sqlite/ext/wasm/sqlite3-opfs-async-proxy.js
stephan e72ddfd89b Generic minor cleanups and docs in the OPFS async proxy.
FossilOrigin-Name: a4423ca234453c14eb40db7fe5943f63b30fd9dc2207388e8a2966733a004e9d
2022-10-14 15:52:29 +00:00

731 lines
23 KiB
JavaScript

/*
2022-09-16
The author disclaims copyright to this source code. In place of a
legal notice, here is a blessing:
* May you do good and not evil.
* May you find forgiveness for yourself and forgive others.
* May you share freely, never taking more than you give.
***********************************************************************
An Worker which manages asynchronous OPFS handles on behalf of a
synchronous API which controls it via a combination of Worker
messages, SharedArrayBuffer, and Atomics. It is the asynchronous
counterpart of the API defined in sqlite3-api-opfs.js.
Highly indebted to:
https://github.com/rhashimoto/wa-sqlite/blob/master/src/examples/OriginPrivateFileSystemVFS.js
for demonstrating how to use the OPFS APIs.
This file is to be loaded as a Worker. It does not have any direct
access to the sqlite3 JS/WASM bits, so any bits which it needs (most
notably SQLITE_xxx integer codes) have to be imported into it via an
initialization process.
*/
'use strict';
const toss = function(...args){throw new Error(args.join(' '))};
if(self.window === self){
toss("This code cannot run from the main thread.",
"Load it as a Worker from a separate Worker.");
}else if(!navigator.storage.getDirectory){
toss("This API requires navigator.storage.getDirectory.");
}
/**
Will hold state copied to this object from the syncronous side of
this API.
*/
const state = Object.create(null);
/**
verbose:
0 = no logging output
1 = only errors
2 = warnings and errors
3 = debug, warnings, and errors
*/
state.verbose = 2;
const loggers = {
0:console.error.bind(console),
1:console.warn.bind(console),
2:console.log.bind(console)
};
const logImpl = (level,...args)=>{
if(state.verbose>level) loggers[level]("OPFS asyncer:",...args);
};
const log = (...args)=>logImpl(2, ...args);
const warn = (...args)=>logImpl(1, ...args);
const error = (...args)=>logImpl(0, ...args);
const metrics = Object.create(null);
metrics.reset = ()=>{
let k;
const r = (m)=>(m.count = m.time = m.wait = 0);
for(k in state.opIds){
r(metrics[k] = Object.create(null));
}
let s = metrics.s11n = Object.create(null);
s = s.serialize = Object.create(null);
s.count = s.time = 0;
s = metrics.s11n.deserialize = Object.create(null);
s.count = s.time = 0;
};
metrics.dump = ()=>{
let k, n = 0, t = 0, w = 0;
for(k in state.opIds){
const m = metrics[k];
n += m.count;
t += m.time;
w += m.wait;
m.avgTime = (m.count && m.time) ? (m.time / m.count) : 0;
}
console.log(self.location.href,
"metrics for",self.location.href,":\n",
metrics,
"\nTotal of",n,"op(s) for",t,"ms",
"approx",w,"ms spent waiting on OPFS APIs.");
console.log("Serialization metrics:",metrics.s11n);
};
/**
Map of sqlite3_file pointers (integers) to metadata related to a
given OPFS file handles. The pointers are, in this side of the
interface, opaque file handle IDs provided by the synchronous
part of this constellation. Each value is an object with a structure
demonstrated in the xOpen() impl.
*/
const __openFiles = Object.create(null);
/**
Expects an OPFS file path. It gets resolved, such that ".."
components are properly expanded, and returned. If the 2nd arg is
true, the result is returned as an array of path elements, else an
absolute path string is returned.
*/
const getResolvedPath = function(filename,splitIt){
const p = new URL(
filename, 'file://irrelevant'
).pathname;
return splitIt ? p.split('/').filter((v)=>!!v) : p;
};
/**
Takes the absolute path to a filesystem element. Returns an array
of [handleOfContainingDir, filename]. If the 2nd argument is truthy
then each directory element leading to the file is created along
the way. Throws if any creation or resolution fails.
*/
const getDirForFilename = async function f(absFilename, createDirs = false){
const path = getResolvedPath(absFilename, true);
const filename = path.pop();
let dh = state.rootDir;
for(const dirName of path){
if(dirName){
dh = await dh.getDirectoryHandle(dirName, {create: !!createDirs});
}
}
return [dh, filename];
};
/**
Returns the sync access handle associated with the given file
handle object (which must be a valid handle object), lazily opening
it if needed.
In order to help alleviate cross-tab contention for a dabase,
if an exception is thrown while acquiring the handle, this routine
will wait briefly and try again, up to 3 times. If acquisition
still fails at that point it will give up and propagate the
exception.
*/
const getSyncHandle = async (fh)=>{
if(!fh.syncHandle){
const t = performance.now();
log("Acquiring sync handle for",fh.filenameAbs);
const maxTries = 3;
let i = 1, ms = 300;
for(; true; ms *= ++i){
try {
//if(1===i) toss("Just testing.");
//TODO? A config option which tells it to throw here
//randomly every now and then, for testing purposes.
fh.syncHandle = await fh.fileHandle.createSyncAccessHandle();
break;
}catch(e){
if(i === maxTries){
toss("Error getting sync handle.",maxTries,
"attempts failed. ",fh.filenameAbs, ":", e.message);
throw e;
}
warn("Error getting sync handle. Waiting",ms,
"ms and trying again.",fh.filenameAbs,e);
Atomics.wait(state.sabOPView, state.opIds.xSleep, 0, ms);
}
}
log("Got sync handle for",fh.filenameAbs,'in',performance.now() - t,'ms');
}
return fh.syncHandle;
};
/**
If the given file-holding object has a sync handle attached to it,
that handle is remove and asynchronously closed. Though it may
sound sensible to continue work as soon as the close() returns
(noting that it's asynchronous), doing so can cause operations
performed soon afterwards, e.g. a call to getSyncHandle() to fail
because they may happen out of order from the close(). OPFS does
not guaranty that the actual order of operations is retained in
such cases. i.e. always "await" on the result of this function.
*/
const closeSyncHandle = async (fh)=>{
if(fh.syncHandle){
log("Closing sync handle for",fh.filenameAbs);
const h = fh.syncHandle;
delete fh.syncHandle;
return h.close();
}
};
/**
Stores the given value at state.sabOPView[state.opIds.rc] and then
Atomics.notify()'s it.
*/
const storeAndNotify = (opName, value)=>{
log(opName+"() => notify(",state.opIds.rc,",",value,")");
Atomics.store(state.sabOPView, state.opIds.rc, value);
Atomics.notify(state.sabOPView, state.opIds.rc);
};
/**
Throws if fh is a file-holding object which is flagged as read-only.
*/
const affirmNotRO = function(opName,fh){
if(fh.readOnly) toss(opName+"(): File is read-only: "+fh.filenameAbs);
};
/**
We track 2 different timers: the "metrics" timer records how much
time we spend performing work. The "wait" timer records how much
time we spend waiting on the underlying OPFS timer. See the calls
to mTimeStart(), mTimeEnd(), wTimeStart(), and wTimeEnd()
throughout this file to see how they're used.
*/
const __mTimer = Object.create(null);
__mTimer.op = undefined;
__mTimer.start = undefined;
const mTimeStart = (op)=>{
__mTimer.start = performance.now();
__mTimer.op = op;
//metrics[op] || toss("Maintenance required: missing metrics for",op);
++metrics[op].count;
};
const mTimeEnd = ()=>(
metrics[__mTimer.op].time += performance.now() - __mTimer.start
);
const __wTimer = Object.create(null);
__wTimer.op = undefined;
__wTimer.start = undefined;
const wTimeStart = (op)=>{
__wTimer.start = performance.now();
__wTimer.op = op;
//metrics[op] || toss("Maintenance required: missing metrics for",op);
};
const wTimeEnd = ()=>(
metrics[__wTimer.op].wait += performance.now() - __wTimer.start
);
/**
Gets set to true by the 'opfs-async-shutdown' command to quit the
wait loop. This is only intended for debugging purposes: we cannot
inspect this file's state while the tight waitLoop() is running and
need a way to stop that loop for introspection purposes.
*/
let flagAsyncShutdown = false;
/**
Asynchronous wrappers for sqlite3_vfs and sqlite3_io_methods
methods, as well as helpers like mkdir(). Maintenance reminder:
members are in alphabetical order to simplify finding them.
*/
const vfsAsyncImpls = {
'opfs-async-metrics': async ()=>{
mTimeStart('opfs-async-metrics');
metrics.dump();
storeAndNotify('opfs-async-metrics', 0);
mTimeEnd();
},
'opfs-async-shutdown': async ()=>{
flagAsyncShutdown = true;
storeAndNotify('opfs-async-shutdown', 0);
},
mkdir: async (dirname)=>{
mTimeStart('mkdir');
let rc = 0;
wTimeStart('mkdir');
try {
await getDirForFilename(dirname+"/filepart", true);
}catch(e){
state.s11n.storeException(2,e);
rc = state.sq3Codes.SQLITE_IOERR;
}finally{
wTimeEnd();
}
storeAndNotify('mkdir', rc);
mTimeEnd();
},
xAccess: async (filename)=>{
mTimeStart('xAccess');
/* OPFS cannot support the full range of xAccess() queries sqlite3
calls for. We can essentially just tell if the file is
accessible, but if it is it's automatically writable (unless
it's locked, which we cannot(?) know without trying to open
it). OPFS does not have the notion of read-only.
The return semantics of this function differ from sqlite3's
xAccess semantics because we are limited in what we can
communicate back to our synchronous communication partner: 0 =
accessible, non-0 means not accessible.
*/
let rc = 0;
wTimeStart('xAccess');
try{
const [dh, fn] = await getDirForFilename(filename);
await dh.getFileHandle(fn);
}catch(e){
state.s11n.storeException(2,e);
rc = state.sq3Codes.SQLITE_IOERR;
}finally{
wTimeEnd();
}
storeAndNotify('xAccess', rc);
mTimeEnd();
},
xClose: async function(fid){
const opName = 'xClose';
mTimeStart(opName);
const fh = __openFiles[fid];
let rc = 0;
wTimeStart('xClose');
if(fh){
delete __openFiles[fid];
await closeSyncHandle(fh);
if(fh.deleteOnClose){
try{ await fh.dirHandle.removeEntry(fh.filenamePart) }
catch(e){ warn("Ignoring dirHandle.removeEntry() failure of",fh,e) }
}
}else{
state.s11n.serialize();
rc = state.sq3Codes.SQLITE_NOTFOUND;
}
wTimeEnd();
storeAndNotify(opName, rc);
mTimeEnd();
},
xDelete: async function(...args){
mTimeStart('xDelete');
const rc = await vfsAsyncImpls.xDeleteNoWait(...args);
storeAndNotify('xDelete', rc);
mTimeEnd();
},
xDeleteNoWait: async function(filename, syncDir = 0, recursive = false){
/* The syncDir flag is, for purposes of the VFS API's semantics,
ignored here. However, if it has the value 0x1234 then: after
deleting the given file, recursively try to delete any empty
directories left behind in its wake (ignoring any errors and
stopping at the first failure).
That said: we don't know for sure that removeEntry() fails if
the dir is not empty because the API is not documented. It has,
however, a "recursive" flag which defaults to false, so
presumably it will fail if the dir is not empty and that flag
is false.
*/
let rc = 0;
wTimeStart('xDelete');
try {
while(filename){
const [hDir, filenamePart] = await getDirForFilename(filename, false);
if(!filenamePart) break;
await hDir.removeEntry(filenamePart, {recursive});
if(0x1234 !== syncDir) break;
filename = getResolvedPath(filename, true);
filename.pop();
filename = filename.join('/');
}
}catch(e){
state.s11n.storeException(2,e);
rc = state.sq3Codes.SQLITE_IOERR_DELETE;
}
wTimeEnd();
return rc;
},
xFileSize: async function(fid){
mTimeStart('xFileSize');
const fh = __openFiles[fid];
let sz;
wTimeStart('xFileSize');
try{
sz = await (await getSyncHandle(fh)).getSize();
state.s11n.serialize(Number(sz));
sz = 0;
}catch(e){
state.s11n.storeException(2,e);
sz = state.sq3Codes.SQLITE_IOERR;
}
wTimeEnd();
storeAndNotify('xFileSize', sz);
mTimeEnd();
},
xLock: async function(fid,lockType){
mTimeStart('xLock');
const fh = __openFiles[fid];
let rc = 0;
if( !fh.syncHandle ){
wTimeStart('xLock');
try { await getSyncHandle(fh) }
catch(e){
state.s11n.storeException(1,e);
rc = state.sq3Codes.SQLITE_IOERR;
}
wTimeEnd();
}
storeAndNotify('xLock',rc);
mTimeEnd();
},
xOpen: async function(fid/*sqlite3_file pointer*/, filename, flags){
const opName = 'xOpen';
mTimeStart(opName);
const deleteOnClose = (state.sq3Codes.SQLITE_OPEN_DELETEONCLOSE & flags);
const create = (state.sq3Codes.SQLITE_OPEN_CREATE & flags);
wTimeStart('xOpen');
try{
let hDir, filenamePart;
try {
[hDir, filenamePart] = await getDirForFilename(filename, !!create);
}catch(e){
storeAndNotify(opName, state.sql3Codes.SQLITE_NOTFOUND);
mTimeEnd();
wTimeEnd();
return;
}
const hFile = await hDir.getFileHandle(filenamePart, {create});
/**
wa-sqlite, at this point, grabs a SyncAccessHandle and
assigns it to the syncHandle prop of the file state
object, but only for certain cases and it's unclear why it
places that limitation on it.
*/
wTimeEnd();
__openFiles[fid] = Object.assign(Object.create(null),{
filenameAbs: filename,
filenamePart: filenamePart,
dirHandle: hDir,
fileHandle: hFile,
sabView: state.sabFileBufView,
readOnly: create
? false : (state.sq3Codes.SQLITE_OPEN_READONLY & flags),
deleteOnClose: deleteOnClose
});
storeAndNotify(opName, 0);
}catch(e){
wTimeEnd();
error(opName,e);
state.s11n.storeException(1,e);
storeAndNotify(opName, state.sq3Codes.SQLITE_IOERR);
}
mTimeEnd();
},
xRead: async function(fid,n,offset){
mTimeStart('xRead');
let rc = 0, nRead;
const fh = __openFiles[fid];
try{
wTimeStart('xRead');
nRead = (await getSyncHandle(fh)).read(
fh.sabView.subarray(0, n),
{at: Number(offset)}
);
wTimeEnd();
if(nRead < n){/* Zero-fill remaining bytes */
fh.sabView.fill(0, nRead, n);
rc = state.sq3Codes.SQLITE_IOERR_SHORT_READ;
}
}catch(e){
if(undefined===nRead) wTimeEnd();
error("xRead() failed",e,fh);
state.s11n.storeException(1,e);
rc = state.sq3Codes.SQLITE_IOERR_READ;
}
storeAndNotify('xRead',rc);
mTimeEnd();
},
xSync: async function(fid,flags/*ignored*/){
mTimeStart('xSync');
const fh = __openFiles[fid];
let rc = 0;
if(!fh.readOnly && fh.syncHandle){
try {
wTimeStart('xSync');
await fh.syncHandle.flush();
}catch(e){
state.s11n.storeException(2,e);
}
wTimeEnd();
}
storeAndNotify('xSync',rc);
mTimeEnd();
},
xTruncate: async function(fid,size){
mTimeStart('xTruncate');
let rc = 0;
const fh = __openFiles[fid];
wTimeStart('xTruncate');
try{
affirmNotRO('xTruncate', fh);
await (await getSyncHandle(fh)).truncate(size);
}catch(e){
error("xTruncate():",e,fh);
state.s11n.storeException(2,e);
rc = state.sq3Codes.SQLITE_IOERR_TRUNCATE;
}
wTimeEnd();
storeAndNotify('xTruncate',rc);
mTimeEnd();
},
xUnlock: async function(fid,lockType){
mTimeStart('xUnlock');
let rc = 0;
const fh = __openFiles[fid];
if( state.sq3Codes.SQLITE_LOCK_NONE===lockType
&& fh.syncHandle ){
wTimeStart('xUnlock');
try { await closeSyncHandle(fh) }
catch(e){
state.s11n.storeException(1,e);
rc = state.sq3Codes.SQLITE_IOERR;
}
wTimeEnd();
}
storeAndNotify('xUnlock',rc);
mTimeEnd();
},
xWrite: async function(fid,n,offset){
mTimeStart('xWrite');
let rc;
wTimeStart('xWrite');
try{
const fh = __openFiles[fid];
affirmNotRO('xWrite', fh);
rc = (
n === (await getSyncHandle(fh))
.write(fh.sabView.subarray(0, n),
{at: Number(offset)})
) ? 0 : state.sq3Codes.SQLITE_IOERR_WRITE;
}catch(e){
error("xWrite():",e,fh);
state.s11n.storeException(1,e);
rc = state.sq3Codes.SQLITE_IOERR_WRITE;
}
wTimeEnd();
storeAndNotify('xWrite',rc);
mTimeEnd();
}
}/*vfsAsyncImpls*/;
const initS11n = ()=>{
/**
ACHTUNG: this code is 100% duplicated in the other half of this
proxy! The documentation is maintained in the "synchronous half".
*/
if(state.s11n) return state.s11n;
const textDecoder = new TextDecoder(),
textEncoder = new TextEncoder('utf-8'),
viewU8 = new Uint8Array(state.sabIO, state.sabS11nOffset, state.sabS11nSize),
viewDV = new DataView(state.sabIO, state.sabS11nOffset, state.sabS11nSize);
state.s11n = Object.create(null);
const TypeIds = Object.create(null);
TypeIds.number = { id: 1, size: 8, getter: 'getFloat64', setter: 'setFloat64' };
TypeIds.bigint = { id: 2, size: 8, getter: 'getBigInt64', setter: 'setBigInt64' };
TypeIds.boolean = { id: 3, size: 4, getter: 'getInt32', setter: 'setInt32' };
TypeIds.string = { id: 4 };
const getTypeId = (v)=>(
TypeIds[typeof v]
|| toss("Maintenance required: this value type cannot be serialized.",v)
);
const getTypeIdById = (tid)=>{
switch(tid){
case TypeIds.number.id: return TypeIds.number;
case TypeIds.bigint.id: return TypeIds.bigint;
case TypeIds.boolean.id: return TypeIds.boolean;
case TypeIds.string.id: return TypeIds.string;
default: toss("Invalid type ID:",tid);
}
};
state.s11n.deserialize = function(){
++metrics.s11n.deserialize.count;
const t = performance.now();
const argc = viewU8[0];
const rc = argc ? [] : null;
if(argc){
const typeIds = [];
let offset = 1, i, n, v;
for(i = 0; i < argc; ++i, ++offset){
typeIds.push(getTypeIdById(viewU8[offset]));
}
for(i = 0; i < argc; ++i){
const t = typeIds[i];
if(t.getter){
v = viewDV[t.getter](offset, state.littleEndian);
offset += t.size;
}else{/*String*/
n = viewDV.getInt32(offset, state.littleEndian);
offset += 4;
v = textDecoder.decode(viewU8.slice(offset, offset+n));
offset += n;
}
rc.push(v);
}
}
//log("deserialize:",argc, rc);
metrics.s11n.deserialize.time += performance.now() - t;
return rc;
};
state.s11n.serialize = function(...args){
const t = performance.now();
++metrics.s11n.serialize.count;
if(args.length){
//log("serialize():",args);
const typeIds = [];
let i = 0, offset = 1;
viewU8[0] = args.length & 0xff /* header = # of args */;
for(; i < args.length; ++i, ++offset){
/* Write the TypeIds.id value into the next args.length
bytes. */
typeIds.push(getTypeId(args[i]));
viewU8[offset] = typeIds[i].id;
}
for(i = 0; i < args.length; ++i) {
/* Deserialize the following bytes based on their
corresponding TypeIds.id from the header. */
const t = typeIds[i];
if(t.setter){
viewDV[t.setter](offset, args[i], state.littleEndian);
offset += t.size;
}else{/*String*/
const s = textEncoder.encode(args[i]);
viewDV.setInt32(offset, s.byteLength, state.littleEndian);
offset += 4;
viewU8.set(s, offset);
offset += s.byteLength;
}
}
//log("serialize() result:",viewU8.slice(0,offset));
}else{
viewU8[0] = 0;
}
metrics.s11n.serialize.time += performance.now() - t;
};
state.s11n.storeException = state.asyncS11nExceptions
? ((priority,e)=>{
if(priority<=state.asyncS11nExceptions){
state.s11n.serialize(e.message);
}
})
: ()=>{};
return state.s11n;
}/*initS11n()*/;
const waitLoop = async function f(){
const opHandlers = Object.create(null);
for(let k of Object.keys(state.opIds)){
const vi = vfsAsyncImpls[k];
if(!vi) continue;
const o = Object.create(null);
opHandlers[state.opIds[k]] = o;
o.key = k;
o.f = vi;
}
/**
waitTime is how long (ms) to wait for each Atomics.wait().
We need to wake up periodically to give the thread a chance
to do other things.
*/
const waitTime = 1000;
while(!flagAsyncShutdown){
try {
if('timed-out'===Atomics.wait(
state.sabOPView, state.opIds.whichOp, 0, waitTime
)){
continue;
}
const opId = Atomics.load(state.sabOPView, state.opIds.whichOp);
Atomics.store(state.sabOPView, state.opIds.whichOp, 0);
const hnd = opHandlers[opId] ?? toss("No waitLoop handler for whichOp #",opId);
const args = state.s11n.deserialize() || [];
state.s11n.serialize(/* clear s11n to keep the caller from
confusing this with an exception string
written by the upcoming operation */);
//warn("waitLoop() whichOp =",opId, hnd, args);
if(hnd.f) await hnd.f(...args);
else error("Missing callback for opId",opId);
}catch(e){
error('in waitLoop():',e);
}
}
};
navigator.storage.getDirectory().then(function(d){
const wMsg = (type)=>postMessage({type});
state.rootDir = d;
self.onmessage = function({data}){
switch(data.type){
case 'opfs-async-init':{
/* Receive shared state from synchronous partner */
const opt = data.args;
state.littleEndian = opt.littleEndian;
state.asyncS11nExceptions = opt.asyncS11nExceptions;
state.verbose = opt.verbose ?? 2;
state.fileBufferSize = opt.fileBufferSize;
state.sabS11nOffset = opt.sabS11nOffset;
state.sabS11nSize = opt.sabS11nSize;
state.sabOP = opt.sabOP;
state.sabOPView = new Int32Array(state.sabOP);
state.sabIO = opt.sabIO;
state.sabFileBufView = new Uint8Array(state.sabIO, 0, state.fileBufferSize);
state.sabS11nView = new Uint8Array(state.sabIO, state.sabS11nOffset, state.sabS11nSize);
state.opIds = opt.opIds;
state.sq3Codes = opt.sq3Codes;
Object.keys(vfsAsyncImpls).forEach((k)=>{
if(!Number.isFinite(state.opIds[k])){
toss("Maintenance required: missing state.opIds[",k,"]");
}
});
initS11n();
metrics.reset();
log("init state",state);
wMsg('opfs-async-inited');
waitLoop();
break;
}
case 'opfs-async-restart':
if(flagAsyncShutdown){
warn("Restarting after opfs-async-shutdown. Might or might not work.");
flagAsyncShutdown = false;
waitLoop();
}
break;
case 'opfs-async-metrics':
metrics.dump();
break;
}
};
wMsg('opfs-async-loaded');
}).catch((e)=>error("error initializing OPFS asyncer:",e));