLE_ICU_COLLATIONS)
sqlite3IcuInit,
#endif
#ifdef SQLITE_ENABLE_RTREE
sqlite3RtreeInit,
#endif
#ifdef SQLITE_ENABLE_DBPAGE_VTAB
sqlite3DbpageRegister,
#endif
#ifdef SQLITE_ENABLE_DBSTAT_VTAB
sqlite3DbstatRegister,
#endif
sqlite3TestExtInit,
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON)
sqlite3JsonTableFunctions,
#endif
#ifdef SQLITE_ENABLE_STMTVTAB
sqlite3StmtVtabInit,
#endif
#ifdef SQLITE_ENABLE_BYTECODE_VTAB
sqlite3VdbeBytecodeVtabInit,
#endif
#ifdef SQLITE_EXTRA_AUTOEXT
SQLITE_EXTRA_AUTOEXT,
#endif
};
#ifndef SQLITE_AMALGAMATION
/* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant
** contains the text of SQLITE_VERSION macro.
*/
const char sqlite3_version[] = SQLITE_VERSION;
#endif
/* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns
** a pointer to the to the sqlite3_version[] string constant.
*/
const char *sqlite3_libversion(void){ return sqlite3_version; }
/* IMPLEMENTATION-OF: R-25063-23286 The sqlite3_sourceid() function returns a
** pointer to a string constant whose value is the same as the
** SQLITE_SOURCE_ID C preprocessor macro. Except if SQLite is built using
** an edited copy of the amalgamation, then the last four characters of
** the hash might be different from SQLITE_SOURCE_ID.
*/
const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; }
/* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function
** returns an integer equal to SQLITE_VERSION_NUMBER.
*/
int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; }
/* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns
** zero if and only if SQLite was compiled with mutexing code omitted due to
** the SQLITE_THREADSAFE compile-time option being set to 0.
*/
int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; }
/*
** When compiling the test fixture or with debugging enabled (on Win32),
** this variable being set to non-zero will cause OSTRACE macros to emit
** extra diagnostic information.
*/
#ifdef SQLITE_HAVE_OS_TRACE
# ifndef SQLITE_DEBUG_OS_TRACE
# define SQLITE_DEBUG_OS_TRACE 0
# endif
int sqlite3OSTrace = SQLITE_DEBUG_OS_TRACE;
#endif
#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
/*
** If the following function pointer is not NULL and if
** SQLITE_ENABLE_IOTRACE is enabled, then messages describing
** I/O active are written using this function. These messages
** are intended for debugging activity only.
*/
SQLITE_API void (SQLITE_CDECL *sqlite3IoTrace)(const char*, ...) = 0;
#endif
/*
** If the following global variable points to a string which is the
** name of a directory, then that directory will be used to store
** temporary files.
**
** See also the "PRAGMA temp_store_directory" SQL command.
*/
char *sqlite3_temp_directory = 0;
/*
** If the following global variable points to a string which is the
** name of a directory, then that directory will be used to store
** all database files specified with a relative pathname.
**
** See also the "PRAGMA data_store_directory" SQL command.
*/
char *sqlite3_data_directory = 0;
/*
** Initialize SQLite.
**
** This routine must be called to initialize the memory allocation,
** VFS, and mutex subsystems prior to doing any serious work with
** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT
** this routine will be called automatically by key routines such as
** sqlite3_open().
**
** This routine is a no-op except on its very first call for the process,
** or for the first call after a call to sqlite3_shutdown.
**
** The first thread to call this routine runs the initialization to
** completion. If subsequent threads call this routine before the first
** thread has finished the initialization process, then the subsequent
** threads must block until the first thread finishes with the initialization.
**
** The first thread might call this routine recursively. Recursive
** calls to this routine should not block, of course. Otherwise the
** initialization process would never complete.
**
** Let X be the first thread to enter this routine. Let Y be some other
** thread. Then while the initial invocation of this routine by X is
** incomplete, it is required that:
**
** * Calls to this routine from Y must block until the outer-most
** call by X completes.
**
** * Recursive calls to this routine from thread X return immediately
** without blocking.
*/
int sqlite3_initialize(void){
MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) /* The main static mutex */
int rc; /* Result code */
#ifdef SQLITE_EXTRA_INIT
int bRunExtraInit = 0; /* Extra initialization needed */
#endif
#ifdef SQLITE_OMIT_WSD
rc = sqlite3_wsd_init(4096, 24);
if( rc!=SQLITE_OK ){
return rc;
}
#endif
/* If the following assert() fails on some obscure processor/compiler
** combination, the work-around is to set the correct pointer
** size at compile-time using -DSQLITE_PTRSIZE=n compile-time option */
assert( SQLITE_PTRSIZE==sizeof(char*) );
/* If SQLite is already completely initialized, then this call
** to sqlite3_initialize() should be a no-op. But the initialization
** must be complete. So isInit must not be set until the very end
** of this routine.
*/
if( sqlite3GlobalConfig.isInit ){
sqlite3MemoryBarrier();
return SQLITE_OK;
}
/* Make sure the mutex subsystem is initialized. If unable to
** initialize the mutex subsystem, return early with the error.
** If the system is so sick that we are unable to allocate a mutex,
** there is not much SQLite is going to be able to do.
**
** The mutex subsystem must take care of serializing its own
** initialization.
*/
rc = sqlite3MutexInit();
if( rc ) return rc;
/* Initialize the malloc() system and the recursive pInitMutex mutex.
** This operation is protected by the STATIC_MAIN mutex. Note that
** MutexAlloc() is called for a static mutex prior to initializing the
** malloc subsystem - this implies that the allocation of a static
** mutex must not require support from the malloc subsystem.
*/
MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
sqlite3_mutex_enter(pMainMtx);
sqlite3GlobalConfig.isMutexInit = 1;
if( !sqlite3GlobalConfig.isMallocInit ){
rc = sqlite3MallocInit();
}
if( rc==SQLITE_OK ){
sqlite3GlobalConfig.isMallocInit = 1;
if( !sqlite3GlobalConfig.pInitMutex ){
sqlite3GlobalConfig.pInitMutex =
sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){
rc = SQLITE_NOMEM_BKPT;
}
}
}
if( rc==SQLITE_OK ){
sqlite3GlobalConfig.nRefInitMutex++;
}
sqlite3_mutex_leave(pMainMtx);
/* If rc is not SQLITE_OK at this point, then either the malloc
** subsystem could not be initialized or the system failed to allocate
** the pInitMutex mutex. Return an error in either case. */
if( rc!=SQLITE_OK ){
return rc;
}
/* Do the rest of the initialization under the recursive mutex so
** that we will be able to handle recursive calls into
** sqlite3_initialize(). The recursive calls normally come through
** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other
** recursive calls might also be possible.
**
** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls
** to the xInit method, so the xInit method need not be threadsafe.
**
** The following mutex is what serializes access to the appdef pcache xInit
** methods. The sqlite3_pcache_methods.xInit() all is embedded in the
** call to sqlite3PcacheInitialize().
*/
sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex);
if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){
sqlite3GlobalConfig.inProgress = 1;
#ifdef SQLITE_ENABLE_SQLLOG
{
extern void sqlite3_init_sqllog(void);
sqlite3_init_sqllog();
}
#endif
memset(&sqlite3BuiltinFunctions, 0, sizeof(sqlite3BuiltinFunctions));
sqlite3RegisterBuiltinFunctions();
if( sqlite3GlobalConfig.isPCacheInit==0 ){
rc = sqlite3PcacheInitialize();
}
if( rc==SQLITE_OK ){
sqlite3GlobalConfig.isPCacheInit = 1;
rc = sqlite3OsInit();
}
#ifndef SQLITE_OMIT_DESERIALIZE
if( rc==SQLITE_OK ){
rc = sqlite3MemdbInit();
}
#endif
if( rc==SQLITE_OK ){
sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage,
sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage);
sqlite3MemoryBarrier();
sqlite3GlobalConfig.isInit = 1;
#ifdef SQLITE_EXTRA_INIT
bRunExtraInit = 1;
#endif
}
sqlite3GlobalConfig.inProgress = 0;
}
sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex);
/* Go back under the static mutex and clean up the recursive
** mutex to prevent a resource leak.
*/
sqlite3_mutex_enter(pMainMtx);
sqlite3GlobalConfig.nRefInitMutex--;
if( sqlite3GlobalConfig.nRefInitMutex<=0 ){
assert( sqlite3GlobalConfig.nRefInitMutex==0 );
sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex);
sqlite3GlobalConfig.pInitMutex = 0;
}
sqlite3_mutex_leave(pMainMtx);
/* The following is just a sanity check to make sure SQLite has
** been compiled correctly. It is important to run this code, but
** we don't want to run it too often and soak up CPU cycles for no
** reason. So we run it once during initialization.
*/
#ifndef NDEBUG
#ifndef SQLITE_OMIT_FLOATING_POINT
/* This section of code's only "output" is via assert() statements. */
if( rc==SQLITE_OK ){
u64 x = (((u64)1)<<63)-1;
double y;
assert(sizeof(x)==8);
assert(sizeof(x)==sizeof(y));
memcpy(&y, &x, 8);
assert( sqlite3IsNaN(y) );
}
#endif
#endif
/* Do extra initialization steps requested by the SQLITE_EXTRA_INIT
** compile-time option.
*/
#ifdef SQLITE_EXTRA_INIT
if( bRunExtraInit ){
int SQLITE_EXTRA_INIT(const char*);
rc = SQLITE_EXTRA_INIT(0);
}
#endif
return rc;
}
/*
** Undo the effects of sqlite3_initialize(). Must not be called while
** there are outstanding database connections or memory allocations or
** while any part of SQLite is otherwise in use in any thread. This
** routine is not threadsafe. But it is safe to invoke this routine
** on when SQLite is already shut down. If SQLite is already shut down
** when this routine is invoked, then this routine is a harmless no-op.
*/
int sqlite3_shutdown(void){
#ifdef SQLITE_OMIT_WSD
int rc = sqlite3_wsd_init(4096, 24);
if( rc!=SQLITE_OK ){
return rc;
}
#endif
if( sqlite3GlobalConfig.isInit ){
#ifdef SQLITE_EXTRA_SHUTDOWN
void SQLITE_EXTRA_SHUTDOWN(void);
SQLITE_EXTRA_SHUTDOWN();
#endif
sqlite3_os_end();
sqlite3_reset_auto_extension();
sqlite3GlobalConfig.isInit = 0;
}
if( sqlite3GlobalConfig.isPCacheInit ){
sqlite3PcacheShutdown();
sqlite3GlobalConfig.isPCacheInit = 0;
}
if( sqlite3GlobalConfig.isMallocInit ){
sqlite3MallocEnd();
sqlite3GlobalConfig.isMallocInit = 0;
#ifndef SQLITE_OMIT_SHUTDOWN_DIRECTORIES
/* The heap subsystem has now been shutdown and these values are supposed
** to be NULL or point to memory that was obtained from sqlite3_malloc(),
** which would rely on that heap subsystem; therefore, make sure these
** values cannot refer to heap memory that was just invalidated when the
** heap subsystem was shutdown. This is only done if the current call to
** this function resulted in the heap subsystem actually being shutdown.
*/
sqlite3_data_directory = 0;
sqlite3_temp_directory = 0;
#endif
}
if( sqlite3GlobalConfig.isMutexInit ){
sqlite3MutexEnd();
sqlite3GlobalConfig.isMutexInit = 0;
}
return SQLITE_OK;
}
/*
** This API allows applications to modify the global configuration of
** the SQLite library at run-time.
**
** This routine should only be called when there are no outstanding
** database connections or memory allocations. This routine is not
** threadsafe. Failure to heed these warnings can lead to unpredictable
** behavior.
*/
int sqlite3_config(int op, ...){
va_list ap;
int rc = SQLITE_OK;
/* sqlite3_config() normally returns SQLITE_MISUSE if it is invoked while
** the SQLite library is in use. Except, a few selected opcodes
** are allowed.
*/
if( sqlite3GlobalConfig.isInit ){
static const u64 mAnytimeConfigOption = 0
| MASKBIT64( SQLITE_CONFIG_LOG )
| MASKBIT64( SQLITE_CONFIG_PCACHE_HDRSZ )
;
if( op<0 || op>63 || (MASKBIT64(op) & mAnytimeConfigOption)==0 ){
return SQLITE_MISUSE_BKPT;
}
testcase( op==SQLITE_CONFIG_LOG );
testcase( op==SQLITE_CONFIG_PCACHE_HDRSZ );
}
va_start(ap, op);
switch( op ){
/* Mutex configuration options are only available in a threadsafe
** compile.
*/
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-54466-46756 */
case SQLITE_CONFIG_SINGLETHREAD: {
/* EVIDENCE-OF: R-02748-19096 This option sets the threading mode to
** Single-thread. */
sqlite3GlobalConfig.bCoreMutex = 0; /* Disable mutex on core */
sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */
break;
}
#endif
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-20520-54086 */
case SQLITE_CONFIG_MULTITHREAD: {
/* EVIDENCE-OF: R-14374-42468 This option sets the threading mode to
** Multi-thread. */
sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */
sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */
break;
}
#endif
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-59593-21810 */
case SQLITE_CONFIG_SERIALIZED: {
/* EVIDENCE-OF: R-41220-51800 This option sets the threading mode to
** Serialized. */
sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */
sqlite3GlobalConfig.bFullMutex = 1; /* Enable mutex on connections */
break;
}
#endif
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-63666-48755 */
case SQLITE_CONFIG_MUTEX: {
/* Specify an alternative mutex implementation */
sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*);
break;
}
#endif
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-14450-37597 */
case SQLITE_CONFIG_GETMUTEX: {
/* Retrieve the current mutex implementation */
*va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex;
break;
}
#endif
case SQLITE_CONFIG_MALLOC: {
/* EVIDENCE-OF: R-55594-21030 The SQLITE_CONFIG_MALLOC option takes a
** single argument which is a pointer to an instance of the
** sqlite3_mem_methods structure. The argument specifies alternative
** low-level memory allocation routines to be used in place of the memory
** allocation routines built into SQLite. */
sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*);
break;
}
case SQLITE_CONFIG_GETMALLOC: {
/* EVIDENCE-OF: R-51213-46414 The SQLITE_CONFIG_GETMALLOC option takes a
** single argument which is a pointer to an instance of the
** sqlite3_mem_methods structure. The sqlite3_mem_methods structure is
** filled with the currently defined memory allocation routines. */
if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault();
*va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m;
break;
}
case SQLITE_CONFIG_MEMSTATUS: {
assert( !sqlite3GlobalConfig.isInit ); /* Cannot change at runtime */
/* EVIDENCE-OF: R-61275-35157 The SQLITE_CONFIG_MEMSTATUS option takes
** single argument of type int, interpreted as a boolean, which enables
** or disables the collection of memory allocation statistics. */
sqlite3GlobalConfig.bMemstat = va_arg(ap, int);
break;
}
case SQLITE_CONFIG_SMALL_MALLOC: {
sqlite3GlobalConfig.bSmallMalloc = va_arg(ap, int);
break;
}
case SQLITE_CONFIG_PAGECACHE: {
/* EVIDENCE-OF: R-18761-36601 There are three arguments to
** SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned memory (pMem),
** the size of each page cache line (sz), and the number of cache lines
** (N). */
sqlite3GlobalConfig.pPage = va_arg(ap, void*);
sqlite3GlobalConfig.szPage = va_arg(ap, int);
sqlite3GlobalConfig.nPage = va_arg(ap, int);
break;
}
case SQLITE_CONFIG_PCACHE_HDRSZ: {
/* EVIDENCE-OF: R-39100-27317 The SQLITE_CONFIG_PCACHE_HDRSZ option takes
** a single parameter which is a pointer to an integer and writes into
** that integer the number of extra bytes per page required for each page
** in SQLITE_CONFIG_PAGECACHE. */
*va_arg(ap, int*) =
sqlite3HeaderSizeBtree() +
sqlite3HeaderSizePcache() +
sqlite3HeaderSizePcache1();
break;
}
case SQLITE_CONFIG_PCACHE: {
/* no-op */
break;
}
case SQLITE_CONFIG_GETPCACHE: {
/* now an error */
rc = SQLITE_ERROR;
break;
}
case SQLITE_CONFIG_PCACHE2: {
/* EVIDENCE-OF: R-63325-48378 The SQLITE_CONFIG_PCACHE2 option takes a
** single argument which is a pointer to an sqlite3_pcache_methods2
** object. This object specifies the interface to a custom page cache
** implementation. */
sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*);
break;
}
case SQLITE_CONFIG_GETPCACHE2: {
/* EVIDENCE-OF: R-22035-46182 The SQLITE_CONFIG_GETPCACHE2 option takes a
** single argument which is a pointer to an sqlite3_pcache_methods2
** object. SQLite copies of the current page cache implementation into
** that object. */
if( sqlite3GlobalConfig.pcache2.xInit==0 ){
sqlite3PCacheSetDefault();
}
*va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2;
break;
}
/* EVIDENCE-OF: R-06626-12911 The SQLITE_CONFIG_HEAP option is only
** available if SQLite is compiled with either SQLITE_ENABLE_MEMSYS3 or
** SQLITE_ENABLE_MEMSYS5 and returns SQLITE_ERROR if invoked otherwise. */
#if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
case SQLITE_CONFIG_HEAP: {
/* EVIDENCE-OF: R-19854-42126 There are three arguments to
** SQLITE_CONFIG_HEAP: An 8-byte aligned pointer to the memory, the
** number of bytes in the memory buffer, and the minimum allocation size.
*/
sqlite3GlobalConfig.pHeap = va_arg(ap, void*);
sqlite3GlobalConfig.nHeap = va_arg(ap, int);
sqlite3GlobalConfig.mnReq = va_arg(ap, int);
if( sqlite3GlobalConfig.mnReq<1 ){
sqlite3GlobalConfig.mnReq = 1;
}else if( sqlite3GlobalConfig.mnReq>(1<<12) ){
/* cap min request size at 2^12 */
sqlite3GlobalConfig.mnReq = (1<<12);
}
if( sqlite3GlobalConfig.pHeap==0 ){
/* EVIDENCE-OF: R-49920-60189 If the first pointer (the memory pointer)
** is NULL, then SQLite reverts to using its default memory allocator
** (the system malloc() implementation), undoing any prior invocation of
** SQLITE_CONFIG_MALLOC.
**
** Setting sqlite3GlobalConfig.m to all zeros will cause malloc to
** revert to its default implementation when sqlite3_initialize() is run
*/
memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m));
}else{
/* EVIDENCE-OF: R-61006-08918 If the memory pointer is not NULL then the
** alternative memory allocator is engaged to handle all of SQLites
** memory allocation needs. */
#ifdef SQLITE_ENABLE_MEMSYS3
sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3();
#endif
#ifdef SQLITE_ENABLE_MEMSYS5
sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5();
#endif
}
break;
}
#endif
case SQLITE_CONFIG_LOOKASIDE: {
sqlite3GlobalConfig.szLookaside = va_arg(ap, int);
sqlite3GlobalConfig.nLookaside = va_arg(ap, int);
break;
}
/* Record a pointer to the logger function and its first argument.
** The default is NULL. Logging is disabled if the function pointer is
** NULL.
*/
case SQLITE_CONFIG_LOG: {
/* MSVC is picky about pulling func ptrs from va lists.
** http://support.microsoft.com/kb/47961
** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*));
*/
typedef void(*LOGFUNC_t)(void*,int,const char*);
LOGFUNC_t xLog = va_arg(ap, LOGFUNC_t);
void *pLogArg = va_arg(ap, void*);
AtomicStore(&sqlite3GlobalConfig.xLog, xLog);
AtomicStore(&sqlite3GlobalConfig.pLogArg, pLogArg);
break;
}
/* EVIDENCE-OF: R-55548-33817 The compile-time setting for URI filenames
** can be changed at start-time using the
** sqlite3_config(SQLITE_CONFIG_URI,1) or
** sqlite3_config(SQLITE_CONFIG_URI,0) configuration calls.
*/
case SQLITE_CONFIG_URI: {
/* EVIDENCE-OF: R-25451-61125 The SQLITE_CONFIG_URI option takes a single
** argument of type int. If non-zero, then URI handling is globally
** enabled. If the parameter is zero, then URI handling is globally
** disabled. */
int bOpenUri = va_arg(ap, int);
AtomicStore(&sqlite3GlobalConfig.bOpenUri, bOpenUri);
break;
}
case SQLITE_CONFIG_COVERING_INDEX_SCAN: {
/* EVIDENCE-OF: R-36592-02772 The SQLITE_CONFIG_COVERING_INDEX_SCAN
** option takes a single integer argument which is interpreted as a
** boolean in order to enable or disable the use of covering indices for
** full table scans in the query optimizer. */
sqlite3GlobalConfig.bUseCis = va_arg(ap, int);
break;
}
#ifdef SQLITE_ENABLE_SQLLOG
case SQLITE_CONFIG_SQLLOG: {
typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int);
sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t);
sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *);
break;
}
#endif
case SQLITE_CONFIG_MMAP_SIZE: {
/* EVIDENCE-OF: R-58063-38258 SQLITE_CONFIG_MMAP_SIZE takes two 64-bit
** integer (sqlite3_int64) values that are the default mmap size limit
** (the default setting for PRAGMA mmap_size) and the maximum allowed
** mmap size limit. */
sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64);
sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64);
/* EVIDENCE-OF: R-53367-43190 If either argument to this option is
** negative, then that argument is changed to its compile-time default.
**
** EVIDENCE-OF: R-34993-45031 The maximum allowed mmap size will be
** silently truncated if necessary so that it does not exceed the
** compile-time maximum mmap size set by the SQLITE_MAX_MMAP_SIZE
** compile-time option.
*/
if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){
mxMmap = SQLITE_MAX_MMAP_SIZE;
}
if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE;
if( szMmap>mxMmap) szMmap = mxMmap;
sqlite3GlobalConfig.mxMmap = mxMmap;
sqlite3GlobalConfig.szMmap = szMmap;
break;
}
#if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC) /* IMP: R-04780-55815 */
case SQLITE_CONFIG_WIN32_HEAPSIZE: {
/* EVIDENCE-OF: R-34926-03360 SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit
** unsigned integer value that specifies the maximum size of the created
** heap. */
sqlite3GlobalConfig.nHeap = va_arg(ap, int);
break;
}
#endif
case SQLITE_CONFIG_PMASZ: {
sqlite3GlobalConfig.szPma = va_arg(ap, unsigned int);
break;
}
case SQLITE_CONFIG_STMTJRNL_SPILL: {
sqlite3GlobalConfig.nStmtSpill = va_arg(ap, int);
break;
}
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
case SQLITE_CONFIG_SORTERREF_SIZE: {
int iVal = va_arg(ap, int);
if( iVal<0 ){
iVal = SQLITE_DEFAULT_SORTERREF_SIZE;
}
sqlite3GlobalConfig.szSorterRef = (u32)iVal;
break;
}
#endif /* SQLITE_ENABLE_SORTER_REFERENCES */
#ifndef SQLITE_OMIT_DESERIALIZE
case SQLITE_CONFIG_MEMDB_MAXSIZE: {
sqlite3GlobalConfig.mxMemdbSize = va_arg(ap, sqlite3_int64);
break;
}
#endif /* SQLITE_OMIT_DESERIALIZE */
case SQLITE_CONFIG_ROWID_IN_VIEW: {
int *pVal = va_arg(ap,int*);
#ifdef SQLITE_ALLOW_ROWID_IN_VIEW
if( 0==*pVal ) sqlite3GlobalConfig.mNoVisibleRowid = TF_NoVisibleRowid;
if( 1==*pVal ) sqlite3GlobalConfig.mNoVisibleRowid = 0;
*pVal = (sqlite3GlobalConfig.mNoVisibleRowid==0);
#else
*pVal = 0;
#endif
break;
}
default: {
rc = SQLITE_ERROR;
break;
}
}
va_end(ap);
return rc;
}
/*
** Set up the lookaside buffers for a database connection.
** Return SQLITE_OK on success.
** If lookaside is already active, return SQLITE_BUSY.
**
** The sz parameter is the number of bytes in each lookaside slot.
** The cnt parameter is the number of slots. If pStart is NULL the
** space for the lookaside memory is obtained from sqlite3_malloc().
** If pStart is not NULL then it is sz*cnt bytes of memory to use for
** the lookaside memory.
*/
static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){
#ifndef SQLITE_OMIT_LOOKASIDE
void *pStart;
sqlite3_int64 szAlloc = sz*(sqlite3_int64)cnt;
int nBig; /* Number of full-size slots */
int nSm; /* Number smaller LOOKASIDE_SMALL-byte slots */
if( sqlite3LookasideUsed(db,0)>0 ){
return SQLITE_BUSY;
}
/* Free any existing lookaside buffer for this handle before
** allocating a new one so we don't have to have space for
** both at the same time.
*/
if( db->lookaside.bMalloced ){
sqlite3_free(db->lookaside.pStart);
}
/* The size of a lookaside slot after ROUNDDOWN8 needs to be larger
** than a pointer to be useful.
*/
sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */
if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0;
if( cnt<0 ) cnt = 0;
if( sz==0 || cnt==0 ){
sz = 0;
pStart = 0;
}else if( pBuf==0 ){
sqlite3BeginBenignMalloc();
pStart = sqlite3Malloc( szAlloc ); /* IMP: R-61949-35727 */
sqlite3EndBenignMalloc();
if( pStart ) szAlloc = sqlite3MallocSize(pStart);
}else{
pStart = pBuf;
}
#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
if( sz>=LOOKASIDE_SMALL*3 ){
nBig = szAlloc/(3*LOOKASIDE_SMALL+sz);
nSm = (szAlloc - sz*nBig)/LOOKASIDE_SMALL;
}else if( sz>=LOOKASIDE_SMALL*2 ){
nBig = szAlloc/(LOOKASIDE_SMALL+sz);
nSm = (szAlloc - sz*nBig)/LOOKASIDE_SMALL;
}else
#endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
if( sz>0 ){
nBig = szAlloc/sz;
nSm = 0;
}else{
nBig = nSm = 0;
}
db->lookaside.pStart = pStart;
db->lookaside.pInit = 0;
db->lookaside.pFree = 0;
db->lookaside.sz = (u16)sz;
db->lookaside.szTrue = (u16)sz;
if( pStart ){
int i;
LookasideSlot *p;
assert( sz > (int)sizeof(LookasideSlot*) );
p = (LookasideSlot*)pStart;
for(i=0; i<nBig; i++){
p->pNext = db->lookaside.pInit;
db->lookaside.pInit = p;
p = (LookasideSlot*)&((u8*)p)[sz];
}
#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
db->lookaside.pSmallInit = 0;
db->lookaside.pSmallFree = 0;
db->lookaside.pMiddle = p;
for(i=0; i<nSm; i++){
p->pNext = db->lookaside.pSmallInit;
db->lookaside.pSmallInit = p;
p = (LookasideSlot*)&((u8*)p)[LOOKASIDE_SMALL];
}
#endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
assert( ((uptr)p)<=szAlloc + (uptr)pStart );
db->lookaside.pEnd = p;
db->lookaside.bDisable = 0;
db->lookaside.bMalloced = pBuf==0 ?1:0;
db->lookaside.nSlot = nBig+nSm;
}else{
db->lookaside.pStart = 0;
#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
db->lookaside.pSmallInit = 0;
db->lookaside.pSmallFree = 0;
db->lookaside.pMiddle = 0;
#endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
db->lookaside.pEnd = 0;
db->lookaside.bDisable = 1;
db->lookaside.sz = 0;
db->lookaside.bMalloced = 0;
db->lookaside.nSlot = 0;
}
db->lookaside.pTrueEnd = db->lookaside.pEnd;
assert( sqlite3LookasideUsed(db,0)==0 );
#endif /* SQLITE_OMIT_LOOKASIDE */
return SQLITE_OK;
}
/*
** Return the mutex associated with a database connection.
*/
sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
(void)SQLITE_MISUSE_BKPT;
return 0;
}
#endif
return db->mutex;
}
/*
** Free up as much memory as we can from the given database
** connection.
*/
int sqlite3_db_release_memory(sqlite3 *db){
int i;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
sqlite3_mutex_enter(db->mutex);
sqlite3BtreeEnterAll(db);
for(i=0; i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( pBt ){
Pager *pPager = sqlite3BtreePager(pBt);
sqlite3PagerShrink(pPager);
}
}
sqlite3BtreeLeaveAll(db);
sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
/*
** Flush any dirty pages in the pager-cache for any attached database
** to disk.
*/
int sqlite3_db_cacheflush(sqlite3 *db){
int i;
int rc = SQLITE_OK;
int bSeenBusy = 0;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
sqlite3_mutex_enter(db->mutex);
sqlite3BtreeEnterAll(db);
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( pBt && sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
Pager *pPager = sqlite3BtreePager(pBt);
rc = sqlite3PagerFlush(pPager);
if( rc==SQLITE_BUSY ){
bSeenBusy = 1;
rc = SQLITE_OK;
}
}
}
sqlite3BtreeLeaveAll(db);
sqlite3_mutex_leave(db->mutex);
return ((rc==SQLITE_OK && bSeenBusy) ? SQLITE_BUSY : rc);
}
/*
** Configuration settings for an individual database connection
*/
int sqlite3_db_config(sqlite3 *db, int op, ...){
va_list ap;
int rc;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
sqlite3_mutex_enter(db->mutex);
va_start(ap, op);
switch( op ){
case SQLITE_DBCONFIG_MAINDBNAME: {
/* IMP: R-06824-28531 */
/* IMP: R-36257-52125 */
db->aDb[0].zDbSName = va_arg(ap,char*);
rc = SQLITE_OK;
break;
}
case SQLITE_DBCONFIG_LOOKASIDE: {
void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */
int sz = va_arg(ap, int); /* IMP: R-47871-25994 */
int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */
rc = setupLookaside(db, pBuf, sz, cnt);
break;
}
default: {
static const struct {
int op; /* The opcode */
u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */
} aFlagOp[] = {
{ SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys },
{ SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger },
{ SQLITE_DBCONFIG_ENABLE_VIEW, SQLITE_EnableView },
{ SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer },
{ SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension },
{ SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE, SQLITE_NoCkptOnClose },
{ SQLITE_DBCONFIG_ENABLE_QPSG, SQLITE_EnableQPSG },
{ SQLITE_DBCONFIG_TRIGGER_EQP, SQLITE_TriggerEQP },
{ SQLITE_DBCONFIG_RESET_DATABASE, SQLITE_ResetDatabase },
{ SQLITE_DBCONFIG_DEFENSIVE, SQLITE_Defensive },
{ SQLITE_DBCONFIG_WRITABLE_SCHEMA, SQLITE_WriteSchema|
SQLITE_NoSchemaError },
{ SQLITE_DBCONFIG_LEGACY_ALTER_TABLE, SQLITE_LegacyAlter },
{ SQLITE_DBCONFIG_DQS_DDL, SQLITE_DqsDDL },
{ SQLITE_DBCONFIG_DQS_DML, SQLITE_DqsDML },
{ SQLITE_DBCONFIG_LEGACY_FILE_FORMAT, SQLITE_LegacyFileFmt },
{ SQLITE_DBCONFIG_TRUSTED_SCHEMA, SQLITE_TrustedSchema },
{ SQLITE_DBCONFIG_STMT_SCANSTATUS, SQLITE_StmtScanStatus },
{ SQLITE_DBCONFIG_REVERSE_SCANORDER, SQLITE_ReverseOrder },
};
unsigned int i;
rc = SQLITE_ERROR; /* IMP: R-42790-23372 */
for(i=0; i<ArraySize(aFlagOp); i++){
if( aFlagOp[i].op==op ){
int onoff = va_arg(ap, int);
int *pRes = va_arg(ap, int*);
u64 oldFlags = db->flags;
if( onoff>0 ){
db->flags |= aFlagOp[i].mask;
}else if( onoff==0 ){
db->flags &= ~(u64)aFlagOp[i].mask;
}
if( oldFlags!=db->flags ){
sqlite3ExpirePreparedStatements(db, 0);
}
if( pRes ){
*pRes = (db->flags & aFlagOp[i].mask)!=0;
}
rc = SQLITE_OK;
break;
}
}
break;
}
}
va_end(ap);
sqlite3_mutex_leave(db->mutex);
return rc;
}
/*
** This is the default collating function named "BINARY" which is always
** available.
*/
static int binCollFunc(
void *NotUsed,
int nKey1, const void *pKey1,
int nKey2, const void *pKey2
){
int rc, n;
UNUSED_PARAMETER(NotUsed);
n = nKey1<nKey2 ? nKey1 : nKey2;
/* EVIDENCE-OF: R-65033-28449 The built-in BINARY collation compares
** strings byte by byte using the memcmp() function from the standard C
** library. */
assert( pKey1 && pKey2 );
rc = memcmp(pKey1, pKey2, n);
if( rc==0 ){
rc = nKey1 - nKey2;
}
return rc;
}
/*
** This is the collating function named "RTRIM" which is always
** available. Ignore trailing spaces.
*/
static int rtrimCollFunc(
void *pUser,
int nKey1, const void *pKey1,
int nKey2, const void *pKey2
){
const u8 *pK1 = (const u8*)pKey1;
const u8 *pK2 = (const u8*)pKey2;
while( nKey1 && pK1[nKey1-1]==' ' ) nKey1--;
while( nKey2 && pK2[nKey2-1]==' ' ) nKey2--;
return binCollFunc(pUser, nKey1, pKey1, nKey2, pKey2);
}
/*
** Return true if CollSeq is the default built-in BINARY.
*/
int sqlite3IsBinary(const CollSeq *p){
assert( p==0 || p->xCmp!=binCollFunc || strcmp(p->zName,"BINARY")==0 );
return p==0 || p->xCmp==binCollFunc;
}
/*
** Another built-in collating sequence: NOCASE.
**
** This collating sequence is intended to be used for "case independent
** comparison". SQLite's knowledge of upper and lower case equivalents
** extends only to the 26 characters used in the English language.
**
** At the moment there is only a UTF-8 implementation.
*/
static int nocaseCollatingFunc(
void *NotUsed,
int nKey1, const void *pKey1,
int nKey2, const void *pKey2
){
int r = sqlite3StrNICmp(
(const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2);
UNUSED_PARAMETER(NotUsed);
if( 0==r ){
r = nKey1-nKey2;
}
return r;
}
/*
** Return the ROWID of the most recent insert
*/
sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
(void)SQLITE_MISUSE_BKPT;
return 0;
}
#endif
return db->lastRowid;
}
/*
** Set the value returned by the sqlite3_last_insert_rowid() API function.
*/
void sqlite3_set_last_insert_rowid(sqlite3 *db, sqlite3_int64 iRowid){
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
(void)SQLITE_MISUSE_BKPT;
return;
}
#endif
sqlite3_mutex_enter(db->mutex);
db->lastRowid = iRowid;
sqlite3_mutex_leave(db->mutex);
}
/*
** Return the number of changes in the most recent call to sqlite3_exec().
*/
sqlite3_int64 sqlite3_changes64(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
(void)SQLITE_MISUSE_BKPT;
return 0;
}
#endif
return db->nChange;
}
int sqlite3_changes(sqlite3 *db){
return (int)sqlite3_changes64(db);
}
/*
** Return the number of changes since the database handle was opened.
*/
sqlite3_int64 sqlite3_total_changes64(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
(void)SQLITE_MISUSE_BKPT;
return 0;
}
#endif
return db->nTotalChange;
}
int sqlite3_total_changes(sqlite3 *db){
return (int)sqlite3_total_changes64(db);
}
/*
** Close all open savepoints. This function only manipulates fields of the
** database handle object, it does not close any savepoints that may be open
** at the b-tree/pager level.
*/
void sqlite3CloseSavepoints(sqlite3 *db){
while( db->pSavepoint ){
Savepoint *pTmp = db->pSavepoint;
db->pSavepoint = pTmp->pNext;
sqlite3DbFree(db, pTmp);
}
db->nSavepoint = 0;
db->nStatement = 0;
db->isTransactionSavepoint = 0;
}
/*
** Invoke the destructor function associated with FuncDef p, if any. Except,
** if this is not the last copy of the function, do not invoke it. Multiple
** copies of a single function are created when create_function() is called
** with SQLITE_ANY as the encoding.
*/
static void functionDestroy(sqlite3 *db, FuncDef *p){
FuncDestructor *pDestructor;
assert( (p->funcFlags & SQLITE_FUNC_BUILTIN)==0 );
pDestructor = p->u.pDestructor;
if( pDestructor ){
pDestructor->nRef--;
if( pDestructor->nRef==0 ){
pDestructor->xDestroy(pDestructor->pUserData);
sqlite3DbFree(db, pDestructor);
}
}
}
/*
** Disconnect all sqlite3_vtab objects that belong to database connection
** db. This is called when db is being closed.
*/
static void disconnectAllVtab(sqlite3 *db){
#ifndef SQLITE_OMIT_VIRTUALTABLE
int i;
HashElem *p;
sqlite3BtreeEnterAll(db);
for(i=0; i<db->nDb; i++){
Schema *pSchema = db->aDb[i].pSchema;
if( pSchema ){
for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){
Table *pTab = (Table *)sqliteHashData(p);
if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab);
}
}
}
for(p=sqliteHashFirst(&db->aModule); p; p=sqliteHashNext(p)){
Module *pMod = (Module *)sqliteHashData(p);
if( pMod->pEpoTab ){
sqlite3VtabDisconnect(db, pMod->pEpoTab);
}
}
sqlite3VtabUnlockList(db);
sqlite3BtreeLeaveAll(db);
#else
UNUSED_PARAMETER(db);
#endif
}
/*
** Return TRUE if database connection db has unfinalized prepared
** statements or unfinished sqlite3_backup objects.
*/
static int connectionIsBusy(sqlite3 *db){
int j;
assert( sqlite3_mutex_held(db->mutex) );
if( db->pVdbe ) return 1;
for(j=0; j<db->nDb; j++){
Btree *pBt = db->aDb[j].pBt;
if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1;
}
return 0;
}
/*
** Close an existing SQLite database
*/
static int sqlite3Close(sqlite3 *db, int forceZombie){
if( !db ){
/* EVIDENCE-OF: R-63257-11740 Calling sqlite3_close() or
** sqlite3_close_v2() with a NULL pointer argument is a harmless no-op. */
return SQLITE_OK;
}
if( !sqlite3SafetyCheckSickOrOk(db) ){
return SQLITE_MISUSE_BKPT;
}
sqlite3_mutex_enter(db->mutex);
if( db->mTrace & SQLITE_TRACE_CLOSE ){
db->trace.xV2(SQLITE_TRACE_CLOSE, db->pTraceArg, db, 0);
}
/* Force xDisconnect calls on all virtual tables */
disconnectAllVtab(db);
/* If a transaction is open, the disconnectAllVtab() call above
** will not have called the xDisconnect() method on any virtual
** tables in the db->aVTrans[] array. The following sqlite3VtabRollback()
** call will do so. We need to do this before the check for active
** SQL statements below, as the v-table implementation may be storing
** some prepared statements internally.
*/
sqlite3VtabRollback(db);
/* Legacy behavior (sqlite3_close() behavior) is to return
** SQLITE_BUSY if the connection can not be closed immediately.
*/
if( !forceZombie && connectionIsBusy(db) ){
sqlite3ErrorWithMsg(db, SQLITE_BUSY, "unable to close due to unfinalized "
"statements or unfinished backups");
sqlite3_mutex_leave(db->mutex);
return SQLITE_BUSY;
}
#ifdef SQLITE_ENABLE_SQLLOG
if( sqlite3GlobalConfig.xSqllog ){
/* Closing the handle. Fourth parameter is passed the value 2. */
sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2);
}
#endif
while( db->pDbData ){
DbClientData *p = db->pDbData;
db->pDbData = p->pNext;
assert( p->pData!=0 );
if( p->xDestructor ) p->xDestructor(p->pData);
sqlite3_free(p);
}
/* Convert the connection into a zombie and then close it.
*/
db->eOpenState = SQLITE_STATE_ZOMBIE;
sqlite3LeaveMutexAndCloseZombie(db);
return SQLITE_OK;
}
/*
** Return the transaction state for a single databse, or the maximum
** transaction state over all attached databases if zSchema is null.
*/
int sqlite3_txn_state(sqlite3 *db, const char *zSchema){
int iDb, nDb;
int iTxn = -1;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
(void)SQLITE_MISUSE_BKPT;
return -1;
}
#endif
sqlite3_mutex_enter(db->mutex);
if( zSchema ){
nDb = iDb = sqlite3FindDbName(db, zSchema);
if( iDb<0 ) nDb--;
}else{
iDb = 0;
nDb = db->nDb-1;
}
for(; iDb<=nDb; iDb++){
Btree *pBt = db->aDb[iDb].pBt;
int x = pBt!=0 ? sqlite3BtreeTxnState(pBt) : SQLITE_TXN_NONE;
if( x>iTxn ) iTxn = x;
}
sqlite3_mutex_leave(db->mutex);
return iTxn;
}
/*
** Two variations on the public interface for closing a database
** connection. The sqlite3_close() version returns SQLITE_BUSY and
** leaves the connection open if there are unfinalized prepared
** statements or unfinished sqlite3_backups. The sqlite3_close_v2()
** version forces the connection to become a zombie if there are
** unclosed resources, and arranges for deallocation when the last
** prepare statement or sqlite3_backup closes.
*/
int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); }
int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); }
/*
** Close the mutex on database connection db.
**
** Furthermore, if database connection db is a zombie (meaning that there
** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and
** every sqlite3_stmt has now been finalized and every sqlite3_backup has
** finished, then free all resources.
*/
void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){
HashElem *i; /* Hash table iterator */
int j;
/* If there are outstanding sqlite3_stmt or sqlite3_backup objects
** or if the connection has not yet been closed by sqlite3_close_v2(),
** then just leave the mutex and return.
*/
if( db->eOpenState!=SQLITE_STATE_ZOMBIE || connectionIsBusy(db) ){
sqlite3_mutex_leave(db->mutex);
return;
}
/* If we reach this point, it means that the database connection has
** closed all sqlite3_stmt and sqlite3_backup objects and has been
** passed to sqlite3_close (meaning that it is a zombie). Therefore,
** go ahead and free all resources.
*/
/* If a transaction is open, roll it back. This also ensures that if
** any database schemas have been modified by an uncommitted transaction
** they are reset. And that the required b-tree mutex is held to make
** the pager rollback and schema reset an atomic operation. */
sqlite3RollbackAll(db, SQLITE_OK);
/* Free any outstanding Savepoint structures. */
sqlite3CloseSavepoints(db);
/* Close all database connections */
for(j=0; j<db->nDb; j++){
struct Db *pDb = &db->aDb[j];
if( pDb->pBt ){
sqlite3BtreeClose(pDb->pBt);
pDb->pBt = 0;
if( j!=1 ){
pDb->pSchema = 0;
}
}
}
/* Clear the TEMP schema separately and last */
if( db->aDb[1].pSchema ){
sqlite3SchemaClear(db->aDb[1].pSchema);
}
sqlite3VtabUnlockList(db);
/* Free up the array of auxiliary databases */
sqlite3CollapseDatabaseArray(db);
assert( db->nDb<=2 );
assert( db->aDb==db->aDbStatic );
/* Tell the code in notify.c that the connection no longer holds any
** locks and does not require any further unlock-notify callbacks.
*/
sqlite3ConnectionClosed(db);
for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){
FuncDef *pNext, *p;
p = sqliteHashData(i);
do{
functionDestroy(db, p);
pNext = p->pNext;
sqlite3DbFree(db, p);
p = pNext;
}while( p );
}
sqlite3HashClear(&db->aFunc);
for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){
CollSeq *pColl = (CollSeq *)sqliteHashData(i);
/* Invoke any destructors registered for collation sequence user data. */
for(j=0; j<3; j++){
if( pColl[j].xDel ){
pColl[j].xDel(pColl[j].pUser);
}
}
sqlite3DbFree(db, pColl);
}
sqlite3HashClear(&db->aCollSeq);
#ifndef SQLITE_OMIT_VIRTUALTABLE
for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){
Module *pMod = (Module *)sqliteHashData(i);
sqlite3VtabEponymousTableClear(db, pMod);
sqlite3VtabModuleUnref(db, pMod);
}
sqlite3HashClear(&db->aModule);
#endif
sqlite3Error(db, SQLITE_OK); /* Deallocates any cached error strings. */
sqlite3ValueFree(db->pErr);
sqlite3CloseExtensions(db);
#if SQLITE_USER_AUTHENTICATION
sqlite3_free(db->auth.zAuthUser);
sqlite3_free(db->auth.zAuthPW);
#endif
db->eOpenState = SQLITE_STATE_ERROR;
/* The temp-database schema is allocated differently from the other schema
** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()).
** So it needs to be freed here. Todo: Why not roll the temp schema into
** the same sqliteMalloc() as the one that allocates the database
** structure?
*/
sqlite3DbFree(db, db->aDb[1].pSchema);
if( db->xAutovacDestr ){
db->xAutovacDestr(db->pAutovacPagesArg);
}
sqlite3_mutex_leave(db->mutex);
db->eOpenState = SQLITE_STATE_CLOSED;
sqlite3_mutex_free(db->mutex);
assert( sqlite3LookasideUsed(db,0)==0 );
if( db->lookaside.bMalloced ){
sqlite3_free(db->lookaside.pStart);
}
sqlite3_free(db);
}
/*
** Rollback all database files. If tripCode is not SQLITE_OK, then
** any write cursors are invalidated ("tripped" - as in "tripping a circuit
** breaker") and made to return tripCode if there are any further
** attempts to use that cursor. Read cursors remain open and valid
** but are "saved" in case the table pages are moved around.
*/
void sqlite3RollbackAll(sqlite3 *db, int tripCode){
int i;
int inTrans = 0;
int schemaChange;
assert( sqlite3_mutex_held(db->mutex) );
sqlite3BeginBenignMalloc();
/* Obtain all b-tree mutexes before making any calls to BtreeRollback().
** This is important in case the transaction being rolled back has
** modified the database schema. If the b-tree mutexes are not taken
** here, then another shared-cache connection might sneak in between
** the database rollback and schema reset, which can cause false
** corruption reports in some cases. */
sqlite3BtreeEnterAll(db);
schemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0 && db->init.busy==0;
for(i=0; i<db->nDb; i++){
Btree *p = db->aDb[i].pBt;
if( p ){
if( sqlite3BtreeTxnState(p)==SQLITE_TXN_WRITE ){
inTrans = 1;
}
sqlite3BtreeRollback(p, tripCode, !schemaChange);
}
}
sqlite3VtabRollback(db);
sqlite3EndBenignMalloc();
if( schemaChange ){
sqlite3ExpirePreparedStatements(db, 0);
sqlite3ResetAllSchemasOfConnection(db);
}
sqlite3BtreeLeaveAll(db);
/* Any deferred constraint violations have now been resolved. */
db->nDeferredCons = 0;
db->nDeferredImmCons = 0;
db->flags &= ~(u64)(SQLITE_DeferFKs|SQLITE_CorruptRdOnly);
/* If one has been configured, invoke the rollback-hook callback */
if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){
db->xRollbackCallback(db->pRollbackArg);
}
}
/*
** Return a static string containing the name corresponding to the error code
** specified in the argument.
*/
#if defined(SQLITE_NEED_ERR_NAME)
const char *sqlite3ErrName(int rc){
const char *zName = 0;
int i, origRc = rc;
for(i=0; i<2 && zName==0; i++, rc &= 0xff){
switch( rc ){
case SQLITE_OK: zName = "SQLITE_OK"; break;
case SQLITE_ERROR: zName = "SQLITE_ERROR"; break;
case SQLITE_ERROR_SNAPSHOT: zName = "SQLITE_ERROR_SNAPSHOT"; break;
case SQLITE_INTERNAL: zName = "SQLITE_INTERNAL"; break;
case SQLITE_PERM: zName = "SQLITE_PERM"; break;
case SQLITE_ABORT: zName = "SQLITE_ABORT"; break;
case SQLITE_ABORT_ROLLBACK: zName = "SQLITE_ABORT_ROLLBACK"; break;
case SQLITE_BUSY: zName = "SQLITE_BUSY"; break;
case SQLITE_BUSY_RECOVERY: zName = "SQLITE_BUSY_RECOVERY"; break;
case SQLITE_BUSY_SNAPSHOT: zName = "SQLITE_BUSY_SNAPSHOT"; break;
case SQLITE_LOCKED: zName = "SQLITE_LOCKED"; break;
case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break;
case SQLITE_NOMEM: zName = "SQLITE_NOMEM"; break;
case SQLITE_READONLY: zName = "SQLITE_READONLY"; break;
case SQLITE_READONLY_RECOVERY: zName = "SQLITE_READONLY_RECOVERY"; break;
case SQLITE_READONLY_CANTINIT: zName = "SQLITE_READONLY_CANTINIT"; break;
case SQLITE_READONLY_ROLLBACK: zName = "SQLITE_READONLY_ROLLBACK"; break;
case SQLITE_READONLY_DBMOVED: zName = "SQLITE_READONLY_DBMOVED"; break;
case SQLITE_READONLY_DIRECTORY: zName = "SQLITE_READONLY_DIRECTORY";break;
case SQLITE_INTERRUPT: zName = "SQLITE_INTERRUPT"; break;
case SQLITE_IOERR: zName = "SQLITE_IOERR"; break;
case SQLITE_IOERR_READ: zName = "SQLITE_IOERR_READ"; break;
case SQLITE_IOERR_SHORT_READ: zName = "SQLITE_IOERR_SHORT_READ"; break;
case SQLITE_IOERR_WRITE: zName = "SQLITE_IOERR_WRITE"; break;
case SQLITE_IOERR_FSYNC: zName = "SQLITE_IOERR_FSYNC"; break;
case SQLITE_IOERR_DIR_FSYNC: zName = "SQLITE_IOERR_DIR_FSYNC"; break;
case SQLITE_IOERR_TRUNCATE: zName = "SQLITE_IOERR_TRUNCATE"; break;
case SQLITE_IOERR_FSTAT: zName = "SQLITE_IOERR_FSTAT"; break;
case SQLITE_IOERR_UNLOCK: zName = "SQLITE_IOERR_UNLOCK"; break;
case SQLITE_IOERR_RDLOCK: zName = "SQLITE_IOERR_RDLOCK"; break;
case SQLITE_IOERR_DELETE: zName = "SQLITE_IOERR_DELETE"; break;
case SQLITE_IOERR_NOMEM: zName = "SQLITE_IOERR_NOMEM"; break;
case SQLITE_IOERR_ACCESS: zName = "SQLITE_IOERR_ACCESS"; break;
case SQLITE_IOERR_CHECKRESERVEDLOCK:
zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break;
case SQLITE_IOERR_LOCK: zName = "SQLITE_IOERR_LOCK"; break;
case SQLITE_IOERR_CLOSE: zName = "SQLITE_IOERR_CLOSE"; break;
case SQLITE_IOERR_DIR_CLOSE: zName = "SQLITE_IOERR_DIR_CLOSE"; break;
case SQLITE_IOERR_SHMOPEN: zName = "SQLITE_IOERR_SHMOPEN"; break;
case SQLITE_IOERR_SHMSIZE: zName = "SQLITE_IOERR_SHMSIZE"; break;
case SQLITE_IOERR_SHMLOCK: zName = "SQLITE_IOERR_SHMLOCK"; break;
case SQLITE_IOERR_SHMMAP: zName = "SQLITE_IOERR_SHMMAP"; break;
case SQLITE_IOERR_SEEK: zName = "SQLITE_IOERR_SEEK"; break;
case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break;
case SQLITE_IOERR_MMAP: zName = "SQLITE_IOERR_MMAP"; break;
case SQLITE_IOERR_GETTEMPPATH: zName = "SQLITE_IOERR_GETTEMPPATH"; break;
case SQLITE_IOERR_CONVPATH: zName = "SQLITE_IOERR_CONVPATH"; break;
case SQLITE_CORRUPT: zName = "SQLITE_CORRUPT"; break;
case SQLITE_CORRUPT_VTAB: zName = "SQLITE_CORRUPT_VTAB"; break;
case SQLITE_NOTFOUND: zName = "SQLITE_NOTFOUND"; break;
case SQLITE_FULL: zName = "SQLITE_FULL"; break;
case SQLITE_CANTOPEN: zName = "SQLITE_CANTOPEN"; break;
case SQLITE_CANTOPEN_NOTEMPDIR: zName = "SQLITE_CANTOPEN_NOTEMPDIR";break;
case SQLITE_CANTOPEN_ISDIR: zName = "SQLITE_CANTOPEN_ISDIR"; break;
case SQLITE_CANTOPEN_FULLPATH: zName = "SQLITE_CANTOPEN_FULLPATH"; break;
case SQLITE_CANTOPEN_CONVPATH: zName = "SQLITE_CANTOPEN_CONVPATH"; break;
case SQLITE_CANTOPEN_SYMLINK: zName = "SQLITE_CANTOPEN_SYMLINK"; break;
case SQLITE_PROTOCOL: zName = "SQLITE_PROTOCOL"; break;
case SQLITE_EMPTY: zName = "SQLITE_EMPTY"; break;
case SQLITE_SCHEMA: zName = "SQLITE_SCHEMA"; break;
case SQLITE_TOOBIG: zName = "SQLITE_TOOBIG"; break;
case SQLITE_CONSTRAINT: zName = "SQLITE_CONSTRAINT"; break;
case SQLITE_CONSTRAINT_UNIQUE: zName = "SQLITE_CONSTRAINT_UNIQUE"; break;
case SQLITE_CONSTRAINT_TRIGGER: zName = "SQLITE_CONSTRAINT_TRIGGER";break;
case SQLITE_CONSTRAINT_FOREIGNKEY:
zName = "SQLITE_CONSTRAINT_FOREIGNKEY"; break;
case SQLITE_CONSTRAINT_CHECK: zName = "SQLITE_CONSTRAINT_CHECK"; break;
case SQLITE_CONSTRAINT_PRIMARYKEY:
zName = "SQLITE_CONSTRAINT_PRIMARYKEY"; break;
case SQLITE_CONSTRAINT_NOTNULL: zName = "SQLITE_CONSTRAINT_NOTNULL";break;
case SQLITE_CONSTRAINT_COMMITHOOK:
zName = "SQLITE_CONSTRAINT_COMMITHOOK"; break;
case SQLITE_CONSTRAINT_VTAB: zName = "SQLITE_CONSTRAINT_VTAB"; break;
case SQLITE_CONSTRAINT_FUNCTION:
zName = "SQLITE_CONSTRAINT_FUNCTION"; break;
case SQLITE_CONSTRAINT_ROWID: zName = "SQLITE_CONSTRAINT_ROWID"; break;
case SQLITE_MISMATCH: zName = "SQLITE_MISMATCH"; break;
case SQLITE_MISUSE: zName = "SQLITE_MISUSE"; break;
case SQLITE_NOLFS: zName = "SQLITE_NOLFS"; break;
case SQLITE_AUTH: zName = "SQLITE_AUTH"; break;
case SQLITE_FORMAT: zName = "SQLITE_FORMAT"; break;
case SQLITE_RANGE: zName = "SQLITE_RANGE"; break;
case SQLITE_NOTADB: zName = "SQLITE_NOTADB"; break;
case SQLITE_ROW: zName = "SQLITE_ROW"; break;
case SQLITE_NOTICE: zName = "SQLITE_NOTICE"; break;
case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break;
case SQLITE_NOTICE_RECOVER_ROLLBACK:
zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break;
case SQLITE_NOTICE_RBU: zName = "SQLITE_NOTICE_RBU"; break;
case SQLITE_WARNING: zName = "SQLITE_WARNING"; break;
case SQLITE_WARNING_AUTOINDEX: zName = "SQLITE_WARNING_AUTOINDEX"; break;
case SQLITE_DONE: zName = "SQLITE_DONE"; break;
}
}
if( zName==0 ){
static char zBuf[50];
sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_UNKNOWN(%d)", origRc);
zName = zBuf;
}
return zName;
}
#endif
/*
** Return a static string that describes the kind of error specified in the
** argument.
*/
const char *sqlite3ErrStr(int rc){
static const char* const aMsg[] = {
/* SQLITE_OK */ "not an error",
/* SQLITE_ERROR */ "SQL logic error",
/* SQLITE_INTERNAL */ 0,
/* SQLITE_PERM */ "access permission denied",
/* SQLITE_ABORT */ "query aborted",
/* SQLITE_BUSY */ "database is locked",
/* SQLITE_LOCKED */ "database table is locked",
/* SQLITE_NOMEM */ "out of memory",
/* SQLITE_READONLY */ "attempt to write a readonly database",
/* SQLITE_INTERRUPT */ "interrupted",
/* SQLITE_IOERR */ "disk I/O error",
/* SQLITE_CORRUPT */ "database disk image is malformed",
/* SQLITE_NOTFOUND */ "unknown operation",
/* SQLITE_FULL */ "database or disk is full",
/* SQLITE_CANTOPEN */ "unable to open database file",
/* SQLITE_PROTOCOL */ "locking protocol",
/* SQLITE_EMPTY */ 0,
/* SQLITE_SCHEMA */ "database schema has changed",
/* SQLITE_TOOBIG */ "string or blob too big",
/* SQLITE_CONSTRAINT */ "constraint failed",
/* SQLITE_MISMATCH */ "datatype mismatch",
/* SQLITE_MISUSE */ "bad parameter or other API misuse",
#ifdef SQLITE_DISABLE_LFS
/* SQLITE_NOLFS */ "large file support is disabled",
#else
/* SQLITE_NOLFS */ 0,
#endif
/* SQLITE_AUTH */ "authorization denied",
/* SQLITE_FORMAT */ 0,
/* SQLITE_RANGE */ "column index out of range",
/* SQLITE_NOTADB */ "file is not a database",
/* SQLITE_NOTICE */ "notification message",
/* SQLITE_WARNING */ "warning message",
};
const char *zErr = "unknown error";
switch( rc ){
case SQLITE_ABORT_ROLLBACK: {
zErr = "abort due to ROLLBACK";
break;
}
case SQLITE_ROW: {
zErr = "another row available";
break;
}
case SQLITE_DONE: {
zErr = "no more rows available";
break;
}
default: {
rc &= 0xff;
if( ALWAYS(rc>=0) && rc<ArraySize(aMsg) && aMsg[rc]!=0 ){
zErr = aMsg[rc];
}
break;
}
}
return zErr;
}
/*
** This routine implements a busy callback that sleeps and tries
** again until a timeout value is reached. The timeout value is
** an integer number of milliseconds passed in as the first
** argument.
**
** Return non-zero to retry the lock. Return zero to stop trying
** and cause SQLite to return SQLITE_BUSY.
*/
static int sqliteDefaultBusyCallback(
void *ptr, /* Database connection */
int count /* Number of times table has been busy */
){
#if SQLITE_OS_WIN || !defined(HAVE_NANOSLEEP) || HAVE_NANOSLEEP
/* This case is for systems that have support for sleeping for fractions of
** a second. Examples: All windows systems, unix systems with nanosleep() */
static const u8 delays[] =
{ 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 };
static const u8 totals[] =
{ 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 };
# define NDELAY ArraySize(delays)
sqlite3 *db = (sqlite3 *)ptr;
int tmout = db->busyTimeout;
int delay, prior;
assert( count>=0 );
if( count < NDELAY ){
delay = delays[count];
prior = totals[count];
}else{
delay = delays[NDELAY-1];
prior = totals[NDELAY-1] + delay*(count-(NDELAY-1));
}
if( prior + delay > tmout ){
delay = tmout - prior;
if( delay<=0 ) return 0;
}
sqlite3OsSleep(db->pVfs, delay*1000);
return 1;
#else
/* This case for unix systems that lack usleep() support. Sleeping
** must be done in increments of whole seconds */
sqlite3 *db = (sqlite3 *)ptr;
int tmout = ((sqlite3 *)ptr)->busyTimeout;
if( (count+1)*1000 > tmout ){
return 0;
}
sqlite3OsSleep(db->pVfs, 1000000);
return 1;
#endif
}
/*
** Invoke the given busy handler.
**
** This routine is called when an operation failed to acquire a
** lock on VFS file pFile.
**
** If this routine returns non-zero, the lock is retried. If it
** returns 0, the operation aborts with an SQLITE_BUSY error.
*/
int sqlite3InvokeBusyHandler(BusyHandler *p){
int rc;
if( p->xBusyHandler==0 || p->nBusy<0 ) return 0;
rc = p->xBusyHandler(p->pBusyArg, p->nBusy);
if( rc==0 ){
p->nBusy = -1;
}else{
p->nBusy++;
}
return rc;
}
/*
** This routine sets the busy callback for an Sqlite database to the
** given callback function with the given argument.
*/
int sqlite3_busy_handler(
sqlite3 *db,
int (*xBusy)(void*,int),
void *pArg
){
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
sqlite3_mutex_enter(db->mutex);
db->busyHandler.xBusyHandler = xBusy;
db->busyHandler.pBusyArg = pArg;
db->busyHandler.nBusy = 0;
db->busyTimeout = 0;
sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
/*
** This routine sets the progress callback for an Sqlite database to the
** given callback function with the given argument. The progress callback will
** be invoked every nOps opcodes.
*/
void sqlite3_progress_handler(
sqlite3 *db,
int nOps,
int (*xProgress)(void*),
void *pArg
){
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
(void)SQLITE_MISUSE_BKPT;
return;
}
#endif
sqlite3_mutex_enter(db->mutex);
if( nOps>0 ){
db->xProgress = xProgress;
db->nProgressOps = (unsigned)nOps;
db->pProgressArg = pArg;
}else{
db->xProgress = 0;
db->nProgressOps = 0;
db->pProgressArg = 0;
}
sqlite3_mutex_leave(db->mutex);
}
#endif
/*
** This routine installs a default busy handler that waits for the
** specified number of milliseconds before returning 0.
*/
int sqlite3_busy_timeout(sqlite3 *db, int ms){
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
if( ms>0 ){
sqlite3_busy_handler(db, (int(*)(void*,int))sqliteDefaultBusyCallback,
(void*)db);
db->busyTimeout = ms;
}else{
sqlite3_busy_handler(db, 0, 0);
}
return SQLITE_OK;
}
/*
** Cause any pending operation to stop at its earliest opportunity.
*/
void sqlite3_interrupt(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db)
&& (db==0 || db->eOpenState!=SQLITE_STATE_ZOMBIE)
){
(void)SQLITE_MISUSE_BKPT;
return;
}
#endif
AtomicStore(&db->u1.isInterrupted, 1);
}
/*
** Return true or false depending on whether or not an interrupt is
** pending on connection db.
*/
int sqlite3_is_interrupted(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db)
&& (db==0 || db->eOpenState!=SQLITE_STATE_ZOMBIE)
){
(void)SQLITE_MISUSE_BKPT;
return 0;
}
#endif
return AtomicLoad(&db->u1.isInterrupted)!=0;
}
/*
** This function is exactly the same as sqlite3_create_function(), except
** that it is designed to be called by internal code. The difference is
** that if a malloc() fails in sqlite3_create_function(), an error code
** is returned and the mallocFailed flag cleared.
*/
int sqlite3CreateFunc(
sqlite3 *db,
const char *zFunctionName,
int nArg,
int enc,
void *pUserData,
void (*xSFunc)(sqlite3_context*,int,sqlite3_value **),
void (*xStep)(sqlite3_context*,int,sqlite3_value **),
void (*xFinal)(sqlite3_context*),
void (*xValue)(sqlite3_context*),
void (*xInverse)(sqlite3_context*,int,sqlite3_value **),
FuncDestructor *pDestructor
){
FuncDef *p;
int extraFlags;
assert( sqlite3_mutex_held(db->mutex) );
assert( xValue==0 || xSFunc==0 );
if( zFunctionName==0 /* Must have a valid name */
|| (xSFunc!=0 && xFinal!=0) /* Not both xSFunc and xFinal */
|| ((xFinal==0)!=(xStep==0)) /* Both or neither of xFinal and xStep */
|| ((xValue==0)!=(xInverse==0)) /* Both or neither of xValue, xInverse */
|| (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG)
|| (255<sqlite3Strlen30(zFunctionName))
){
return SQLITE_MISUSE_BKPT;
}
assert( SQLITE_FUNC_CONSTANT==SQLITE_DETERMINISTIC );
assert( SQLITE_FUNC_DIRECT==SQLITE_DIRECTONLY );
extraFlags = enc & (SQLITE_DETERMINISTIC|SQLITE_DIRECTONLY|
SQLITE_SUBTYPE|SQLITE_INNOCUOUS|
SQLITE_RESULT_SUBTYPE|SQLITE_SELFORDER1);
enc &= (SQLITE_FUNC_ENCMASK|SQLITE_ANY);
/* The SQLITE_INNOCUOUS flag is the same bit as SQLITE_FUNC_UNSAFE. But
** the meaning is inverted. So flip the bit. */
assert( SQLITE_FUNC_UNSAFE==SQLITE_INNOCUOUS );
extraFlags ^= SQLITE_FUNC_UNSAFE; /* tag-20230109-1 */
#ifndef SQLITE_OMIT_UTF16
/* If SQLITE_UTF16 is specified as the encoding type, transform this
** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
**
** If SQLITE_ANY is specified, add three versions of the function
** to the hash table.
*/
switch( enc ){
case SQLITE_UTF16:
enc = SQLITE_UTF16NATIVE;
break;
case SQLITE_ANY: {
int rc;
rc = sqlite3CreateFunc(db, zFunctionName, nArg,
(SQLITE_UTF8|extraFlags)^SQLITE_FUNC_UNSAFE, /* tag-20230109-1 */
pUserData, xSFunc, xStep, xFinal, xValue, xInverse, pDestructor);
if( rc==SQLITE_OK ){
rc = sqlite3CreateFunc(db, zFunctionName, nArg,
(SQLITE_UTF16LE|extraFlags)^SQLITE_FUNC_UNSAFE, /* tag-20230109-1*/
pUserData, xSFunc, xStep, xFinal, xValue, xInverse, pDestructor);
}
if( rc!=SQLITE_OK ){
return rc;
}
enc = SQLITE_UTF16BE;
break;
}
case SQLITE_UTF8:
case SQLITE_UTF16LE:
case SQLITE_UTF16BE:
break;
default:
enc = SQLITE_UTF8;
break;
}
#else
enc = SQLITE_UTF8;
#endif
/* Check if an existing function is being overridden or deleted. If so,
** and there are active VMs, then return SQLITE_BUSY. If a function
** is being overridden/deleted but there are no active VMs, allow the
** operation to continue but invalidate all precompiled statements.
*/
p = sqlite3FindFunction(db, zFunctionName, nArg, (u8)enc, 0);
if( p && (p->funcFlags & SQLITE_FUNC_ENCMASK)==(u32)enc && p->nArg==nArg ){
if( db->nVdbeActive ){
sqlite3ErrorWithMsg(db, SQLITE_BUSY,
"unable to delete/modify user-function due to active statements");
assert( !db->mallocFailed );
return SQLITE_BUSY;
}else{
sqlite3ExpirePreparedStatements(db, 0);
}
}else if( xSFunc==0 && xFinal==0 ){
/* Trying to delete a function that does not exist. This is a no-op.
** https://sqlite.org/forum/forumpost/726219164b */
return SQLITE_OK;
}
p = sqlite3FindFunction(db, zFunctionName, nArg, (u8)enc, 1);
assert(p || db->mallocFailed);
if( !p ){
return SQLITE_NOMEM_BKPT;
}
/* If an older version of the function with a configured destructor is
** being replaced invoke the destructor function here. */
functionDestroy(db, p);
if( pDestructor ){
pDestructor->nRef++;
}
p->u.pDestructor = pDestructor;
p->funcFlags = (p->funcFlags & SQLITE_FUNC_ENCMASK) | extraFlags;
testcase( p->funcFlags & SQLITE_DETERMINISTIC );
testcase( p->funcFlags & SQLITE_DIRECTONLY );
p->xSFunc = xSFunc ? xSFunc : xStep;
p->xFinalize = xFinal;
p->xValue = xValue;
p->xInverse = xInverse;
p->pUserData = pUserData;
p->nArg = (u16)nArg;
return SQLITE_OK;
}
/*
** Worker function used by utf-8 APIs that create new functions:
**
** sqlite3_create_function()
** sqlite3_create_function_v2()
** sqlite3_create_window_function()
*/
static int createFunctionApi(
sqlite3 *db,
const char *zFunc,
int nArg,
int enc,
void *p,
void (*xSFunc)(sqlite3_context*,int,sqlite3_value**),
void (*xStep)(sqlite3_context*,int,sqlite3_value**),
void (*xFinal)(sqlite3_context*),
void (*xValue)(sqlite3_context*),
void (*xInverse)(sqlite3_context*,int,sqlite3_value**),
void(*xDestroy)(void*)
){
int rc = SQLITE_ERROR;
FuncDestructor *pArg = 0;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
return SQLITE_MISUSE_BKPT;
}
#endif
sqlite3_mutex_enter(db->mutex);
if( xDestroy ){
pArg = (FuncDestructor *)sqlite3Malloc(sizeof(FuncDestructor));
if( !pArg ){
sqlite3OomFault(db);
xDestroy(p);
goto out;
}
pArg->nRef = 0;
pArg->xDestroy = xDestroy;
pArg->pUserData = p;
}
rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p,
xSFunc, xStep, xFinal, xValue, xInverse, pArg
);
if( pArg && pArg->nRef==0 ){
assert( rc!=SQLITE_OK || (xStep==0 && xFinal==0) );
xDestroy(p);
sqlite3_free(pArg);
}
out:
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
/*
** Create new user functions.
*/
int sqlite3_create_function(
sqlite3 *db,
const char *zFunc,
int nArg,
int enc,
void *p,
void (*xSFunc)(sqlite3_context*,int,sqlite3_value **),
void (*xStep)(sqlite3_context*,int,sqlite3_value **),
void (*xFinal)(sqlite3_context*)
){
return createFunctionApi(db, zFunc, nArg, enc, p, xSFunc, xStep,
xFinal, 0, 0, 0);
}
int sqlite3_create_function_v2(
sqlite3 *db,
const char *zFunc,
int nArg,
int enc,
void *p,
void (*xSFunc)(sqlite3_context*,int,sqlite3_value **),
void (*xStep)(sqlite3_context*,int,sqlite3_value **),
void (*xFinal)(sqlite3_context*),
void (*xDestroy)(void *)
){
return createFunctionApi(db, zFunc, nArg, enc, p, xSFunc, xStep,
xFinal, 0, 0, xDestroy);
}
int sqlite3_create_window_function(
sqlite3 *db,
const char *zFunc,
int nArg,
int enc,
void *p,
void (*xStep)(sqlite3_context*,int,sqlite3_value **),
void (*xFinal)(sqlite3_context*),
void (*xValue)(sqlite3_context*),
void (*xInverse)(sqlite3_context*,int,sqlite3_value **),
void (*xDestroy)(void *)
){
return createFunctionApi(db, zFunc, nArg, enc, p, 0, xStep,
xFinal, xValue, xInverse, xDestroy);
}
#ifndef SQLITE_OMIT_UTF16
int sqlite3_create_function16(
sqlite3 *db,
const void *zFunctionName,
int nArg,
int eTextRep,
void *p,
void (*xSFunc)(sqlite3_context*,int,sqlite3_value**),
void (*xStep)(sqlite3_context*,int,sqlite3_value**),
void (*xFinal)(sqlite3_context*)
){
int rc;
char *zFunc8;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) || zFunctionName==0 ) return SQLITE_MISUSE_BKPT;
#endif
sqlite3_mutex_enter(db->mutex);
assert( !db->mallocFailed );
zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE);
rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xSFunc,xStep,xFinal,0,0,0);
sqlite3DbFree(db, zFunc8);
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
#endif
/*
** The following is the implementation of an SQL function that always
** fails with an error message stating that the function is used in the
** wrong context. The sqlite3_overload_function() API might construct
** SQL function that use this routine so that the functions will exist
** for name resolution but are actually overloaded by the xFindFunction
** method of virtual tables.
*/
static void sqlite3InvalidFunction(
sqlite3_context *context, /* The function calling context */
int NotUsed, /* Number of arguments to the function */
sqlite3_value **NotUsed2 /* Value of each argument */
){
const char *zName = (const char*)sqlite3_user_data(context);
char *zErr;
UNUSED_PARAMETER2(NotUsed, NotUsed2);
zErr = sqlite3_mprintf(
"unable to use function %s in the requested context", zName);
sqlite3_result_error(context, zErr, -1);
sqlite3_free(zErr);
}
/*
** Declare that a function has been overloaded by a virtual table.
**
** If the function already exists as a regular global function, then
** this routine is a no-op. If the function does not exist, then create
** a new one that always throws a run-time error.
**
** When virtual tables intend to provide an overloaded function, they
** should call this routine to make sure the global function exists.
** A global function must exist in order for name resolution to work
** properly.
*/
int sqlite3_overload_function(
sqlite3 *db,
const char *zName,
int nArg
){
int rc;
char *zCopy;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) || zName==0 || nArg<-2 ){
return SQLITE_MISUSE_BKPT;
}
#endif
sqlite3_mutex_enter(db->mutex);
rc = sqlite3FindFunction(db, zName, nArg, SQLITE_UTF8, 0)!=0;
sqlite3_mutex_leave(db->mutex);
if( rc ) return SQLITE_OK;
zCopy = sqlite3_mprintf("%s", zName);
if( zCopy==0 ) return SQLITE_NOMEM;
return sqlite3_create_function_v2(db, zName, nArg, SQLITE_UTF8,
zCopy, sqlite3InvalidFunction, 0, 0, sqlite3_free);
}
#ifndef SQLITE_OMIT_TRACE
/*
** Register a trace function. The pArg from the previously registered trace
** is returned.
**
** A NULL trace function means that no tracing is executes. A non-NULL
** trace is a pointer to a function that is invoked at the start of each
** SQL statement.
*/
#ifndef SQLITE_OMIT_DEPRECATED
void *sqlite3_trace(sqlite3 *db, void(*xTrace)(void*,const char*), void *pArg){
void *pOld;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
(void)SQLITE_MISUSE_BKPT;
return 0;
}
#endif
sqlite3_mutex_enter(db->mutex);
pOld = db->pTraceArg;
db->mTrace = xTrace ? SQLITE_TRACE_LEGACY : 0;
db->trace.xLegacy = xTrace;
db->pTraceArg = pArg;
sqlite3_mutex_leave(db->mutex);
return pOld;
}
#endif /* SQLITE_OMIT_DEPRECATED */
/* Register a trace callback using the version-2 interface.
*/
int sqlite3_trace_v2(
sqlite3 *db, /* Trace this connection */
unsigned mTrace, /* Mask of events to be traced */
int(*xTrace)(unsigned,void*,void*,void*), /* Callback to invoke */
void *pArg /* Context */
){
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
return SQLITE_MISUSE_BKPT;
}
#endif
sqlite3_mutex_enter(db->mutex);
if( mTrace==0 ) xTrace = 0;
if( xTrace==0 ) mTrace = 0;
db->mTrace = mTrace;
db->trace.xV2 = xTrace;
db->pTraceArg = pArg;
sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
#ifndef SQLITE_OMIT_DEPRECATED
/*
** Register a profile function. The pArg from the previously registered
** profile function is returned.
**
** A NULL profile function means that no profiling is executes. A non-NULL
** profile is a pointer to a function that is invoked at the conclusion of
** each SQL statement that is run.
*/
void *sqlite3_profile(
sqlite3 *db,
void (*xProfile)(void*,const char*,sqlite_uint64),
void *pArg
){
void *pOld;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
(void)SQLITE_MISUSE_BKPT;
return 0;
}
#endif
sqlite3_mutex_enter(db->mutex);
pOld = db->pProfileArg;
db->xProfile = xProfile;
db->pProfileArg = pArg;
db->mTrace &= SQLITE_TRACE_NONLEGACY_MASK;
if( db->xProfile ) db->mTrace |= SQLITE_TRACE_XPROFILE;
sqlite3_mutex_leave(db->mutex);
return pOld;
}
#endif /* SQLITE_OMIT_DEPRECATED */
#endif /* SQLITE_OMIT_TRACE */
/*
** Register a function to be invoked when a transaction commits.
** If the invoked function returns non-zero, then the commit becomes a
** rollback.
*/
void *sqlite3_commit_hook(
sqlite3 *db, /* Attach the hook to this database */
int (*xCallback)(void*), /* Function to invoke on each commit */
void *pArg /* Argument to the function */
){
void *pOld;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
(void)SQLITE_MISUSE_BKPT;
return 0;
}
#endif
sqlite3_mutex_enter(db->mutex);
pOld = db->pCommitArg;
db->xCommitCallback = xCallback;
db->pCommitArg = pArg;
sqlite3_mutex_leave(db->mutex);
return pOld;
}
/*
** Register a callback to be invoked each time a row is updated,
** inserted or deleted using this database connection.
*/
void *sqlite3_update_hook(
sqlite3 *db, /* Attach the hook to this database */
void (*xCallback)(void*,int,char const *,char const *,sqlite_int64),
void *pArg /* Argument to the function */
){
void *pRet;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
(void)SQLITE_MISUSE_BKPT;
return 0;
}
#endif
sqlite3_mutex_enter(db->mutex);
pRet = db->pUpdateArg;
db->xUpdateCallback = xCallback;
db->pUpdateArg = pArg;
sqlite3_mutex_leave(db->mutex);
return pRet;
}
/*
** Register a callback to be invoked each time a transaction is rolled
** back by this database connection.
*/
void *sqlite3_rollback_hook(
sqlite3 *db, /* Attach the hook to this database */
void (*xCallback)(void*), /* Callback function */
void *pArg /* Argument to the function */
){
void *pRet;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
(void)SQLITE_MISUSE_BKPT;
return 0;
}
#endif
sqlite3_mutex_enter(db->mutex);
pRet = db->pRollbackArg;
db->xRollbackCallback = xCallback;
db->pRollbackArg = pArg;
sqlite3_mutex_leave(db->mutex);
return pRet;
}
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
/*
** Register a callback to be invoked each time a row is updated,
** inserted or deleted using this database connection.
*/
void *sqlite3_preupdate_hook(
sqlite3 *db, /* Attach the hook to this database */
void(*xCallback)( /* Callback function */
void*,sqlite3*,int,char const*,char const*,sqlite3_int64,sqlite3_int64),
void *pArg /* First callback argument */
){
void *pRet;
#ifdef SQLITE_ENABLE_API_ARMOR
if( db==0 ){
return 0;
}
#endif
sqlite3_mutex_enter(db->mutex);
pRet = db->pPreUpdateArg;
db->xPreUpdateCallback = xCallback;
db->pPreUpdateArg = pArg;
sqlite3_mutex_leave(db->mutex);
return pRet;
}
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
/*
** Register a function to be invoked prior to each autovacuum that
** determines the number of pages to vacuum.
*/
int sqlite3_autovacuum_pages(
sqlite3 *db, /* Attach the hook to this database */
unsigned int (*xCallback)(void*,const char*,u32,u32,u32),
void *pArg, /* Argument to the function */
void (*xDestructor)(void*) /* Destructor for pArg */
){
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
if( xDestructor ) xDestructor(pArg);
return SQLITE_MISUSE_BKPT;
}
#endif
sqlite3_mutex_enter(db->mutex);
if( db->xAutovacDestr ){
db->xAutovacDestr(db->pAutovacPagesArg);
}
db->xAutovacPages = xCallback;
db->pAutovacPagesArg = pArg;
db->xAutovacDestr = xDestructor;
sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
#ifndef SQLITE_OMIT_WAL
/*
** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint().
** Invoke sqlite3_wal_checkpoint if the number of frames in the log file
** is greater than sqlite3.pWalArg cast to an integer (the value configured by
** wal_autocheckpoint()).
*/
int sqlite3WalDefaultHook(
void *pClientData, /* Argument */
sqlite3 *db, /* Connection */
const char *zDb, /* Database */
int nFrame /* Size of WAL */
){
if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){
sqlite3BeginBenignMalloc();
sqlite3_wal_checkpoint(db, zDb);
sqlite3EndBenignMalloc();
}
return SQLITE_OK;
}
#endif /* SQLITE_OMIT_WAL */
/*
** Configure an sqlite3_wal_hook() callback to automatically checkpoint
** a database after committing a transaction if there are nFrame or
** more frames in the log file. Passing zero or a negative value as the
** nFrame parameter disables automatic checkpoints entirely.
**
** The callback registered by this function replaces any existing callback
** registered using sqlite3_wal_hook(). Likewise, registering a callback
** using sqlite3_wal_hook() disables the automatic checkpoint mechanism
** configured by this function.
*/
int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){
#ifdef SQLITE_OMIT_WAL
UNUSED_PARAMETER(db);
UNUSED_PARAMETER(nFrame);
#else
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
if( nFrame>0 ){
sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame));
}else{
sqlite3_wal_hook(db, 0, 0);
}
#endif
return SQLITE_OK;
}
/*
** Register a callback to be invoked each time a transaction is written
** into the write-ahead-log by this database connection.
*/
void *sqlite3_wal_hook(
sqlite3 *db, /* Attach the hook to this db handle */
int(*xCallback)(void *, sqlite3*, const char*, int),
void *pArg /* First argument passed to xCallback() */
){
#ifndef SQLITE_OMIT_WAL
void *pRet;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
(void)SQLITE_MISUSE_BKPT;
return 0;
}
#endif
sqlite3_mutex_enter(db->mutex);
pRet = db->pWalArg;
db->xWalCallback = xCallback;
db->pWalArg = pArg;
sqlite3_mutex_leave(db->mutex);
return pRet;
#else
return 0;
#endif
}
/*
** Checkpoint database zDb.
*/
int sqlite3_wal_checkpoint_v2(
sqlite3 *db, /* Database handle */
const char *zDb, /* Name of attached database (or NULL) */
int eMode, /* SQLITE_CHECKPOINT_* value */
int *pnLog, /* OUT: Size of WAL log in frames */
int *pnCkpt /* OUT: Total number of frames checkpointed */
){
#ifdef SQLITE_OMIT_WAL
return SQLITE_OK;
#else
int rc; /* Return code */
int iDb; /* Schema to checkpoint */
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
/* Initialize the output variables to -1 in case an error occurs. */
if( pnLog ) *pnLog = -1;
if( pnCkpt ) *pnCkpt = -1;
assert( SQLITE_CHECKPOINT_PASSIVE==0 );
assert( SQLITE_CHECKPOINT_FULL==1 );
assert( SQLITE_CHECKPOINT_RESTART==2 );
assert( SQLITE_CHECKPOINT_TRUNCATE==3 );
if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_TRUNCATE ){
/* EVIDENCE-OF: R-03996-12088 The M parameter must be a valid checkpoint
** mode: */
return SQLITE_MISUSE_BKPT;
}
sqlite3_mutex_enter(db->mutex);
if( zDb && zDb[0] ){
iDb = sqlite3FindDbName(db, zDb);
}else{
iDb = SQLITE_MAX_DB; /* This means process all schemas */
}
if( iDb<0 ){
rc = SQLITE_ERROR;
sqlite3ErrorWithMsg(db, SQLITE_ERROR, "unknown database: %s", zDb);
}else{
db->busyHandler.nBusy = 0;
rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt);
sqlite3Error(db, rc);
}
rc = sqlite3ApiExit(db, rc);
/* If there are no active statements, clear the interrupt flag at this
** point. */
if( db->nVdbeActive==0 ){
AtomicStore(&db->u1.isInterrupted, 0);
}
sqlite3_mutex_leave(db->mutex);
return rc;
#endif
}
/*
** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points
** to contains a zero-length string, all attached databases are
** checkpointed.
*/
int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){
/* EVIDENCE-OF: R-41613-20553 The sqlite3_wal_checkpoint(D,X) is equivalent to
** sqlite3_wal_checkpoint_v2(D,X,SQLITE_CHECKPOINT_PASSIVE,0,0). */
return sqlite3_wal_checkpoint_v2(db,zDb,SQLITE_CHECKPOINT_PASSIVE,0,0);
}
#ifndef SQLITE_OMIT_WAL
/*
** Run a checkpoint on database iDb. This is a no-op if database iDb is
** not currently open in WAL mode.
**
** If a transaction is open on the database being checkpointed, this
** function returns SQLITE_LOCKED and a checkpoint is not attempted. If
** an error occurs while running the checkpoint, an SQLite error code is
** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK.
**
** The mutex on database handle db should be held by the caller. The mutex
** associated with the specific b-tree being checkpointed is taken by
** this function while the checkpoint is running.
**
** If iDb is passed SQLITE_MAX_DB then all attached databases are
** checkpointed. If an error is encountered it is returned immediately -
** no attempt is made to checkpoint any remaining databases.
**
** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL, RESTART
** or TRUNCATE.
*/
int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){
int rc = SQLITE_OK; /* Return code */
int i; /* Used to iterate through attached dbs */
int bBusy = 0; /* True if SQLITE_BUSY has been encountered */
assert( sqlite3_mutex_held(db->mutex) );
assert( !pnLog || *pnLog==-1 );
assert( !pnCkpt || *pnCkpt==-1 );
testcase( iDb==SQLITE_MAX_ATTACHED ); /* See forum post a006d86f72 */
testcase( iDb==SQLITE_MAX_DB );
for(i=0; i<db->nDb && rc==SQLITE_OK; i++){
if( i==iDb || iDb==SQLITE_MAX_DB ){
rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt);
pnLog = 0;
pnCkpt = 0;
if( rc==SQLITE_BUSY ){
bBusy = 1;
rc = SQLITE_OK;
}
}
}
return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc;
}
#endif /* SQLITE_OMIT_WAL */
/*
** This function returns true if main-memory should be used instead of
** a temporary file for transient pager files and statement journals.
** The value returned depends on the value of db->temp_store (runtime
** parameter) and the compile time value of SQLITE_TEMP_STORE. The
** following table describes the relationship between these two values
** and this functions return value.
**
** SQLITE_TEMP_STORE db->temp_store Location of temporary database
** ----------------- -------------- ------------------------------
** 0 any file (return 0)
** 1 1 file (return 0)
** 1 2 memory (return 1)
** 1 0 file (return 0)
** 2 1 file (return 0)
** 2 2 memory (return 1)
** 2 0 memory (return 1)
** 3 any memory (return 1)
*/
int sqlite3TempInMemory(const sqlite3 *db){
#if SQLITE_TEMP_STORE==1
return ( db->temp_store==2 );
#endif
#if SQLITE_TEMP_STORE==2
return ( db->temp_store!=1 );
#endif
#if SQLITE_TEMP_STORE==3
UNUSED_PARAMETER(db);
return 1;
#endif
#if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3
UNUSED_PARAMETER(db);
return 0;
#endif
}
/*
** Return UTF-8 encoded English language explanation of the most recent
** error.
*/
const char *sqlite3_errmsg(sqlite3 *db){
const char *z;
if( !db ){
return sqlite3ErrStr(SQLITE_NOMEM_BKPT);
}
if( !sqlite3SafetyCheckSickOrOk(db) ){
return sqlite3ErrStr(SQLITE_MISUSE_BKPT);
}
sqlite3_mutex_enter(db->mutex);
if( db->mallocFailed ){
z = sqlite3ErrStr(SQLITE_NOMEM_BKPT);
}else{
testcase( db->pErr==0 );
z = db->errCode ? (char*)sqlite3_value_text(db->pErr) : 0;
assert( !db->mallocFailed );
if( z==0 ){
z = sqlite3ErrStr(db->errCode);
}
}
sqlite3_mutex_leave(db->mutex);
return z;
}
/*
** Return the byte offset of the most recent error
*/
int sqlite3_error_offset(sqlite3 *db){
int iOffset = -1;
if( db && sqlite3SafetyCheckSickOrOk(db) && db->errCode ){
sqlite3_mutex_enter(db->mutex);
iOffset = db->errByteOffset;
sqlite3_mutex_leave(db->mutex);
}
return iOffset;
}
#ifndef SQLITE_OMIT_UTF16
/*
** Return UTF-16 encoded English language explanation of the most recent
** error.
*/
const void *sqlite3_errmsg16(sqlite3 *db){
static const u16 outOfMem[] = {
'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0
};
static const u16 misuse[] = {
'b', 'a', 'd', ' ', 'p', 'a', 'r', 'a', 'm', 'e', 't', 'e', 'r', ' ',
'o', 'r', ' ', 'o', 't', 'h', 'e', 'r', ' ', 'A', 'P', 'I', ' ',
'm', 'i', 's', 'u', 's', 'e', 0
};
const void *z;
if( !db ){
return (void *)outOfMem;
}
if( !sqlite3SafetyCheckSickOrOk(db) ){
return (void *)misuse;
}
sqlite3_mutex_enter(db->mutex);
if( db->mallocFailed ){
z = (void *)outOfMem;
}else{
z = sqlite3_value_text16(db->pErr);
if( z==0 ){
sqlite3ErrorWithMsg(db, db->errCode, sqlite3ErrStr(db->errCode));
z = sqlite3_value_text16(db->pErr);
}
/* A malloc() may have failed within the call to sqlite3_value_text16()
** above. If this is the case, then the db->mallocFailed flag needs to
** be cleared before returning. Do this directly, instead of via
** sqlite3ApiExit(), to avoid setting the database handle error message.
*/
sqlite3OomClear(db);
}
sqlite3_mutex_leave(db->mutex);
return z;
}
#endif /* SQLITE_OMIT_UTF16 */
/*
** Return the most recent error code generated by an SQLite routine. If NULL is
** passed to this function, we assume a malloc() failed during sqlite3_open().
*/
int sqlite3_errcode(sqlite3 *db){
if( db && !sqlite3SafetyCheckSickOrOk(db) ){
return SQLITE_MISUSE_BKPT;
}
if( !db || db->mallocFailed ){
return SQLITE_NOMEM_BKPT;
}
return db->errCode & db->errMask;
}
int sqlite3_extended_errcode(sqlite3 *db){
if( db && !sqlite3SafetyCheckSickOrOk(db) ){
return SQLITE_MISUSE_BKPT;
}
if( !db || db->mallocFailed ){
return SQLITE_NOMEM_BKPT;
}
return db->errCode;
}
int sqlite3_system_errno(sqlite3 *db){
return db ? db->iSysErrno : 0;
}
/*
** Return a string that describes the kind of error specified in the
** argument. For now, this simply calls the internal sqlite3ErrStr()
** function.
*/
const char *sqlite3_errstr(int rc){
return sqlite3ErrStr(rc);
}
/*
** Create a new collating function for database "db". The name is zName
** and the encoding is enc.
*/
static int createCollation(
sqlite3* db,
const char *zName,
u8 enc,
void* pCtx,
int(*xCompare)(void*,int,const void*,int,const void*),
void(*xDel)(void*)
){
CollSeq *pColl;
int enc2;
assert( sqlite3_mutex_held(db->mutex) );
/* If SQLITE_UTF16 is specified as the encoding type, transform this
** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
*/
enc2 = enc;
testcase( enc2==SQLITE_UTF16 );
testcase( enc2==SQLITE_UTF16_ALIGNED );
if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){
enc2 = SQLITE_UTF16NATIVE;
}
if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){
return SQLITE_MISUSE_BKPT;
}
/* Check if this call is removing or replacing an existing collation
** sequence. If so, and there are active VMs, return busy. If there
** are no active VMs, invalidate any pre-compiled statements.
*/
pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0);
if( pColl && pColl->xCmp ){
if( db->nVdbeActive ){
sqlite3ErrorWithMsg(db, SQLITE_BUSY,
"unable to delete/modify collation sequence due to active statements");
return SQLITE_BUSY;
}
sqlite3ExpirePreparedStatements(db, 0);
/* If collation sequence pColl was created directly by a call to
** sqlite3_create_collation, and not generated by synthCollSeq(),
** then any copies made by synthCollSeq() need to be invalidated.
** Also, collation destructor - CollSeq.xDel() - function may need
** to be called.
*/
if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){
CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName);
int j;
for(j=0; j<3; j++){
CollSeq *p = &aColl[j];
if( p->enc==pColl->enc ){
if( p->xDel ){
p->xDel(p->pUser);
}
p->xCmp = 0;
}
}
}
}
pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1);
if( pColl==0 ) return SQLITE_NOMEM_BKPT;
pColl->xCmp = xCompare;
pColl->pUser = pCtx;
pColl->xDel = xDel;
pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED));
sqlite3Error(db, SQLITE_OK);
return SQLITE_OK;
}
/*
** This array defines hard upper bounds on limit values. The
** initializer must be kept in sync with the SQLITE_LIMIT_*
** #defines in sqlite3.h.
*/
static const int aHardLimit[] = {
SQLITE_MAX_LENGTH,
SQLITE_MAX_SQL_LENGTH,
SQLITE_MAX_COLUMN,
SQLITE_MAX_EXPR_DEPTH,
SQLITE_MAX_COMPOUND_SELECT,
SQLITE_MAX_VDBE_OP,
SQLITE_MAX_FUNCTION_ARG,
SQLITE_MAX_ATTACHED,
SQLITE_MAX_LIKE_PATTERN_LENGTH,
SQLITE_MAX_VARIABLE_NUMBER, /* IMP: R-38091-32352 */
SQLITE_MAX_TRIGGER_DEPTH,
SQLITE_MAX_WORKER_THREADS,
};
/*
** Make sure the hard limits are set to reasonable values
*/
#if SQLITE_MAX_LENGTH<100
# error SQLITE_MAX_LENGTH must be at least 100
#endif
#if SQLITE_MAX_SQL_LENGTH<100
# error SQLITE_MAX_SQL_LENGTH must be at least 100
#endif
#if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH
# error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH
#endif
#if SQLITE_MAX_COMPOUND_SELECT<2
# error SQLITE_MAX_COMPOUND_SELECT must be at least 2
#endif
#if SQLITE_MAX_VDBE_OP<40
# error SQLITE_MAX_VDBE_OP must be at least 40
#endif
#if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>127
# error SQLITE_MAX_FUNCTION_ARG must be between 0 and 127
#endif
#if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>125
# error SQLITE_MAX_ATTACHED must be between 0 and 125
#endif
#if SQLITE_MAX_LIKE_PATTERN_LENGTH<1
# error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1
#endif
#if SQLITE_MAX_COLUMN>32767
# error SQLITE_MAX_COLUMN must not exceed 32767
#endif
#if SQLITE_MAX_TRIGGER_DEPTH<1
# error SQLITE_MAX_TRIGGER_DEPTH must be at least 1
#endif
#if SQLITE_MAX_WORKER_THREADS<0 || SQLITE_MAX_WORKER_THREADS>50
# error SQLITE_MAX_WORKER_THREADS must be between 0 and 50
#endif
/*
** Change the value of a limit. Report the old value.
** If an invalid limit index is supplied, report -1.
** Make no changes but still report the old value if the
** new limit is negative.
**
** A new lower limit does not shrink existing constructs.
** It merely prevents new constructs that exceed the limit
** from forming.
*/
int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){
int oldLimit;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
(void)SQLITE_MISUSE_BKPT;
return -1;
}
#endif
/* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME
** there is a hard upper bound set at compile-time by a C preprocessor
** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to
** "_MAX_".)
*/
assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH );
assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH );
assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN );
assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH );
assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT);
assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP );
assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG );
assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED );
assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]==
SQLITE_MAX_LIKE_PATTERN_LENGTH );
assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER);
assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH );
assert( aHardLimit[SQLITE_LIMIT_WORKER_THREADS]==SQLITE_MAX_WORKER_THREADS );
assert( SQLITE_LIMIT_WORKER_THREADS==(SQLITE_N_LIMIT-1) );
if( limitId<0 || limitId>=SQLITE_N_LIMIT ){
return -1;
}
oldLimit = db->aLimit[limitId];
if( newLimit>=0 ){ /* IMP: R-52476-28732 */
if( newLimit>aHardLimit[limitId] ){
newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */
}else if( newLimit<1 && limitId==SQLITE_LIMIT_LENGTH ){
newLimit = 1;
}
db->aLimit[limitId] = newLimit;
}
return oldLimit; /* IMP: R-53341-35419 */
}
/*
** This function is used to parse both URIs and non-URI filenames passed by the
** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database
** URIs specified as part of ATTACH statements.
**
** The first argument to this function is the name of the VFS to use (or
** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx"
** query parameter. The second argument contains the URI (or non-URI filename)
** itself. When this function is called the *pFlags variable should contain
** the default flags to open the database handle with. The value stored in
** *pFlags may be updated before returning if the URI filename contains
** "cache=xxx" or "mode=xxx" query parameters.
**
** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to
** the VFS that should be used to open the database file. *pzFile is set to
** point to a buffer containing the name of the file to open. The value
** stored in *pzFile is a database name acceptable to sqlite3_uri_parameter()
** and is in the same format as names created using sqlite3_create_filename().
** The caller must invoke sqlite3_free_filename() (not sqlite3_free()!) on
** the value returned in *pzFile to avoid a memory leak.
**
** If an error occurs, then an SQLite error code is returned and *pzErrMsg
** may be set to point to a buffer containing an English language error
** message. It is the responsibility of the caller to eventually release
** this buffer by calling sqlite3_free().
*/
int sqlite3ParseUri(
const char *zDefaultVfs, /* VFS to use if no "vfs=xxx" query option */
const char *zUri, /* Nul-terminated URI to parse */
unsigned int *pFlags, /* IN/OUT: SQLITE_OPEN_XXX flags */
sqlite3_vfs **ppVfs, /* OUT: VFS to use */
char **pzFile, /* OUT: Filename component of URI */
char **pzErrMsg /* OUT: Error message (if rc!=SQLITE_OK) */
){
int rc = SQLITE_OK;
unsigned int flags = *pFlags;
const char *zVfs = zDefaultVfs;
char *zFile;
char c;
int nUri = sqlite3Strlen30(zUri);
assert( *pzErrMsg==0 );
if( ((flags & SQLITE_OPEN_URI) /* IMP: R-48725-32206 */
|| AtomicLoad(&sqlite3GlobalConfig.bOpenUri)) /* IMP: R-51689-46548 */
&& nUri>=5 && memcmp(zUri, "file:", 5)==0 /* IMP: R-57884-37496 */
){
char *zOpt;
int eState; /* Parser state when parsing URI */
int iIn; /* Input character index */
int iOut = 0; /* Output character index */
u64 nByte = nUri+8; /* Bytes of space to allocate */
/* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen
** method that there may be extra parameters following the file-name. */
flags |= SQLITE_OPEN_URI;
for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&');
zFile = sqlite3_malloc64(nByte);
if( !zFile ) return SQLITE_NOMEM_BKPT;
memset(zFile, 0, 4); /* 4-byte of 0x00 is the start of DB name marker */
zFile += 4;
iIn = 5;
#ifdef SQLITE_ALLOW_URI_AUTHORITY
if( strncmp(zUri+5, "///", 3)==0 ){
iIn = 7;
/* The following condition causes URIs with five leading / characters
** like file://///host/path to be converted into UNCs like //host/path.
** The correct URI for that UNC has only two or four leading / characters
** file://host/path or file:////host/path. But 5 leading slashes is a
** common error, we are told, so we handle it as a special case. */
if( strncmp(zUri+7, "///", 3)==0 ){ iIn++; }
}else if( strncmp(zUri+5, "//localhost/", 12)==0 ){
iIn = 16;
}
#else
/* Discard the scheme and authority segments of the URI. */
if( zUri[5]=='/' && zUri[6]=='/' ){
iIn = 7;
while( zUri[iIn] && zUri[iIn]!='/' ) iIn++;
if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){
*pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s",
iIn-7, &zUri[7]);
rc = SQLITE_ERROR;
goto parse_uri_out;
}
}
#endif
/* Copy the filename and any query parameters into the zFile buffer.
** Decode %HH escape codes along the way.
**
** Within this loop, variable eState may be set to 0, 1 or 2, depending
** on the parsing context. As follows:
**
** 0: Parsing file-name.
** 1: Parsing name section of a name=value query parameter.
** 2: Parsing value section of a name=value query parameter.
*/
eState = 0;
while( (c = zUri[iIn])!=0 && c!='#' ){
iIn++;
if( c=='%'
&& sqlite3Isxdigit(zUri[iIn])
&& sqlite3Isxdigit(zUri[iIn+1])
){
int octet = (sqlite3HexToInt(zUri[iIn++]) << 4);
octet += sqlite3HexToInt(zUri[iIn++]);
assert( octet>=0 && octet<256 );
if( octet==0 ){
#ifndef SQLITE_ENABLE_URI_00_ERROR
/* This branch is taken when "%00" appears within the URI. In this
** case we ignore all text in the remainder of the path, name or
** value currently being parsed. So ignore the current character
** and skip to the next "?", "=" or "&", as appropriate. */
while( (c = zUri[iIn])!=0 && c!='#'
&& (eState!=0 || c!='?')
&& (eState!=1 || (c!='=' && c!='&'))
&& (eState!=2 || c!='&')
){
iIn++;
}
continue;
#else
/* If ENABLE_URI_00_ERROR is defined, "%00" in a URI is an error. */
*pzErrMsg = sqlite3_mprintf("unexpected %%00 in uri");
rc = SQLITE_ERROR;
goto parse_uri_out;
#endif
}
c = octet;
}else if( eState==1 && (c=='&' || c=='=') ){
if( zFile[iOut-1]==0 ){
/* An empty option name. Ignore this option altogether. */
while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++;
continue;
}
if( c=='&' ){
zFile[iOut++] = '\0';
}else{
eState = 2;
}
c = 0;
}else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){
c = 0;
eState = 1;
}
zFile[iOut++] = c;
}
if( eState==1 ) zFile[iOut++] = '\0';
memset(zFile+iOut, 0, 4); /* end-of-options + empty journal filenames */
/* Check if there were any options specified that should be interpreted
** here. Options that are interpreted here include "vfs" and those that
** correspond to flags that may be passed to the sqlite3_open_v2()
** method. */
zOpt = &zFile[sqlite3Strlen30(zFile)+1];
while( zOpt[0] ){
int nOpt = sqlite3Strlen30(zOpt);
char *zVal = &zOpt[nOpt+1];
int nVal = sqlite3Strlen30(zVal);
if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){
zVfs = zVal;
}else{
struct OpenMode {
const char *z;
int mode;
} *aMode = 0;
char *zModeType = 0;
int mask = 0;
int limit = 0;
if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){
static struct OpenMode aCacheMode[] = {
{ "shared", SQLITE_OPEN_SHAREDCACHE },
{ "private", SQLITE_OPEN_PRIVATECACHE },
{ 0, 0 }
};
mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE;
aMode = aCacheMode;
limit = mask;
zModeType = "cache";
}
if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){
static struct OpenMode aOpenMode[] = {
{ "ro", SQLITE_OPEN_READONLY },
{ "rw", SQLITE_OPEN_READWRITE },
{ "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE },
{ "memory", SQLITE_OPEN_MEMORY },
{ 0, 0 }
};
mask = SQLITE_OPEN_READONLY | SQLITE_OPEN_READWRITE
| SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY;
aMode = aOpenMode;
limit = mask & flags;
zModeType = "access";
}
if( aMode ){
int i;
int mode = 0;
for(i=0; aMode[i].z; i++){
const char *z = aMode[i].z;
if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){
mode = aMode[i].mode;
break;
}
}
if( mode==0 ){
*pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal);
rc = SQLITE_ERROR;
goto parse_uri_out;
}
if( (mode & ~SQLITE_OPEN_MEMORY)>limit ){
*pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s",
zModeType, zVal);
rc = SQLITE_PERM;
goto parse_uri_out;
}
flags = (flags & ~mask) | mode;
}
}
zOpt = &zVal[nVal+1];
}
}else{
zFile = sqlite3_malloc64(nUri+8);
if( !zFile ) return SQLITE_NOMEM_BKPT;
memset(zFile, 0, 4);
zFile += 4;
if( nUri ){
memcpy(zFile, zUri, nUri);
}
memset(zFile+nUri, 0, 4);
flags &= ~SQLITE_OPEN_URI;
}
*ppVfs = sqlite3_vfs_find(zVfs);
if( *ppVfs==0 ){
*pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs);
rc = SQLITE_ERROR;
}
parse_uri_out:
if( rc!=SQLITE_OK ){
sqlite3_free_filename(zFile);
zFile = 0;
}
*pFlags = flags;
*pzFile = zFile;
return rc;
}
/*
** This routine does the core work of extracting URI parameters from a
** database filename for the sqlite3_uri_parameter() interface.
*/
static const char *uriParameter(const char *zFilename, const char *zParam){
zFilename += sqlite3Strlen30(zFilename) + 1;
while( ALWAYS(zFilename!=0) && zFilename[0] ){
int x = strcmp(zFilename, zParam);
zFilename += sqlite3Strlen30(zFilename) + 1;
if( x==0 ) return zFilename;
zFilename += sqlite3Strlen30(zFilename) + 1;
}
return 0;
}
/*
** This routine does the work of opening a database on behalf of
** sqlite3_open() and sqlite3_open16(). The database filename "zFilename"
** is UTF-8 encoded.
*/
static int openDatabase(
const char *zFilename, /* Database filename UTF-8 encoded */
sqlite3 **ppDb, /* OUT: Returned database handle */
unsigned int flags, /* Operational flags */
const char *zVfs /* Name of the VFS to use */
){
sqlite3 *db; /* Store allocated handle here */
int rc; /* Return code */
int isThreadsafe; /* True for threadsafe connections */
char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */
char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */
int i; /* Loop counter */
#ifdef SQLITE_ENABLE_API_ARMOR
if( ppDb==0 ) return SQLITE_MISUSE_BKPT;
#endif
*ppDb = 0;
#ifndef SQLITE_OMIT_AUTOINIT
rc = sqlite3_initialize();
if( rc ) return rc;
#endif
if( sqlite3GlobalConfig.bCoreMutex==0 ){
isThreadsafe = 0;
}else if( flags & SQLITE_OPEN_NOMUTEX ){
isThreadsafe = 0;
}else if( flags & SQLITE_OPEN_FULLMUTEX ){
isThreadsafe = 1;
}else{
isThreadsafe = sqlite3GlobalConfig.bFullMutex;
}
if( flags & SQLITE_OPEN_PRIVATECACHE ){
flags &= ~SQLITE_OPEN_SHAREDCACHE;
}else if( sqlite3GlobalConfig.sharedCacheEnabled ){
flags |= SQLITE_OPEN_SHAREDCACHE;
}
/* Remove harmful bits from the flags parameter
**
** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were
** dealt with in the previous code block. Besides these, the only
** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY,
** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE,
** SQLITE_OPEN_PRIVATECACHE, SQLITE_OPEN_EXRESCODE, and some reserved
** bits. Silently mask off all other flags.
*/
flags &= ~( SQLITE_OPEN_DELETEONCLOSE |
SQLITE_OPEN_EXCLUSIVE |
SQLITE_OPEN_MAIN_DB |
SQLITE_OPEN_TEMP_DB |
SQLITE_OPEN_TRANSIENT_DB |
SQLITE_OPEN_MAIN_JOURNAL |
SQLITE_OPEN_TEMP_JOURNAL |
SQLITE_OPEN_SUBJOURNAL |
SQLITE_OPEN_SUPER_JOURNAL |
SQLITE_OPEN_NOMUTEX |
SQLITE_OPEN_FULLMUTEX |
SQLITE_OPEN_WAL
);
/* Allocate the sqlite data structure */
db = sqlite3MallocZero( sizeof(sqlite3) );
if( db==0 ) goto opendb_out;
if( isThreadsafe
#ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS
|| sqlite3GlobalConfig.bCoreMutex
#endif
){
db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
if( db->mutex==0 ){
sqlite3_free(db);
db = 0;
goto opendb_out;
}
if( isThreadsafe==0 ){
sqlite3MutexWarnOnContention(db->mutex);
}
}
sqlite3_mutex_enter(db->mutex);
db->errMask = (flags & SQLITE_OPEN_EXRESCODE)!=0 ? 0xffffffff : 0xff;
db->nDb = 2;
db->eOpenState = SQLITE_STATE_BUSY;
db->aDb = db->aDbStatic;
db->lookaside.bDisable = 1;
db->lookaside.sz = 0;
assert( sizeof(db->aLimit)==sizeof(aHardLimit) );
memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit));
db->aLimit[SQLITE_LIMIT_WORKER_THREADS] = SQLITE_DEFAULT_WORKER_THREADS;
db->autoCommit = 1;
db->nextAutovac = -1;
db->szMmap = sqlite3GlobalConfig.szMmap;
db->nextPagesize = 0;
db->init.azInit = sqlite3StdType; /* Any array of string ptrs will do */
#ifdef SQLITE_ENABLE_SORTER_MMAP
/* Beginning with version 3.37.0, using the VFS xFetch() API to memory-map
** the temporary files used to do external sorts (see code in vdbesort.c)
** is disabled. It can still be used either by defining
** SQLITE_ENABLE_SORTER_MMAP at compile time or by using the
** SQLITE_TESTCTRL_SORTER_MMAP test-control at runtime. */
db->nMaxSorterMmap = 0x7FFFFFFF;
#endif
db->flags |= SQLITE_ShortColNames
| SQLITE_EnableTrigger
| SQLITE_EnableView
| SQLITE_CacheSpill
#if !defined(SQLITE_TRUSTED_SCHEMA) || SQLITE_TRUSTED_SCHEMA+0!=0
| SQLITE_TrustedSchema
#endif
/* The SQLITE_DQS compile-time option determines the default settings
** for SQLITE_DBCONFIG_DQS_DDL and SQLITE_DBCONFIG_DQS_DML.
**
** SQLITE_DQS SQLITE_DBCONFIG_DQS_DDL SQLITE_DBCONFIG_DQS_DML
** ---------- ----------------------- -----------------------
** undefined on on
** 3 on on
** 2 on off
** 1 off on
** 0 off off
**
** Legacy behavior is 3 (double-quoted string literals are allowed anywhere)
** and so that is the default. But developers are encouraged to use
** -DSQLITE_DQS=0 (best) or -DSQLITE_DQS=1 (second choice) if possible.
*/
#if !defined(SQLITE_DQS)
# define SQLITE_DQS 3
#endif
#if (SQLITE_DQS&1)==1
| SQLITE_DqsDML
#endif
#if (SQLITE_DQS&2)==2
| SQLITE_DqsDDL
#endif
#if !defined(SQLITE_DEFAULT_AUTOMATIC_INDEX) || SQLITE_DEFAULT_AUTOMATIC_INDEX
| SQLITE_AutoIndex
#endif
#if SQLITE_DEFAULT_CKPTFULLFSYNC
| SQLITE_CkptFullFSync
#endif
#if SQLITE_DEFAULT_FILE_FORMAT<4
| SQLITE_LegacyFileFmt
#endif
#ifdef SQLITE_ENABLE_LOAD_EXTENSION
| SQLITE_LoadExtension
#endif
#if SQLITE_DEFAULT_RECURSIVE_TRIGGERS
| SQLITE_RecTriggers
#endif
#if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS
| SQLITE_ForeignKeys
#endif
#if defined(SQLITE_REVERSE_UNORDERED_SELECTS)
| SQLITE_ReverseOrder
#endif
#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
| SQLITE_CellSizeCk
#endif
#if defined(SQLITE_ENABLE_FTS3_TOKENIZER)
| SQLITE_Fts3Tokenizer
#endif
#if defined(SQLITE_ENABLE_QPSG)
| SQLITE_EnableQPSG
#endif
#if defined(SQLITE_DEFAULT_DEFENSIVE)
| SQLITE_Defensive
#endif
#if defined(SQLITE_DEFAULT_LEGACY_ALTER_TABLE)
| SQLITE_LegacyAlter
#endif
#if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
| SQLITE_StmtScanStatus
#endif
;
sqlite3HashInit(&db->aCollSeq);
#ifndef SQLITE_OMIT_VIRTUALTABLE
sqlite3HashInit(&db->aModule);
#endif
/* Add the default collation sequence BINARY. BINARY works for both UTF-8
** and UTF-16, so add a version for each to avoid any unnecessary
** conversions. The only error that can occur here is a malloc() failure.
**
** EVIDENCE-OF: R-52786-44878 SQLite defines three built-in collating
** functions:
*/
createCollation(db, sqlite3StrBINARY, SQLITE_UTF8, 0, binCollFunc, 0);
createCollation(db, sqlite3StrBINARY, SQLITE_UTF16BE, 0, binCollFunc, 0);
createCollation(db, sqlite3StrBINARY, SQLITE_UTF16LE, 0, binCollFunc, 0);
createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);
createCollation(db, "RTRIM", SQLITE_UTF8, 0, rtrimCollFunc, 0);
if( db->mallocFailed ){
goto opendb_out;
}
#if SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL)
/* Process magic filenames ":localStorage:" and ":sessionStorage:" */
if( zFilename && zFilename[0]==':' ){
if( strcmp(zFilename, ":localStorage:")==0 ){
zFilename = "file:local?vfs=kvvfs";
flags |= SQLITE_OPEN_URI;
}else if( strcmp(zFilename, ":sessionStorage:")==0 ){
zFilename = "file:session?vfs=kvvfs";
flags |= SQLITE_OPEN_URI;
}
}
#endif /* SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL) */
/* Parse the filename/URI argument
**
** Only allow sensible combinations of bits in the flags argument.
** Throw an error if any non-sense combination is used. If we
** do not block illegal combinations here, it could trigger
** assert() statements in deeper layers. Sensible combinations
** are:
**
** 1: SQLITE_OPEN_READONLY
** 2: SQLITE_OPEN_READWRITE
** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE
*/
db->openFlags = flags;
assert( SQLITE_OPEN_READONLY == 0x01 );
assert( SQLITE_OPEN_READWRITE == 0x02 );
assert( SQLITE_OPEN_CREATE == 0x04 );
testcase( (1<<(flags&7))==0x02 ); /* READONLY */
testcase( (1<<(flags&7))==0x04 ); /* READWRITE */
testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */
if( ((1<<(flags&7)) & 0x46)==0 ){
rc = SQLITE_MISUSE_BKPT; /* IMP: R-18321-05872 */
}else{
if( zFilename==0 ) zFilename = ":memory:";
rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg);
}
if( rc!=SQLITE_OK ){
if( rc==SQLITE_NOMEM ) sqlite3OomFault(db);
sqlite3ErrorWithMsg(db, rc, zErrMsg ? "%s" : 0, zErrMsg);
sqlite3_free(zErrMsg);
goto opendb_out;
}
assert( db->pVfs!=0 );
#if SQLITE_OS_KV || defined(SQLITE_OS_KV_OPTIONAL)
if( sqlite3_stricmp(db->pVfs->zName, "kvvfs")==0 ){
db->temp_store = 2;
}
#endif
/* Open the backend database driver */
rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0,
flags | SQLITE_OPEN_MAIN_DB);
if( rc!=SQLITE_OK ){
if( rc==SQLITE_IOERR_NOMEM ){
rc = SQLITE_NOMEM_BKPT;
}
sqlite3Error(db, rc);
goto opendb_out;
}
sqlite3BtreeEnter(db->aDb[0].pBt);
db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt);
if( !db->mallocFailed ){
sqlite3SetTextEncoding(db, SCHEMA_ENC(db));
}
sqlite3BtreeLeave(db->aDb[0].pBt);
db->aDb[1].pSchema = sqlite3SchemaGet(db, 0);
/* The default safety_level for the main database is FULL; for the temp
** database it is OFF. This matches the pager layer defaults.
*/
db->aDb[0].zDbSName = "main";
db->aDb[0].safety_level = SQLITE_DEFAULT_SYNCHRONOUS+1;
db->aDb[1].zDbSName = "temp";
db->aDb[1].safety_level = PAGER_SYNCHRONOUS_OFF;
db->eOpenState = SQLITE_STATE_OPEN;
if( db->mallocFailed ){
goto opendb_out;
}
/* Register all built-in functions, but do not attempt to read the
** database schema yet. This is delayed until the first time the database
** is accessed.
*/
sqlite3Error(db, SQLITE_OK);
sqlite3RegisterPerConnectionBuiltinFunctions(db);
rc = sqlite3_errcode(db);
/* Load compiled-in extensions */
for(i=0; rc==SQLITE_OK && i<ArraySize(sqlite3BuiltinExtensions); i++){
rc = sqlite3BuiltinExtensions[i](db);
}
/* Load automatic extensions - extensions that have been registered
** using the sqlite3_automatic_extension() API.
*/
if( rc==SQLITE_OK ){
sqlite3AutoLoadExtensions(db);
rc = sqlite3_errcode(db);
if( rc!=SQLITE_OK ){
goto opendb_out;
}
}
#ifdef SQLITE_ENABLE_INTERNAL_FUNCTIONS
/* Testing use only!!! The -DSQLITE_ENABLE_INTERNAL_FUNCTIONS=1 compile-time
** option gives access to internal functions by default.
** Testing use only!!! */
db->mDbFlags |= DBFLAG_InternalFunc;
#endif
/* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking
** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking
** mode. Doing nothing at all also makes NORMAL the default.
*/
#ifdef SQLITE_DEFAULT_LOCKING_MODE
db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE;
sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt),
SQLITE_DEFAULT_LOCKING_MODE);
#endif
if( rc ) sqlite3Error(db, rc);
/* Enable the lookaside-malloc subsystem */
setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside,
sqlite3GlobalConfig.nLookaside);
sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT);
opendb_out:
if( db ){
assert( db->mutex!=0 || isThreadsafe==0
|| sqlite3GlobalConfig.bFullMutex==0 );
sqlite3_mutex_leave(db->mutex);
}
rc = sqlite3_errcode(db);
assert( db!=0 || (rc&0xff)==SQLITE_NOMEM );
if( (rc&0xff)==SQLITE_NOMEM ){
sqlite3_close(db);
db = 0;
}else if( rc!=SQLITE_OK ){
db->eOpenState = SQLITE_STATE_SICK;
}
*ppDb = db;
#ifdef SQLITE_ENABLE_SQLLOG
if( sqlite3GlobalConfig.xSqllog ){
/* Opening a db handle. Fourth parameter is passed 0. */
void *pArg = sqlite3GlobalConfig.pSqllogArg;
sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0);
}
#endif
sqlite3_free_filename(zOpen);
return rc;
}
/*
** Open a new database handle.
*/
int sqlite3_open(
const char *zFilename,
sqlite3 **ppDb
){
return openDatabase(zFilename, ppDb,
SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
}
int sqlite3_open_v2(
const char *filename, /* Database filename (UTF-8) */
sqlite3 **ppDb, /* OUT: SQLite db handle */
int flags, /* Flags */
const char *zVfs /* Name of VFS module to use */
){
return openDatabase(filename, ppDb, (unsigned int)flags, zVfs);
}
#ifndef SQLITE_OMIT_UTF16
/*
** Open a new database handle.
*/
int sqlite3_open16(
const void *zFilename,
sqlite3 **ppDb
){
char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */
sqlite3_value *pVal;
int rc;
#ifdef SQLITE_ENABLE_API_ARMOR
if( ppDb==0 ) return SQLITE_MISUSE_BKPT;
#endif
*ppDb = 0;
#ifndef SQLITE_OMIT_AUTOINIT
rc = sqlite3_initialize();
if( rc ) return rc;
#endif
if( zFilename==0 ) zFilename = "\000\000";
pVal = sqlite3ValueNew(0);
sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC);
zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8);
if( zFilename8 ){
rc = openDatabase(zFilename8, ppDb,
SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
assert( *ppDb || rc==SQLITE_NOMEM );
if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){
SCHEMA_ENC(*ppDb) = ENC(*ppDb) = SQLITE_UTF16NATIVE;
}
}else{
rc = SQLITE_NOMEM_BKPT;
}
sqlite3ValueFree(pVal);
return rc & 0xff;
}
#endif /* SQLITE_OMIT_UTF16 */
/*
** Register a new collation sequence with the database handle db.
*/
int sqlite3_create_collation(
sqlite3* db,
const char *zName,
int enc,
void* pCtx,
int(*xCompare)(void*,int,const void*,int,const void*)
){
return sqlite3_create_collation_v2(db, zName, enc, pCtx, xCompare, 0);
}
/*
** Register a new collation sequence with the database handle db.
*/
int sqlite3_create_collation_v2(
sqlite3* db,
const char *zName,
int enc,
void* pCtx,
int(*xCompare)(void*,int,const void*,int,const void*),
void(*xDel)(void*)
){
int rc;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
#endif
sqlite3_mutex_enter(db->mutex);
assert( !db->mallocFailed );
rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel);
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
#ifndef SQLITE_OMIT_UTF16
/*
** Register a new collation sequence with the database handle db.
*/
int sqlite3_create_collation16(
sqlite3* db,
const void *zName,
int enc,
void* pCtx,
int(*xCompare)(void*,int,const void*,int,const void*)
){
int rc = SQLITE_OK;
char *zName8;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
#endif
sqlite3_mutex_enter(db->mutex);
assert( !db->mallocFailed );
zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE);
if( zName8 ){
rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0);
sqlite3DbFree(db, zName8);
}
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
#endif /* SQLITE_OMIT_UTF16 */
/*
** Register a collation sequence factory callback with the database handle
** db. Replace any previously installed collation sequence factory.
*/
int sqlite3_collation_needed(
sqlite3 *db,
void *pCollNeededArg,
void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*)
){
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
sqlite3_mutex_enter(db->mutex);
db->xCollNeeded = xCollNeeded;
db->xCollNeeded16 = 0;
db->pCollNeededArg = pCollNeededArg;
sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
#ifndef SQLITE_OMIT_UTF16
/*
** Register a collation sequence factory callback with the database handle
** db. Replace any previously installed collation sequence factory.
*/
int sqlite3_collation_needed16(
sqlite3 *db,
void *pCollNeededArg,
void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*)
){
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
sqlite3_mutex_enter(db->mutex);
db->xCollNeeded = 0;
db->xCollNeeded16 = xCollNeeded16;
db->pCollNeededArg = pCollNeededArg;
sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
#endif /* SQLITE_OMIT_UTF16 */
/*
** Find existing client data.
*/
void *sqlite3_get_clientdata(sqlite3 *db, const char *zName){
DbClientData *p;
sqlite3_mutex_enter(db->mutex);
for(p=db->pDbData; p; p=p->pNext){
if( strcmp(p->zName, zName)==0 ){
void *pResult = p->pData;
sqlite3_mutex_leave(db->mutex);
return pResult;
}
}
sqlite3_mutex_leave(db->mutex);
return 0;
}
/*
** Add new client data to a database connection.
*/
int sqlite3_set_clientdata(
sqlite3 *db, /* Attach client data to this connection */
const char *zName, /* Name of the client data */
void *pData, /* The client data itself */
void (*xDestructor)(void*) /* Destructor */
){
DbClientData *p, **pp;
sqlite3_mutex_enter(db->mutex);
pp = &db->pDbData;
for(p=db->pDbData; p && strcmp(p->zName,zName); p=p->pNext){
pp = &p->pNext;
}
if( p ){
assert( p->pData!=0 );
if( p->xDestructor ) p->xDestructor(p->pData);
if( pData==0 ){
*pp = p->pNext;
sqlite3_free(p);
sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
}else if( pData==0 ){
sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}else{
size_t n = strlen(zName);
p = sqlite3_malloc64( sizeof(DbClientData)+n+1 );
if( p==0 ){
if( xDestructor ) xDestructor(pData);
sqlite3_mutex_leave(db->mutex);
return SQLITE_NOMEM;
}
memcpy(p->zName, zName, n+1);
p->pNext = db->pDbData;
db->pDbData = p;
}
p->pData = pData;
p->xDestructor = xDestructor;
sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
#ifndef SQLITE_OMIT_DEPRECATED
/*
** This function is now an anachronism. It used to be used to recover from a
** malloc() failure, but SQLite now does this automatically.
*/
int sqlite3_global_recover(void){
return SQLITE_OK;
}
#endif
/*
** Test to see whether or not the database connection is in autocommit
** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on
** by default. Autocommit is disabled by a BEGIN statement and reenabled
** by the next COMMIT or ROLLBACK.
*/
int sqlite3_get_autocommit(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
(void)SQLITE_MISUSE_BKPT;
return 0;
}
#endif
return db->autoCommit;
}
/*
** The following routines are substitutes for constants SQLITE_CORRUPT,
** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_NOMEM and possibly other error
** constants. They serve two purposes:
**
** 1. Serve as a convenient place to set a breakpoint in a debugger
** to detect when version error conditions occurs.
**
** 2. Invoke sqlite3_log() to provide the source code location where
** a low-level error is first detected.
*/
int sqlite3ReportError(int iErr, int lineno, const char *zType){
sqlite3_log(iErr, "%s at line %d of [%.10s]",
zType, lineno, 20+sqlite3_sourceid());
return iErr;
}
int sqlite3CorruptError(int lineno){
testcase( sqlite3GlobalConfig.xLog!=0 );
return sqlite3ReportError(SQLITE_CORRUPT, lineno, "database corruption");
}
int sqlite3MisuseError(int lineno){
testcase( sqlite3GlobalConfig.xLog!=0 );
return sqlite3ReportError(SQLITE_MISUSE, lineno, "misuse");
}
int sqlite3CantopenError(int lineno){
testcase( sqlite3GlobalConfig.xLog!=0 );
return sqlite3ReportError(SQLITE_CANTOPEN, lineno, "cannot open file");
}
#if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_CORRUPT_PGNO)
int sqlite3CorruptPgnoError(int lineno, Pgno pgno){
char zMsg[100];
sqlite3_snprintf(sizeof(zMsg), zMsg, "database corruption page %d", pgno);
testcase( sqlite3GlobalConfig.xLog!=0 );
return sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
}
#endif
#ifdef SQLITE_DEBUG
int sqlite3NomemError(int lineno){
testcase( sqlite3GlobalConfig.xLog!=0 );
return sqlite3ReportError(SQLITE_NOMEM, lineno, "OOM");
}
int sqlite3IoerrnomemError(int lineno){
testcase( sqlite3GlobalConfig.xLog!=0 );
return sqlite3ReportError(SQLITE_IOERR_NOMEM, lineno, "I/O OOM error");
}
#endif
#ifndef SQLITE_OMIT_DEPRECATED
/*
** This is a convenience routine that makes sure that all thread-specific
** data for this thread has been deallocated.
**
** SQLite no longer uses thread-specific data so this routine is now a
** no-op. It is retained for historical compatibility.
*/
void sqlite3_thread_cleanup(void){
}
#endif
/*
** Return meta information about a specific column of a database table.
** See comment in sqlite3.h (sqlite.h.in) for details.
*/
int sqlite3_table_column_metadata(
sqlite3 *db, /* Connection handle */
const char *zDbName, /* Database name or NULL */
const char *zTableName, /* Table name */
const char *zColumnName, /* Column name */
char const **pzDataType, /* OUTPUT: Declared data type */
char const **pzCollSeq, /* OUTPUT: Collation sequence name */
int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
int *pPrimaryKey, /* OUTPUT: True if column part of PK */
int *pAutoinc /* OUTPUT: True if column is auto-increment */
){
int rc;
char *zErrMsg = 0;
Table *pTab = 0;
Column *pCol = 0;
int iCol = 0;
char const *zDataType = 0;
char const *zCollSeq = 0;
int notnull = 0;
int primarykey = 0;
int autoinc = 0;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) || zTableName==0 ){
return SQLITE_MISUSE_BKPT;
}
#endif
/* Ensure the database schema has been loaded */
sqlite3_mutex_enter(db->mutex);
sqlite3BtreeEnterAll(db);
rc = sqlite3Init(db, &zErrMsg);
if( SQLITE_OK!=rc ){
goto error_out;
}
/* Locate the table in question */
pTab = sqlite3FindTable(db, zTableName, zDbName);
if( !pTab || IsView(pTab) ){
pTab = 0;
goto error_out;
}
/* Find the column for which info is requested */
if( zColumnName==0 ){
/* Query for existence of table only */
}else{
for(iCol=0; iCol<pTab->nCol; iCol++){
pCol = &pTab->aCol[iCol];
if( 0==sqlite3StrICmp(pCol->zCnName, zColumnName) ){
break;
}
}
if( iCol==pTab->nCol ){
if( HasRowid(pTab) && sqlite3IsRowid(zColumnName) ){
iCol = pTab->iPKey;
pCol = iCol>=0 ? &pTab->aCol[iCol] : 0;
}else{
pTab = 0;
goto error_out;
}
}
}
/* The following block stores the meta information that will be returned
** to the caller in local variables zDataType, zCollSeq, notnull, primarykey
** and autoinc. At this point there are two possibilities:
**
** 1. The specified column name was rowid", "oid" or "_rowid_"
** and there is no explicitly declared IPK column.
**
** 2. The table is not a view and the column name identified an
** explicitly declared column. Copy meta information from *pCol.
*/
if( pCol ){
zDataType = sqlite3ColumnType(pCol,0);
zCollSeq = sqlite3ColumnColl(pCol);
notnull = pCol->notNull!=0;
primarykey = (pCol->colFlags & COLFLAG_PRIMKEY)!=0;
autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0;
}else{
zDataType = "INTEGER";
primarykey = 1;
}
if( !zCollSeq ){
zCollSeq = sqlite3StrBINARY;
}
error_out:
sqlite3BtreeLeaveAll(db);
/* Whether the function call succeeded or failed, set the output parameters
** to whatever their local counterparts contain. If an error did occur,
** this has the effect of zeroing all output parameters.
*/
if( pzDataType ) *pzDataType = zDataType;
if( pzCollSeq ) *pzCollSeq = zCollSeq;
if( pNotNull ) *pNotNull = notnull;
if( pPrimaryKey ) *pPrimaryKey = primarykey;
if( pAutoinc ) *pAutoinc = autoinc;
if( SQLITE_OK==rc && !pTab ){
sqlite3DbFree(db, zErrMsg);
zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName,
zColumnName);
rc = SQLITE_ERROR;
}
sqlite3ErrorWithMsg(db, rc, (zErrMsg?"%s":0), zErrMsg);
sqlite3DbFree(db, zErrMsg);
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
/*
** Sleep for a little while. Return the amount of time slept.
*/
int sqlite3_sleep(int ms){
sqlite3_vfs *pVfs;
int rc;
pVfs = sqlite3_vfs_find(0);
if( pVfs==0 ) return 0;
/* This function works in milliseconds, but the underlying OsSleep()
** API uses microseconds. Hence the 1000's.
*/
rc = (sqlite3OsSleep(pVfs, ms<0 ? 0 : 1000*ms)/1000);
return rc;
}
/*
** Enable or disable the extended result codes.
*/
int sqlite3_extended_result_codes(sqlite3 *db, int onoff){
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
sqlite3_mutex_enter(db->mutex);
db->errMask = onoff ? 0xffffffff : 0xff;
sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
/*
** Invoke the xFileControl method on a particular database.
*/
int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){
int rc = SQLITE_ERROR;
Btree *pBtree;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
sqlite3_mutex_enter(db->mutex);
pBtree = sqlite3DbNameToBtree(db, zDbName);
if( pBtree ){
Pager *pPager;
sqlite3_file *fd;
sqlite3BtreeEnter(pBtree);
pPager = sqlite3BtreePager(pBtree);
assert( pPager!=0 );
fd = sqlite3PagerFile(pPager);
assert( fd!=0 );
if( op==SQLITE_FCNTL_FILE_POINTER ){
*(sqlite3_file**)pArg = fd;
rc = SQLITE_OK;
}else if( op==SQLITE_FCNTL_VFS_POINTER ){
*(sqlite3_vfs**)pArg = sqlite3PagerVfs(pPager);
rc = SQLITE_OK;
}else if( op==SQLITE_FCNTL_JOURNAL_POINTER ){
*(sqlite3_file**)pArg = sqlite3PagerJrnlFile(pPager);
rc = SQLITE_OK;
}else if( op==SQLITE_FCNTL_DATA_VERSION ){
*(unsigned int*)pArg = sqlite3PagerDataVersion(pPager);
rc = SQLITE_OK;
}else if( op==SQLITE_FCNTL_RESERVE_BYTES ){
int iNew = *(int*)pArg;
*(int*)pArg = sqlite3BtreeGetRequestedReserve(pBtree);
if( iNew>=0 && iNew<=255 ){
sqlite3BtreeSetPageSize(pBtree, 0, iNew, 0);
}
rc = SQLITE_OK;
}else if( op==SQLITE_FCNTL_RESET_CACHE ){
sqlite3BtreeClearCache(pBtree);
rc = SQLITE_OK;
}else{
int nSave = db->busyHandler.nBusy;
rc = sqlite3OsFileControl(fd, op, pArg);
db->busyHandler.nBusy = nSave;
}
sqlite3BtreeLeave(pBtree);
}
sqlite3_mutex_leave(db->mutex);
return rc;
}
/*
** Interface to the testing logic.
*/
int sqlite3_test_control(int op, ...){
int rc = 0;
#ifdef SQLITE_UNTESTABLE
UNUSED_PARAMETER(op);
#else
va_list ap;
va_start(ap, op);
switch( op ){
/*
** Save the current state of the PRNG.
*/
case SQLITE_TESTCTRL_PRNG_SAVE: {
sqlite3PrngSaveState();
break;
}
/*
** Restore the state of the PRNG to the last state saved using
** PRNG_SAVE. If PRNG_SAVE has never before been called, then
** this verb acts like PRNG_RESET.
*/
case SQLITE_TESTCTRL_PRNG_RESTORE: {
sqlite3PrngRestoreState();
break;
}
/* sqlite3_test_control(SQLITE_TESTCTRL_PRNG_SEED, int x, sqlite3 *db);
**
** Control the seed for the pseudo-random number generator (PRNG) that
** is built into SQLite. Cases:
**
** x!=0 && db!=0 Seed the PRNG to the current value of the
** schema cookie in the main database for db, or
** x if the schema cookie is zero. This case
** is convenient to use with database fuzzers
** as it allows the fuzzer some control over the
** the PRNG seed.
**
** x!=0 && db==0 Seed the PRNG to the value of x.
**
** x==0 && db==0 Revert to default behavior of using the
** xRandomness method on the primary VFS.
**
** This test-control also resets the PRNG so that the new seed will
** be used for the next call to sqlite3_randomness().
*/
#ifndef SQLITE_OMIT_WSD
case SQLITE_TESTCTRL_PRNG_SEED: {
int x = va_arg(ap, int);
int y;
sqlite3 *db = va_arg(ap, sqlite3*);
assert( db==0 || db->aDb[0].pSchema!=0 );
if( db && (y = db->aDb[0].pSchema->schema_cookie)!=0 ){ x = y; }
sqlite3Config.iPrngSeed = x;
sqlite3_randomness(0,0);
break;
}
#endif
/* sqlite3_test_control(SQLITE_TESTCTRL_FK_NO_ACTION, sqlite3 *db, int b);
**
** If b is true, then activate the SQLITE_FkNoAction setting. If b is
** false then clearn that setting. If the SQLITE_FkNoAction setting is
** abled, all foreign key ON DELETE and ON UPDATE actions behave as if
** they were NO ACTION, regardless of how they are defined.
**
** NB: One must usually run "PRAGMA writable_schema=RESET" after
** using this test-control, before it will take full effect. failing
** to reset the schema can result in some unexpected behavior.
*/
case SQLITE_TESTCTRL_FK_NO_ACTION: {
sqlite3 *db = va_arg(ap, sqlite3*);
int b = va_arg(ap, int);
if( b ){
db->flags |= SQLITE_FkNoAction;
}else{
db->flags &= ~SQLITE_FkNoAction;
}
break;
}
/*
** sqlite3_test_control(BITVEC_TEST, size, program)
**
** Run a test against a Bitvec object of size. The program argument
** is an array of integers that defines the test. Return -1 on a
** memory allocation error, 0 on success, or non-zero for an error.
** See the sqlite3BitvecBuiltinTest() for additional information.
*/
case SQLITE_TESTCTRL_BITVEC_TEST: {
int sz = va_arg(ap, int);
int *aProg = va_arg(ap, int*);
rc = sqlite3BitvecBuiltinTest(sz, aProg);
break;
}
/*
** sqlite3_test_control(FAULT_INSTALL, xCallback)
**
** Arrange to invoke xCallback() whenever sqlite3FaultSim() is called,
** if xCallback is not NULL.
**
** As a test of the fault simulator mechanism itself, sqlite3FaultSim(0)
** is called immediately after installing the new callback and the return
** value from sqlite3FaultSim(0) becomes the return from
** sqlite3_test_control().
*/
case SQLITE_TESTCTRL_FAULT_INSTALL: {
/* A bug in MSVC prevents it from understanding pointers to functions
** types in the second argument to va_arg(). Work around the problem
** using a typedef.
** http://support.microsoft.com/kb/47961 <-- dead hyperlink
** Search at http://web.archive.org/ to find the 2015-03-16 archive
** of the link above to see the original text.
** sqlite3GlobalConfig.xTestCallback = va_arg(ap, int(*)(int));
*/
typedef int(*sqlite3FaultFuncType)(int);
sqlite3GlobalConfig.xTestCallback = va_arg(ap, sqlite3FaultFuncType);
rc = sqlite3FaultSim(0);
break;
}
/*
** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd)
**
** Register hooks to call to indicate which malloc() failures
** are benign.
*/
case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: {
typedef void (*void_function)(void);
void_function xBenignBegin;
void_function xBenignEnd;
xBenignBegin = va_arg(ap, void_function);
xBenignEnd = va_arg(ap, void_function);
sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd);
break;
}
/*
** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X)
**
** Set the PENDING byte to the value in the argument, if X>0.
** Make no changes if X==0. Return the value of the pending byte
** as it existing before this routine was called.
**
** IMPORTANT: Changing the PENDING byte from 0x40000000 results in
** an incompatible database file format. Changing the PENDING byte
** while any database connection is open results in undefined and
** deleterious behavior.
*/
case SQLITE_TESTCTRL_PENDING_BYTE: {
rc = PENDING_BYTE;
#ifndef SQLITE_OMIT_WSD
{
unsigned int newVal = va_arg(ap, unsigned int);
if( newVal ) sqlite3PendingByte = newVal;
}
#endif
break;
}
/*
** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X)
**
** This action provides a run-time test to see whether or not
** assert() was enabled at compile-time. If X is true and assert()
** is enabled, then the return value is true. If X is true and
** assert() is disabled, then the return value is zero. If X is
** false and assert() is enabled, then the assertion fires and the
** process aborts. If X is false and assert() is disabled, then the
** return value is zero.
*/
case SQLITE_TESTCTRL_ASSERT: {
volatile int x = 0;
assert( /*side-effects-ok*/ (x = va_arg(ap,int))!=0 );
rc = x;
#if defined(SQLITE_DEBUG)
/* Invoke these debugging routines so that the compiler does not
** issue "defined but not used" warnings. */
if( x==9999 ){
sqlite3ShowExpr(0);
sqlite3ShowExpr(0);
sqlite3ShowExprList(0);
sqlite3ShowIdList(0);
sqlite3ShowSrcList(0);
sqlite3ShowWith(0);
sqlite3ShowUpsert(0);
#ifndef SQLITE_OMIT_TRIGGER
sqlite3ShowTriggerStep(0);
sqlite3ShowTriggerStepList(0);
sqlite3ShowTrigger(0);
sqlite3ShowTriggerList(0);
#endif
#ifndef SQLITE_OMIT_WINDOWFUNC
sqlite3ShowWindow(0);
sqlite3ShowWinFunc(0);
#endif
sqlite3ShowSelect(0);
}
#endif
break;
}
/*
** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X)
**
** This action provides a run-time test to see how the ALWAYS and
** NEVER macros were defined at compile-time.
**
** The return value is ALWAYS(X) if X is true, or 0 if X is false.
**
** The recommended test is X==2. If the return value is 2, that means
** ALWAYS() and NEVER() are both no-op pass-through macros, which is the
** default setting. If the return value is 1, then ALWAYS() is either
** hard-coded to true or else it asserts if its argument is false.
** The first behavior (hard-coded to true) is the case if
** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second
** behavior (assert if the argument to ALWAYS() is false) is the case if
** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled.
**
** The run-time test procedure might look something like this:
**
** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){
** // ALWAYS() and NEVER() are no-op pass-through macros
** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){
** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false.
** }else{
** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0.
** }
*/
case SQLITE_TESTCTRL_ALWAYS: {
int x = va_arg(ap,int);
rc = x ? ALWAYS(x) : 0;
break;
}
/*
** sqlite3_test_control(SQLITE_TESTCTRL_BYTEORDER);
**
** The integer returned reveals the byte-order of the computer on which
** SQLite is running:
**
** 1 big-endian, determined at run-time
** 10 little-endian, determined at run-time
** 432101 big-endian, determined at compile-time
** 123410 little-endian, determined at compile-time
*/
case SQLITE_TESTCTRL_BYTEORDER: {
rc = SQLITE_BYTEORDER*100 + SQLITE_LITTLEENDIAN*10 + SQLITE_BIGENDIAN;
break;
}
/* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N)
**
** Enable or disable various optimizations for testing purposes. The
** argument N is a bitmask of optimizations to be disabled. For normal
** operation N should be 0. The idea is that a test program (like the
** SQL Logic Test or SLT test module) can run the same SQL multiple times
** with various optimizations disabled to verify that the same answer
** is obtained in every case.
*/
case SQLITE_TESTCTRL_OPTIMIZATIONS: {
sqlite3 *db = va_arg(ap, sqlite3*);
db->dbOptFlags = va_arg(ap, u32);
break;
}
/* sqlite3_test_control(SQLITE_TESTCTRL_GETOPT, sqlite3 *db, int *N)
**
** Write the current optimization settings into *N. A zero bit means that
** the optimization is on, and a 1 bit means that the optimization is off.
*/
case SQLITE_TESTCTRL_GETOPT: {
sqlite3 *db = va_arg(ap, sqlite3*);
int *pN = va_arg(ap, int*);
*pN = db->dbOptFlags;
break;
}
/* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, onoff, xAlt);
**
** If parameter onoff is 1, subsequent calls to localtime() fail.
** If 2, then invoke xAlt() instead of localtime(). If 0, normal
** processing.
**
** xAlt arguments are void pointers, but they really want to be:
**
** int xAlt(const time_t*, struct tm*);
**
** xAlt should write results in to struct tm object of its 2nd argument
** and return zero on success, or return non-zero on failure.
*/
case SQLITE_TESTCTRL_LOCALTIME_FAULT: {
sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int);
if( sqlite3GlobalConfig.bLocaltimeFault==2 ){
typedef int(*sqlite3LocaltimeType)(const void*,void*);
sqlite3GlobalConfig.xAltLocaltime = va_arg(ap, sqlite3LocaltimeType);
}else{
sqlite3GlobalConfig.xAltLocaltime = 0;
}
break;
}
/* sqlite3_test_control(SQLITE_TESTCTRL_INTERNAL_FUNCTIONS, sqlite3*);
**
** Toggle the ability to use internal functions on or off for
** the database connection given in the argument.
*/
case SQLITE_TESTCTRL_INTERNAL_FUNCTIONS: {
sqlite3 *db = va_arg(ap, sqlite3*);
db->mDbFlags ^= DBFLAG_InternalFunc;
break;
}
/* sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int);
**
** Set or clear a flag that indicates that the database file is always well-
** formed and never corrupt. This flag is clear by default, indicating that
** database files might have arbitrary corruption. Setting the flag during
** testing causes certain assert() statements in the code to be activated
** that demonstrate invariants on well-formed database files.
*/
case SQLITE_TESTCTRL_NEVER_CORRUPT: {
sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int);
break;
}
/* sqlite3_test_control(SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS, int);
**
** Set or clear a flag that causes SQLite to verify that type, name,
** and tbl_name fields of the sqlite_schema table. This is normally
** on, but it is sometimes useful to turn it off for testing.
**
** 2020-07-22: Disabling EXTRA_SCHEMA_CHECKS also disables the
** verification of rootpage numbers when parsing the schema. This
** is useful to make it easier to reach strange internal error states
** during testing. The EXTRA_SCHEMA_CHECKS setting is always enabled
** in production.
*/
case SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS: {
sqlite3GlobalConfig.bExtraSchemaChecks = va_arg(ap, int);
break;
}
/* Set the threshold at which OP_Once counters reset back to zero.
** By default this is 0x7ffffffe (over 2 billion), but that value is
** too big to test in a reasonable amount of time, so this control is
** provided to set a small and easily reachable reset value.
*/
case SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD: {
sqlite3GlobalConfig.iOnceResetThreshold = va_arg(ap, int);
break;
}
/* sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE, xCallback, ptr);
**
** Set the VDBE coverage callback function to xCallback with context
** pointer ptr.
*/
case SQLITE_TESTCTRL_VDBE_COVERAGE: {
#ifdef SQLITE_VDBE_COVERAGE
typedef void (*branch_callback)(void*,unsigned int,
unsigned char,unsigned char);
sqlite3GlobalConfig.xVdbeBranch = va_arg(ap,branch_callback);
sqlite3GlobalConfig.pVdbeBranchArg = va_arg(ap,void*);
#endif
break;
}
/* sqlite3_test_control(SQLITE_TESTCTRL_SORTER_MMAP, db, nMax); */
case SQLITE_TESTCTRL_SORTER_MMAP: {
sqlite3 *db = va_arg(ap, sqlite3*);
db->nMaxSorterMmap = va_arg(ap, int);
break;
}
/* sqlite3_test_control(SQLITE_TESTCTRL_ISINIT);
**
** Return SQLITE_OK if SQLite has been initialized and SQLITE_ERROR if
** not.
*/
case SQLITE_TESTCTRL_ISINIT: {
if( sqlite3GlobalConfig.isInit==0 ) rc = SQLITE_ERROR;
break;
}
/* sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, db, dbName, onOff, tnum);
**
** This test control is used to create imposter tables. "db" is a pointer
** to the database connection. dbName is the database name (ex: "main" or
** "temp") which will receive the imposter. "onOff" turns imposter mode on
** or off. "tnum" is the root page of the b-tree to which the imposter
** table should connect.
**
** Enable imposter mode only when the schema has already been parsed. Then
** run a single CREATE TABLE statement to construct the imposter table in
** the parsed schema. Then turn imposter mode back off again.
**
** If onOff==0 and tnum>0 then reset the schema for all databases, causing
** the schema to be reparsed the next time it is needed. This has the
** effect of erasing all imposter tables.
*/
case SQLITE_TESTCTRL_IMPOSTER: {
sqlite3 *db = va_arg(ap, sqlite3*);
int iDb;
sqlite3_mutex_enter(db->mutex);
iDb = sqlite3FindDbName(db, va_arg(ap,const char*));
if( iDb>=0 ){
db->init.iDb = iDb;
db->init.busy = db->init.imposterTable = va_arg(ap,int);
db->init.newTnum = va_arg(ap,int);
if( db->init.busy==0 && db->init.newTnum>0 ){
sqlite3ResetAllSchemasOfConnection(db);
}
}
sqlite3_mutex_leave(db->mutex);
break;
}
#if defined(YYCOVERAGE)
/* sqlite3_test_control(SQLITE_TESTCTRL_PARSER_COVERAGE, FILE *out)
**
** This test control (only available when SQLite is compiled with
** -DYYCOVERAGE) writes a report onto "out" that shows all
** state/lookahead combinations in the parser state machine
** which are never exercised. If any state is missed, make the
** return code SQLITE_ERROR.
*/
case SQLITE_TESTCTRL_PARSER_COVERAGE: {
FILE *out = va_arg(ap, FILE*);
if( sqlite3ParserCoverage(out) ) rc = SQLITE_ERROR;
break;
}
#endif /* defined(YYCOVERAGE) */
/* sqlite3_test_control(SQLITE_TESTCTRL_RESULT_INTREAL, sqlite3_context*);
**
** This test-control causes the most recent sqlite3_result_int64() value
** to be interpreted as a MEM_IntReal instead of as an MEM_Int. Normally,
** MEM_IntReal values only arise during an INSERT operation of integer
** values into a REAL column, so they can be challenging to test. This
** test-control enables us to write an intreal() SQL function that can
** inject an intreal() value at arbitrary places in an SQL statement,
** for testing purposes.
*/
case SQLITE_TESTCTRL_RESULT_INTREAL: {
sqlite3_context *pCtx = va_arg(ap, sqlite3_context*);
sqlite3ResultIntReal(pCtx);
break;
}
/* sqlite3_test_control(SQLITE_TESTCTRL_SEEK_COUNT,
** sqlite3 *db, // Database connection
** u64 *pnSeek // Write seek count here
** );
**
** This test-control queries the seek-counter on the "main" database
** file. The seek-counter is written into *pnSeek and is then reset.
** The seek-count is only available if compiled with SQLITE_DEBUG.
*/
case SQLITE_TESTCTRL_SEEK_COUNT: {
sqlite3 *db = va_arg(ap, sqlite3*);
u64 *pn = va_arg(ap, sqlite3_uint64*);
*pn = sqlite3BtreeSeekCount(db->aDb->pBt);
(void)db; /* Silence harmless unused variable warning */
break;
}
/* sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, op, ptr)
**
** "ptr" is a pointer to a u32.
**
** op==0 Store the current sqlite3TreeTrace in *ptr
** op==1 Set sqlite3TreeTrace to the value *ptr
** op==2 Store the current sqlite3WhereTrace in *ptr
** op==3 Set sqlite3WhereTrace to the value *ptr
*/
case SQLITE_TESTCTRL_TRACEFLAGS: {
int opTrace = va_arg(ap, int);
u32 *ptr = va_arg(ap, u32*);
switch( opTrace ){
case 0: *ptr = sqlite3TreeTrace; break;
case 1: sqlite3TreeTrace = *ptr; break;
case 2: *ptr = sqlite3WhereTrace; break;
case 3: sqlite3WhereTrace = *ptr; break;
}
break;
}
/* sqlite3_test_control(SQLITE_TESTCTRL_LOGEST,
** double fIn, // Input value
** int *pLogEst, // sqlite3LogEstFromDouble(fIn)
** u64 *pInt, // sqlite3LogEstToInt(*pLogEst)
** int *pLogEst2 // sqlite3LogEst(*pInt)
** );
**
** Test access for the LogEst conversion routines.
*/
case SQLITE_TESTCTRL_LOGEST: {
double rIn = va_arg(ap, double);
LogEst rLogEst = sqlite3LogEstFromDouble(rIn);
int *pI1 = va_arg(ap,int*);
u64 *pU64 = va_arg(ap,u64*);
int *pI2 = va_arg(ap,int*);
*pI1 = rLogEst;
*pU64 = sqlite3LogEstToInt(rLogEst);
*pI2 = sqlite3LogEst(*pU64);
break;
}
#if defined(SQLITE_DEBUG) && !defined(SQLITE_OMIT_WSD)
/* sqlite3_test_control(SQLITE_TESTCTRL_TUNE, id, *piValue)
**
** If "id" is an integer between 1 and SQLITE_NTUNE then set the value
** of the id-th tuning parameter to *piValue. If "id" is between -1
** and -SQLITE_NTUNE, then write the current value of the (-id)-th
** tuning parameter into *piValue.
**
** Tuning parameters are for use during transient development builds,
** to help find the best values for constants in the query planner.
** Access tuning parameters using the Tuning(ID) macro. Set the
** parameters in the CLI using ".testctrl tune ID VALUE".
**
** Transient use only. Tuning parameters should not be used in
** checked-in code.
*/
case SQLITE_TESTCTRL_TUNE: {
int id = va_arg(ap, int);
int *piValue = va_arg(ap, int*);
if( id>0 && id<=SQLITE_NTUNE ){
Tuning(id) = *piValue;
}else if( id<0 && id>=-SQLITE_NTUNE ){
*piValue = Tuning(-id);
}else{
rc = SQLITE_NOTFOUND;
}
break;
}
#endif
/* sqlite3_test_control(SQLITE_TESTCTRL_JSON_SELFCHECK, &onOff);
**
** Activate or deactivate validation of JSONB that is generated from
** text. Off by default, as the validation is slow. Validation is
** only available if compiled using SQLITE_DEBUG.
**
** If onOff is initially 1, then turn it on. If onOff is initially
** off, turn it off. If onOff is initially -1, then change onOff
** to be the current setting.
*/
case SQLITE_TESTCTRL_JSON_SELFCHECK: {
#if defined(SQLITE_DEBUG) && !defined(SQLITE_OMIT_WSD)
int *pOnOff = va_arg(ap, int*);
if( *pOnOff<0 ){
*pOnOff = sqlite3Config.bJsonSelfcheck;
}else{
sqlite3Config.bJsonSelfcheck = (u8)((*pOnOff)&0xff);
}
#endif
break;
}
}
va_end(ap);
#endif /* SQLITE_UNTESTABLE */
return rc;
}
/*
** The Pager stores the Database filename, Journal filename, and WAL filename
** consecutively in memory, in that order. The database filename is prefixed
** by four zero bytes. Locate the start of the database filename by searching
** backwards for the first byte following four consecutive zero bytes.
**
** This only works if the filename passed in was obtained from the Pager.
*/
static const char *databaseName(const char *zName){
while( zName[-1]!=0 || zName[-2]!=0 || zName[-3]!=0 || zName[-4]!=0 ){
zName--;
}
return zName;
}
/*
** Append text z[] to the end of p[]. Return a pointer to the first
** character after then zero terminator on the new text in p[].
*/
static char *appendText(char *p, const char *z){
size_t n = strlen(z);
memcpy(p, z, n+1);
return p+n+1;
}
/*
** Allocate memory to hold names for a database, journal file, WAL file,
** and query parameters. The pointer returned is valid for use by
** sqlite3_filename_database() and sqlite3_uri_parameter() and related
** functions.
**
** Memory layout must be compatible with that generated by the pager
** and expected by sqlite3_uri_parameter() and databaseName().
*/
const char *sqlite3_create_filename(
const char *zDatabase,
const char *zJournal,
const char *zWal,
int nParam,
const char **azParam
){
sqlite3_int64 nByte;
int i;
char *pResult, *p;
nByte = strlen(zDatabase) + strlen(zJournal) + strlen(zWal) + 10;
for(i=0; i<nParam*2; i++){
nByte += strlen(azParam[i])+1;
}
pResult = p = sqlite3_malloc64( nByte );
if( p==0 ) return 0;
memset(p, 0, 4);
p += 4;
p = appendText(p, zDatabase);
for(i=0; i<nParam*2; i++){
p = appendText(p, azParam[i]);
}
*(p++) = 0;
p = appendText(p, zJournal);
p = appendText(p, zWal);
*(p++) = 0;
*(p++) = 0;
assert( (sqlite3_int64)(p - pResult)==nByte );
return pResult + 4;
}
/*
** Free memory obtained from sqlite3_create_filename(). It is a severe
** error to call this routine with any parameter other than a pointer
** previously obtained from sqlite3_create_filename() or a NULL pointer.
*/
void sqlite3_free_filename(const char *p){
if( p==0 ) return;
p = databaseName(p);
sqlite3_free((char*)p - 4);
}
/*
** This is a utility routine, useful to VFS implementations, that checks
** to see if a database file was a URI that contained a specific query
** parameter, and if so obtains the value of the query parameter.
**
** The zFilename argument is the filename pointer passed into the xOpen()
** method of a VFS implementation. The zParam argument is the name of the
** query parameter we seek. This routine returns the value of the zParam
** parameter if it exists. If the parameter does not exist, this routine
** returns a NULL pointer.
*/
const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){
if( zFilename==0 || zParam==0 ) return 0;
zFilename = databaseName(zFilename);
return uriParameter(zFilename, zParam);
}
/*
** Return a pointer to the name of Nth query parameter of the filename.
*/
const char *sqlite3_uri_key(const char *zFilename, int N){
if( zFilename==0 || N<0 ) return 0;
zFilename = databaseName(zFilename);
zFilename += sqlite3Strlen30(zFilename) + 1;
while( ALWAYS(zFilename) && zFilename[0] && (N--)>0 ){
zFilename += sqlite3Strlen30(zFilename) + 1;
zFilename += sqlite3Strlen30(zFilename) + 1;
}
return zFilename[0] ? zFilename : 0;
}
/*
** Return a boolean value for a query parameter.
*/
int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){
const char *z = sqlite3_uri_parameter(zFilename, zParam);
bDflt = bDflt!=0;
return z ? sqlite3GetBoolean(z, bDflt) : bDflt;
}
/*
** Return a 64-bit integer value for a query parameter.
*/
sqlite3_int64 sqlite3_uri_int64(
const char *zFilename, /* Filename as passed to xOpen */
const char *zParam, /* URI parameter sought */
sqlite3_int64 bDflt /* return if parameter is missing */
){
const char *z = sqlite3_uri_parameter(zFilename, zParam);
sqlite3_int64 v;
if( z && sqlite3DecOrHexToI64(z, &v)==0 ){
bDflt = v;
}
return bDflt;
}
/*
** Translate a filename that was handed to a VFS routine into the corresponding
** database, journal, or WAL file.
**
** It is an error to pass this routine a filename string that was not
** passed into the VFS from the SQLite core. Doing so is similar to
** passing free() a pointer that was not obtained from malloc() - it is
** an error that we cannot easily detect but that will likely cause memory
** corruption.
*/
const char *sqlite3_filename_database(const char *zFilename){
if( zFilename==0 ) return 0;
return databaseName(zFilename);
}
const char *sqlite3_filename_journal(const char *zFilename){
if( zFilename==0 ) return 0;
zFilename = databaseName(zFilename);
zFilename += sqlite3Strlen30(zFilename) + 1;
while( ALWAYS(zFilename) && zFilename[0] ){
zFilename += sqlite3Strlen30(zFilename) + 1;
zFilename += sqlite3Strlen30(zFilename) + 1;
}
return zFilename + 1;
}
const char *sqlite3_filename_wal(const char *zFilename){
#ifdef SQLITE_OMIT_WAL
return 0;
#else
zFilename = sqlite3_filename_journal(zFilename);
if( zFilename ) zFilename += sqlite3Strlen30(zFilename) + 1;
return zFilename;
#endif
}
/*
** Return the Btree pointer identified by zDbName. Return NULL if not found.
*/
Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){
int iDb = zDbName ? sqlite3FindDbName(db, zDbName) : 0;
return iDb<0 ? 0 : db->aDb[iDb].pBt;
}
/*
** Return the name of the N-th database schema. Return NULL if N is out
** of range.
*/
const char *sqlite3_db_name(sqlite3 *db, int N){
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
(void)SQLITE_MISUSE_BKPT;
return 0;
}
#endif
if( N<0 || N>=db->nDb ){
return 0;
}else{
return db->aDb[N].zDbSName;
}
}
/*
** Return the filename of the database associated with a database
** connection.
*/
const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){
Btree *pBt;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
(void)SQLITE_MISUSE_BKPT;
return 0;
}
#endif
pBt = sqlite3DbNameToBtree(db, zDbName);
return pBt ? sqlite3BtreeGetFilename(pBt) : 0;
}
/*
** Return 1 if database is read-only or 0 if read/write. Return -1 if
** no such database exists.
*/
int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){
Btree *pBt;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
(void)SQLITE_MISUSE_BKPT;
return -1;
}
#endif
pBt = sqlite3DbNameToBtree(db, zDbName);
return pBt ? sqlite3BtreeIsReadonly(pBt) : -1;
}
#ifdef SQLITE_ENABLE_SNAPSHOT
/*
** Obtain a snapshot handle for the snapshot of database zDb currently
** being read by handle db.
*/
int sqlite3_snapshot_get(
sqlite3 *db,
const char *zDb,
sqlite3_snapshot **ppSnapshot
){
int rc = SQLITE_ERROR;
#ifndef SQLITE_OMIT_WAL
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
return SQLITE_MISUSE_BKPT;
}
#endif
sqlite3_mutex_enter(db->mutex);
if( db->autoCommit==0 ){
int iDb = sqlite3FindDbName(db, zDb);
if( iDb==0 || iDb>1 ){
Btree *pBt = db->aDb[iDb].pBt;
if( SQLITE_TXN_WRITE!=sqlite3BtreeTxnState(pBt) ){
Pager *pPager = sqlite3BtreePager(pBt);
i64 dummy = 0;
sqlite3PagerSnapshotOpen(pPager, (sqlite3_snapshot*)&dummy);
rc = sqlite3BtreeBeginTrans(pBt, 0, 0);
sqlite3PagerSnapshotOpen(pPager, 0);
if( rc==SQLITE_OK ){
rc = sqlite3PagerSnapshotGet(sqlite3BtreePager(pBt), ppSnapshot);
}
}
}
}
sqlite3_mutex_leave(db->mutex);
#endif /* SQLITE_OMIT_WAL */
return rc;
}
/*
** Open a read-transaction on the snapshot identified by pSnapshot.
*/
int sqlite3_snapshot_open(
sqlite3 *db,
const char *zDb,
sqlite3_snapshot *pSnapshot
){
int rc = SQLITE_ERROR;
#ifndef SQLITE_OMIT_WAL
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
return SQLITE_MISUSE_BKPT;
}
#endif
sqlite3_mutex_enter(db->mutex);
if( db->autoCommit==0 ){
int iDb;
iDb = sqlite3FindDbName(db, zDb);
if( iDb==0 || iDb>1 ){
Btree *pBt = db->aDb[iDb].pBt;
if( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ){
Pager *pPager = sqlite3BtreePager(pBt);
int bUnlock = 0;
if( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_NONE ){
if( db->nVdbeActive==0 ){
rc = sqlite3PagerSnapshotCheck(pPager, pSnapshot);
if( rc==SQLITE_OK ){
bUnlock = 1;
rc = sqlite3BtreeCommit(pBt);
}
}
}else{
rc = SQLITE_OK;
}
if( rc==SQLITE_OK ){
rc = sqlite3PagerSnapshotOpen(pPager, pSnapshot);
}
if( rc==SQLITE_OK ){
rc = sqlite3BtreeBeginTrans(pBt, 0, 0);
sqlite3PagerSnapshotOpen(pPager, 0);
}
if( bUnlock ){
sqlite3PagerSnapshotUnlock(pPager);
}
}
}
}
sqlite3_mutex_leave(db->mutex);
#endif /* SQLITE_OMIT_WAL */
return rc;
}
/*
** Recover as many snapshots as possible from the wal file associated with
** schema zDb of database db.
*/
int sqlite3_snapshot_recover(sqlite3 *db, const char *zDb){
int rc = SQLITE_ERROR;
#ifndef SQLITE_OMIT_WAL
int iDb;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(db) ){
return SQLITE_MISUSE_BKPT;
}
#endif
sqlite3_mutex_enter(db->mutex);
iDb = sqlite3FindDbName(db, zDb);
if( iDb==0 || iDb>1 ){
Btree *pBt = db->aDb[iDb].pBt;
if( SQLITE_TXN_NONE==sqlite3BtreeTxnState(pBt) ){
rc = sqlite3BtreeBeginTrans(pBt, 0, 0);
if( rc==SQLITE_OK ){
rc = sqlite3PagerSnapshotRecover(sqlite3BtreePager(pBt));
sqlite3BtreeCommit(pBt);
}
}
}
sqlite3_mutex_leave(db->mutex);
#endif /* SQLITE_OMIT_WAL */
return rc;
}
/*
** Free a snapshot handle obtained from sqlite3_snapshot_get().
*/
void sqlite3_snapshot_free(sqlite3_snapshot *pSnapshot){
sqlite3_free(pSnapshot);
}
#endif /* SQLITE_ENABLE_SNAPSHOT */
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
/*
** Given the name of a compile-time option, return true if that option
** was used and false if not.
**
** The name can optionally begin with "SQLITE_" but the "SQLITE_" prefix
** is not required for a match.
*/
int sqlite3_compileoption_used(const char *zOptName){
int i, n;
int nOpt;
const char **azCompileOpt;
#ifdef SQLITE_ENABLE_API_ARMOR
if( zOptName==0 ){
(void)SQLITE_MISUSE_BKPT;
return 0;
}
#endif
azCompileOpt = sqlite3CompileOptions(&nOpt);
if( sqlite3StrNICmp(zOptName, "SQLITE_", 7)==0 ) zOptName += 7;
n = sqlite3Strlen30(zOptName);
/* Since nOpt is normally in single digits, a linear search is
** adequate. No need for a binary search. */
for(i=0; i<nOpt; i++){
if( sqlite3StrNICmp(zOptName, azCompileOpt[i], n)==0
&& sqlite3IsIdChar((unsigned char)azCompileOpt[i][n])==0
){
return 1;
}
}
return 0;
}
/*
** Return the N-th compile-time option string. If N is out of range,
** return a NULL pointer.
*/
const char *sqlite3_compileoption_get(int N){
int nOpt;
const char **azCompileOpt;
azCompileOpt = sqlite3CompileOptions(&nOpt);
if( N>=0 && N<nOpt ){
return azCompileOpt[N];
}
return 0;
}
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */