sqlite/src/tclsqlite.c
drh d1102b1ec7 Merge the latest trunk changes, especially the ORDER BY optimizer enhancements
but also other fixes, onto the sessions branch.

FossilOrigin-Name: f1fbb8c5bfa84e84e0b8e2872d83b06a0c0d5acc
2012-10-09 14:58:15 +00:00

3940 lines
120 KiB
C

/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** A TCL Interface to SQLite. Append this file to sqlite3.c and
** compile the whole thing to build a TCL-enabled version of SQLite.
**
** Compile-time options:
**
** -DTCLSH=1 Add a "main()" routine that works as a tclsh.
**
** -DSQLITE_TCLMD5 When used in conjuction with -DTCLSH=1, add
** four new commands to the TCL interpreter for
** generating MD5 checksums: md5, md5file,
** md5-10x8, and md5file-10x8.
**
** -DSQLITE_TEST When used in conjuction with -DTCLSH=1, add
** hundreds of new commands used for testing
** SQLite. This option implies -DSQLITE_TCLMD5.
*/
#include "tcl.h"
#include <errno.h>
/*
** Some additional include files are needed if this file is not
** appended to the amalgamation.
*/
#ifndef SQLITE_AMALGAMATION
# include "sqlite3.h"
# include <stdlib.h>
# include <string.h>
# include <assert.h>
typedef unsigned char u8;
#endif
#include <ctype.h>
/*
* Windows needs to know which symbols to export. Unix does not.
* BUILD_sqlite should be undefined for Unix.
*/
#ifdef BUILD_sqlite
#undef TCL_STORAGE_CLASS
#define TCL_STORAGE_CLASS DLLEXPORT
#endif /* BUILD_sqlite */
#define NUM_PREPARED_STMTS 10
#define MAX_PREPARED_STMTS 100
/* Forward declaration */
typedef struct SqliteDb SqliteDb;
/*
** New SQL functions can be created as TCL scripts. Each such function
** is described by an instance of the following structure.
*/
typedef struct SqlFunc SqlFunc;
struct SqlFunc {
Tcl_Interp *interp; /* The TCL interpret to execute the function */
Tcl_Obj *pScript; /* The Tcl_Obj representation of the script */
SqliteDb *pDb; /* Database connection that owns this function */
int useEvalObjv; /* True if it is safe to use Tcl_EvalObjv */
char *zName; /* Name of this function */
SqlFunc *pNext; /* Next function on the list of them all */
};
/*
** New collation sequences function can be created as TCL scripts. Each such
** function is described by an instance of the following structure.
*/
typedef struct SqlCollate SqlCollate;
struct SqlCollate {
Tcl_Interp *interp; /* The TCL interpret to execute the function */
char *zScript; /* The script to be run */
SqlCollate *pNext; /* Next function on the list of them all */
};
/*
** Prepared statements are cached for faster execution. Each prepared
** statement is described by an instance of the following structure.
*/
typedef struct SqlPreparedStmt SqlPreparedStmt;
struct SqlPreparedStmt {
SqlPreparedStmt *pNext; /* Next in linked list */
SqlPreparedStmt *pPrev; /* Previous on the list */
sqlite3_stmt *pStmt; /* The prepared statement */
int nSql; /* chars in zSql[] */
const char *zSql; /* Text of the SQL statement */
int nParm; /* Size of apParm array */
Tcl_Obj **apParm; /* Array of referenced object pointers */
};
typedef struct IncrblobChannel IncrblobChannel;
/*
** There is one instance of this structure for each SQLite database
** that has been opened by the SQLite TCL interface.
**
** If this module is built with SQLITE_TEST defined (to create the SQLite
** testfixture executable), then it may be configured to use either
** sqlite3_prepare_v2() or sqlite3_prepare() to prepare SQL statements.
** If SqliteDb.bLegacyPrepare is true, sqlite3_prepare() is used.
*/
struct SqliteDb {
sqlite3 *db; /* The "real" database structure. MUST BE FIRST */
Tcl_Interp *interp; /* The interpreter used for this database */
char *zBusy; /* The busy callback routine */
char *zCommit; /* The commit hook callback routine */
char *zTrace; /* The trace callback routine */
char *zProfile; /* The profile callback routine */
char *zProgress; /* The progress callback routine */
char *zAuth; /* The authorization callback routine */
int disableAuth; /* Disable the authorizer if it exists */
char *zNull; /* Text to substitute for an SQL NULL value */
SqlFunc *pFunc; /* List of SQL functions */
Tcl_Obj *pUpdateHook; /* Update hook script (if any) */
Tcl_Obj *pPreUpdateHook; /* Pre-update hook script (if any) */
Tcl_Obj *pRollbackHook; /* Rollback hook script (if any) */
Tcl_Obj *pWalHook; /* WAL hook script (if any) */
Tcl_Obj *pUnlockNotify; /* Unlock notify script (if any) */
SqlCollate *pCollate; /* List of SQL collation functions */
int rc; /* Return code of most recent sqlite3_exec() */
Tcl_Obj *pCollateNeeded; /* Collation needed script */
SqlPreparedStmt *stmtList; /* List of prepared statements*/
SqlPreparedStmt *stmtLast; /* Last statement in the list */
int maxStmt; /* The next maximum number of stmtList */
int nStmt; /* Number of statements in stmtList */
IncrblobChannel *pIncrblob;/* Linked list of open incrblob channels */
int nStep, nSort, nIndex; /* Statistics for most recent operation */
int nTransaction; /* Number of nested [transaction] methods */
#ifdef SQLITE_TEST
int bLegacyPrepare; /* True to use sqlite3_prepare() */
#endif
};
struct IncrblobChannel {
sqlite3_blob *pBlob; /* sqlite3 blob handle */
SqliteDb *pDb; /* Associated database connection */
int iSeek; /* Current seek offset */
Tcl_Channel channel; /* Channel identifier */
IncrblobChannel *pNext; /* Linked list of all open incrblob channels */
IncrblobChannel *pPrev; /* Linked list of all open incrblob channels */
};
/*
** Compute a string length that is limited to what can be stored in
** lower 30 bits of a 32-bit signed integer.
*/
static int strlen30(const char *z){
const char *z2 = z;
while( *z2 ){ z2++; }
return 0x3fffffff & (int)(z2 - z);
}
#ifndef SQLITE_OMIT_INCRBLOB
/*
** Close all incrblob channels opened using database connection pDb.
** This is called when shutting down the database connection.
*/
static void closeIncrblobChannels(SqliteDb *pDb){
IncrblobChannel *p;
IncrblobChannel *pNext;
for(p=pDb->pIncrblob; p; p=pNext){
pNext = p->pNext;
/* Note: Calling unregister here call Tcl_Close on the incrblob channel,
** which deletes the IncrblobChannel structure at *p. So do not
** call Tcl_Free() here.
*/
Tcl_UnregisterChannel(pDb->interp, p->channel);
}
}
/*
** Close an incremental blob channel.
*/
static int incrblobClose(ClientData instanceData, Tcl_Interp *interp){
IncrblobChannel *p = (IncrblobChannel *)instanceData;
int rc = sqlite3_blob_close(p->pBlob);
sqlite3 *db = p->pDb->db;
/* Remove the channel from the SqliteDb.pIncrblob list. */
if( p->pNext ){
p->pNext->pPrev = p->pPrev;
}
if( p->pPrev ){
p->pPrev->pNext = p->pNext;
}
if( p->pDb->pIncrblob==p ){
p->pDb->pIncrblob = p->pNext;
}
/* Free the IncrblobChannel structure */
Tcl_Free((char *)p);
if( rc!=SQLITE_OK ){
Tcl_SetResult(interp, (char *)sqlite3_errmsg(db), TCL_VOLATILE);
return TCL_ERROR;
}
return TCL_OK;
}
/*
** Read data from an incremental blob channel.
*/
static int incrblobInput(
ClientData instanceData,
char *buf,
int bufSize,
int *errorCodePtr
){
IncrblobChannel *p = (IncrblobChannel *)instanceData;
int nRead = bufSize; /* Number of bytes to read */
int nBlob; /* Total size of the blob */
int rc; /* sqlite error code */
nBlob = sqlite3_blob_bytes(p->pBlob);
if( (p->iSeek+nRead)>nBlob ){
nRead = nBlob-p->iSeek;
}
if( nRead<=0 ){
return 0;
}
rc = sqlite3_blob_read(p->pBlob, (void *)buf, nRead, p->iSeek);
if( rc!=SQLITE_OK ){
*errorCodePtr = rc;
return -1;
}
p->iSeek += nRead;
return nRead;
}
/*
** Write data to an incremental blob channel.
*/
static int incrblobOutput(
ClientData instanceData,
CONST char *buf,
int toWrite,
int *errorCodePtr
){
IncrblobChannel *p = (IncrblobChannel *)instanceData;
int nWrite = toWrite; /* Number of bytes to write */
int nBlob; /* Total size of the blob */
int rc; /* sqlite error code */
nBlob = sqlite3_blob_bytes(p->pBlob);
if( (p->iSeek+nWrite)>nBlob ){
*errorCodePtr = EINVAL;
return -1;
}
if( nWrite<=0 ){
return 0;
}
rc = sqlite3_blob_write(p->pBlob, (void *)buf, nWrite, p->iSeek);
if( rc!=SQLITE_OK ){
*errorCodePtr = EIO;
return -1;
}
p->iSeek += nWrite;
return nWrite;
}
/*
** Seek an incremental blob channel.
*/
static int incrblobSeek(
ClientData instanceData,
long offset,
int seekMode,
int *errorCodePtr
){
IncrblobChannel *p = (IncrblobChannel *)instanceData;
switch( seekMode ){
case SEEK_SET:
p->iSeek = offset;
break;
case SEEK_CUR:
p->iSeek += offset;
break;
case SEEK_END:
p->iSeek = sqlite3_blob_bytes(p->pBlob) + offset;
break;
default: assert(!"Bad seekMode");
}
return p->iSeek;
}
static void incrblobWatch(ClientData instanceData, int mode){
/* NO-OP */
}
static int incrblobHandle(ClientData instanceData, int dir, ClientData *hPtr){
return TCL_ERROR;
}
static Tcl_ChannelType IncrblobChannelType = {
"incrblob", /* typeName */
TCL_CHANNEL_VERSION_2, /* version */
incrblobClose, /* closeProc */
incrblobInput, /* inputProc */
incrblobOutput, /* outputProc */
incrblobSeek, /* seekProc */
0, /* setOptionProc */
0, /* getOptionProc */
incrblobWatch, /* watchProc (this is a no-op) */
incrblobHandle, /* getHandleProc (always returns error) */
0, /* close2Proc */
0, /* blockModeProc */
0, /* flushProc */
0, /* handlerProc */
0, /* wideSeekProc */
};
/*
** Create a new incrblob channel.
*/
static int createIncrblobChannel(
Tcl_Interp *interp,
SqliteDb *pDb,
const char *zDb,
const char *zTable,
const char *zColumn,
sqlite_int64 iRow,
int isReadonly
){
IncrblobChannel *p;
sqlite3 *db = pDb->db;
sqlite3_blob *pBlob;
int rc;
int flags = TCL_READABLE|(isReadonly ? 0 : TCL_WRITABLE);
/* This variable is used to name the channels: "incrblob_[incr count]" */
static int count = 0;
char zChannel[64];
rc = sqlite3_blob_open(db, zDb, zTable, zColumn, iRow, !isReadonly, &pBlob);
if( rc!=SQLITE_OK ){
Tcl_SetResult(interp, (char *)sqlite3_errmsg(pDb->db), TCL_VOLATILE);
return TCL_ERROR;
}
p = (IncrblobChannel *)Tcl_Alloc(sizeof(IncrblobChannel));
p->iSeek = 0;
p->pBlob = pBlob;
sqlite3_snprintf(sizeof(zChannel), zChannel, "incrblob_%d", ++count);
p->channel = Tcl_CreateChannel(&IncrblobChannelType, zChannel, p, flags);
Tcl_RegisterChannel(interp, p->channel);
/* Link the new channel into the SqliteDb.pIncrblob list. */
p->pNext = pDb->pIncrblob;
p->pPrev = 0;
if( p->pNext ){
p->pNext->pPrev = p;
}
pDb->pIncrblob = p;
p->pDb = pDb;
Tcl_SetResult(interp, (char *)Tcl_GetChannelName(p->channel), TCL_VOLATILE);
return TCL_OK;
}
#else /* else clause for "#ifndef SQLITE_OMIT_INCRBLOB" */
#define closeIncrblobChannels(pDb)
#endif
/*
** Look at the script prefix in pCmd. We will be executing this script
** after first appending one or more arguments. This routine analyzes
** the script to see if it is safe to use Tcl_EvalObjv() on the script
** rather than the more general Tcl_EvalEx(). Tcl_EvalObjv() is much
** faster.
**
** Scripts that are safe to use with Tcl_EvalObjv() consists of a
** command name followed by zero or more arguments with no [...] or $
** or {...} or ; to be seen anywhere. Most callback scripts consist
** of just a single procedure name and they meet this requirement.
*/
static int safeToUseEvalObjv(Tcl_Interp *interp, Tcl_Obj *pCmd){
/* We could try to do something with Tcl_Parse(). But we will instead
** just do a search for forbidden characters. If any of the forbidden
** characters appear in pCmd, we will report the string as unsafe.
*/
const char *z;
int n;
z = Tcl_GetStringFromObj(pCmd, &n);
while( n-- > 0 ){
int c = *(z++);
if( c=='$' || c=='[' || c==';' ) return 0;
}
return 1;
}
/*
** Find an SqlFunc structure with the given name. Or create a new
** one if an existing one cannot be found. Return a pointer to the
** structure.
*/
static SqlFunc *findSqlFunc(SqliteDb *pDb, const char *zName){
SqlFunc *p, *pNew;
int i;
pNew = (SqlFunc*)Tcl_Alloc( sizeof(*pNew) + strlen30(zName) + 1 );
pNew->zName = (char*)&pNew[1];
for(i=0; zName[i]; i++){ pNew->zName[i] = tolower(zName[i]); }
pNew->zName[i] = 0;
for(p=pDb->pFunc; p; p=p->pNext){
if( strcmp(p->zName, pNew->zName)==0 ){
Tcl_Free((char*)pNew);
return p;
}
}
pNew->interp = pDb->interp;
pNew->pDb = pDb;
pNew->pScript = 0;
pNew->pNext = pDb->pFunc;
pDb->pFunc = pNew;
return pNew;
}
/*
** Free a single SqlPreparedStmt object.
*/
static void dbFreeStmt(SqlPreparedStmt *pStmt){
#ifdef SQLITE_TEST
if( sqlite3_sql(pStmt->pStmt)==0 ){
Tcl_Free((char *)pStmt->zSql);
}
#endif
sqlite3_finalize(pStmt->pStmt);
Tcl_Free((char *)pStmt);
}
/*
** Finalize and free a list of prepared statements
*/
static void flushStmtCache(SqliteDb *pDb){
SqlPreparedStmt *pPreStmt;
SqlPreparedStmt *pNext;
for(pPreStmt = pDb->stmtList; pPreStmt; pPreStmt=pNext){
pNext = pPreStmt->pNext;
dbFreeStmt(pPreStmt);
}
pDb->nStmt = 0;
pDb->stmtLast = 0;
pDb->stmtList = 0;
}
/*
** TCL calls this procedure when an sqlite3 database command is
** deleted.
*/
static void DbDeleteCmd(void *db){
SqliteDb *pDb = (SqliteDb*)db;
flushStmtCache(pDb);
closeIncrblobChannels(pDb);
sqlite3_close(pDb->db);
while( pDb->pFunc ){
SqlFunc *pFunc = pDb->pFunc;
pDb->pFunc = pFunc->pNext;
assert( pFunc->pDb==pDb );
Tcl_DecrRefCount(pFunc->pScript);
Tcl_Free((char*)pFunc);
}
while( pDb->pCollate ){
SqlCollate *pCollate = pDb->pCollate;
pDb->pCollate = pCollate->pNext;
Tcl_Free((char*)pCollate);
}
if( pDb->zBusy ){
Tcl_Free(pDb->zBusy);
}
if( pDb->zTrace ){
Tcl_Free(pDb->zTrace);
}
if( pDb->zProfile ){
Tcl_Free(pDb->zProfile);
}
if( pDb->zAuth ){
Tcl_Free(pDb->zAuth);
}
if( pDb->zNull ){
Tcl_Free(pDb->zNull);
}
if( pDb->pUpdateHook ){
Tcl_DecrRefCount(pDb->pUpdateHook);
}
if( pDb->pPreUpdateHook ){
Tcl_DecrRefCount(pDb->pPreUpdateHook);
}
if( pDb->pRollbackHook ){
Tcl_DecrRefCount(pDb->pRollbackHook);
}
if( pDb->pWalHook ){
Tcl_DecrRefCount(pDb->pWalHook);
}
if( pDb->pCollateNeeded ){
Tcl_DecrRefCount(pDb->pCollateNeeded);
}
Tcl_Free((char*)pDb);
}
/*
** This routine is called when a database file is locked while trying
** to execute SQL.
*/
static int DbBusyHandler(void *cd, int nTries){
SqliteDb *pDb = (SqliteDb*)cd;
int rc;
char zVal[30];
sqlite3_snprintf(sizeof(zVal), zVal, "%d", nTries);
rc = Tcl_VarEval(pDb->interp, pDb->zBusy, " ", zVal, (char*)0);
if( rc!=TCL_OK || atoi(Tcl_GetStringResult(pDb->interp)) ){
return 0;
}
return 1;
}
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
/*
** This routine is invoked as the 'progress callback' for the database.
*/
static int DbProgressHandler(void *cd){
SqliteDb *pDb = (SqliteDb*)cd;
int rc;
assert( pDb->zProgress );
rc = Tcl_Eval(pDb->interp, pDb->zProgress);
if( rc!=TCL_OK || atoi(Tcl_GetStringResult(pDb->interp)) ){
return 1;
}
return 0;
}
#endif
#ifndef SQLITE_OMIT_TRACE
/*
** This routine is called by the SQLite trace handler whenever a new
** block of SQL is executed. The TCL script in pDb->zTrace is executed.
*/
static void DbTraceHandler(void *cd, const char *zSql){
SqliteDb *pDb = (SqliteDb*)cd;
Tcl_DString str;
Tcl_DStringInit(&str);
Tcl_DStringAppend(&str, pDb->zTrace, -1);
Tcl_DStringAppendElement(&str, zSql);
Tcl_Eval(pDb->interp, Tcl_DStringValue(&str));
Tcl_DStringFree(&str);
Tcl_ResetResult(pDb->interp);
}
#endif
#ifndef SQLITE_OMIT_TRACE
/*
** This routine is called by the SQLite profile handler after a statement
** SQL has executed. The TCL script in pDb->zProfile is evaluated.
*/
static void DbProfileHandler(void *cd, const char *zSql, sqlite_uint64 tm){
SqliteDb *pDb = (SqliteDb*)cd;
Tcl_DString str;
char zTm[100];
sqlite3_snprintf(sizeof(zTm)-1, zTm, "%lld", tm);
Tcl_DStringInit(&str);
Tcl_DStringAppend(&str, pDb->zProfile, -1);
Tcl_DStringAppendElement(&str, zSql);
Tcl_DStringAppendElement(&str, zTm);
Tcl_Eval(pDb->interp, Tcl_DStringValue(&str));
Tcl_DStringFree(&str);
Tcl_ResetResult(pDb->interp);
}
#endif
/*
** This routine is called when a transaction is committed. The
** TCL script in pDb->zCommit is executed. If it returns non-zero or
** if it throws an exception, the transaction is rolled back instead
** of being committed.
*/
static int DbCommitHandler(void *cd){
SqliteDb *pDb = (SqliteDb*)cd;
int rc;
rc = Tcl_Eval(pDb->interp, pDb->zCommit);
if( rc!=TCL_OK || atoi(Tcl_GetStringResult(pDb->interp)) ){
return 1;
}
return 0;
}
static void DbRollbackHandler(void *clientData){
SqliteDb *pDb = (SqliteDb*)clientData;
assert(pDb->pRollbackHook);
if( TCL_OK!=Tcl_EvalObjEx(pDb->interp, pDb->pRollbackHook, 0) ){
Tcl_BackgroundError(pDb->interp);
}
}
/*
** This procedure handles wal_hook callbacks.
*/
static int DbWalHandler(
void *clientData,
sqlite3 *db,
const char *zDb,
int nEntry
){
int ret = SQLITE_OK;
Tcl_Obj *p;
SqliteDb *pDb = (SqliteDb*)clientData;
Tcl_Interp *interp = pDb->interp;
assert(pDb->pWalHook);
p = Tcl_DuplicateObj(pDb->pWalHook);
Tcl_IncrRefCount(p);
Tcl_ListObjAppendElement(interp, p, Tcl_NewStringObj(zDb, -1));
Tcl_ListObjAppendElement(interp, p, Tcl_NewIntObj(nEntry));
if( TCL_OK!=Tcl_EvalObjEx(interp, p, 0)
|| TCL_OK!=Tcl_GetIntFromObj(interp, Tcl_GetObjResult(interp), &ret)
){
Tcl_BackgroundError(interp);
}
Tcl_DecrRefCount(p);
return ret;
}
#if defined(SQLITE_TEST) && defined(SQLITE_ENABLE_UNLOCK_NOTIFY)
static void setTestUnlockNotifyVars(Tcl_Interp *interp, int iArg, int nArg){
char zBuf[64];
sprintf(zBuf, "%d", iArg);
Tcl_SetVar(interp, "sqlite_unlock_notify_arg", zBuf, TCL_GLOBAL_ONLY);
sprintf(zBuf, "%d", nArg);
Tcl_SetVar(interp, "sqlite_unlock_notify_argcount", zBuf, TCL_GLOBAL_ONLY);
}
#else
# define setTestUnlockNotifyVars(x,y,z)
#endif
#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
static void DbUnlockNotify(void **apArg, int nArg){
int i;
for(i=0; i<nArg; i++){
const int flags = (TCL_EVAL_GLOBAL|TCL_EVAL_DIRECT);
SqliteDb *pDb = (SqliteDb *)apArg[i];
setTestUnlockNotifyVars(pDb->interp, i, nArg);
assert( pDb->pUnlockNotify);
Tcl_EvalObjEx(pDb->interp, pDb->pUnlockNotify, flags);
Tcl_DecrRefCount(pDb->pUnlockNotify);
pDb->pUnlockNotify = 0;
}
}
#endif
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
/*
** Pre-update hook callback.
*/
static void DbPreUpdateHandler(
void *p,
sqlite3 *db,
int op,
const char *zDb,
const char *zTbl,
sqlite_int64 iKey1,
sqlite_int64 iKey2
){
SqliteDb *pDb = (SqliteDb *)p;
Tcl_Obj *pCmd;
static const char *azStr[] = {"DELETE", "INSERT", "UPDATE"};
assert( (SQLITE_DELETE-1)/9 == 0 );
assert( (SQLITE_INSERT-1)/9 == 1 );
assert( (SQLITE_UPDATE-1)/9 == 2 );
assert( pDb->pPreUpdateHook );
assert( db==pDb->db );
assert( op==SQLITE_INSERT || op==SQLITE_UPDATE || op==SQLITE_DELETE );
pCmd = Tcl_DuplicateObj(pDb->pPreUpdateHook);
Tcl_IncrRefCount(pCmd);
Tcl_ListObjAppendElement(0, pCmd, Tcl_NewStringObj(azStr[(op-1)/9], -1));
Tcl_ListObjAppendElement(0, pCmd, Tcl_NewStringObj(zDb, -1));
Tcl_ListObjAppendElement(0, pCmd, Tcl_NewStringObj(zTbl, -1));
Tcl_ListObjAppendElement(0, pCmd, Tcl_NewWideIntObj(iKey1));
Tcl_ListObjAppendElement(0, pCmd, Tcl_NewWideIntObj(iKey2));
Tcl_EvalObjEx(pDb->interp, pCmd, TCL_EVAL_DIRECT);
Tcl_DecrRefCount(pCmd);
}
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
static void DbUpdateHandler(
void *p,
int op,
const char *zDb,
const char *zTbl,
sqlite_int64 rowid
){
SqliteDb *pDb = (SqliteDb *)p;
Tcl_Obj *pCmd;
static const char *azStr[] = {"DELETE", "INSERT", "UPDATE"};
assert( (SQLITE_DELETE-1)/9 == 0 );
assert( (SQLITE_INSERT-1)/9 == 1 );
assert( (SQLITE_UPDATE-1)/9 == 2 );
assert( pDb->pUpdateHook );
assert( op==SQLITE_INSERT || op==SQLITE_UPDATE || op==SQLITE_DELETE );
pCmd = Tcl_DuplicateObj(pDb->pUpdateHook);
Tcl_IncrRefCount(pCmd);
Tcl_ListObjAppendElement(0, pCmd, Tcl_NewStringObj(azStr[(op-1)/9], -1));
Tcl_ListObjAppendElement(0, pCmd, Tcl_NewStringObj(zDb, -1));
Tcl_ListObjAppendElement(0, pCmd, Tcl_NewStringObj(zTbl, -1));
Tcl_ListObjAppendElement(0, pCmd, Tcl_NewWideIntObj(rowid));
Tcl_EvalObjEx(pDb->interp, pCmd, TCL_EVAL_DIRECT);
Tcl_DecrRefCount(pCmd);
}
static void tclCollateNeeded(
void *pCtx,
sqlite3 *db,
int enc,
const char *zName
){
SqliteDb *pDb = (SqliteDb *)pCtx;
Tcl_Obj *pScript = Tcl_DuplicateObj(pDb->pCollateNeeded);
Tcl_IncrRefCount(pScript);
Tcl_ListObjAppendElement(0, pScript, Tcl_NewStringObj(zName, -1));
Tcl_EvalObjEx(pDb->interp, pScript, 0);
Tcl_DecrRefCount(pScript);
}
/*
** This routine is called to evaluate an SQL collation function implemented
** using TCL script.
*/
static int tclSqlCollate(
void *pCtx,
int nA,
const void *zA,
int nB,
const void *zB
){
SqlCollate *p = (SqlCollate *)pCtx;
Tcl_Obj *pCmd;
pCmd = Tcl_NewStringObj(p->zScript, -1);
Tcl_IncrRefCount(pCmd);
Tcl_ListObjAppendElement(p->interp, pCmd, Tcl_NewStringObj(zA, nA));
Tcl_ListObjAppendElement(p->interp, pCmd, Tcl_NewStringObj(zB, nB));
Tcl_EvalObjEx(p->interp, pCmd, TCL_EVAL_DIRECT);
Tcl_DecrRefCount(pCmd);
return (atoi(Tcl_GetStringResult(p->interp)));
}
/*
** This routine is called to evaluate an SQL function implemented
** using TCL script.
*/
static void tclSqlFunc(sqlite3_context *context, int argc, sqlite3_value**argv){
SqlFunc *p = sqlite3_user_data(context);
Tcl_Obj *pCmd;
int i;
int rc;
if( argc==0 ){
/* If there are no arguments to the function, call Tcl_EvalObjEx on the
** script object directly. This allows the TCL compiler to generate
** bytecode for the command on the first invocation and thus make
** subsequent invocations much faster. */
pCmd = p->pScript;
Tcl_IncrRefCount(pCmd);
rc = Tcl_EvalObjEx(p->interp, pCmd, 0);
Tcl_DecrRefCount(pCmd);
}else{
/* If there are arguments to the function, make a shallow copy of the
** script object, lappend the arguments, then evaluate the copy.
**
** By "shallow" copy, we mean a only the outer list Tcl_Obj is duplicated.
** The new Tcl_Obj contains pointers to the original list elements.
** That way, when Tcl_EvalObjv() is run and shimmers the first element
** of the list to tclCmdNameType, that alternate representation will
** be preserved and reused on the next invocation.
*/
Tcl_Obj **aArg;
int nArg;
if( Tcl_ListObjGetElements(p->interp, p->pScript, &nArg, &aArg) ){
sqlite3_result_error(context, Tcl_GetStringResult(p->interp), -1);
return;
}
pCmd = Tcl_NewListObj(nArg, aArg);
Tcl_IncrRefCount(pCmd);
for(i=0; i<argc; i++){
sqlite3_value *pIn = argv[i];
Tcl_Obj *pVal;
/* Set pVal to contain the i'th column of this row. */
switch( sqlite3_value_type(pIn) ){
case SQLITE_BLOB: {
int bytes = sqlite3_value_bytes(pIn);
pVal = Tcl_NewByteArrayObj(sqlite3_value_blob(pIn), bytes);
break;
}
case SQLITE_INTEGER: {
sqlite_int64 v = sqlite3_value_int64(pIn);
if( v>=-2147483647 && v<=2147483647 ){
pVal = Tcl_NewIntObj((int)v);
}else{
pVal = Tcl_NewWideIntObj(v);
}
break;
}
case SQLITE_FLOAT: {
double r = sqlite3_value_double(pIn);
pVal = Tcl_NewDoubleObj(r);
break;
}
case SQLITE_NULL: {
pVal = Tcl_NewStringObj(p->pDb->zNull, -1);
break;
}
default: {
int bytes = sqlite3_value_bytes(pIn);
pVal = Tcl_NewStringObj((char *)sqlite3_value_text(pIn), bytes);
break;
}
}
rc = Tcl_ListObjAppendElement(p->interp, pCmd, pVal);
if( rc ){
Tcl_DecrRefCount(pCmd);
sqlite3_result_error(context, Tcl_GetStringResult(p->interp), -1);
return;
}
}
if( !p->useEvalObjv ){
/* Tcl_EvalObjEx() will automatically call Tcl_EvalObjv() if pCmd
** is a list without a string representation. To prevent this from
** happening, make sure pCmd has a valid string representation */
Tcl_GetString(pCmd);
}
rc = Tcl_EvalObjEx(p->interp, pCmd, TCL_EVAL_DIRECT);
Tcl_DecrRefCount(pCmd);
}
if( rc && rc!=TCL_RETURN ){
sqlite3_result_error(context, Tcl_GetStringResult(p->interp), -1);
}else{
Tcl_Obj *pVar = Tcl_GetObjResult(p->interp);
int n;
u8 *data;
const char *zType = (pVar->typePtr ? pVar->typePtr->name : "");
char c = zType[0];
if( c=='b' && strcmp(zType,"bytearray")==0 && pVar->bytes==0 ){
/* Only return a BLOB type if the Tcl variable is a bytearray and
** has no string representation. */
data = Tcl_GetByteArrayFromObj(pVar, &n);
sqlite3_result_blob(context, data, n, SQLITE_TRANSIENT);
}else if( c=='b' && strcmp(zType,"boolean")==0 ){
Tcl_GetIntFromObj(0, pVar, &n);
sqlite3_result_int(context, n);
}else if( c=='d' && strcmp(zType,"double")==0 ){
double r;
Tcl_GetDoubleFromObj(0, pVar, &r);
sqlite3_result_double(context, r);
}else if( (c=='w' && strcmp(zType,"wideInt")==0) ||
(c=='i' && strcmp(zType,"int")==0) ){
Tcl_WideInt v;
Tcl_GetWideIntFromObj(0, pVar, &v);
sqlite3_result_int64(context, v);
}else{
data = (unsigned char *)Tcl_GetStringFromObj(pVar, &n);
sqlite3_result_text(context, (char *)data, n, SQLITE_TRANSIENT);
}
}
}
#ifndef SQLITE_OMIT_AUTHORIZATION
/*
** This is the authentication function. It appends the authentication
** type code and the two arguments to zCmd[] then invokes the result
** on the interpreter. The reply is examined to determine if the
** authentication fails or succeeds.
*/
static int auth_callback(
void *pArg,
int code,
const char *zArg1,
const char *zArg2,
const char *zArg3,
const char *zArg4
){
char *zCode;
Tcl_DString str;
int rc;
const char *zReply;
SqliteDb *pDb = (SqliteDb*)pArg;
if( pDb->disableAuth ) return SQLITE_OK;
switch( code ){
case SQLITE_COPY : zCode="SQLITE_COPY"; break;
case SQLITE_CREATE_INDEX : zCode="SQLITE_CREATE_INDEX"; break;
case SQLITE_CREATE_TABLE : zCode="SQLITE_CREATE_TABLE"; break;
case SQLITE_CREATE_TEMP_INDEX : zCode="SQLITE_CREATE_TEMP_INDEX"; break;
case SQLITE_CREATE_TEMP_TABLE : zCode="SQLITE_CREATE_TEMP_TABLE"; break;
case SQLITE_CREATE_TEMP_TRIGGER: zCode="SQLITE_CREATE_TEMP_TRIGGER"; break;
case SQLITE_CREATE_TEMP_VIEW : zCode="SQLITE_CREATE_TEMP_VIEW"; break;
case SQLITE_CREATE_TRIGGER : zCode="SQLITE_CREATE_TRIGGER"; break;
case SQLITE_CREATE_VIEW : zCode="SQLITE_CREATE_VIEW"; break;
case SQLITE_DELETE : zCode="SQLITE_DELETE"; break;
case SQLITE_DROP_INDEX : zCode="SQLITE_DROP_INDEX"; break;
case SQLITE_DROP_TABLE : zCode="SQLITE_DROP_TABLE"; break;
case SQLITE_DROP_TEMP_INDEX : zCode="SQLITE_DROP_TEMP_INDEX"; break;
case SQLITE_DROP_TEMP_TABLE : zCode="SQLITE_DROP_TEMP_TABLE"; break;
case SQLITE_DROP_TEMP_TRIGGER : zCode="SQLITE_DROP_TEMP_TRIGGER"; break;
case SQLITE_DROP_TEMP_VIEW : zCode="SQLITE_DROP_TEMP_VIEW"; break;
case SQLITE_DROP_TRIGGER : zCode="SQLITE_DROP_TRIGGER"; break;
case SQLITE_DROP_VIEW : zCode="SQLITE_DROP_VIEW"; break;
case SQLITE_INSERT : zCode="SQLITE_INSERT"; break;
case SQLITE_PRAGMA : zCode="SQLITE_PRAGMA"; break;
case SQLITE_READ : zCode="SQLITE_READ"; break;
case SQLITE_SELECT : zCode="SQLITE_SELECT"; break;
case SQLITE_TRANSACTION : zCode="SQLITE_TRANSACTION"; break;
case SQLITE_UPDATE : zCode="SQLITE_UPDATE"; break;
case SQLITE_ATTACH : zCode="SQLITE_ATTACH"; break;
case SQLITE_DETACH : zCode="SQLITE_DETACH"; break;
case SQLITE_ALTER_TABLE : zCode="SQLITE_ALTER_TABLE"; break;
case SQLITE_REINDEX : zCode="SQLITE_REINDEX"; break;
case SQLITE_ANALYZE : zCode="SQLITE_ANALYZE"; break;
case SQLITE_CREATE_VTABLE : zCode="SQLITE_CREATE_VTABLE"; break;
case SQLITE_DROP_VTABLE : zCode="SQLITE_DROP_VTABLE"; break;
case SQLITE_FUNCTION : zCode="SQLITE_FUNCTION"; break;
case SQLITE_SAVEPOINT : zCode="SQLITE_SAVEPOINT"; break;
default : zCode="????"; break;
}
Tcl_DStringInit(&str);
Tcl_DStringAppend(&str, pDb->zAuth, -1);
Tcl_DStringAppendElement(&str, zCode);
Tcl_DStringAppendElement(&str, zArg1 ? zArg1 : "");
Tcl_DStringAppendElement(&str, zArg2 ? zArg2 : "");
Tcl_DStringAppendElement(&str, zArg3 ? zArg3 : "");
Tcl_DStringAppendElement(&str, zArg4 ? zArg4 : "");
rc = Tcl_GlobalEval(pDb->interp, Tcl_DStringValue(&str));
Tcl_DStringFree(&str);
zReply = rc==TCL_OK ? Tcl_GetStringResult(pDb->interp) : "SQLITE_DENY";
if( strcmp(zReply,"SQLITE_OK")==0 ){
rc = SQLITE_OK;
}else if( strcmp(zReply,"SQLITE_DENY")==0 ){
rc = SQLITE_DENY;
}else if( strcmp(zReply,"SQLITE_IGNORE")==0 ){
rc = SQLITE_IGNORE;
}else{
rc = 999;
}
return rc;
}
#endif /* SQLITE_OMIT_AUTHORIZATION */
/*
** This routine reads a line of text from FILE in, stores
** the text in memory obtained from malloc() and returns a pointer
** to the text. NULL is returned at end of file, or if malloc()
** fails.
**
** The interface is like "readline" but no command-line editing
** is done.
**
** copied from shell.c from '.import' command
*/
static char *local_getline(char *zPrompt, FILE *in){
char *zLine;
int nLine;
int n;
nLine = 100;
zLine = malloc( nLine );
if( zLine==0 ) return 0;
n = 0;
while( 1 ){
if( n+100>nLine ){
nLine = nLine*2 + 100;
zLine = realloc(zLine, nLine);
if( zLine==0 ) return 0;
}
if( fgets(&zLine[n], nLine - n, in)==0 ){
if( n==0 ){
free(zLine);
return 0;
}
zLine[n] = 0;
break;
}
while( zLine[n] ){ n++; }
if( n>0 && zLine[n-1]=='\n' ){
n--;
zLine[n] = 0;
break;
}
}
zLine = realloc( zLine, n+1 );
return zLine;
}
/*
** This function is part of the implementation of the command:
**
** $db transaction [-deferred|-immediate|-exclusive] SCRIPT
**
** It is invoked after evaluating the script SCRIPT to commit or rollback
** the transaction or savepoint opened by the [transaction] command.
*/
static int DbTransPostCmd(
ClientData data[], /* data[0] is the Sqlite3Db* for $db */
Tcl_Interp *interp, /* Tcl interpreter */
int result /* Result of evaluating SCRIPT */
){
static const char *azEnd[] = {
"RELEASE _tcl_transaction", /* rc==TCL_ERROR, nTransaction!=0 */
"COMMIT", /* rc!=TCL_ERROR, nTransaction==0 */
"ROLLBACK TO _tcl_transaction ; RELEASE _tcl_transaction",
"ROLLBACK" /* rc==TCL_ERROR, nTransaction==0 */
};
SqliteDb *pDb = (SqliteDb*)data[0];
int rc = result;
const char *zEnd;
pDb->nTransaction--;
zEnd = azEnd[(rc==TCL_ERROR)*2 + (pDb->nTransaction==0)];
pDb->disableAuth++;
if( sqlite3_exec(pDb->db, zEnd, 0, 0, 0) ){
/* This is a tricky scenario to handle. The most likely cause of an
** error is that the exec() above was an attempt to commit the
** top-level transaction that returned SQLITE_BUSY. Or, less likely,
** that an IO-error has occured. In either case, throw a Tcl exception
** and try to rollback the transaction.
**
** But it could also be that the user executed one or more BEGIN,
** COMMIT, SAVEPOINT, RELEASE or ROLLBACK commands that are confusing
** this method's logic. Not clear how this would be best handled.
*/
if( rc!=TCL_ERROR ){
Tcl_AppendResult(interp, sqlite3_errmsg(pDb->db), 0);
rc = TCL_ERROR;
}
sqlite3_exec(pDb->db, "ROLLBACK", 0, 0, 0);
}
pDb->disableAuth--;
return rc;
}
/*
** Unless SQLITE_TEST is defined, this function is a simple wrapper around
** sqlite3_prepare_v2(). If SQLITE_TEST is defined, then it uses either
** sqlite3_prepare_v2() or legacy interface sqlite3_prepare(), depending
** on whether or not the [db_use_legacy_prepare] command has been used to
** configure the connection.
*/
static int dbPrepare(
SqliteDb *pDb, /* Database object */
const char *zSql, /* SQL to compile */
sqlite3_stmt **ppStmt, /* OUT: Prepared statement */
const char **pzOut /* OUT: Pointer to next SQL statement */
){
#ifdef SQLITE_TEST
if( pDb->bLegacyPrepare ){
return sqlite3_prepare(pDb->db, zSql, -1, ppStmt, pzOut);
}
#endif
return sqlite3_prepare_v2(pDb->db, zSql, -1, ppStmt, pzOut);
}
/*
** Search the cache for a prepared-statement object that implements the
** first SQL statement in the buffer pointed to by parameter zIn. If
** no such prepared-statement can be found, allocate and prepare a new
** one. In either case, bind the current values of the relevant Tcl
** variables to any $var, :var or @var variables in the statement. Before
** returning, set *ppPreStmt to point to the prepared-statement object.
**
** Output parameter *pzOut is set to point to the next SQL statement in
** buffer zIn, or to the '\0' byte at the end of zIn if there is no
** next statement.
**
** If successful, TCL_OK is returned. Otherwise, TCL_ERROR is returned
** and an error message loaded into interpreter pDb->interp.
*/
static int dbPrepareAndBind(
SqliteDb *pDb, /* Database object */
char const *zIn, /* SQL to compile */
char const **pzOut, /* OUT: Pointer to next SQL statement */
SqlPreparedStmt **ppPreStmt /* OUT: Object used to cache statement */
){
const char *zSql = zIn; /* Pointer to first SQL statement in zIn */
sqlite3_stmt *pStmt; /* Prepared statement object */
SqlPreparedStmt *pPreStmt; /* Pointer to cached statement */
int nSql; /* Length of zSql in bytes */
int nVar; /* Number of variables in statement */
int iParm = 0; /* Next free entry in apParm */
int i;
Tcl_Interp *interp = pDb->interp;
*ppPreStmt = 0;
/* Trim spaces from the start of zSql and calculate the remaining length. */
while( isspace(zSql[0]) ){ zSql++; }
nSql = strlen30(zSql);
for(pPreStmt = pDb->stmtList; pPreStmt; pPreStmt=pPreStmt->pNext){
int n = pPreStmt->nSql;
if( nSql>=n
&& memcmp(pPreStmt->zSql, zSql, n)==0
&& (zSql[n]==0 || zSql[n-1]==';')
){
pStmt = pPreStmt->pStmt;
*pzOut = &zSql[pPreStmt->nSql];
/* When a prepared statement is found, unlink it from the
** cache list. It will later be added back to the beginning
** of the cache list in order to implement LRU replacement.
*/
if( pPreStmt->pPrev ){
pPreStmt->pPrev->pNext = pPreStmt->pNext;
}else{
pDb->stmtList = pPreStmt->pNext;
}
if( pPreStmt->pNext ){
pPreStmt->pNext->pPrev = pPreStmt->pPrev;
}else{
pDb->stmtLast = pPreStmt->pPrev;
}
pDb->nStmt--;
nVar = sqlite3_bind_parameter_count(pStmt);
break;
}
}
/* If no prepared statement was found. Compile the SQL text. Also allocate
** a new SqlPreparedStmt structure. */
if( pPreStmt==0 ){
int nByte;
if( SQLITE_OK!=dbPrepare(pDb, zSql, &pStmt, pzOut) ){
Tcl_SetObjResult(interp, Tcl_NewStringObj(sqlite3_errmsg(pDb->db), -1));
return TCL_ERROR;
}
if( pStmt==0 ){
if( SQLITE_OK!=sqlite3_errcode(pDb->db) ){
/* A compile-time error in the statement. */
Tcl_SetObjResult(interp, Tcl_NewStringObj(sqlite3_errmsg(pDb->db), -1));
return TCL_ERROR;
}else{
/* The statement was a no-op. Continue to the next statement
** in the SQL string.
*/
return TCL_OK;
}
}
assert( pPreStmt==0 );
nVar = sqlite3_bind_parameter_count(pStmt);
nByte = sizeof(SqlPreparedStmt) + nVar*sizeof(Tcl_Obj *);
pPreStmt = (SqlPreparedStmt*)Tcl_Alloc(nByte);
memset(pPreStmt, 0, nByte);
pPreStmt->pStmt = pStmt;
pPreStmt->nSql = (int)(*pzOut - zSql);
pPreStmt->zSql = sqlite3_sql(pStmt);
pPreStmt->apParm = (Tcl_Obj **)&pPreStmt[1];
#ifdef SQLITE_TEST
if( pPreStmt->zSql==0 ){
char *zCopy = Tcl_Alloc(pPreStmt->nSql + 1);
memcpy(zCopy, zSql, pPreStmt->nSql);
zCopy[pPreStmt->nSql] = '\0';
pPreStmt->zSql = zCopy;
}
#endif
}
assert( pPreStmt );
assert( strlen30(pPreStmt->zSql)==pPreStmt->nSql );
assert( 0==memcmp(pPreStmt->zSql, zSql, pPreStmt->nSql) );
/* Bind values to parameters that begin with $ or : */
for(i=1; i<=nVar; i++){
const char *zVar = sqlite3_bind_parameter_name(pStmt, i);
if( zVar!=0 && (zVar[0]=='$' || zVar[0]==':' || zVar[0]=='@') ){
Tcl_Obj *pVar = Tcl_GetVar2Ex(interp, &zVar[1], 0, 0);
if( pVar ){
int n;
u8 *data;
const char *zType = (pVar->typePtr ? pVar->typePtr->name : "");
char c = zType[0];
if( zVar[0]=='@' ||
(c=='b' && strcmp(zType,"bytearray")==0 && pVar->bytes==0) ){
/* Load a BLOB type if the Tcl variable is a bytearray and
** it has no string representation or the host
** parameter name begins with "@". */
data = Tcl_GetByteArrayFromObj(pVar, &n);
sqlite3_bind_blob(pStmt, i, data, n, SQLITE_STATIC);
Tcl_IncrRefCount(pVar);
pPreStmt->apParm[iParm++] = pVar;
}else if( c=='b' && strcmp(zType,"boolean")==0 ){
Tcl_GetIntFromObj(interp, pVar, &n);
sqlite3_bind_int(pStmt, i, n);
}else if( c=='d' && strcmp(zType,"double")==0 ){
double r;
Tcl_GetDoubleFromObj(interp, pVar, &r);
sqlite3_bind_double(pStmt, i, r);
}else if( (c=='w' && strcmp(zType,"wideInt")==0) ||
(c=='i' && strcmp(zType,"int")==0) ){
Tcl_WideInt v;
Tcl_GetWideIntFromObj(interp, pVar, &v);
sqlite3_bind_int64(pStmt, i, v);
}else{
data = (unsigned char *)Tcl_GetStringFromObj(pVar, &n);
sqlite3_bind_text(pStmt, i, (char *)data, n, SQLITE_STATIC);
Tcl_IncrRefCount(pVar);
pPreStmt->apParm[iParm++] = pVar;
}
}else{
sqlite3_bind_null(pStmt, i);
}
}
}
pPreStmt->nParm = iParm;
*ppPreStmt = pPreStmt;
return TCL_OK;
}
/*
** Release a statement reference obtained by calling dbPrepareAndBind().
** There should be exactly one call to this function for each call to
** dbPrepareAndBind().
**
** If the discard parameter is non-zero, then the statement is deleted
** immediately. Otherwise it is added to the LRU list and may be returned
** by a subsequent call to dbPrepareAndBind().
*/
static void dbReleaseStmt(
SqliteDb *pDb, /* Database handle */
SqlPreparedStmt *pPreStmt, /* Prepared statement handle to release */
int discard /* True to delete (not cache) the pPreStmt */
){
int i;
/* Free the bound string and blob parameters */
for(i=0; i<pPreStmt->nParm; i++){
Tcl_DecrRefCount(pPreStmt->apParm[i]);
}
pPreStmt->nParm = 0;
if( pDb->maxStmt<=0 || discard ){
/* If the cache is turned off, deallocated the statement */
dbFreeStmt(pPreStmt);
}else{
/* Add the prepared statement to the beginning of the cache list. */
pPreStmt->pNext = pDb->stmtList;
pPreStmt->pPrev = 0;
if( pDb->stmtList ){
pDb->stmtList->pPrev = pPreStmt;
}
pDb->stmtList = pPreStmt;
if( pDb->stmtLast==0 ){
assert( pDb->nStmt==0 );
pDb->stmtLast = pPreStmt;
}else{
assert( pDb->nStmt>0 );
}
pDb->nStmt++;
/* If we have too many statement in cache, remove the surplus from
** the end of the cache list. */
while( pDb->nStmt>pDb->maxStmt ){
SqlPreparedStmt *pLast = pDb->stmtLast;
pDb->stmtLast = pLast->pPrev;
pDb->stmtLast->pNext = 0;
pDb->nStmt--;
dbFreeStmt(pLast);
}
}
}
/*
** Structure used with dbEvalXXX() functions:
**
** dbEvalInit()
** dbEvalStep()
** dbEvalFinalize()
** dbEvalRowInfo()
** dbEvalColumnValue()
*/
typedef struct DbEvalContext DbEvalContext;
struct DbEvalContext {
SqliteDb *pDb; /* Database handle */
Tcl_Obj *pSql; /* Object holding string zSql */
const char *zSql; /* Remaining SQL to execute */
SqlPreparedStmt *pPreStmt; /* Current statement */
int nCol; /* Number of columns returned by pStmt */
Tcl_Obj *pArray; /* Name of array variable */
Tcl_Obj **apColName; /* Array of column names */
};
/*
** Release any cache of column names currently held as part of
** the DbEvalContext structure passed as the first argument.
*/
static void dbReleaseColumnNames(DbEvalContext *p){
if( p->apColName ){
int i;
for(i=0; i<p->nCol; i++){
Tcl_DecrRefCount(p->apColName[i]);
}
Tcl_Free((char *)p->apColName);
p->apColName = 0;
}
p->nCol = 0;
}
/*
** Initialize a DbEvalContext structure.
**
** If pArray is not NULL, then it contains the name of a Tcl array
** variable. The "*" member of this array is set to a list containing
** the names of the columns returned by the statement as part of each
** call to dbEvalStep(), in order from left to right. e.g. if the names
** of the returned columns are a, b and c, it does the equivalent of the
** tcl command:
**
** set ${pArray}(*) {a b c}
*/
static void dbEvalInit(
DbEvalContext *p, /* Pointer to structure to initialize */
SqliteDb *pDb, /* Database handle */
Tcl_Obj *pSql, /* Object containing SQL script */
Tcl_Obj *pArray /* Name of Tcl array to set (*) element of */
){
memset(p, 0, sizeof(DbEvalContext));
p->pDb = pDb;
p->zSql = Tcl_GetString(pSql);
p->pSql = pSql;
Tcl_IncrRefCount(pSql);
if( pArray ){
p->pArray = pArray;
Tcl_IncrRefCount(pArray);
}
}
/*
** Obtain information about the row that the DbEvalContext passed as the
** first argument currently points to.
*/
static void dbEvalRowInfo(
DbEvalContext *p, /* Evaluation context */
int *pnCol, /* OUT: Number of column names */
Tcl_Obj ***papColName /* OUT: Array of column names */
){
/* Compute column names */
if( 0==p->apColName ){
sqlite3_stmt *pStmt = p->pPreStmt->pStmt;
int i; /* Iterator variable */
int nCol; /* Number of columns returned by pStmt */
Tcl_Obj **apColName = 0; /* Array of column names */
p->nCol = nCol = sqlite3_column_count(pStmt);
if( nCol>0 && (papColName || p->pArray) ){
apColName = (Tcl_Obj**)Tcl_Alloc( sizeof(Tcl_Obj*)*nCol );
for(i=0; i<nCol; i++){
apColName[i] = Tcl_NewStringObj(sqlite3_column_name(pStmt,i), -1);
Tcl_IncrRefCount(apColName[i]);
}
p->apColName = apColName;
}
/* If results are being stored in an array variable, then create
** the array(*) entry for that array
*/
if( p->pArray ){
Tcl_Interp *interp = p->pDb->interp;
Tcl_Obj *pColList = Tcl_NewObj();
Tcl_Obj *pStar = Tcl_NewStringObj("*", -1);
for(i=0; i<nCol; i++){
Tcl_ListObjAppendElement(interp, pColList, apColName[i]);
}
Tcl_IncrRefCount(pStar);
Tcl_ObjSetVar2(interp, p->pArray, pStar, pColList, 0);
Tcl_DecrRefCount(pStar);
}
}
if( papColName ){
*papColName = p->apColName;
}
if( pnCol ){
*pnCol = p->nCol;
}
}
/*
** Return one of TCL_OK, TCL_BREAK or TCL_ERROR. If TCL_ERROR is
** returned, then an error message is stored in the interpreter before
** returning.
**
** A return value of TCL_OK means there is a row of data available. The
** data may be accessed using dbEvalRowInfo() and dbEvalColumnValue(). This
** is analogous to a return of SQLITE_ROW from sqlite3_step(). If TCL_BREAK
** is returned, then the SQL script has finished executing and there are
** no further rows available. This is similar to SQLITE_DONE.
*/
static int dbEvalStep(DbEvalContext *p){
const char *zPrevSql = 0; /* Previous value of p->zSql */
while( p->zSql[0] || p->pPreStmt ){
int rc;
if( p->pPreStmt==0 ){
zPrevSql = (p->zSql==zPrevSql ? 0 : p->zSql);
rc = dbPrepareAndBind(p->pDb, p->zSql, &p->zSql, &p->pPreStmt);
if( rc!=TCL_OK ) return rc;
}else{
int rcs;
SqliteDb *pDb = p->pDb;
SqlPreparedStmt *pPreStmt = p->pPreStmt;
sqlite3_stmt *pStmt = pPreStmt->pStmt;
rcs = sqlite3_step(pStmt);
if( rcs==SQLITE_ROW ){
return TCL_OK;
}
if( p->pArray ){
dbEvalRowInfo(p, 0, 0);
}
rcs = sqlite3_reset(pStmt);
pDb->nStep = sqlite3_stmt_status(pStmt,SQLITE_STMTSTATUS_FULLSCAN_STEP,1);
pDb->nSort = sqlite3_stmt_status(pStmt,SQLITE_STMTSTATUS_SORT,1);
pDb->nIndex = sqlite3_stmt_status(pStmt,SQLITE_STMTSTATUS_AUTOINDEX,1);
dbReleaseColumnNames(p);
p->pPreStmt = 0;
if( rcs!=SQLITE_OK ){
/* If a run-time error occurs, report the error and stop reading
** the SQL. */
dbReleaseStmt(pDb, pPreStmt, 1);
#if SQLITE_TEST
if( p->pDb->bLegacyPrepare && rcs==SQLITE_SCHEMA && zPrevSql ){
/* If the runtime error was an SQLITE_SCHEMA, and the database
** handle is configured to use the legacy sqlite3_prepare()
** interface, retry prepare()/step() on the same SQL statement.
** This only happens once. If there is a second SQLITE_SCHEMA
** error, the error will be returned to the caller. */
p->zSql = zPrevSql;
continue;
}
#endif
Tcl_SetObjResult(pDb->interp,
Tcl_NewStringObj(sqlite3_errmsg(pDb->db), -1));
return TCL_ERROR;
}else{
dbReleaseStmt(pDb, pPreStmt, 0);
}
}
}
/* Finished */
return TCL_BREAK;
}
/*
** Free all resources currently held by the DbEvalContext structure passed
** as the first argument. There should be exactly one call to this function
** for each call to dbEvalInit().
*/
static void dbEvalFinalize(DbEvalContext *p){
if( p->pPreStmt ){
sqlite3_reset(p->pPreStmt->pStmt);
dbReleaseStmt(p->pDb, p->pPreStmt, 0);
p->pPreStmt = 0;
}
if( p->pArray ){
Tcl_DecrRefCount(p->pArray);
p->pArray = 0;
}
Tcl_DecrRefCount(p->pSql);
dbReleaseColumnNames(p);
}
/*
** Return a pointer to a Tcl_Obj structure with ref-count 0 that contains
** the value for the iCol'th column of the row currently pointed to by
** the DbEvalContext structure passed as the first argument.
*/
static Tcl_Obj *dbEvalColumnValue(DbEvalContext *p, int iCol){
sqlite3_stmt *pStmt = p->pPreStmt->pStmt;
switch( sqlite3_column_type(pStmt, iCol) ){
case SQLITE_BLOB: {
int bytes = sqlite3_column_bytes(pStmt, iCol);
const char *zBlob = sqlite3_column_blob(pStmt, iCol);
if( !zBlob ) bytes = 0;
return Tcl_NewByteArrayObj((u8*)zBlob, bytes);
}
case SQLITE_INTEGER: {
sqlite_int64 v = sqlite3_column_int64(pStmt, iCol);
if( v>=-2147483647 && v<=2147483647 ){
return Tcl_NewIntObj((int)v);
}else{
return Tcl_NewWideIntObj(v);
}
}
case SQLITE_FLOAT: {
return Tcl_NewDoubleObj(sqlite3_column_double(pStmt, iCol));
}
case SQLITE_NULL: {
return Tcl_NewStringObj(p->pDb->zNull, -1);
}
}
return Tcl_NewStringObj((char*)sqlite3_column_text(pStmt, iCol), -1);
}
/*
** If using Tcl version 8.6 or greater, use the NR functions to avoid
** recursive evalution of scripts by the [db eval] and [db trans]
** commands. Even if the headers used while compiling the extension
** are 8.6 or newer, the code still tests the Tcl version at runtime.
** This allows stubs-enabled builds to be used with older Tcl libraries.
*/
#if TCL_MAJOR_VERSION>8 || (TCL_MAJOR_VERSION==8 && TCL_MINOR_VERSION>=6)
# define SQLITE_TCL_NRE 1
static int DbUseNre(void){
int major, minor;
Tcl_GetVersion(&major, &minor, 0, 0);
return( (major==8 && minor>=6) || major>8 );
}
#else
/*
** Compiling using headers earlier than 8.6. In this case NR cannot be
** used, so DbUseNre() to always return zero. Add #defines for the other
** Tcl_NRxxx() functions to prevent them from causing compilation errors,
** even though the only invocations of them are within conditional blocks
** of the form:
**
** if( DbUseNre() ) { ... }
*/
# define SQLITE_TCL_NRE 0
# define DbUseNre() 0
# define Tcl_NRAddCallback(a,b,c,d,e,f) 0
# define Tcl_NREvalObj(a,b,c) 0
# define Tcl_NRCreateCommand(a,b,c,d,e,f) 0
#endif
/*
** This function is part of the implementation of the command:
**
** $db eval SQL ?ARRAYNAME? SCRIPT
*/
static int DbEvalNextCmd(
ClientData data[], /* data[0] is the (DbEvalContext*) */
Tcl_Interp *interp, /* Tcl interpreter */
int result /* Result so far */
){
int rc = result; /* Return code */
/* The first element of the data[] array is a pointer to a DbEvalContext
** structure allocated using Tcl_Alloc(). The second element of data[]
** is a pointer to a Tcl_Obj containing the script to run for each row
** returned by the queries encapsulated in data[0]. */
DbEvalContext *p = (DbEvalContext *)data[0];
Tcl_Obj *pScript = (Tcl_Obj *)data[1];
Tcl_Obj *pArray = p->pArray;
while( (rc==TCL_OK || rc==TCL_CONTINUE) && TCL_OK==(rc = dbEvalStep(p)) ){
int i;
int nCol;
Tcl_Obj **apColName;
dbEvalRowInfo(p, &nCol, &apColName);
for(i=0; i<nCol; i++){
Tcl_Obj *pVal = dbEvalColumnValue(p, i);
if( pArray==0 ){
Tcl_ObjSetVar2(interp, apColName[i], 0, pVal, 0);
}else{
Tcl_ObjSetVar2(interp, pArray, apColName[i], pVal, 0);
}
}
/* The required interpreter variables are now populated with the data
** from the current row. If using NRE, schedule callbacks to evaluate
** script pScript, then to invoke this function again to fetch the next
** row (or clean up if there is no next row or the script throws an
** exception). After scheduling the callbacks, return control to the
** caller.
**
** If not using NRE, evaluate pScript directly and continue with the
** next iteration of this while(...) loop. */
if( DbUseNre() ){
Tcl_NRAddCallback(interp, DbEvalNextCmd, (void*)p, (void*)pScript, 0, 0);
return Tcl_NREvalObj(interp, pScript, 0);
}else{
rc = Tcl_EvalObjEx(interp, pScript, 0);
}
}
Tcl_DecrRefCount(pScript);
dbEvalFinalize(p);
Tcl_Free((char *)p);
if( rc==TCL_OK || rc==TCL_BREAK ){
Tcl_ResetResult(interp);
rc = TCL_OK;
}
return rc;
}
/*
** This function is used by the implementations of the following database
** handle sub-commands:
**
** $db update_hook ?SCRIPT?
** $db wal_hook ?SCRIPT?
** $db commit_hook ?SCRIPT?
** $db preupdate hook ?SCRIPT?
*/
static void DbHookCmd(
Tcl_Interp *interp, /* Tcl interpreter */
SqliteDb *pDb, /* Database handle */
Tcl_Obj *pArg, /* SCRIPT argument (or NULL) */
Tcl_Obj **ppHook /* Pointer to member of SqliteDb */
){
sqlite3 *db = pDb->db;
if( *ppHook ){
Tcl_SetObjResult(interp, *ppHook);
if( pArg ){
Tcl_DecrRefCount(*ppHook);
*ppHook = 0;
}
}
if( pArg ){
assert( !(*ppHook) );
if( Tcl_GetCharLength(pArg)>0 ){
*ppHook = pArg;
Tcl_IncrRefCount(*ppHook);
}
}
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
sqlite3_preupdate_hook(db, (pDb->pPreUpdateHook?DbPreUpdateHandler:0), pDb);
#endif
sqlite3_update_hook(db, (pDb->pUpdateHook?DbUpdateHandler:0), pDb);
sqlite3_rollback_hook(db, (pDb->pRollbackHook?DbRollbackHandler:0), pDb);
sqlite3_wal_hook(db, (pDb->pWalHook?DbWalHandler:0), pDb);
}
/*
** The "sqlite" command below creates a new Tcl command for each
** connection it opens to an SQLite database. This routine is invoked
** whenever one of those connection-specific commands is executed
** in Tcl. For example, if you run Tcl code like this:
**
** sqlite3 db1 "my_database"
** db1 close
**
** The first command opens a connection to the "my_database" database
** and calls that connection "db1". The second command causes this
** subroutine to be invoked.
*/
static int DbObjCmd(void *cd, Tcl_Interp *interp, int objc,Tcl_Obj *const*objv){
SqliteDb *pDb = (SqliteDb*)cd;
int choice;
int rc = TCL_OK;
static const char *DB_strs[] = {
"authorizer", "backup", "busy",
"cache", "changes", "close",
"collate", "collation_needed", "commit_hook",
"complete", "copy", "enable_load_extension",
"errorcode", "eval", "exists",
"function", "incrblob", "interrupt",
"last_insert_rowid", "nullvalue", "onecolumn",
"preupdate", "profile", "progress",
"rekey", "restore", "rollback_hook",
"status", "timeout", "total_changes",
"trace", "transaction", "unlock_notify",
"update_hook", "version", "wal_hook",
0
};
enum DB_enum {
DB_AUTHORIZER, DB_BACKUP, DB_BUSY,
DB_CACHE, DB_CHANGES, DB_CLOSE,
DB_COLLATE, DB_COLLATION_NEEDED, DB_COMMIT_HOOK,
DB_COMPLETE, DB_COPY, DB_ENABLE_LOAD_EXTENSION,
DB_ERRORCODE, DB_EVAL, DB_EXISTS,
DB_FUNCTION, DB_INCRBLOB, DB_INTERRUPT,
DB_LAST_INSERT_ROWID, DB_NULLVALUE, DB_ONECOLUMN,
DB_PREUPDATE, DB_PROFILE, DB_PROGRESS,
DB_REKEY, DB_RESTORE, DB_ROLLBACK_HOOK,
DB_STATUS, DB_TIMEOUT, DB_TOTAL_CHANGES,
DB_TRACE, DB_TRANSACTION, DB_UNLOCK_NOTIFY,
DB_UPDATE_HOOK, DB_VERSION, DB_WAL_HOOK,
};
/* don't leave trailing commas on DB_enum, it confuses the AIX xlc compiler */
if( objc<2 ){
Tcl_WrongNumArgs(interp, 1, objv, "SUBCOMMAND ...");
return TCL_ERROR;
}
if( Tcl_GetIndexFromObj(interp, objv[1], DB_strs, "option", 0, &choice) ){
return TCL_ERROR;
}
switch( (enum DB_enum)choice ){
/* $db authorizer ?CALLBACK?
**
** Invoke the given callback to authorize each SQL operation as it is
** compiled. 5 arguments are appended to the callback before it is
** invoked:
**
** (1) The authorization type (ex: SQLITE_CREATE_TABLE, SQLITE_INSERT, ...)
** (2) First descriptive name (depends on authorization type)
** (3) Second descriptive name
** (4) Name of the database (ex: "main", "temp")
** (5) Name of trigger that is doing the access
**
** The callback should return on of the following strings: SQLITE_OK,
** SQLITE_IGNORE, or SQLITE_DENY. Any other return value is an error.
**
** If this method is invoked with no arguments, the current authorization
** callback string is returned.
*/
case DB_AUTHORIZER: {
#ifdef SQLITE_OMIT_AUTHORIZATION
Tcl_AppendResult(interp, "authorization not available in this build", 0);
return TCL_ERROR;
#else
if( objc>3 ){
Tcl_WrongNumArgs(interp, 2, objv, "?CALLBACK?");
return TCL_ERROR;
}else if( objc==2 ){
if( pDb->zAuth ){
Tcl_AppendResult(interp, pDb->zAuth, 0);
}
}else{
char *zAuth;
int len;
if( pDb->zAuth ){
Tcl_Free(pDb->zAuth);
}
zAuth = Tcl_GetStringFromObj(objv[2], &len);
if( zAuth && len>0 ){
pDb->zAuth = Tcl_Alloc( len + 1 );
memcpy(pDb->zAuth, zAuth, len+1);
}else{
pDb->zAuth = 0;
}
if( pDb->zAuth ){
pDb->interp = interp;
sqlite3_set_authorizer(pDb->db, auth_callback, pDb);
}else{
sqlite3_set_authorizer(pDb->db, 0, 0);
}
}
#endif
break;
}
/* $db backup ?DATABASE? FILENAME
**
** Open or create a database file named FILENAME. Transfer the
** content of local database DATABASE (default: "main") into the
** FILENAME database.
*/
case DB_BACKUP: {
const char *zDestFile;
const char *zSrcDb;
sqlite3 *pDest;
sqlite3_backup *pBackup;
if( objc==3 ){
zSrcDb = "main";
zDestFile = Tcl_GetString(objv[2]);
}else if( objc==4 ){
zSrcDb = Tcl_GetString(objv[2]);
zDestFile = Tcl_GetString(objv[3]);
}else{
Tcl_WrongNumArgs(interp, 2, objv, "?DATABASE? FILENAME");
return TCL_ERROR;
}
rc = sqlite3_open(zDestFile, &pDest);
if( rc!=SQLITE_OK ){
Tcl_AppendResult(interp, "cannot open target database: ",
sqlite3_errmsg(pDest), (char*)0);
sqlite3_close(pDest);
return TCL_ERROR;
}
pBackup = sqlite3_backup_init(pDest, "main", pDb->db, zSrcDb);
if( pBackup==0 ){
Tcl_AppendResult(interp, "backup failed: ",
sqlite3_errmsg(pDest), (char*)0);
sqlite3_close(pDest);
return TCL_ERROR;
}
while( (rc = sqlite3_backup_step(pBackup,100))==SQLITE_OK ){}
sqlite3_backup_finish(pBackup);
if( rc==SQLITE_DONE ){
rc = TCL_OK;
}else{
Tcl_AppendResult(interp, "backup failed: ",
sqlite3_errmsg(pDest), (char*)0);
rc = TCL_ERROR;
}
sqlite3_close(pDest);
break;
}
/* $db busy ?CALLBACK?
**
** Invoke the given callback if an SQL statement attempts to open
** a locked database file.
*/
case DB_BUSY: {
if( objc>3 ){
Tcl_WrongNumArgs(interp, 2, objv, "CALLBACK");
return TCL_ERROR;
}else if( objc==2 ){
if( pDb->zBusy ){
Tcl_AppendResult(interp, pDb->zBusy, 0);
}
}else{
char *zBusy;
int len;
if( pDb->zBusy ){
Tcl_Free(pDb->zBusy);
}
zBusy = Tcl_GetStringFromObj(objv[2], &len);
if( zBusy && len>0 ){
pDb->zBusy = Tcl_Alloc( len + 1 );
memcpy(pDb->zBusy, zBusy, len+1);
}else{
pDb->zBusy = 0;
}
if( pDb->zBusy ){
pDb->interp = interp;
sqlite3_busy_handler(pDb->db, DbBusyHandler, pDb);
}else{
sqlite3_busy_handler(pDb->db, 0, 0);
}
}
break;
}
/* $db cache flush
** $db cache size n
**
** Flush the prepared statement cache, or set the maximum number of
** cached statements.
*/
case DB_CACHE: {
char *subCmd;
int n;
if( objc<=2 ){
Tcl_WrongNumArgs(interp, 1, objv, "cache option ?arg?");
return TCL_ERROR;
}
subCmd = Tcl_GetStringFromObj( objv[2], 0 );
if( *subCmd=='f' && strcmp(subCmd,"flush")==0 ){
if( objc!=3 ){
Tcl_WrongNumArgs(interp, 2, objv, "flush");
return TCL_ERROR;
}else{
flushStmtCache( pDb );
}
}else if( *subCmd=='s' && strcmp(subCmd,"size")==0 ){
if( objc!=4 ){
Tcl_WrongNumArgs(interp, 2, objv, "size n");
return TCL_ERROR;
}else{
if( TCL_ERROR==Tcl_GetIntFromObj(interp, objv[3], &n) ){
Tcl_AppendResult( interp, "cannot convert \"",
Tcl_GetStringFromObj(objv[3],0), "\" to integer", 0);
return TCL_ERROR;
}else{
if( n<0 ){
flushStmtCache( pDb );
n = 0;
}else if( n>MAX_PREPARED_STMTS ){
n = MAX_PREPARED_STMTS;
}
pDb->maxStmt = n;
}
}
}else{
Tcl_AppendResult( interp, "bad option \"",
Tcl_GetStringFromObj(objv[2],0), "\": must be flush or size", 0);
return TCL_ERROR;
}
break;
}
/* $db changes
**
** Return the number of rows that were modified, inserted, or deleted by
** the most recent INSERT, UPDATE or DELETE statement, not including
** any changes made by trigger programs.
*/
case DB_CHANGES: {
Tcl_Obj *pResult;
if( objc!=2 ){
Tcl_WrongNumArgs(interp, 2, objv, "");
return TCL_ERROR;
}
pResult = Tcl_GetObjResult(interp);
Tcl_SetIntObj(pResult, sqlite3_changes(pDb->db));
break;
}
/* $db close
**
** Shutdown the database
*/
case DB_CLOSE: {
Tcl_DeleteCommand(interp, Tcl_GetStringFromObj(objv[0], 0));
break;
}
/*
** $db collate NAME SCRIPT
**
** Create a new SQL collation function called NAME. Whenever
** that function is called, invoke SCRIPT to evaluate the function.
*/
case DB_COLLATE: {
SqlCollate *pCollate;
char *zName;
char *zScript;
int nScript;
if( objc!=4 ){
Tcl_WrongNumArgs(interp, 2, objv, "NAME SCRIPT");
return TCL_ERROR;
}
zName = Tcl_GetStringFromObj(objv[2], 0);
zScript = Tcl_GetStringFromObj(objv[3], &nScript);
pCollate = (SqlCollate*)Tcl_Alloc( sizeof(*pCollate) + nScript + 1 );
if( pCollate==0 ) return TCL_ERROR;
pCollate->interp = interp;
pCollate->pNext = pDb->pCollate;
pCollate->zScript = (char*)&pCollate[1];
pDb->pCollate = pCollate;
memcpy(pCollate->zScript, zScript, nScript+1);
if( sqlite3_create_collation(pDb->db, zName, SQLITE_UTF8,
pCollate, tclSqlCollate) ){
Tcl_SetResult(interp, (char *)sqlite3_errmsg(pDb->db), TCL_VOLATILE);
return TCL_ERROR;
}
break;
}
/*
** $db collation_needed SCRIPT
**
** Create a new SQL collation function called NAME. Whenever
** that function is called, invoke SCRIPT to evaluate the function.
*/
case DB_COLLATION_NEEDED: {
if( objc!=3 ){
Tcl_WrongNumArgs(interp, 2, objv, "SCRIPT");
return TCL_ERROR;
}
if( pDb->pCollateNeeded ){
Tcl_DecrRefCount(pDb->pCollateNeeded);
}
pDb->pCollateNeeded = Tcl_DuplicateObj(objv[2]);
Tcl_IncrRefCount(pDb->pCollateNeeded);
sqlite3_collation_needed(pDb->db, pDb, tclCollateNeeded);
break;
}
/* $db commit_hook ?CALLBACK?
**
** Invoke the given callback just before committing every SQL transaction.
** If the callback throws an exception or returns non-zero, then the
** transaction is aborted. If CALLBACK is an empty string, the callback
** is disabled.
*/
case DB_COMMIT_HOOK: {
if( objc>3 ){
Tcl_WrongNumArgs(interp, 2, objv, "?CALLBACK?");
return TCL_ERROR;
}else if( objc==2 ){
if( pDb->zCommit ){
Tcl_AppendResult(interp, pDb->zCommit, 0);
}
}else{
char *zCommit;
int len;
if( pDb->zCommit ){
Tcl_Free(pDb->zCommit);
}
zCommit = Tcl_GetStringFromObj(objv[2], &len);
if( zCommit && len>0 ){
pDb->zCommit = Tcl_Alloc( len + 1 );
memcpy(pDb->zCommit, zCommit, len+1);
}else{
pDb->zCommit = 0;
}
if( pDb->zCommit ){
pDb->interp = interp;
sqlite3_commit_hook(pDb->db, DbCommitHandler, pDb);
}else{
sqlite3_commit_hook(pDb->db, 0, 0);
}
}
break;
}
/* $db complete SQL
**
** Return TRUE if SQL is a complete SQL statement. Return FALSE if
** additional lines of input are needed. This is similar to the
** built-in "info complete" command of Tcl.
*/
case DB_COMPLETE: {
#ifndef SQLITE_OMIT_COMPLETE
Tcl_Obj *pResult;
int isComplete;
if( objc!=3 ){
Tcl_WrongNumArgs(interp, 2, objv, "SQL");
return TCL_ERROR;
}
isComplete = sqlite3_complete( Tcl_GetStringFromObj(objv[2], 0) );
pResult = Tcl_GetObjResult(interp);
Tcl_SetBooleanObj(pResult, isComplete);
#endif
break;
}
/* $db copy conflict-algorithm table filename ?SEPARATOR? ?NULLINDICATOR?
**
** Copy data into table from filename, optionally using SEPARATOR
** as column separators. If a column contains a null string, or the
** value of NULLINDICATOR, a NULL is inserted for the column.
** conflict-algorithm is one of the sqlite conflict algorithms:
** rollback, abort, fail, ignore, replace
** On success, return the number of lines processed, not necessarily same
** as 'db changes' due to conflict-algorithm selected.
**
** This code is basically an implementation/enhancement of
** the sqlite3 shell.c ".import" command.
**
** This command usage is equivalent to the sqlite2.x COPY statement,
** which imports file data into a table using the PostgreSQL COPY file format:
** $db copy $conflit_algo $table_name $filename \t \\N
*/
case DB_COPY: {
char *zTable; /* Insert data into this table */
char *zFile; /* The file from which to extract data */
char *zConflict; /* The conflict algorithm to use */
sqlite3_stmt *pStmt; /* A statement */
int nCol; /* Number of columns in the table */
int nByte; /* Number of bytes in an SQL string */
int i, j; /* Loop counters */
int nSep; /* Number of bytes in zSep[] */
int nNull; /* Number of bytes in zNull[] */
char *zSql; /* An SQL statement */
char *zLine; /* A single line of input from the file */
char **azCol; /* zLine[] broken up into columns */
char *zCommit; /* How to commit changes */
FILE *in; /* The input file */
int lineno = 0; /* Line number of input file */
char zLineNum[80]; /* Line number print buffer */
Tcl_Obj *pResult; /* interp result */
char *zSep;
char *zNull;
if( objc<5 || objc>7 ){
Tcl_WrongNumArgs(interp, 2, objv,
"CONFLICT-ALGORITHM TABLE FILENAME ?SEPARATOR? ?NULLINDICATOR?");
return TCL_ERROR;
}
if( objc>=6 ){
zSep = Tcl_GetStringFromObj(objv[5], 0);
}else{
zSep = "\t";
}
if( objc>=7 ){
zNull = Tcl_GetStringFromObj(objv[6], 0);
}else{
zNull = "";
}
zConflict = Tcl_GetStringFromObj(objv[2], 0);
zTable = Tcl_GetStringFromObj(objv[3], 0);
zFile = Tcl_GetStringFromObj(objv[4], 0);
nSep = strlen30(zSep);
nNull = strlen30(zNull);
if( nSep==0 ){
Tcl_AppendResult(interp,"Error: non-null separator required for copy",0);
return TCL_ERROR;
}
if(strcmp(zConflict, "rollback") != 0 &&
strcmp(zConflict, "abort" ) != 0 &&
strcmp(zConflict, "fail" ) != 0 &&
strcmp(zConflict, "ignore" ) != 0 &&
strcmp(zConflict, "replace" ) != 0 ) {
Tcl_AppendResult(interp, "Error: \"", zConflict,
"\", conflict-algorithm must be one of: rollback, "
"abort, fail, ignore, or replace", 0);
return TCL_ERROR;
}
zSql = sqlite3_mprintf("SELECT * FROM '%q'", zTable);
if( zSql==0 ){
Tcl_AppendResult(interp, "Error: no such table: ", zTable, 0);
return TCL_ERROR;
}
nByte = strlen30(zSql);
rc = sqlite3_prepare(pDb->db, zSql, -1, &pStmt, 0);
sqlite3_free(zSql);
if( rc ){
Tcl_AppendResult(interp, "Error: ", sqlite3_errmsg(pDb->db), 0);
nCol = 0;
}else{
nCol = sqlite3_column_count(pStmt);
}
sqlite3_finalize(pStmt);
if( nCol==0 ) {
return TCL_ERROR;
}
zSql = malloc( nByte + 50 + nCol*2 );
if( zSql==0 ) {
Tcl_AppendResult(interp, "Error: can't malloc()", 0);
return TCL_ERROR;
}
sqlite3_snprintf(nByte+50, zSql, "INSERT OR %q INTO '%q' VALUES(?",
zConflict, zTable);
j = strlen30(zSql);
for(i=1; i<nCol; i++){
zSql[j++] = ',';
zSql[j++] = '?';
}
zSql[j++] = ')';
zSql[j] = 0;
rc = sqlite3_prepare(pDb->db, zSql, -1, &pStmt, 0);
free(zSql);
if( rc ){
Tcl_AppendResult(interp, "Error: ", sqlite3_errmsg(pDb->db), 0);
sqlite3_finalize(pStmt);
return TCL_ERROR;
}
in = fopen(zFile, "rb");
if( in==0 ){
Tcl_AppendResult(interp, "Error: cannot open file: ", zFile, NULL);
sqlite3_finalize(pStmt);
return TCL_ERROR;
}
azCol = malloc( sizeof(azCol[0])*(nCol+1) );
if( azCol==0 ) {
Tcl_AppendResult(interp, "Error: can't malloc()", 0);
fclose(in);
return TCL_ERROR;
}
(void)sqlite3_exec(pDb->db, "BEGIN", 0, 0, 0);
zCommit = "COMMIT";
while( (zLine = local_getline(0, in))!=0 ){
char *z;
lineno++;
azCol[0] = zLine;
for(i=0, z=zLine; *z; z++){
if( *z==zSep[0] && strncmp(z, zSep, nSep)==0 ){
*z = 0;
i++;
if( i<nCol ){
azCol[i] = &z[nSep];
z += nSep-1;
}
}
}
if( i+1!=nCol ){
char *zErr;
int nErr = strlen30(zFile) + 200;
zErr = malloc(nErr);
if( zErr ){
sqlite3_snprintf(nErr, zErr,
"Error: %s line %d: expected %d columns of data but found %d",
zFile, lineno, nCol, i+1);
Tcl_AppendResult(interp, zErr, 0);
free(zErr);
}
zCommit = "ROLLBACK";
break;
}
for(i=0; i<nCol; i++){
/* check for null data, if so, bind as null */
if( (nNull>0 && strcmp(azCol[i], zNull)==0)
|| strlen30(azCol[i])==0
){
sqlite3_bind_null(pStmt, i+1);
}else{
sqlite3_bind_text(pStmt, i+1, azCol[i], -1, SQLITE_STATIC);
}
}
sqlite3_step(pStmt);
rc = sqlite3_reset(pStmt);
free(zLine);
if( rc!=SQLITE_OK ){
Tcl_AppendResult(interp,"Error: ", sqlite3_errmsg(pDb->db), 0);
zCommit = "ROLLBACK";
break;
}
}
free(azCol);
fclose(in);
sqlite3_finalize(pStmt);
(void)sqlite3_exec(pDb->db, zCommit, 0, 0, 0);
if( zCommit[0] == 'C' ){
/* success, set result as number of lines processed */
pResult = Tcl_GetObjResult(interp);
Tcl_SetIntObj(pResult, lineno);
rc = TCL_OK;
}else{
/* failure, append lineno where failed */
sqlite3_snprintf(sizeof(zLineNum), zLineNum,"%d",lineno);
Tcl_AppendResult(interp,", failed while processing line: ",zLineNum,0);
rc = TCL_ERROR;
}
break;
}
/*
** $db enable_load_extension BOOLEAN
**
** Turn the extension loading feature on or off. It if off by
** default.
*/
case DB_ENABLE_LOAD_EXTENSION: {
#ifndef SQLITE_OMIT_LOAD_EXTENSION
int onoff;
if( objc!=3 ){
Tcl_WrongNumArgs(interp, 2, objv, "BOOLEAN");
return TCL_ERROR;
}
if( Tcl_GetBooleanFromObj(interp, objv[2], &onoff) ){
return TCL_ERROR;
}
sqlite3_enable_load_extension(pDb->db, onoff);
break;
#else
Tcl_AppendResult(interp, "extension loading is turned off at compile-time",
0);
return TCL_ERROR;
#endif
}
/*
** $db errorcode
**
** Return the numeric error code that was returned by the most recent
** call to sqlite3_exec().
*/
case DB_ERRORCODE: {
Tcl_SetObjResult(interp, Tcl_NewIntObj(sqlite3_errcode(pDb->db)));
break;
}
/*
** $db exists $sql
** $db onecolumn $sql
**
** The onecolumn method is the equivalent of:
** lindex [$db eval $sql] 0
*/
case DB_EXISTS:
case DB_ONECOLUMN: {
DbEvalContext sEval;
if( objc!=3 ){
Tcl_WrongNumArgs(interp, 2, objv, "SQL");
return TCL_ERROR;
}
dbEvalInit(&sEval, pDb, objv[2], 0);
rc = dbEvalStep(&sEval);
if( choice==DB_ONECOLUMN ){
if( rc==TCL_OK ){
Tcl_SetObjResult(interp, dbEvalColumnValue(&sEval, 0));
}else if( rc==TCL_BREAK ){
Tcl_ResetResult(interp);
}
}else if( rc==TCL_BREAK || rc==TCL_OK ){
Tcl_SetObjResult(interp, Tcl_NewBooleanObj(rc==TCL_OK));
}
dbEvalFinalize(&sEval);
if( rc==TCL_BREAK ){
rc = TCL_OK;
}
break;
}
/*
** $db eval $sql ?array? ?{ ...code... }?
**
** The SQL statement in $sql is evaluated. For each row, the values are
** placed in elements of the array named "array" and ...code... is executed.
** If "array" and "code" are omitted, then no callback is every invoked.
** If "array" is an empty string, then the values are placed in variables
** that have the same name as the fields extracted by the query.
*/
case DB_EVAL: {
if( objc<3 || objc>5 ){
Tcl_WrongNumArgs(interp, 2, objv, "SQL ?ARRAY-NAME? ?SCRIPT?");
return TCL_ERROR;
}
if( objc==3 ){
DbEvalContext sEval;
Tcl_Obj *pRet = Tcl_NewObj();
Tcl_IncrRefCount(pRet);
dbEvalInit(&sEval, pDb, objv[2], 0);
while( TCL_OK==(rc = dbEvalStep(&sEval)) ){
int i;
int nCol;
dbEvalRowInfo(&sEval, &nCol, 0);
for(i=0; i<nCol; i++){
Tcl_ListObjAppendElement(interp, pRet, dbEvalColumnValue(&sEval, i));
}
}
dbEvalFinalize(&sEval);
if( rc==TCL_BREAK ){
Tcl_SetObjResult(interp, pRet);
rc = TCL_OK;
}
Tcl_DecrRefCount(pRet);
}else{
ClientData cd[2];
DbEvalContext *p;
Tcl_Obj *pArray = 0;
Tcl_Obj *pScript;
if( objc==5 && *(char *)Tcl_GetString(objv[3]) ){
pArray = objv[3];
}
pScript = objv[objc-1];
Tcl_IncrRefCount(pScript);
p = (DbEvalContext *)Tcl_Alloc(sizeof(DbEvalContext));
dbEvalInit(p, pDb, objv[2], pArray);
cd[0] = (void *)p;
cd[1] = (void *)pScript;
rc = DbEvalNextCmd(cd, interp, TCL_OK);
}
break;
}
/*
** $db function NAME [-argcount N] SCRIPT
**
** Create a new SQL function called NAME. Whenever that function is
** called, invoke SCRIPT to evaluate the function.
*/
case DB_FUNCTION: {
SqlFunc *pFunc;
Tcl_Obj *pScript;
char *zName;
int nArg = -1;
if( objc==6 ){
const char *z = Tcl_GetString(objv[3]);
int n = strlen30(z);
if( n>2 && strncmp(z, "-argcount",n)==0 ){
if( Tcl_GetIntFromObj(interp, objv[4], &nArg) ) return TCL_ERROR;
if( nArg<0 ){
Tcl_AppendResult(interp, "number of arguments must be non-negative",
(char*)0);
return TCL_ERROR;
}
}
pScript = objv[5];
}else if( objc!=4 ){
Tcl_WrongNumArgs(interp, 2, objv, "NAME [-argcount N] SCRIPT");
return TCL_ERROR;
}else{
pScript = objv[3];
}
zName = Tcl_GetStringFromObj(objv[2], 0);
pFunc = findSqlFunc(pDb, zName);
if( pFunc==0 ) return TCL_ERROR;
if( pFunc->pScript ){
Tcl_DecrRefCount(pFunc->pScript);
}
pFunc->pScript = pScript;
Tcl_IncrRefCount(pScript);
pFunc->useEvalObjv = safeToUseEvalObjv(interp, pScript);
rc = sqlite3_create_function(pDb->db, zName, nArg, SQLITE_UTF8,
pFunc, tclSqlFunc, 0, 0);
if( rc!=SQLITE_OK ){
rc = TCL_ERROR;
Tcl_SetResult(interp, (char *)sqlite3_errmsg(pDb->db), TCL_VOLATILE);
}
break;
}
/*
** $db incrblob ?-readonly? ?DB? TABLE COLUMN ROWID
*/
case DB_INCRBLOB: {
#ifdef SQLITE_OMIT_INCRBLOB
Tcl_AppendResult(interp, "incrblob not available in this build", 0);
return TCL_ERROR;
#else
int isReadonly = 0;
const char *zDb = "main";
const char *zTable;
const char *zColumn;
Tcl_WideInt iRow;
/* Check for the -readonly option */
if( objc>3 && strcmp(Tcl_GetString(objv[2]), "-readonly")==0 ){
isReadonly = 1;
}
if( objc!=(5+isReadonly) && objc!=(6+isReadonly) ){
Tcl_WrongNumArgs(interp, 2, objv, "?-readonly? ?DB? TABLE COLUMN ROWID");
return TCL_ERROR;
}
if( objc==(6+isReadonly) ){
zDb = Tcl_GetString(objv[2]);
}
zTable = Tcl_GetString(objv[objc-3]);
zColumn = Tcl_GetString(objv[objc-2]);
rc = Tcl_GetWideIntFromObj(interp, objv[objc-1], &iRow);
if( rc==TCL_OK ){
rc = createIncrblobChannel(
interp, pDb, zDb, zTable, zColumn, iRow, isReadonly
);
}
#endif
break;
}
/*
** $db interrupt
**
** Interrupt the execution of the inner-most SQL interpreter. This
** causes the SQL statement to return an error of SQLITE_INTERRUPT.
*/
case DB_INTERRUPT: {
sqlite3_interrupt(pDb->db);
break;
}
/*
** $db nullvalue ?STRING?
**
** Change text used when a NULL comes back from the database. If ?STRING?
** is not present, then the current string used for NULL is returned.
** If STRING is present, then STRING is returned.
**
*/
case DB_NULLVALUE: {
if( objc!=2 && objc!=3 ){
Tcl_WrongNumArgs(interp, 2, objv, "NULLVALUE");
return TCL_ERROR;
}
if( objc==3 ){
int len;
char *zNull = Tcl_GetStringFromObj(objv[2], &len);
if( pDb->zNull ){
Tcl_Free(pDb->zNull);
}
if( zNull && len>0 ){
pDb->zNull = Tcl_Alloc( len + 1 );
memcpy(pDb->zNull, zNull, len);
pDb->zNull[len] = '\0';
}else{
pDb->zNull = 0;
}
}
Tcl_SetObjResult(interp, Tcl_NewStringObj(pDb->zNull, -1));
break;
}
/*
** $db last_insert_rowid
**
** Return an integer which is the ROWID for the most recent insert.
*/
case DB_LAST_INSERT_ROWID: {
Tcl_Obj *pResult;
Tcl_WideInt rowid;
if( objc!=2 ){
Tcl_WrongNumArgs(interp, 2, objv, "");
return TCL_ERROR;
}
rowid = sqlite3_last_insert_rowid(pDb->db);
pResult = Tcl_GetObjResult(interp);
Tcl_SetWideIntObj(pResult, rowid);
break;
}
/*
** The DB_ONECOLUMN method is implemented together with DB_EXISTS.
*/
/* $db progress ?N CALLBACK?
**
** Invoke the given callback every N virtual machine opcodes while executing
** queries.
*/
case DB_PROGRESS: {
if( objc==2 ){
if( pDb->zProgress ){
Tcl_AppendResult(interp, pDb->zProgress, 0);
}
}else if( objc==4 ){
char *zProgress;
int len;
int N;
if( TCL_OK!=Tcl_GetIntFromObj(interp, objv[2], &N) ){
return TCL_ERROR;
};
if( pDb->zProgress ){
Tcl_Free(pDb->zProgress);
}
zProgress = Tcl_GetStringFromObj(objv[3], &len);
if( zProgress && len>0 ){
pDb->zProgress = Tcl_Alloc( len + 1 );
memcpy(pDb->zProgress, zProgress, len+1);
}else{
pDb->zProgress = 0;
}
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
if( pDb->zProgress ){
pDb->interp = interp;
sqlite3_progress_handler(pDb->db, N, DbProgressHandler, pDb);
}else{
sqlite3_progress_handler(pDb->db, 0, 0, 0);
}
#endif
}else{
Tcl_WrongNumArgs(interp, 2, objv, "N CALLBACK");
return TCL_ERROR;
}
break;
}
/* $db profile ?CALLBACK?
**
** Make arrangements to invoke the CALLBACK routine after each SQL statement
** that has run. The text of the SQL and the amount of elapse time are
** appended to CALLBACK before the script is run.
*/
case DB_PROFILE: {
if( objc>3 ){
Tcl_WrongNumArgs(interp, 2, objv, "?CALLBACK?");
return TCL_ERROR;
}else if( objc==2 ){
if( pDb->zProfile ){
Tcl_AppendResult(interp, pDb->zProfile, 0);
}
}else{
char *zProfile;
int len;
if( pDb->zProfile ){
Tcl_Free(pDb->zProfile);
}
zProfile = Tcl_GetStringFromObj(objv[2], &len);
if( zProfile && len>0 ){
pDb->zProfile = Tcl_Alloc( len + 1 );
memcpy(pDb->zProfile, zProfile, len+1);
}else{
pDb->zProfile = 0;
}
#if !defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_OMIT_FLOATING_POINT)
if( pDb->zProfile ){
pDb->interp = interp;
sqlite3_profile(pDb->db, DbProfileHandler, pDb);
}else{
sqlite3_profile(pDb->db, 0, 0);
}
#endif
}
break;
}
/*
** $db rekey KEY
**
** Change the encryption key on the currently open database.
*/
case DB_REKEY: {
#ifdef SQLITE_HAS_CODEC
int nKey;
void *pKey;
#endif
if( objc!=3 ){
Tcl_WrongNumArgs(interp, 2, objv, "KEY");
return TCL_ERROR;
}
#ifdef SQLITE_HAS_CODEC
pKey = Tcl_GetByteArrayFromObj(objv[2], &nKey);
rc = sqlite3_rekey(pDb->db, pKey, nKey);
if( rc ){
Tcl_AppendResult(interp, sqlite3_errstr(rc), 0);
rc = TCL_ERROR;
}
#endif
break;
}
/* $db restore ?DATABASE? FILENAME
**
** Open a database file named FILENAME. Transfer the content
** of FILENAME into the local database DATABASE (default: "main").
*/
case DB_RESTORE: {
const char *zSrcFile;
const char *zDestDb;
sqlite3 *pSrc;
sqlite3_backup *pBackup;
int nTimeout = 0;
if( objc==3 ){
zDestDb = "main";
zSrcFile = Tcl_GetString(objv[2]);
}else if( objc==4 ){
zDestDb = Tcl_GetString(objv[2]);
zSrcFile = Tcl_GetString(objv[3]);
}else{
Tcl_WrongNumArgs(interp, 2, objv, "?DATABASE? FILENAME");
return TCL_ERROR;
}
rc = sqlite3_open_v2(zSrcFile, &pSrc, SQLITE_OPEN_READONLY, 0);
if( rc!=SQLITE_OK ){
Tcl_AppendResult(interp, "cannot open source database: ",
sqlite3_errmsg(pSrc), (char*)0);
sqlite3_close(pSrc);
return TCL_ERROR;
}
pBackup = sqlite3_backup_init(pDb->db, zDestDb, pSrc, "main");
if( pBackup==0 ){
Tcl_AppendResult(interp, "restore failed: ",
sqlite3_errmsg(pDb->db), (char*)0);
sqlite3_close(pSrc);
return TCL_ERROR;
}
while( (rc = sqlite3_backup_step(pBackup,100))==SQLITE_OK
|| rc==SQLITE_BUSY ){
if( rc==SQLITE_BUSY ){
if( nTimeout++ >= 3 ) break;
sqlite3_sleep(100);
}
}
sqlite3_backup_finish(pBackup);
if( rc==SQLITE_DONE ){
rc = TCL_OK;
}else if( rc==SQLITE_BUSY || rc==SQLITE_LOCKED ){
Tcl_AppendResult(interp, "restore failed: source database busy",
(char*)0);
rc = TCL_ERROR;
}else{
Tcl_AppendResult(interp, "restore failed: ",
sqlite3_errmsg(pDb->db), (char*)0);
rc = TCL_ERROR;
}
sqlite3_close(pSrc);
break;
}
/*
** $db status (step|sort|autoindex)
**
** Display SQLITE_STMTSTATUS_FULLSCAN_STEP or
** SQLITE_STMTSTATUS_SORT for the most recent eval.
*/
case DB_STATUS: {
int v;
const char *zOp;
if( objc!=3 ){
Tcl_WrongNumArgs(interp, 2, objv, "(step|sort|autoindex)");
return TCL_ERROR;
}
zOp = Tcl_GetString(objv[2]);
if( strcmp(zOp, "step")==0 ){
v = pDb->nStep;
}else if( strcmp(zOp, "sort")==0 ){
v = pDb->nSort;
}else if( strcmp(zOp, "autoindex")==0 ){
v = pDb->nIndex;
}else{
Tcl_AppendResult(interp,
"bad argument: should be autoindex, step, or sort",
(char*)0);
return TCL_ERROR;
}
Tcl_SetObjResult(interp, Tcl_NewIntObj(v));
break;
}
/*
** $db timeout MILLESECONDS
**
** Delay for the number of milliseconds specified when a file is locked.
*/
case DB_TIMEOUT: {
int ms;
if( objc!=3 ){
Tcl_WrongNumArgs(interp, 2, objv, "MILLISECONDS");
return TCL_ERROR;
}
if( Tcl_GetIntFromObj(interp, objv[2], &ms) ) return TCL_ERROR;
sqlite3_busy_timeout(pDb->db, ms);
break;
}
/*
** $db total_changes
**
** Return the number of rows that were modified, inserted, or deleted
** since the database handle was created.
*/
case DB_TOTAL_CHANGES: {
Tcl_Obj *pResult;
if( objc!=2 ){
Tcl_WrongNumArgs(interp, 2, objv, "");
return TCL_ERROR;
}
pResult = Tcl_GetObjResult(interp);
Tcl_SetIntObj(pResult, sqlite3_total_changes(pDb->db));
break;
}
/* $db trace ?CALLBACK?
**
** Make arrangements to invoke the CALLBACK routine for each SQL statement
** that is executed. The text of the SQL is appended to CALLBACK before
** it is executed.
*/
case DB_TRACE: {
if( objc>3 ){
Tcl_WrongNumArgs(interp, 2, objv, "?CALLBACK?");
return TCL_ERROR;
}else if( objc==2 ){
if( pDb->zTrace ){
Tcl_AppendResult(interp, pDb->zTrace, 0);
}
}else{
char *zTrace;
int len;
if( pDb->zTrace ){
Tcl_Free(pDb->zTrace);
}
zTrace = Tcl_GetStringFromObj(objv[2], &len);
if( zTrace && len>0 ){
pDb->zTrace = Tcl_Alloc( len + 1 );
memcpy(pDb->zTrace, zTrace, len+1);
}else{
pDb->zTrace = 0;
}
#if !defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_OMIT_FLOATING_POINT)
if( pDb->zTrace ){
pDb->interp = interp;
sqlite3_trace(pDb->db, DbTraceHandler, pDb);
}else{
sqlite3_trace(pDb->db, 0, 0);
}
#endif
}
break;
}
/* $db transaction [-deferred|-immediate|-exclusive] SCRIPT
**
** Start a new transaction (if we are not already in the midst of a
** transaction) and execute the TCL script SCRIPT. After SCRIPT
** completes, either commit the transaction or roll it back if SCRIPT
** throws an exception. Or if no new transation was started, do nothing.
** pass the exception on up the stack.
**
** This command was inspired by Dave Thomas's talk on Ruby at the
** 2005 O'Reilly Open Source Convention (OSCON).
*/
case DB_TRANSACTION: {
Tcl_Obj *pScript;
const char *zBegin = "SAVEPOINT _tcl_transaction";
if( objc!=3 && objc!=4 ){
Tcl_WrongNumArgs(interp, 2, objv, "[TYPE] SCRIPT");
return TCL_ERROR;
}
if( pDb->nTransaction==0 && objc==4 ){
static const char *TTYPE_strs[] = {
"deferred", "exclusive", "immediate", 0
};
enum TTYPE_enum {
TTYPE_DEFERRED, TTYPE_EXCLUSIVE, TTYPE_IMMEDIATE
};
int ttype;
if( Tcl_GetIndexFromObj(interp, objv[2], TTYPE_strs, "transaction type",
0, &ttype) ){
return TCL_ERROR;
}
switch( (enum TTYPE_enum)ttype ){
case TTYPE_DEFERRED: /* no-op */; break;
case TTYPE_EXCLUSIVE: zBegin = "BEGIN EXCLUSIVE"; break;
case TTYPE_IMMEDIATE: zBegin = "BEGIN IMMEDIATE"; break;
}
}
pScript = objv[objc-1];
/* Run the SQLite BEGIN command to open a transaction or savepoint. */
pDb->disableAuth++;
rc = sqlite3_exec(pDb->db, zBegin, 0, 0, 0);
pDb->disableAuth--;
if( rc!=SQLITE_OK ){
Tcl_AppendResult(interp, sqlite3_errmsg(pDb->db), 0);
return TCL_ERROR;
}
pDb->nTransaction++;
/* If using NRE, schedule a callback to invoke the script pScript, then
** a second callback to commit (or rollback) the transaction or savepoint
** opened above. If not using NRE, evaluate the script directly, then
** call function DbTransPostCmd() to commit (or rollback) the transaction
** or savepoint. */
if( DbUseNre() ){
Tcl_NRAddCallback(interp, DbTransPostCmd, cd, 0, 0, 0);
Tcl_NREvalObj(interp, pScript, 0);
}else{
rc = DbTransPostCmd(&cd, interp, Tcl_EvalObjEx(interp, pScript, 0));
}
break;
}
/*
** $db unlock_notify ?script?
*/
case DB_UNLOCK_NOTIFY: {
#ifndef SQLITE_ENABLE_UNLOCK_NOTIFY
Tcl_AppendResult(interp, "unlock_notify not available in this build", 0);
rc = TCL_ERROR;
#else
if( objc!=2 && objc!=3 ){
Tcl_WrongNumArgs(interp, 2, objv, "?SCRIPT?");
rc = TCL_ERROR;
}else{
void (*xNotify)(void **, int) = 0;
void *pNotifyArg = 0;
if( pDb->pUnlockNotify ){
Tcl_DecrRefCount(pDb->pUnlockNotify);
pDb->pUnlockNotify = 0;
}
if( objc==3 ){
xNotify = DbUnlockNotify;
pNotifyArg = (void *)pDb;
pDb->pUnlockNotify = objv[2];
Tcl_IncrRefCount(pDb->pUnlockNotify);
}
if( sqlite3_unlock_notify(pDb->db, xNotify, pNotifyArg) ){
Tcl_AppendResult(interp, sqlite3_errmsg(pDb->db), 0);
rc = TCL_ERROR;
}
}
#endif
break;
}
/*
** $db preupdate_hook count
** $db preupdate_hook hook ?SCRIPT?
** $db preupdate_hook new INDEX
** $db preupdate_hook old INDEX
*/
case DB_PREUPDATE: {
#ifndef SQLITE_ENABLE_PREUPDATE_HOOK
Tcl_AppendResult(interp, "preupdate_hook was omitted at compile-time");
rc = TCL_ERROR;
#else
static const char *azSub[] = {"count", "depth", "hook", "new", "old", 0};
enum DbPreupdateSubCmd {
PRE_COUNT, PRE_DEPTH, PRE_HOOK, PRE_NEW, PRE_OLD
};
int iSub;
if( objc<3 ){
Tcl_WrongNumArgs(interp, 2, objv, "SUB-COMMAND ?ARGS?");
}
if( Tcl_GetIndexFromObj(interp, objv[2], azSub, "sub-command", 0, &iSub) ){
return TCL_ERROR;
}
switch( (enum DbPreupdateSubCmd)iSub ){
case PRE_COUNT: {
int nCol = sqlite3_preupdate_count(pDb->db);
Tcl_SetObjResult(interp, Tcl_NewIntObj(nCol));
break;
}
case PRE_HOOK: {
if( objc>4 ){
Tcl_WrongNumArgs(interp, 2, objv, "hook ?SCRIPT?");
return TCL_ERROR;
}
DbHookCmd(interp, pDb, (objc==4 ? objv[3] : 0), &pDb->pPreUpdateHook);
break;
}
case PRE_DEPTH: {
Tcl_Obj *pRet;
if( objc!=3 ){
Tcl_WrongNumArgs(interp, 3, objv, "");
return TCL_ERROR;
}
pRet = Tcl_NewIntObj(sqlite3_preupdate_depth(pDb->db));
Tcl_SetObjResult(interp, pRet);
break;
}
case PRE_NEW:
case PRE_OLD: {
int iIdx;
sqlite3_value *pValue;
if( objc!=4 ){
Tcl_WrongNumArgs(interp, 3, objv, "INDEX");
return TCL_ERROR;
}
if( Tcl_GetIntFromObj(interp, objv[3], &iIdx) ){
return TCL_ERROR;
}
if( iSub==PRE_OLD ){
rc = sqlite3_preupdate_old(pDb->db, iIdx, &pValue);
}else{
assert( iSub==PRE_NEW );
rc = sqlite3_preupdate_new(pDb->db, iIdx, &pValue);
}
if( rc==SQLITE_OK ){
Tcl_Obj *pObj;
pObj = Tcl_NewStringObj((char*)sqlite3_value_text(pValue), -1);
Tcl_SetObjResult(interp, pObj);
}else{
Tcl_AppendResult(interp, sqlite3_errmsg(pDb->db), 0);
return TCL_ERROR;
}
}
}
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
break;
}
/*
** $db wal_hook ?script?
** $db update_hook ?script?
** $db rollback_hook ?script?
*/
case DB_WAL_HOOK:
case DB_UPDATE_HOOK:
case DB_ROLLBACK_HOOK: {
/* set ppHook to point at pUpdateHook or pRollbackHook, depending on
** whether [$db update_hook] or [$db rollback_hook] was invoked.
*/
Tcl_Obj **ppHook;
if( choice==DB_WAL_HOOK ) ppHook = &pDb->pWalHook;
if( choice==DB_UPDATE_HOOK ) ppHook = &pDb->pUpdateHook;
if( choice==DB_ROLLBACK_HOOK ) ppHook = &pDb->pRollbackHook;
if( objc>3 ){
Tcl_WrongNumArgs(interp, 2, objv, "?SCRIPT?");
return TCL_ERROR;
}
DbHookCmd(interp, pDb, (objc==3 ? objv[2] : 0), ppHook);
break;
}
/* $db version
**
** Return the version string for this database.
*/
case DB_VERSION: {
Tcl_SetResult(interp, (char *)sqlite3_libversion(), TCL_STATIC);
break;
}
} /* End of the SWITCH statement */
return rc;
}
#if SQLITE_TCL_NRE
/*
** Adaptor that provides an objCmd interface to the NRE-enabled
** interface implementation.
*/
static int DbObjCmdAdaptor(
void *cd,
Tcl_Interp *interp,
int objc,
Tcl_Obj *const*objv
){
return Tcl_NRCallObjProc(interp, DbObjCmd, cd, objc, objv);
}
#endif /* SQLITE_TCL_NRE */
/*
** sqlite3 DBNAME FILENAME ?-vfs VFSNAME? ?-key KEY? ?-readonly BOOLEAN?
** ?-create BOOLEAN? ?-nomutex BOOLEAN?
**
** This is the main Tcl command. When the "sqlite" Tcl command is
** invoked, this routine runs to process that command.
**
** The first argument, DBNAME, is an arbitrary name for a new
** database connection. This command creates a new command named
** DBNAME that is used to control that connection. The database
** connection is deleted when the DBNAME command is deleted.
**
** The second argument is the name of the database file.
**
*/
static int DbMain(void *cd, Tcl_Interp *interp, int objc,Tcl_Obj *const*objv){
SqliteDb *p;
const char *zArg;
char *zErrMsg;
int i;
const char *zFile;
const char *zVfs = 0;
int flags;
Tcl_DString translatedFilename;
#ifdef SQLITE_HAS_CODEC
void *pKey = 0;
int nKey = 0;
#endif
int rc;
/* In normal use, each TCL interpreter runs in a single thread. So
** by default, we can turn of mutexing on SQLite database connections.
** However, for testing purposes it is useful to have mutexes turned
** on. So, by default, mutexes default off. But if compiled with
** SQLITE_TCL_DEFAULT_FULLMUTEX then mutexes default on.
*/
#ifdef SQLITE_TCL_DEFAULT_FULLMUTEX
flags = SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_FULLMUTEX;
#else
flags = SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_NOMUTEX;
#endif
if( objc==2 ){
zArg = Tcl_GetStringFromObj(objv[1], 0);
if( strcmp(zArg,"-version")==0 ){
Tcl_AppendResult(interp,sqlite3_version,0);
return TCL_OK;
}
if( strcmp(zArg,"-has-codec")==0 ){
#ifdef SQLITE_HAS_CODEC
Tcl_AppendResult(interp,"1",0);
#else
Tcl_AppendResult(interp,"0",0);
#endif
return TCL_OK;
}
}
for(i=3; i+1<objc; i+=2){
zArg = Tcl_GetString(objv[i]);
if( strcmp(zArg,"-key")==0 ){
#ifdef SQLITE_HAS_CODEC
pKey = Tcl_GetByteArrayFromObj(objv[i+1], &nKey);
#endif
}else if( strcmp(zArg, "-vfs")==0 ){
zVfs = Tcl_GetString(objv[i+1]);
}else if( strcmp(zArg, "-readonly")==0 ){
int b;
if( Tcl_GetBooleanFromObj(interp, objv[i+1], &b) ) return TCL_ERROR;
if( b ){
flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
flags |= SQLITE_OPEN_READONLY;
}else{
flags &= ~SQLITE_OPEN_READONLY;
flags |= SQLITE_OPEN_READWRITE;
}
}else if( strcmp(zArg, "-create")==0 ){
int b;
if( Tcl_GetBooleanFromObj(interp, objv[i+1], &b) ) return TCL_ERROR;
if( b && (flags & SQLITE_OPEN_READONLY)==0 ){
flags |= SQLITE_OPEN_CREATE;
}else{
flags &= ~SQLITE_OPEN_CREATE;
}
}else if( strcmp(zArg, "-nomutex")==0 ){
int b;
if( Tcl_GetBooleanFromObj(interp, objv[i+1], &b) ) return TCL_ERROR;
if( b ){
flags |= SQLITE_OPEN_NOMUTEX;
flags &= ~SQLITE_OPEN_FULLMUTEX;
}else{
flags &= ~SQLITE_OPEN_NOMUTEX;
}
}else if( strcmp(zArg, "-fullmutex")==0 ){
int b;
if( Tcl_GetBooleanFromObj(interp, objv[i+1], &b) ) return TCL_ERROR;
if( b ){
flags |= SQLITE_OPEN_FULLMUTEX;
flags &= ~SQLITE_OPEN_NOMUTEX;
}else{
flags &= ~SQLITE_OPEN_FULLMUTEX;
}
}else if( strcmp(zArg, "-uri")==0 ){
int b;
if( Tcl_GetBooleanFromObj(interp, objv[i+1], &b) ) return TCL_ERROR;
if( b ){
flags |= SQLITE_OPEN_URI;
}else{
flags &= ~SQLITE_OPEN_URI;
}
}else{
Tcl_AppendResult(interp, "unknown option: ", zArg, (char*)0);
return TCL_ERROR;
}
}
if( objc<3 || (objc&1)!=1 ){
Tcl_WrongNumArgs(interp, 1, objv,
"HANDLE FILENAME ?-vfs VFSNAME? ?-readonly BOOLEAN? ?-create BOOLEAN?"
" ?-nomutex BOOLEAN? ?-fullmutex BOOLEAN? ?-uri BOOLEAN?"
#ifdef SQLITE_HAS_CODEC
" ?-key CODECKEY?"
#endif
);
return TCL_ERROR;
}
zErrMsg = 0;
p = (SqliteDb*)Tcl_Alloc( sizeof(*p) );
if( p==0 ){
Tcl_SetResult(interp, "malloc failed", TCL_STATIC);
return TCL_ERROR;
}
memset(p, 0, sizeof(*p));
zFile = Tcl_GetStringFromObj(objv[2], 0);
zFile = Tcl_TranslateFileName(interp, zFile, &translatedFilename);
rc = sqlite3_open_v2(zFile, &p->db, flags, zVfs);
Tcl_DStringFree(&translatedFilename);
if( p->db ){
if( SQLITE_OK!=sqlite3_errcode(p->db) ){
zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(p->db));
sqlite3_close(p->db);
p->db = 0;
}
}else{
zErrMsg = sqlite3_mprintf("%s", sqlite3_errstr(rc));
}
#ifdef SQLITE_HAS_CODEC
if( p->db ){
sqlite3_key(p->db, pKey, nKey);
}
#endif
if( p->db==0 ){
Tcl_SetResult(interp, zErrMsg, TCL_VOLATILE);
Tcl_Free((char*)p);
sqlite3_free(zErrMsg);
return TCL_ERROR;
}
p->maxStmt = NUM_PREPARED_STMTS;
p->interp = interp;
zArg = Tcl_GetStringFromObj(objv[1], 0);
if( DbUseNre() ){
Tcl_NRCreateCommand(interp, zArg, DbObjCmdAdaptor, DbObjCmd,
(char*)p, DbDeleteCmd);
}else{
Tcl_CreateObjCommand(interp, zArg, DbObjCmd, (char*)p, DbDeleteCmd);
}
return TCL_OK;
}
/*
** Provide a dummy Tcl_InitStubs if we are using this as a static
** library.
*/
#ifndef USE_TCL_STUBS
# undef Tcl_InitStubs
# define Tcl_InitStubs(a,b,c)
#endif
/*
** Make sure we have a PACKAGE_VERSION macro defined. This will be
** defined automatically by the TEA makefile. But other makefiles
** do not define it.
*/
#ifndef PACKAGE_VERSION
# define PACKAGE_VERSION SQLITE_VERSION
#endif
/*
** Initialize this module.
**
** This Tcl module contains only a single new Tcl command named "sqlite".
** (Hence there is no namespace. There is no point in using a namespace
** if the extension only supplies one new name!) The "sqlite" command is
** used to open a new SQLite database. See the DbMain() routine above
** for additional information.
**
** The EXTERN macros are required by TCL in order to work on windows.
*/
EXTERN int Sqlite3_Init(Tcl_Interp *interp){
Tcl_InitStubs(interp, "8.4", 0);
Tcl_CreateObjCommand(interp, "sqlite3", (Tcl_ObjCmdProc*)DbMain, 0, 0);
Tcl_PkgProvide(interp, "sqlite3", PACKAGE_VERSION);
#ifndef SQLITE_3_SUFFIX_ONLY
/* The "sqlite" alias is undocumented. It is here only to support
** legacy scripts. All new scripts should use only the "sqlite3"
** command.
*/
Tcl_CreateObjCommand(interp, "sqlite", (Tcl_ObjCmdProc*)DbMain, 0, 0);
#endif
return TCL_OK;
}
EXTERN int Tclsqlite3_Init(Tcl_Interp *interp){ return Sqlite3_Init(interp); }
EXTERN int Sqlite3_Unload(Tcl_Interp *interp, int flags){ return TCL_OK; }
EXTERN int Tclsqlite3_Unload(Tcl_Interp *interp, int flags){ return TCL_OK; }
/* Because it accesses the file-system and uses persistent state, SQLite
** is not considered appropriate for safe interpreters. Hence, we deliberately
** omit the _SafeInit() interfaces.
*/
#ifndef SQLITE_3_SUFFIX_ONLY
int Sqlite_Init(Tcl_Interp *interp){ return Sqlite3_Init(interp); }
int Tclsqlite_Init(Tcl_Interp *interp){ return Sqlite3_Init(interp); }
int Sqlite_Unload(Tcl_Interp *interp, int flags){ return TCL_OK; }
int Tclsqlite_Unload(Tcl_Interp *interp, int flags){ return TCL_OK; }
#endif
#ifdef TCLSH
/*****************************************************************************
** All of the code that follows is used to build standalone TCL interpreters
** that are statically linked with SQLite. Enable these by compiling
** with -DTCLSH=n where n can be 1 or 2. An n of 1 generates a standard
** tclsh but with SQLite built in. An n of 2 generates the SQLite space
** analysis program.
*/
#if defined(SQLITE_TEST) || defined(SQLITE_TCLMD5)
/*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
*
* To compute the message digest of a chunk of bytes, declare an
* MD5Context structure, pass it to MD5Init, call MD5Update as
* needed on buffers full of bytes, and then call MD5Final, which
* will fill a supplied 16-byte array with the digest.
*/
/*
* If compiled on a machine that doesn't have a 32-bit integer,
* you just set "uint32" to the appropriate datatype for an
* unsigned 32-bit integer. For example:
*
* cc -Duint32='unsigned long' md5.c
*
*/
#ifndef uint32
# define uint32 unsigned int
#endif
struct MD5Context {
int isInit;
uint32 buf[4];
uint32 bits[2];
unsigned char in[64];
};
typedef struct MD5Context MD5Context;
/*
* Note: this code is harmless on little-endian machines.
*/
static void byteReverse (unsigned char *buf, unsigned longs){
uint32 t;
do {
t = (uint32)((unsigned)buf[3]<<8 | buf[2]) << 16 |
((unsigned)buf[1]<<8 | buf[0]);
*(uint32 *)buf = t;
buf += 4;
} while (--longs);
}
/* The four core functions - F1 is optimized somewhat */
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
/*
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data. MD5Update blocks
* the data and converts bytes into longwords for this routine.
*/
static void MD5Transform(uint32 buf[4], const uint32 in[16]){
register uint32 a, b, c, d;
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
/*
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
* initialization constants.
*/
static void MD5Init(MD5Context *ctx){
ctx->isInit = 1;
ctx->buf[0] = 0x67452301;
ctx->buf[1] = 0xefcdab89;
ctx->buf[2] = 0x98badcfe;
ctx->buf[3] = 0x10325476;
ctx->bits[0] = 0;
ctx->bits[1] = 0;
}
/*
* Update context to reflect the concatenation of another buffer full
* of bytes.
*/
static
void MD5Update(MD5Context *ctx, const unsigned char *buf, unsigned int len){
uint32 t;
/* Update bitcount */
t = ctx->bits[0];
if ((ctx->bits[0] = t + ((uint32)len << 3)) < t)
ctx->bits[1]++; /* Carry from low to high */
ctx->bits[1] += len >> 29;
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
/* Handle any leading odd-sized chunks */
if ( t ) {
unsigned char *p = (unsigned char *)ctx->in + t;
t = 64-t;
if (len < t) {
memcpy(p, buf, len);
return;
}
memcpy(p, buf, t);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (uint32 *)ctx->in);
buf += t;
len -= t;
}
/* Process data in 64-byte chunks */
while (len >= 64) {
memcpy(ctx->in, buf, 64);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (uint32 *)ctx->in);
buf += 64;
len -= 64;
}
/* Handle any remaining bytes of data. */
memcpy(ctx->in, buf, len);
}
/*
* Final wrapup - pad to 64-byte boundary with the bit pattern
* 1 0* (64-bit count of bits processed, MSB-first)
*/
static void MD5Final(unsigned char digest[16], MD5Context *ctx){
unsigned count;
unsigned char *p;
/* Compute number of bytes mod 64 */
count = (ctx->bits[0] >> 3) & 0x3F;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
p = ctx->in + count;
*p++ = 0x80;
/* Bytes of padding needed to make 64 bytes */
count = 64 - 1 - count;
/* Pad out to 56 mod 64 */
if (count < 8) {
/* Two lots of padding: Pad the first block to 64 bytes */
memset(p, 0, count);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (uint32 *)ctx->in);
/* Now fill the next block with 56 bytes */
memset(ctx->in, 0, 56);
} else {
/* Pad block to 56 bytes */
memset(p, 0, count-8);
}
byteReverse(ctx->in, 14);
/* Append length in bits and transform */
((uint32 *)ctx->in)[ 14 ] = ctx->bits[0];
((uint32 *)ctx->in)[ 15 ] = ctx->bits[1];
MD5Transform(ctx->buf, (uint32 *)ctx->in);
byteReverse((unsigned char *)ctx->buf, 4);
memcpy(digest, ctx->buf, 16);
memset(ctx, 0, sizeof(ctx)); /* In case it is sensitive */
}
/*
** Convert a 128-bit MD5 digest into a 32-digit base-16 number.
*/
static void MD5DigestToBase16(unsigned char *digest, char *zBuf){
static char const zEncode[] = "0123456789abcdef";
int i, j;
for(j=i=0; i<16; i++){
int a = digest[i];
zBuf[j++] = zEncode[(a>>4)&0xf];
zBuf[j++] = zEncode[a & 0xf];
}
zBuf[j] = 0;
}
/*
** Convert a 128-bit MD5 digest into sequency of eight 5-digit integers
** each representing 16 bits of the digest and separated from each
** other by a "-" character.
*/
static void MD5DigestToBase10x8(unsigned char digest[16], char zDigest[50]){
int i, j;
unsigned int x;
for(i=j=0; i<16; i+=2){
x = digest[i]*256 + digest[i+1];
if( i>0 ) zDigest[j++] = '-';
sprintf(&zDigest[j], "%05u", x);
j += 5;
}
zDigest[j] = 0;
}
/*
** A TCL command for md5. The argument is the text to be hashed. The
** Result is the hash in base64.
*/
static int md5_cmd(void*cd, Tcl_Interp *interp, int argc, const char **argv){
MD5Context ctx;
unsigned char digest[16];
char zBuf[50];
void (*converter)(unsigned char*, char*);
if( argc!=2 ){
Tcl_AppendResult(interp,"wrong # args: should be \"", argv[0],
" TEXT\"", 0);
return TCL_ERROR;
}
MD5Init(&ctx);
MD5Update(&ctx, (unsigned char*)argv[1], (unsigned)strlen(argv[1]));
MD5Final(digest, &ctx);
converter = (void(*)(unsigned char*,char*))cd;
converter(digest, zBuf);
Tcl_AppendResult(interp, zBuf, (char*)0);
return TCL_OK;
}
/*
** A TCL command to take the md5 hash of a file. The argument is the
** name of the file.
*/
static int md5file_cmd(void*cd, Tcl_Interp*interp, int argc, const char **argv){
FILE *in;
MD5Context ctx;
void (*converter)(unsigned char*, char*);
unsigned char digest[16];
char zBuf[10240];
if( argc!=2 ){
Tcl_AppendResult(interp,"wrong # args: should be \"", argv[0],
" FILENAME\"", 0);
return TCL_ERROR;
}
in = fopen(argv[1],"rb");
if( in==0 ){
Tcl_AppendResult(interp,"unable to open file \"", argv[1],
"\" for reading", 0);
return TCL_ERROR;
}
MD5Init(&ctx);
for(;;){
int n;
n = (int)fread(zBuf, 1, sizeof(zBuf), in);
if( n<=0 ) break;
MD5Update(&ctx, (unsigned char*)zBuf, (unsigned)n);
}
fclose(in);
MD5Final(digest, &ctx);
converter = (void(*)(unsigned char*,char*))cd;
converter(digest, zBuf);
Tcl_AppendResult(interp, zBuf, (char*)0);
return TCL_OK;
}
/*
** Register the four new TCL commands for generating MD5 checksums
** with the TCL interpreter.
*/
int Md5_Init(Tcl_Interp *interp){
Tcl_CreateCommand(interp, "md5", (Tcl_CmdProc*)md5_cmd,
MD5DigestToBase16, 0);
Tcl_CreateCommand(interp, "md5-10x8", (Tcl_CmdProc*)md5_cmd,
MD5DigestToBase10x8, 0);
Tcl_CreateCommand(interp, "md5file", (Tcl_CmdProc*)md5file_cmd,
MD5DigestToBase16, 0);
Tcl_CreateCommand(interp, "md5file-10x8", (Tcl_CmdProc*)md5file_cmd,
MD5DigestToBase10x8, 0);
return TCL_OK;
}
#endif /* defined(SQLITE_TEST) || defined(SQLITE_TCLMD5) */
#if defined(SQLITE_TEST)
/*
** During testing, the special md5sum() aggregate function is available.
** inside SQLite. The following routines implement that function.
*/
static void md5step(sqlite3_context *context, int argc, sqlite3_value **argv){
MD5Context *p;
int i;
if( argc<1 ) return;
p = sqlite3_aggregate_context(context, sizeof(*p));
if( p==0 ) return;
if( !p->isInit ){
MD5Init(p);
}
for(i=0; i<argc; i++){
const char *zData = (char*)sqlite3_value_text(argv[i]);
if( zData ){
MD5Update(p, (unsigned char*)zData, (int)strlen(zData));
}
}
}
static void md5finalize(sqlite3_context *context){
MD5Context *p;
unsigned char digest[16];
char zBuf[33];
p = sqlite3_aggregate_context(context, sizeof(*p));
MD5Final(digest,p);
MD5DigestToBase16(digest, zBuf);
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
}
int Md5_Register(sqlite3 *db){
int rc = sqlite3_create_function(db, "md5sum", -1, SQLITE_UTF8, 0, 0,
md5step, md5finalize);
sqlite3_overload_function(db, "md5sum", -1); /* To exercise this API */
return rc;
}
#endif /* defined(SQLITE_TEST) */
/*
** If the macro TCLSH is one, then put in code this for the
** "main" routine that will initialize Tcl and take input from
** standard input, or if a file is named on the command line
** the TCL interpreter reads and evaluates that file.
*/
#if TCLSH==1
static const char *tclsh_main_loop(void){
static const char zMainloop[] =
"set line {}\n"
"while {![eof stdin]} {\n"
"if {$line!=\"\"} {\n"
"puts -nonewline \"> \"\n"
"} else {\n"
"puts -nonewline \"% \"\n"
"}\n"
"flush stdout\n"
"append line [gets stdin]\n"
"if {[info complete $line]} {\n"
"if {[catch {uplevel #0 $line} result]} {\n"
"puts stderr \"Error: $result\"\n"
"} elseif {$result!=\"\"} {\n"
"puts $result\n"
"}\n"
"set line {}\n"
"} else {\n"
"append line \\n\n"
"}\n"
"}\n"
;
return zMainloop;
}
#endif
#if TCLSH==2
static const char *tclsh_main_loop(void);
#endif
#ifdef SQLITE_TEST
static void init_all(Tcl_Interp *);
static int init_all_cmd(
ClientData cd,
Tcl_Interp *interp,
int objc,
Tcl_Obj *CONST objv[]
){
Tcl_Interp *slave;
if( objc!=2 ){
Tcl_WrongNumArgs(interp, 1, objv, "SLAVE");
return TCL_ERROR;
}
slave = Tcl_GetSlave(interp, Tcl_GetString(objv[1]));
if( !slave ){
return TCL_ERROR;
}
init_all(slave);
return TCL_OK;
}
/*
** Tclcmd: db_use_legacy_prepare DB BOOLEAN
**
** The first argument to this command must be a database command created by
** [sqlite3]. If the second argument is true, then the handle is configured
** to use the sqlite3_prepare_v2() function to prepare statements. If it
** is false, sqlite3_prepare().
*/
static int db_use_legacy_prepare_cmd(
ClientData cd,
Tcl_Interp *interp,
int objc,
Tcl_Obj *CONST objv[]
){
Tcl_CmdInfo cmdInfo;
SqliteDb *pDb;
int bPrepare;
if( objc!=3 ){
Tcl_WrongNumArgs(interp, 1, objv, "DB BOOLEAN");
return TCL_ERROR;
}
if( !Tcl_GetCommandInfo(interp, Tcl_GetString(objv[1]), &cmdInfo) ){
Tcl_AppendResult(interp, "no such db: ", Tcl_GetString(objv[1]), (char*)0);
return TCL_ERROR;
}
pDb = (SqliteDb*)cmdInfo.objClientData;
if( Tcl_GetBooleanFromObj(interp, objv[2], &bPrepare) ){
return TCL_ERROR;
}
pDb->bLegacyPrepare = bPrepare;
Tcl_ResetResult(interp);
return TCL_OK;
}
#endif
/*
** Configure the interpreter passed as the first argument to have access
** to the commands and linked variables that make up:
**
** * the [sqlite3] extension itself,
**
** * If SQLITE_TCLMD5 or SQLITE_TEST is defined, the Md5 commands, and
**
** * If SQLITE_TEST is set, the various test interfaces used by the Tcl
** test suite.
*/
static void init_all(Tcl_Interp *interp){
Sqlite3_Init(interp);
#if defined(SQLITE_TEST) || defined(SQLITE_TCLMD5)
Md5_Init(interp);
#endif
/* Install the [register_dbstat_vtab] command to access the implementation
** of virtual table dbstat (source file test_stat.c). This command is
** required for testfixture and sqlite3_analyzer, but not by the production
** Tcl extension. */
#if defined(SQLITE_TEST) || TCLSH==2
{
extern int SqlitetestStat_Init(Tcl_Interp*);
SqlitetestStat_Init(interp);
}
#endif
#ifdef SQLITE_TEST
{
extern int Sqliteconfig_Init(Tcl_Interp*);
extern int Sqlitetest1_Init(Tcl_Interp*);
extern int Sqlitetest2_Init(Tcl_Interp*);
extern int Sqlitetest3_Init(Tcl_Interp*);
extern int Sqlitetest4_Init(Tcl_Interp*);
extern int Sqlitetest5_Init(Tcl_Interp*);
extern int Sqlitetest6_Init(Tcl_Interp*);
extern int Sqlitetest7_Init(Tcl_Interp*);
extern int Sqlitetest8_Init(Tcl_Interp*);
extern int Sqlitetest9_Init(Tcl_Interp*);
extern int Sqlitetestasync_Init(Tcl_Interp*);
extern int Sqlitetest_autoext_Init(Tcl_Interp*);
extern int Sqlitetest_demovfs_Init(Tcl_Interp *);
extern int Sqlitetest_func_Init(Tcl_Interp*);
extern int Sqlitetest_hexio_Init(Tcl_Interp*);
extern int Sqlitetest_init_Init(Tcl_Interp*);
extern int Sqlitetest_malloc_Init(Tcl_Interp*);
extern int Sqlitetest_mutex_Init(Tcl_Interp*);
extern int Sqlitetestschema_Init(Tcl_Interp*);
extern int Sqlitetestsse_Init(Tcl_Interp*);
extern int Sqlitetesttclvar_Init(Tcl_Interp*);
extern int SqlitetestThread_Init(Tcl_Interp*);
extern int SqlitetestOnefile_Init();
extern int SqlitetestOsinst_Init(Tcl_Interp*);
extern int Sqlitetestbackup_Init(Tcl_Interp*);
extern int Sqlitetestintarray_Init(Tcl_Interp*);
extern int Sqlitetestvfs_Init(Tcl_Interp *);
extern int Sqlitetestrtree_Init(Tcl_Interp*);
extern int Sqlitequota_Init(Tcl_Interp*);
extern int Sqlitemultiplex_Init(Tcl_Interp*);
extern int SqliteSuperlock_Init(Tcl_Interp*);
extern int SqlitetestSyscall_Init(Tcl_Interp*);
extern int Sqlitetestfuzzer_Init(Tcl_Interp*);
extern int Sqlitetestwholenumber_Init(Tcl_Interp*);
#if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK)
extern int TestSession_Init(Tcl_Interp*);
#endif
#if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4)
extern int Sqlitetestfts3_Init(Tcl_Interp *interp);
#endif
#ifdef SQLITE_ENABLE_ZIPVFS
extern int Zipvfs_Init(Tcl_Interp*);
Zipvfs_Init(interp);
#endif
Sqliteconfig_Init(interp);
Sqlitetest1_Init(interp);
Sqlitetest2_Init(interp);
Sqlitetest3_Init(interp);
Sqlitetest4_Init(interp);
Sqlitetest5_Init(interp);
Sqlitetest6_Init(interp);
Sqlitetest7_Init(interp);
Sqlitetest8_Init(interp);
Sqlitetest9_Init(interp);
Sqlitetestasync_Init(interp);
Sqlitetest_autoext_Init(interp);
Sqlitetest_demovfs_Init(interp);
Sqlitetest_func_Init(interp);
Sqlitetest_hexio_Init(interp);
Sqlitetest_init_Init(interp);
Sqlitetest_malloc_Init(interp);
Sqlitetest_mutex_Init(interp);
Sqlitetestschema_Init(interp);
Sqlitetesttclvar_Init(interp);
SqlitetestThread_Init(interp);
SqlitetestOnefile_Init(interp);
SqlitetestOsinst_Init(interp);
Sqlitetestbackup_Init(interp);
Sqlitetestintarray_Init(interp);
Sqlitetestvfs_Init(interp);
Sqlitetestrtree_Init(interp);
Sqlitequota_Init(interp);
Sqlitemultiplex_Init(interp);
SqliteSuperlock_Init(interp);
SqlitetestSyscall_Init(interp);
Sqlitetestfuzzer_Init(interp);
Sqlitetestwholenumber_Init(interp);
#if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK)
TestSession_Init(interp);
#endif
#if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4)
Sqlitetestfts3_Init(interp);
#endif
Tcl_CreateObjCommand(
interp, "load_testfixture_extensions", init_all_cmd, 0, 0
);
Tcl_CreateObjCommand(
interp, "db_use_legacy_prepare", db_use_legacy_prepare_cmd, 0, 0
);
#ifdef SQLITE_SSE
Sqlitetestsse_Init(interp);
#endif
}
#endif
}
#define TCLSH_MAIN main /* Needed to fake out mktclapp */
int TCLSH_MAIN(int argc, char **argv){
Tcl_Interp *interp;
/* Call sqlite3_shutdown() once before doing anything else. This is to
** test that sqlite3_shutdown() can be safely called by a process before
** sqlite3_initialize() is. */
sqlite3_shutdown();
Tcl_FindExecutable(argv[0]);
interp = Tcl_CreateInterp();
#if TCLSH==2
sqlite3_config(SQLITE_CONFIG_SINGLETHREAD);
#endif
init_all(interp);
if( argc>=2 ){
int i;
char zArgc[32];
sqlite3_snprintf(sizeof(zArgc), zArgc, "%d", argc-(3-TCLSH));
Tcl_SetVar(interp,"argc", zArgc, TCL_GLOBAL_ONLY);
Tcl_SetVar(interp,"argv0",argv[1],TCL_GLOBAL_ONLY);
Tcl_SetVar(interp,"argv", "", TCL_GLOBAL_ONLY);
for(i=3-TCLSH; i<argc; i++){
Tcl_SetVar(interp, "argv", argv[i],
TCL_GLOBAL_ONLY | TCL_LIST_ELEMENT | TCL_APPEND_VALUE);
}
if( TCLSH==1 && Tcl_EvalFile(interp, argv[1])!=TCL_OK ){
const char *zInfo = Tcl_GetVar(interp, "errorInfo", TCL_GLOBAL_ONLY);
if( zInfo==0 ) zInfo = Tcl_GetStringResult(interp);
fprintf(stderr,"%s: %s\n", *argv, zInfo);
return 1;
}
}
if( TCLSH==2 || argc<=1 ){
Tcl_GlobalEval(interp, tclsh_main_loop());
}
return 0;
}
#endif /* TCLSH */