c2e400af04
FossilOrigin-Name: 6d55c3e238e06c6727f3e816a9268b6222ebfc90ec745bbbd48430bf7b16664c
11492 lines
392 KiB
C
11492 lines
392 KiB
C
/*
|
|
** 2004 April 6
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file implements an external (disk-based) database using BTrees.
|
|
** See the header comment on "btreeInt.h" for additional information.
|
|
** Including a description of file format and an overview of operation.
|
|
*/
|
|
#include "btreeInt.h"
|
|
|
|
/*
|
|
** The header string that appears at the beginning of every
|
|
** SQLite database.
|
|
*/
|
|
static const char zMagicHeader[] = SQLITE_FILE_HEADER;
|
|
|
|
/*
|
|
** Set this global variable to 1 to enable tracing using the TRACE
|
|
** macro.
|
|
*/
|
|
#if 0
|
|
int sqlite3BtreeTrace=1; /* True to enable tracing */
|
|
# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
|
|
#else
|
|
# define TRACE(X)
|
|
#endif
|
|
|
|
/*
|
|
** Extract a 2-byte big-endian integer from an array of unsigned bytes.
|
|
** But if the value is zero, make it 65536.
|
|
**
|
|
** This routine is used to extract the "offset to cell content area" value
|
|
** from the header of a btree page. If the page size is 65536 and the page
|
|
** is empty, the offset should be 65536, but the 2-byte value stores zero.
|
|
** This routine makes the necessary adjustment to 65536.
|
|
*/
|
|
#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
|
|
|
|
/*
|
|
** Values passed as the 5th argument to allocateBtreePage()
|
|
*/
|
|
#define BTALLOC_ANY 0 /* Allocate any page */
|
|
#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
|
|
#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
|
|
|
|
/*
|
|
** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
|
|
** defined, or 0 if it is. For example:
|
|
**
|
|
** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
|
|
*/
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
#define IfNotOmitAV(expr) (expr)
|
|
#else
|
|
#define IfNotOmitAV(expr) 0
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
/*
|
|
** A list of BtShared objects that are eligible for participation
|
|
** in shared cache. This variable has file scope during normal builds,
|
|
** but the test harness needs to access it so we make it global for
|
|
** test builds.
|
|
**
|
|
** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
|
|
#else
|
|
static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
|
|
#endif
|
|
#endif /* SQLITE_OMIT_SHARED_CACHE */
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
/*
|
|
** Enable or disable the shared pager and schema features.
|
|
**
|
|
** This routine has no effect on existing database connections.
|
|
** The shared cache setting effects only future calls to
|
|
** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
|
|
*/
|
|
int sqlite3_enable_shared_cache(int enable){
|
|
sqlite3GlobalConfig.sharedCacheEnabled = enable;
|
|
return SQLITE_OK;
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef SQLITE_OMIT_SHARED_CACHE
|
|
/*
|
|
** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
|
|
** and clearAllSharedCacheTableLocks()
|
|
** manipulate entries in the BtShared.pLock linked list used to store
|
|
** shared-cache table level locks. If the library is compiled with the
|
|
** shared-cache feature disabled, then there is only ever one user
|
|
** of each BtShared structure and so this locking is not necessary.
|
|
** So define the lock related functions as no-ops.
|
|
*/
|
|
#define querySharedCacheTableLock(a,b,c) SQLITE_OK
|
|
#define setSharedCacheTableLock(a,b,c) SQLITE_OK
|
|
#define clearAllSharedCacheTableLocks(a)
|
|
#define downgradeAllSharedCacheTableLocks(a)
|
|
#define hasSharedCacheTableLock(a,b,c,d) 1
|
|
#define hasReadConflicts(a, b) 0
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** Return and reset the seek counter for a Btree object.
|
|
*/
|
|
sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){
|
|
u64 n = pBt->nSeek;
|
|
pBt->nSeek = 0;
|
|
return n;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
|
|
** (MemPage*) as an argument. The (MemPage*) must not be NULL.
|
|
**
|
|
** If SQLITE_DEBUG is not defined, then this macro is equivalent to
|
|
** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
|
|
** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
|
|
** with the page number and filename associated with the (MemPage*).
|
|
*/
|
|
#ifdef SQLITE_DEBUG
|
|
int corruptPageError(int lineno, MemPage *p){
|
|
char *zMsg;
|
|
sqlite3BeginBenignMalloc();
|
|
zMsg = sqlite3_mprintf("database corruption page %u of %s",
|
|
p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
|
|
);
|
|
sqlite3EndBenignMalloc();
|
|
if( zMsg ){
|
|
sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
|
|
}
|
|
sqlite3_free(zMsg);
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
|
|
#else
|
|
# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
|
|
#endif
|
|
|
|
/* Default value for SHARED_LOCK_TRACE macro if shared-cache is disabled
|
|
** or if the lock tracking is disabled. This is always the value for
|
|
** release builds.
|
|
*/
|
|
#define SHARED_LOCK_TRACE(X,MSG,TAB,TYPE) /*no-op*/
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
|
|
#if 0
|
|
/* ^---- Change to 1 and recompile to enable shared-lock tracing
|
|
** for debugging purposes.
|
|
**
|
|
** Print all shared-cache locks on a BtShared. Debugging use only.
|
|
*/
|
|
static void sharedLockTrace(
|
|
BtShared *pBt,
|
|
const char *zMsg,
|
|
int iRoot,
|
|
int eLockType
|
|
){
|
|
BtLock *pLock;
|
|
if( iRoot>0 ){
|
|
printf("%s-%p %u%s:", zMsg, pBt, iRoot, eLockType==READ_LOCK?"R":"W");
|
|
}else{
|
|
printf("%s-%p:", zMsg, pBt);
|
|
}
|
|
for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
|
|
printf(" %p/%u%s", pLock->pBtree, pLock->iTable,
|
|
pLock->eLock==READ_LOCK ? "R" : "W");
|
|
while( pLock->pNext && pLock->pBtree==pLock->pNext->pBtree ){
|
|
pLock = pLock->pNext;
|
|
printf(",%u%s", pLock->iTable, pLock->eLock==READ_LOCK ? "R" : "W");
|
|
}
|
|
}
|
|
printf("\n");
|
|
fflush(stdout);
|
|
}
|
|
#undef SHARED_LOCK_TRACE
|
|
#define SHARED_LOCK_TRACE(X,MSG,TAB,TYPE) sharedLockTrace(X,MSG,TAB,TYPE)
|
|
#endif /* Shared-lock tracing */
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
**** This function is only used as part of an assert() statement. ***
|
|
**
|
|
** Check to see if pBtree holds the required locks to read or write to the
|
|
** table with root page iRoot. Return 1 if it does and 0 if not.
|
|
**
|
|
** For example, when writing to a table with root-page iRoot via
|
|
** Btree connection pBtree:
|
|
**
|
|
** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
|
|
**
|
|
** When writing to an index that resides in a sharable database, the
|
|
** caller should have first obtained a lock specifying the root page of
|
|
** the corresponding table. This makes things a bit more complicated,
|
|
** as this module treats each table as a separate structure. To determine
|
|
** the table corresponding to the index being written, this
|
|
** function has to search through the database schema.
|
|
**
|
|
** Instead of a lock on the table/index rooted at page iRoot, the caller may
|
|
** hold a write-lock on the schema table (root page 1). This is also
|
|
** acceptable.
|
|
*/
|
|
static int hasSharedCacheTableLock(
|
|
Btree *pBtree, /* Handle that must hold lock */
|
|
Pgno iRoot, /* Root page of b-tree */
|
|
int isIndex, /* True if iRoot is the root of an index b-tree */
|
|
int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
|
|
){
|
|
Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
|
|
Pgno iTab = 0;
|
|
BtLock *pLock;
|
|
|
|
/* If this database is not shareable, or if the client is reading
|
|
** and has the read-uncommitted flag set, then no lock is required.
|
|
** Return true immediately.
|
|
*/
|
|
if( (pBtree->sharable==0)
|
|
|| (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
|
|
){
|
|
return 1;
|
|
}
|
|
|
|
/* If the client is reading or writing an index and the schema is
|
|
** not loaded, then it is too difficult to actually check to see if
|
|
** the correct locks are held. So do not bother - just return true.
|
|
** This case does not come up very often anyhow.
|
|
*/
|
|
if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
|
|
return 1;
|
|
}
|
|
|
|
/* Figure out the root-page that the lock should be held on. For table
|
|
** b-trees, this is just the root page of the b-tree being read or
|
|
** written. For index b-trees, it is the root page of the associated
|
|
** table. */
|
|
if( isIndex ){
|
|
HashElem *p;
|
|
int bSeen = 0;
|
|
for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
|
|
Index *pIdx = (Index *)sqliteHashData(p);
|
|
if( pIdx->tnum==iRoot ){
|
|
if( bSeen ){
|
|
/* Two or more indexes share the same root page. There must
|
|
** be imposter tables. So just return true. The assert is not
|
|
** useful in that case. */
|
|
return 1;
|
|
}
|
|
iTab = pIdx->pTable->tnum;
|
|
bSeen = 1;
|
|
}
|
|
}
|
|
}else{
|
|
iTab = iRoot;
|
|
}
|
|
|
|
SHARED_LOCK_TRACE(pBtree->pBt,"hasLock",iRoot,eLockType);
|
|
|
|
/* Search for the required lock. Either a write-lock on root-page iTab, a
|
|
** write-lock on the schema table, or (if the client is reading) a
|
|
** read-lock on iTab will suffice. Return 1 if any of these are found. */
|
|
for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
|
|
if( pLock->pBtree==pBtree
|
|
&& (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
|
|
&& pLock->eLock>=eLockType
|
|
){
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* Failed to find the required lock. */
|
|
return 0;
|
|
}
|
|
#endif /* SQLITE_DEBUG */
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
**** This function may be used as part of assert() statements only. ****
|
|
**
|
|
** Return true if it would be illegal for pBtree to write into the
|
|
** table or index rooted at iRoot because other shared connections are
|
|
** simultaneously reading that same table or index.
|
|
**
|
|
** It is illegal for pBtree to write if some other Btree object that
|
|
** shares the same BtShared object is currently reading or writing
|
|
** the iRoot table. Except, if the other Btree object has the
|
|
** read-uncommitted flag set, then it is OK for the other object to
|
|
** have a read cursor.
|
|
**
|
|
** For example, before writing to any part of the table or index
|
|
** rooted at page iRoot, one should call:
|
|
**
|
|
** assert( !hasReadConflicts(pBtree, iRoot) );
|
|
*/
|
|
static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
|
|
BtCursor *p;
|
|
for(p=pBtree->pBt->pCursor; p; p=p->pNext){
|
|
if( p->pgnoRoot==iRoot
|
|
&& p->pBtree!=pBtree
|
|
&& 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
|
|
){
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* #ifdef SQLITE_DEBUG */
|
|
|
|
/*
|
|
** Query to see if Btree handle p may obtain a lock of type eLock
|
|
** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
|
|
** SQLITE_OK if the lock may be obtained (by calling
|
|
** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
|
|
*/
|
|
static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
|
|
BtShared *pBt = p->pBt;
|
|
BtLock *pIter;
|
|
|
|
assert( sqlite3BtreeHoldsMutex(p) );
|
|
assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
|
|
assert( p->db!=0 );
|
|
assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
|
|
|
|
/* If requesting a write-lock, then the Btree must have an open write
|
|
** transaction on this file. And, obviously, for this to be so there
|
|
** must be an open write transaction on the file itself.
|
|
*/
|
|
assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
|
|
assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
|
|
|
|
/* This routine is a no-op if the shared-cache is not enabled */
|
|
if( !p->sharable ){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* If some other connection is holding an exclusive lock, the
|
|
** requested lock may not be obtained.
|
|
*/
|
|
if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
|
|
sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
|
|
return SQLITE_LOCKED_SHAREDCACHE;
|
|
}
|
|
|
|
for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
|
|
/* The condition (pIter->eLock!=eLock) in the following if(...)
|
|
** statement is a simplification of:
|
|
**
|
|
** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
|
|
**
|
|
** since we know that if eLock==WRITE_LOCK, then no other connection
|
|
** may hold a WRITE_LOCK on any table in this file (since there can
|
|
** only be a single writer).
|
|
*/
|
|
assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
|
|
assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
|
|
if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
|
|
sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
|
|
if( eLock==WRITE_LOCK ){
|
|
assert( p==pBt->pWriter );
|
|
pBt->btsFlags |= BTS_PENDING;
|
|
}
|
|
return SQLITE_LOCKED_SHAREDCACHE;
|
|
}
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
#endif /* !SQLITE_OMIT_SHARED_CACHE */
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
/*
|
|
** Add a lock on the table with root-page iTable to the shared-btree used
|
|
** by Btree handle p. Parameter eLock must be either READ_LOCK or
|
|
** WRITE_LOCK.
|
|
**
|
|
** This function assumes the following:
|
|
**
|
|
** (a) The specified Btree object p is connected to a sharable
|
|
** database (one with the BtShared.sharable flag set), and
|
|
**
|
|
** (b) No other Btree objects hold a lock that conflicts
|
|
** with the requested lock (i.e. querySharedCacheTableLock() has
|
|
** already been called and returned SQLITE_OK).
|
|
**
|
|
** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
|
|
** is returned if a malloc attempt fails.
|
|
*/
|
|
static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
|
|
BtShared *pBt = p->pBt;
|
|
BtLock *pLock = 0;
|
|
BtLock *pIter;
|
|
|
|
SHARED_LOCK_TRACE(pBt,"setLock", iTable, eLock);
|
|
|
|
assert( sqlite3BtreeHoldsMutex(p) );
|
|
assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
|
|
assert( p->db!=0 );
|
|
|
|
/* A connection with the read-uncommitted flag set will never try to
|
|
** obtain a read-lock using this function. The only read-lock obtained
|
|
** by a connection in read-uncommitted mode is on the sqlite_schema
|
|
** table, and that lock is obtained in BtreeBeginTrans(). */
|
|
assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
|
|
|
|
/* This function should only be called on a sharable b-tree after it
|
|
** has been determined that no other b-tree holds a conflicting lock. */
|
|
assert( p->sharable );
|
|
assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
|
|
|
|
/* First search the list for an existing lock on this table. */
|
|
for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
|
|
if( pIter->iTable==iTable && pIter->pBtree==p ){
|
|
pLock = pIter;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If the above search did not find a BtLock struct associating Btree p
|
|
** with table iTable, allocate one and link it into the list.
|
|
*/
|
|
if( !pLock ){
|
|
pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
|
|
if( !pLock ){
|
|
return SQLITE_NOMEM_BKPT;
|
|
}
|
|
pLock->iTable = iTable;
|
|
pLock->pBtree = p;
|
|
pLock->pNext = pBt->pLock;
|
|
pBt->pLock = pLock;
|
|
}
|
|
|
|
/* Set the BtLock.eLock variable to the maximum of the current lock
|
|
** and the requested lock. This means if a write-lock was already held
|
|
** and a read-lock requested, we don't incorrectly downgrade the lock.
|
|
*/
|
|
assert( WRITE_LOCK>READ_LOCK );
|
|
if( eLock>pLock->eLock ){
|
|
pLock->eLock = eLock;
|
|
}
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
#endif /* !SQLITE_OMIT_SHARED_CACHE */
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
/*
|
|
** Release all the table locks (locks obtained via calls to
|
|
** the setSharedCacheTableLock() procedure) held by Btree object p.
|
|
**
|
|
** This function assumes that Btree p has an open read or write
|
|
** transaction. If it does not, then the BTS_PENDING flag
|
|
** may be incorrectly cleared.
|
|
*/
|
|
static void clearAllSharedCacheTableLocks(Btree *p){
|
|
BtShared *pBt = p->pBt;
|
|
BtLock **ppIter = &pBt->pLock;
|
|
|
|
assert( sqlite3BtreeHoldsMutex(p) );
|
|
assert( p->sharable || 0==*ppIter );
|
|
assert( p->inTrans>0 );
|
|
|
|
SHARED_LOCK_TRACE(pBt, "clearAllLocks", 0, 0);
|
|
|
|
while( *ppIter ){
|
|
BtLock *pLock = *ppIter;
|
|
assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
|
|
assert( pLock->pBtree->inTrans>=pLock->eLock );
|
|
if( pLock->pBtree==p ){
|
|
*ppIter = pLock->pNext;
|
|
assert( pLock->iTable!=1 || pLock==&p->lock );
|
|
if( pLock->iTable!=1 ){
|
|
sqlite3_free(pLock);
|
|
}
|
|
}else{
|
|
ppIter = &pLock->pNext;
|
|
}
|
|
}
|
|
|
|
assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
|
|
if( pBt->pWriter==p ){
|
|
pBt->pWriter = 0;
|
|
pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
|
|
}else if( pBt->nTransaction==2 ){
|
|
/* This function is called when Btree p is concluding its
|
|
** transaction. If there currently exists a writer, and p is not
|
|
** that writer, then the number of locks held by connections other
|
|
** than the writer must be about to drop to zero. In this case
|
|
** set the BTS_PENDING flag to 0.
|
|
**
|
|
** If there is not currently a writer, then BTS_PENDING must
|
|
** be zero already. So this next line is harmless in that case.
|
|
*/
|
|
pBt->btsFlags &= ~BTS_PENDING;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This function changes all write-locks held by Btree p into read-locks.
|
|
*/
|
|
static void downgradeAllSharedCacheTableLocks(Btree *p){
|
|
BtShared *pBt = p->pBt;
|
|
|
|
SHARED_LOCK_TRACE(pBt, "downgradeLocks", 0, 0);
|
|
|
|
if( pBt->pWriter==p ){
|
|
BtLock *pLock;
|
|
pBt->pWriter = 0;
|
|
pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
|
|
for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
|
|
assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
|
|
pLock->eLock = READ_LOCK;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_SHARED_CACHE */
|
|
|
|
static void releasePage(MemPage *pPage); /* Forward reference */
|
|
static void releasePageOne(MemPage *pPage); /* Forward reference */
|
|
static void releasePageNotNull(MemPage *pPage); /* Forward reference */
|
|
|
|
/*
|
|
***** This routine is used inside of assert() only ****
|
|
**
|
|
** Verify that the cursor holds the mutex on its BtShared
|
|
*/
|
|
#ifdef SQLITE_DEBUG
|
|
static int cursorHoldsMutex(BtCursor *p){
|
|
return sqlite3_mutex_held(p->pBt->mutex);
|
|
}
|
|
|
|
/* Verify that the cursor and the BtShared agree about what is the current
|
|
** database connetion. This is important in shared-cache mode. If the database
|
|
** connection pointers get out-of-sync, it is possible for routines like
|
|
** btreeInitPage() to reference an stale connection pointer that references a
|
|
** a connection that has already closed. This routine is used inside assert()
|
|
** statements only and for the purpose of double-checking that the btree code
|
|
** does keep the database connection pointers up-to-date.
|
|
*/
|
|
static int cursorOwnsBtShared(BtCursor *p){
|
|
assert( cursorHoldsMutex(p) );
|
|
return (p->pBtree->db==p->pBt->db);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Invalidate the overflow cache of the cursor passed as the first argument.
|
|
** on the shared btree structure pBt.
|
|
*/
|
|
#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
|
|
|
|
/*
|
|
** Invalidate the overflow page-list cache for all cursors opened
|
|
** on the shared btree structure pBt.
|
|
*/
|
|
static void invalidateAllOverflowCache(BtShared *pBt){
|
|
BtCursor *p;
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
for(p=pBt->pCursor; p; p=p->pNext){
|
|
invalidateOverflowCache(p);
|
|
}
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_INCRBLOB
|
|
/*
|
|
** This function is called before modifying the contents of a table
|
|
** to invalidate any incrblob cursors that are open on the
|
|
** row or one of the rows being modified.
|
|
**
|
|
** If argument isClearTable is true, then the entire contents of the
|
|
** table is about to be deleted. In this case invalidate all incrblob
|
|
** cursors open on any row within the table with root-page pgnoRoot.
|
|
**
|
|
** Otherwise, if argument isClearTable is false, then the row with
|
|
** rowid iRow is being replaced or deleted. In this case invalidate
|
|
** only those incrblob cursors open on that specific row.
|
|
*/
|
|
static void invalidateIncrblobCursors(
|
|
Btree *pBtree, /* The database file to check */
|
|
Pgno pgnoRoot, /* The table that might be changing */
|
|
i64 iRow, /* The rowid that might be changing */
|
|
int isClearTable /* True if all rows are being deleted */
|
|
){
|
|
BtCursor *p;
|
|
assert( pBtree->hasIncrblobCur );
|
|
assert( sqlite3BtreeHoldsMutex(pBtree) );
|
|
pBtree->hasIncrblobCur = 0;
|
|
for(p=pBtree->pBt->pCursor; p; p=p->pNext){
|
|
if( (p->curFlags & BTCF_Incrblob)!=0 ){
|
|
pBtree->hasIncrblobCur = 1;
|
|
if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
|
|
p->eState = CURSOR_INVALID;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#else
|
|
/* Stub function when INCRBLOB is omitted */
|
|
#define invalidateIncrblobCursors(w,x,y,z)
|
|
#endif /* SQLITE_OMIT_INCRBLOB */
|
|
|
|
/*
|
|
** Set bit pgno of the BtShared.pHasContent bitvec. This is called
|
|
** when a page that previously contained data becomes a free-list leaf
|
|
** page.
|
|
**
|
|
** The BtShared.pHasContent bitvec exists to work around an obscure
|
|
** bug caused by the interaction of two useful IO optimizations surrounding
|
|
** free-list leaf pages:
|
|
**
|
|
** 1) When all data is deleted from a page and the page becomes
|
|
** a free-list leaf page, the page is not written to the database
|
|
** (as free-list leaf pages contain no meaningful data). Sometimes
|
|
** such a page is not even journalled (as it will not be modified,
|
|
** why bother journalling it?).
|
|
**
|
|
** 2) When a free-list leaf page is reused, its content is not read
|
|
** from the database or written to the journal file (why should it
|
|
** be, if it is not at all meaningful?).
|
|
**
|
|
** By themselves, these optimizations work fine and provide a handy
|
|
** performance boost to bulk delete or insert operations. However, if
|
|
** a page is moved to the free-list and then reused within the same
|
|
** transaction, a problem comes up. If the page is not journalled when
|
|
** it is moved to the free-list and it is also not journalled when it
|
|
** is extracted from the free-list and reused, then the original data
|
|
** may be lost. In the event of a rollback, it may not be possible
|
|
** to restore the database to its original configuration.
|
|
**
|
|
** The solution is the BtShared.pHasContent bitvec. Whenever a page is
|
|
** moved to become a free-list leaf page, the corresponding bit is
|
|
** set in the bitvec. Whenever a leaf page is extracted from the free-list,
|
|
** optimization 2 above is omitted if the corresponding bit is already
|
|
** set in BtShared.pHasContent. The contents of the bitvec are cleared
|
|
** at the end of every transaction.
|
|
*/
|
|
static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
|
|
int rc = SQLITE_OK;
|
|
if( !pBt->pHasContent ){
|
|
assert( pgno<=pBt->nPage );
|
|
pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
|
|
if( !pBt->pHasContent ){
|
|
rc = SQLITE_NOMEM_BKPT;
|
|
}
|
|
}
|
|
if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
|
|
rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Query the BtShared.pHasContent vector.
|
|
**
|
|
** This function is called when a free-list leaf page is removed from the
|
|
** free-list for reuse. It returns false if it is safe to retrieve the
|
|
** page from the pager layer with the 'no-content' flag set. True otherwise.
|
|
*/
|
|
static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
|
|
Bitvec *p = pBt->pHasContent;
|
|
return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
|
|
}
|
|
|
|
/*
|
|
** Clear (destroy) the BtShared.pHasContent bitvec. This should be
|
|
** invoked at the conclusion of each write-transaction.
|
|
*/
|
|
static void btreeClearHasContent(BtShared *pBt){
|
|
sqlite3BitvecDestroy(pBt->pHasContent);
|
|
pBt->pHasContent = 0;
|
|
}
|
|
|
|
/*
|
|
** Release all of the apPage[] pages for a cursor.
|
|
*/
|
|
static void btreeReleaseAllCursorPages(BtCursor *pCur){
|
|
int i;
|
|
if( pCur->iPage>=0 ){
|
|
for(i=0; i<pCur->iPage; i++){
|
|
releasePageNotNull(pCur->apPage[i]);
|
|
}
|
|
releasePageNotNull(pCur->pPage);
|
|
pCur->iPage = -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The cursor passed as the only argument must point to a valid entry
|
|
** when this function is called (i.e. have eState==CURSOR_VALID). This
|
|
** function saves the current cursor key in variables pCur->nKey and
|
|
** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
|
|
** code otherwise.
|
|
**
|
|
** If the cursor is open on an intkey table, then the integer key
|
|
** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
|
|
** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
|
|
** set to point to a malloced buffer pCur->nKey bytes in size containing
|
|
** the key.
|
|
*/
|
|
static int saveCursorKey(BtCursor *pCur){
|
|
int rc = SQLITE_OK;
|
|
assert( CURSOR_VALID==pCur->eState );
|
|
assert( 0==pCur->pKey );
|
|
assert( cursorHoldsMutex(pCur) );
|
|
|
|
if( pCur->curIntKey ){
|
|
/* Only the rowid is required for a table btree */
|
|
pCur->nKey = sqlite3BtreeIntegerKey(pCur);
|
|
}else{
|
|
/* For an index btree, save the complete key content. It is possible
|
|
** that the current key is corrupt. In that case, it is possible that
|
|
** the sqlite3VdbeRecordUnpack() function may overread the buffer by
|
|
** up to the size of 1 varint plus 1 8-byte value when the cursor
|
|
** position is restored. Hence the 17 bytes of padding allocated
|
|
** below. */
|
|
void *pKey;
|
|
pCur->nKey = sqlite3BtreePayloadSize(pCur);
|
|
pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
|
|
if( pKey ){
|
|
rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
|
|
if( rc==SQLITE_OK ){
|
|
memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
|
|
pCur->pKey = pKey;
|
|
}else{
|
|
sqlite3_free(pKey);
|
|
}
|
|
}else{
|
|
rc = SQLITE_NOMEM_BKPT;
|
|
}
|
|
}
|
|
assert( !pCur->curIntKey || !pCur->pKey );
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Save the current cursor position in the variables BtCursor.nKey
|
|
** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
|
|
**
|
|
** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
|
|
** prior to calling this routine.
|
|
*/
|
|
static int saveCursorPosition(BtCursor *pCur){
|
|
int rc;
|
|
|
|
assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
|
|
assert( 0==pCur->pKey );
|
|
assert( cursorHoldsMutex(pCur) );
|
|
|
|
if( pCur->curFlags & BTCF_Pinned ){
|
|
return SQLITE_CONSTRAINT_PINNED;
|
|
}
|
|
if( pCur->eState==CURSOR_SKIPNEXT ){
|
|
pCur->eState = CURSOR_VALID;
|
|
}else{
|
|
pCur->skipNext = 0;
|
|
}
|
|
|
|
rc = saveCursorKey(pCur);
|
|
if( rc==SQLITE_OK ){
|
|
btreeReleaseAllCursorPages(pCur);
|
|
pCur->eState = CURSOR_REQUIRESEEK;
|
|
}
|
|
|
|
pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
|
|
return rc;
|
|
}
|
|
|
|
/* Forward reference */
|
|
static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
|
|
|
|
/*
|
|
** Save the positions of all cursors (except pExcept) that are open on
|
|
** the table with root-page iRoot. "Saving the cursor position" means that
|
|
** the location in the btree is remembered in such a way that it can be
|
|
** moved back to the same spot after the btree has been modified. This
|
|
** routine is called just before cursor pExcept is used to modify the
|
|
** table, for example in BtreeDelete() or BtreeInsert().
|
|
**
|
|
** If there are two or more cursors on the same btree, then all such
|
|
** cursors should have their BTCF_Multiple flag set. The btreeCursor()
|
|
** routine enforces that rule. This routine only needs to be called in
|
|
** the uncommon case when pExpect has the BTCF_Multiple flag set.
|
|
**
|
|
** If pExpect!=NULL and if no other cursors are found on the same root-page,
|
|
** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
|
|
** pointless call to this routine.
|
|
**
|
|
** Implementation note: This routine merely checks to see if any cursors
|
|
** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
|
|
** event that cursors are in need to being saved.
|
|
*/
|
|
static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
|
|
BtCursor *p;
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
assert( pExcept==0 || pExcept->pBt==pBt );
|
|
for(p=pBt->pCursor; p; p=p->pNext){
|
|
if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
|
|
}
|
|
if( p ) return saveCursorsOnList(p, iRoot, pExcept);
|
|
if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* This helper routine to saveAllCursors does the actual work of saving
|
|
** the cursors if and when a cursor is found that actually requires saving.
|
|
** The common case is that no cursors need to be saved, so this routine is
|
|
** broken out from its caller to avoid unnecessary stack pointer movement.
|
|
*/
|
|
static int SQLITE_NOINLINE saveCursorsOnList(
|
|
BtCursor *p, /* The first cursor that needs saving */
|
|
Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
|
|
BtCursor *pExcept /* Do not save this cursor */
|
|
){
|
|
do{
|
|
if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
|
|
if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
|
|
int rc = saveCursorPosition(p);
|
|
if( SQLITE_OK!=rc ){
|
|
return rc;
|
|
}
|
|
}else{
|
|
testcase( p->iPage>=0 );
|
|
btreeReleaseAllCursorPages(p);
|
|
}
|
|
}
|
|
p = p->pNext;
|
|
}while( p );
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Clear the current cursor position.
|
|
*/
|
|
void sqlite3BtreeClearCursor(BtCursor *pCur){
|
|
assert( cursorHoldsMutex(pCur) );
|
|
sqlite3_free(pCur->pKey);
|
|
pCur->pKey = 0;
|
|
pCur->eState = CURSOR_INVALID;
|
|
}
|
|
|
|
/*
|
|
** In this version of BtreeMoveto, pKey is a packed index record
|
|
** such as is generated by the OP_MakeRecord opcode. Unpack the
|
|
** record and then call sqlite3BtreeIndexMoveto() to do the work.
|
|
*/
|
|
static int btreeMoveto(
|
|
BtCursor *pCur, /* Cursor open on the btree to be searched */
|
|
const void *pKey, /* Packed key if the btree is an index */
|
|
i64 nKey, /* Integer key for tables. Size of pKey for indices */
|
|
int bias, /* Bias search to the high end */
|
|
int *pRes /* Write search results here */
|
|
){
|
|
int rc; /* Status code */
|
|
UnpackedRecord *pIdxKey; /* Unpacked index key */
|
|
|
|
if( pKey ){
|
|
KeyInfo *pKeyInfo = pCur->pKeyInfo;
|
|
assert( nKey==(i64)(int)nKey );
|
|
pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
|
|
if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
|
|
sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
|
|
if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
}else{
|
|
rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes);
|
|
}
|
|
sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
|
|
}else{
|
|
pIdxKey = 0;
|
|
rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Restore the cursor to the position it was in (or as close to as possible)
|
|
** when saveCursorPosition() was called. Note that this call deletes the
|
|
** saved position info stored by saveCursorPosition(), so there can be
|
|
** at most one effective restoreCursorPosition() call after each
|
|
** saveCursorPosition().
|
|
*/
|
|
static int btreeRestoreCursorPosition(BtCursor *pCur){
|
|
int rc;
|
|
int skipNext = 0;
|
|
assert( cursorOwnsBtShared(pCur) );
|
|
assert( pCur->eState>=CURSOR_REQUIRESEEK );
|
|
if( pCur->eState==CURSOR_FAULT ){
|
|
return pCur->skipNext;
|
|
}
|
|
pCur->eState = CURSOR_INVALID;
|
|
if( sqlite3FaultSim(410) ){
|
|
rc = SQLITE_IOERR;
|
|
}else{
|
|
rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_free(pCur->pKey);
|
|
pCur->pKey = 0;
|
|
assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
|
|
if( skipNext ) pCur->skipNext = skipNext;
|
|
if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
|
|
pCur->eState = CURSOR_SKIPNEXT;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
#define restoreCursorPosition(p) \
|
|
(p->eState>=CURSOR_REQUIRESEEK ? \
|
|
btreeRestoreCursorPosition(p) : \
|
|
SQLITE_OK)
|
|
|
|
/*
|
|
** Determine whether or not a cursor has moved from the position where
|
|
** it was last placed, or has been invalidated for any other reason.
|
|
** Cursors can move when the row they are pointing at is deleted out
|
|
** from under them, for example. Cursor might also move if a btree
|
|
** is rebalanced.
|
|
**
|
|
** Calling this routine with a NULL cursor pointer returns false.
|
|
**
|
|
** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
|
|
** back to where it ought to be if this routine returns true.
|
|
*/
|
|
int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
|
|
assert( EIGHT_BYTE_ALIGNMENT(pCur)
|
|
|| pCur==sqlite3BtreeFakeValidCursor() );
|
|
assert( offsetof(BtCursor, eState)==0 );
|
|
assert( sizeof(pCur->eState)==1 );
|
|
return CURSOR_VALID != *(u8*)pCur;
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to a fake BtCursor object that will always answer
|
|
** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
|
|
** cursor returned must not be used with any other Btree interface.
|
|
*/
|
|
BtCursor *sqlite3BtreeFakeValidCursor(void){
|
|
static u8 fakeCursor = CURSOR_VALID;
|
|
assert( offsetof(BtCursor, eState)==0 );
|
|
return (BtCursor*)&fakeCursor;
|
|
}
|
|
|
|
/*
|
|
** This routine restores a cursor back to its original position after it
|
|
** has been moved by some outside activity (such as a btree rebalance or
|
|
** a row having been deleted out from under the cursor).
|
|
**
|
|
** On success, the *pDifferentRow parameter is false if the cursor is left
|
|
** pointing at exactly the same row. *pDifferntRow is the row the cursor
|
|
** was pointing to has been deleted, forcing the cursor to point to some
|
|
** nearby row.
|
|
**
|
|
** This routine should only be called for a cursor that just returned
|
|
** TRUE from sqlite3BtreeCursorHasMoved().
|
|
*/
|
|
int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
|
|
int rc;
|
|
|
|
assert( pCur!=0 );
|
|
assert( pCur->eState!=CURSOR_VALID );
|
|
rc = restoreCursorPosition(pCur);
|
|
if( rc ){
|
|
*pDifferentRow = 1;
|
|
return rc;
|
|
}
|
|
if( pCur->eState!=CURSOR_VALID ){
|
|
*pDifferentRow = 1;
|
|
}else{
|
|
*pDifferentRow = 0;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
#ifdef SQLITE_ENABLE_CURSOR_HINTS
|
|
/*
|
|
** Provide hints to the cursor. The particular hint given (and the type
|
|
** and number of the varargs parameters) is determined by the eHintType
|
|
** parameter. See the definitions of the BTREE_HINT_* macros for details.
|
|
*/
|
|
void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
|
|
/* Used only by system that substitute their own storage engine */
|
|
#ifdef SQLITE_DEBUG
|
|
if( ALWAYS(eHintType==BTREE_HINT_RANGE) ){
|
|
va_list ap;
|
|
Expr *pExpr;
|
|
Walker w;
|
|
memset(&w, 0, sizeof(w));
|
|
w.xExprCallback = sqlite3CursorRangeHintExprCheck;
|
|
va_start(ap, eHintType);
|
|
pExpr = va_arg(ap, Expr*);
|
|
w.u.aMem = va_arg(ap, Mem*);
|
|
va_end(ap);
|
|
assert( pExpr!=0 );
|
|
assert( w.u.aMem!=0 );
|
|
sqlite3WalkExpr(&w, pExpr);
|
|
}
|
|
#endif /* SQLITE_DEBUG */
|
|
}
|
|
#endif /* SQLITE_ENABLE_CURSOR_HINTS */
|
|
|
|
|
|
/*
|
|
** Provide flag hints to the cursor.
|
|
*/
|
|
void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
|
|
assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
|
|
pCur->hints = x;
|
|
}
|
|
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
/*
|
|
** Given a page number of a regular database page, return the page
|
|
** number for the pointer-map page that contains the entry for the
|
|
** input page number.
|
|
**
|
|
** Return 0 (not a valid page) for pgno==1 since there is
|
|
** no pointer map associated with page 1. The integrity_check logic
|
|
** requires that ptrmapPageno(*,1)!=1.
|
|
*/
|
|
static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
|
|
int nPagesPerMapPage;
|
|
Pgno iPtrMap, ret;
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
if( pgno<2 ) return 0;
|
|
nPagesPerMapPage = (pBt->usableSize/5)+1;
|
|
iPtrMap = (pgno-2)/nPagesPerMapPage;
|
|
ret = (iPtrMap*nPagesPerMapPage) + 2;
|
|
if( ret==PENDING_BYTE_PAGE(pBt) ){
|
|
ret++;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
** Write an entry into the pointer map.
|
|
**
|
|
** This routine updates the pointer map entry for page number 'key'
|
|
** so that it maps to type 'eType' and parent page number 'pgno'.
|
|
**
|
|
** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
|
|
** a no-op. If an error occurs, the appropriate error code is written
|
|
** into *pRC.
|
|
*/
|
|
static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
|
|
DbPage *pDbPage; /* The pointer map page */
|
|
u8 *pPtrmap; /* The pointer map data */
|
|
Pgno iPtrmap; /* The pointer map page number */
|
|
int offset; /* Offset in pointer map page */
|
|
int rc; /* Return code from subfunctions */
|
|
|
|
if( *pRC ) return;
|
|
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
/* The super-journal page number must never be used as a pointer map page */
|
|
assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
|
|
|
|
assert( pBt->autoVacuum );
|
|
if( key==0 ){
|
|
*pRC = SQLITE_CORRUPT_BKPT;
|
|
return;
|
|
}
|
|
iPtrmap = PTRMAP_PAGENO(pBt, key);
|
|
rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
*pRC = rc;
|
|
return;
|
|
}
|
|
if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
|
|
/* The first byte of the extra data is the MemPage.isInit byte.
|
|
** If that byte is set, it means this page is also being used
|
|
** as a btree page. */
|
|
*pRC = SQLITE_CORRUPT_BKPT;
|
|
goto ptrmap_exit;
|
|
}
|
|
offset = PTRMAP_PTROFFSET(iPtrmap, key);
|
|
if( offset<0 ){
|
|
*pRC = SQLITE_CORRUPT_BKPT;
|
|
goto ptrmap_exit;
|
|
}
|
|
assert( offset <= (int)pBt->usableSize-5 );
|
|
pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
|
|
|
|
if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
|
|
TRACE(("PTRMAP_UPDATE: %u->(%u,%u)\n", key, eType, parent));
|
|
*pRC= rc = sqlite3PagerWrite(pDbPage);
|
|
if( rc==SQLITE_OK ){
|
|
pPtrmap[offset] = eType;
|
|
put4byte(&pPtrmap[offset+1], parent);
|
|
}
|
|
}
|
|
|
|
ptrmap_exit:
|
|
sqlite3PagerUnref(pDbPage);
|
|
}
|
|
|
|
/*
|
|
** Read an entry from the pointer map.
|
|
**
|
|
** This routine retrieves the pointer map entry for page 'key', writing
|
|
** the type and parent page number to *pEType and *pPgno respectively.
|
|
** An error code is returned if something goes wrong, otherwise SQLITE_OK.
|
|
*/
|
|
static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
|
|
DbPage *pDbPage; /* The pointer map page */
|
|
int iPtrmap; /* Pointer map page index */
|
|
u8 *pPtrmap; /* Pointer map page data */
|
|
int offset; /* Offset of entry in pointer map */
|
|
int rc;
|
|
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
|
|
iPtrmap = PTRMAP_PAGENO(pBt, key);
|
|
rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
|
|
if( rc!=0 ){
|
|
return rc;
|
|
}
|
|
pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
|
|
|
|
offset = PTRMAP_PTROFFSET(iPtrmap, key);
|
|
if( offset<0 ){
|
|
sqlite3PagerUnref(pDbPage);
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
assert( offset <= (int)pBt->usableSize-5 );
|
|
assert( pEType!=0 );
|
|
*pEType = pPtrmap[offset];
|
|
if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
|
|
|
|
sqlite3PagerUnref(pDbPage);
|
|
if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
#else /* if defined SQLITE_OMIT_AUTOVACUUM */
|
|
#define ptrmapPut(w,x,y,z,rc)
|
|
#define ptrmapGet(w,x,y,z) SQLITE_OK
|
|
#define ptrmapPutOvflPtr(x, y, z, rc)
|
|
#endif
|
|
|
|
/*
|
|
** Given a btree page and a cell index (0 means the first cell on
|
|
** the page, 1 means the second cell, and so forth) return a pointer
|
|
** to the cell content.
|
|
**
|
|
** findCellPastPtr() does the same except it skips past the initial
|
|
** 4-byte child pointer found on interior pages, if there is one.
|
|
**
|
|
** This routine works only for pages that do not contain overflow cells.
|
|
*/
|
|
#define findCell(P,I) \
|
|
((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
|
|
#define findCellPastPtr(P,I) \
|
|
((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
|
|
|
|
|
|
/*
|
|
** This is common tail processing for btreeParseCellPtr() and
|
|
** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
|
|
** on a single B-tree page. Make necessary adjustments to the CellInfo
|
|
** structure.
|
|
*/
|
|
static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
|
|
MemPage *pPage, /* Page containing the cell */
|
|
u8 *pCell, /* Pointer to the cell text. */
|
|
CellInfo *pInfo /* Fill in this structure */
|
|
){
|
|
/* If the payload will not fit completely on the local page, we have
|
|
** to decide how much to store locally and how much to spill onto
|
|
** overflow pages. The strategy is to minimize the amount of unused
|
|
** space on overflow pages while keeping the amount of local storage
|
|
** in between minLocal and maxLocal.
|
|
**
|
|
** Warning: changing the way overflow payload is distributed in any
|
|
** way will result in an incompatible file format.
|
|
*/
|
|
int minLocal; /* Minimum amount of payload held locally */
|
|
int maxLocal; /* Maximum amount of payload held locally */
|
|
int surplus; /* Overflow payload available for local storage */
|
|
|
|
minLocal = pPage->minLocal;
|
|
maxLocal = pPage->maxLocal;
|
|
surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
|
|
testcase( surplus==maxLocal );
|
|
testcase( surplus==maxLocal+1 );
|
|
if( surplus <= maxLocal ){
|
|
pInfo->nLocal = (u16)surplus;
|
|
}else{
|
|
pInfo->nLocal = (u16)minLocal;
|
|
}
|
|
pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
|
|
}
|
|
|
|
/*
|
|
** Given a record with nPayload bytes of payload stored within btree
|
|
** page pPage, return the number of bytes of payload stored locally.
|
|
*/
|
|
static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){
|
|
int maxLocal; /* Maximum amount of payload held locally */
|
|
maxLocal = pPage->maxLocal;
|
|
if( nPayload<=maxLocal ){
|
|
return nPayload;
|
|
}else{
|
|
int minLocal; /* Minimum amount of payload held locally */
|
|
int surplus; /* Overflow payload available for local storage */
|
|
minLocal = pPage->minLocal;
|
|
surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4);
|
|
return ( surplus <= maxLocal ) ? surplus : minLocal;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The following routines are implementations of the MemPage.xParseCell()
|
|
** method.
|
|
**
|
|
** Parse a cell content block and fill in the CellInfo structure.
|
|
**
|
|
** btreeParseCellPtr() => table btree leaf nodes
|
|
** btreeParseCellNoPayload() => table btree internal nodes
|
|
** btreeParseCellPtrIndex() => index btree nodes
|
|
**
|
|
** There is also a wrapper function btreeParseCell() that works for
|
|
** all MemPage types and that references the cell by index rather than
|
|
** by pointer.
|
|
*/
|
|
static void btreeParseCellPtrNoPayload(
|
|
MemPage *pPage, /* Page containing the cell */
|
|
u8 *pCell, /* Pointer to the cell text. */
|
|
CellInfo *pInfo /* Fill in this structure */
|
|
){
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
assert( pPage->leaf==0 );
|
|
assert( pPage->childPtrSize==4 );
|
|
#ifndef SQLITE_DEBUG
|
|
UNUSED_PARAMETER(pPage);
|
|
#endif
|
|
pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
|
|
pInfo->nPayload = 0;
|
|
pInfo->nLocal = 0;
|
|
pInfo->pPayload = 0;
|
|
return;
|
|
}
|
|
static void btreeParseCellPtr(
|
|
MemPage *pPage, /* Page containing the cell */
|
|
u8 *pCell, /* Pointer to the cell text. */
|
|
CellInfo *pInfo /* Fill in this structure */
|
|
){
|
|
u8 *pIter; /* For scanning through pCell */
|
|
u32 nPayload; /* Number of bytes of cell payload */
|
|
u64 iKey; /* Extracted Key value */
|
|
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
assert( pPage->leaf==0 || pPage->leaf==1 );
|
|
assert( pPage->intKeyLeaf );
|
|
assert( pPage->childPtrSize==0 );
|
|
pIter = pCell;
|
|
|
|
/* The next block of code is equivalent to:
|
|
**
|
|
** pIter += getVarint32(pIter, nPayload);
|
|
**
|
|
** The code is inlined to avoid a function call.
|
|
*/
|
|
nPayload = *pIter;
|
|
if( nPayload>=0x80 ){
|
|
u8 *pEnd = &pIter[8];
|
|
nPayload &= 0x7f;
|
|
do{
|
|
nPayload = (nPayload<<7) | (*++pIter & 0x7f);
|
|
}while( (*pIter)>=0x80 && pIter<pEnd );
|
|
}
|
|
pIter++;
|
|
|
|
/* The next block of code is equivalent to:
|
|
**
|
|
** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
|
|
**
|
|
** The code is inlined and the loop is unrolled for performance.
|
|
** This routine is a high-runner.
|
|
*/
|
|
iKey = *pIter;
|
|
if( iKey>=0x80 ){
|
|
u8 x;
|
|
iKey = (iKey<<7) ^ (x = *++pIter);
|
|
if( x>=0x80 ){
|
|
iKey = (iKey<<7) ^ (x = *++pIter);
|
|
if( x>=0x80 ){
|
|
iKey = (iKey<<7) ^ 0x10204000 ^ (x = *++pIter);
|
|
if( x>=0x80 ){
|
|
iKey = (iKey<<7) ^ 0x4000 ^ (x = *++pIter);
|
|
if( x>=0x80 ){
|
|
iKey = (iKey<<7) ^ 0x4000 ^ (x = *++pIter);
|
|
if( x>=0x80 ){
|
|
iKey = (iKey<<7) ^ 0x4000 ^ (x = *++pIter);
|
|
if( x>=0x80 ){
|
|
iKey = (iKey<<7) ^ 0x4000 ^ (x = *++pIter);
|
|
if( x>=0x80 ){
|
|
iKey = (iKey<<8) ^ 0x8000 ^ (*++pIter);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}else{
|
|
iKey ^= 0x204000;
|
|
}
|
|
}else{
|
|
iKey ^= 0x4000;
|
|
}
|
|
}
|
|
pIter++;
|
|
|
|
pInfo->nKey = *(i64*)&iKey;
|
|
pInfo->nPayload = nPayload;
|
|
pInfo->pPayload = pIter;
|
|
testcase( nPayload==pPage->maxLocal );
|
|
testcase( nPayload==(u32)pPage->maxLocal+1 );
|
|
if( nPayload<=pPage->maxLocal ){
|
|
/* This is the (easy) common case where the entire payload fits
|
|
** on the local page. No overflow is required.
|
|
*/
|
|
pInfo->nSize = nPayload + (u16)(pIter - pCell);
|
|
if( pInfo->nSize<4 ) pInfo->nSize = 4;
|
|
pInfo->nLocal = (u16)nPayload;
|
|
}else{
|
|
btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
|
|
}
|
|
}
|
|
static void btreeParseCellPtrIndex(
|
|
MemPage *pPage, /* Page containing the cell */
|
|
u8 *pCell, /* Pointer to the cell text. */
|
|
CellInfo *pInfo /* Fill in this structure */
|
|
){
|
|
u8 *pIter; /* For scanning through pCell */
|
|
u32 nPayload; /* Number of bytes of cell payload */
|
|
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
assert( pPage->leaf==0 || pPage->leaf==1 );
|
|
assert( pPage->intKeyLeaf==0 );
|
|
pIter = pCell + pPage->childPtrSize;
|
|
nPayload = *pIter;
|
|
if( nPayload>=0x80 ){
|
|
u8 *pEnd = &pIter[8];
|
|
nPayload &= 0x7f;
|
|
do{
|
|
nPayload = (nPayload<<7) | (*++pIter & 0x7f);
|
|
}while( *(pIter)>=0x80 && pIter<pEnd );
|
|
}
|
|
pIter++;
|
|
pInfo->nKey = nPayload;
|
|
pInfo->nPayload = nPayload;
|
|
pInfo->pPayload = pIter;
|
|
testcase( nPayload==pPage->maxLocal );
|
|
testcase( nPayload==(u32)pPage->maxLocal+1 );
|
|
if( nPayload<=pPage->maxLocal ){
|
|
/* This is the (easy) common case where the entire payload fits
|
|
** on the local page. No overflow is required.
|
|
*/
|
|
pInfo->nSize = nPayload + (u16)(pIter - pCell);
|
|
if( pInfo->nSize<4 ) pInfo->nSize = 4;
|
|
pInfo->nLocal = (u16)nPayload;
|
|
}else{
|
|
btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
|
|
}
|
|
}
|
|
static void btreeParseCell(
|
|
MemPage *pPage, /* Page containing the cell */
|
|
int iCell, /* The cell index. First cell is 0 */
|
|
CellInfo *pInfo /* Fill in this structure */
|
|
){
|
|
pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
|
|
}
|
|
|
|
/*
|
|
** The following routines are implementations of the MemPage.xCellSize
|
|
** method.
|
|
**
|
|
** Compute the total number of bytes that a Cell needs in the cell
|
|
** data area of the btree-page. The return number includes the cell
|
|
** data header and the local payload, but not any overflow page or
|
|
** the space used by the cell pointer.
|
|
**
|
|
** cellSizePtrNoPayload() => table internal nodes
|
|
** cellSizePtrTableLeaf() => table leaf nodes
|
|
** cellSizePtr() => index internal nodes
|
|
** cellSizeIdxLeaf() => index leaf nodes
|
|
*/
|
|
static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
|
|
u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
|
|
u8 *pEnd; /* End mark for a varint */
|
|
u32 nSize; /* Size value to return */
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/* The value returned by this function should always be the same as
|
|
** the (CellInfo.nSize) value found by doing a full parse of the
|
|
** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
|
|
** this function verifies that this invariant is not violated. */
|
|
CellInfo debuginfo;
|
|
pPage->xParseCell(pPage, pCell, &debuginfo);
|
|
#endif
|
|
|
|
assert( pPage->childPtrSize==4 );
|
|
nSize = *pIter;
|
|
if( nSize>=0x80 ){
|
|
pEnd = &pIter[8];
|
|
nSize &= 0x7f;
|
|
do{
|
|
nSize = (nSize<<7) | (*++pIter & 0x7f);
|
|
}while( *(pIter)>=0x80 && pIter<pEnd );
|
|
}
|
|
pIter++;
|
|
testcase( nSize==pPage->maxLocal );
|
|
testcase( nSize==(u32)pPage->maxLocal+1 );
|
|
if( nSize<=pPage->maxLocal ){
|
|
nSize += (u32)(pIter - pCell);
|
|
assert( nSize>4 );
|
|
}else{
|
|
int minLocal = pPage->minLocal;
|
|
nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
|
|
testcase( nSize==pPage->maxLocal );
|
|
testcase( nSize==(u32)pPage->maxLocal+1 );
|
|
if( nSize>pPage->maxLocal ){
|
|
nSize = minLocal;
|
|
}
|
|
nSize += 4 + (u16)(pIter - pCell);
|
|
}
|
|
assert( nSize==debuginfo.nSize || CORRUPT_DB );
|
|
return (u16)nSize;
|
|
}
|
|
static u16 cellSizePtrIdxLeaf(MemPage *pPage, u8 *pCell){
|
|
u8 *pIter = pCell; /* For looping over bytes of pCell */
|
|
u8 *pEnd; /* End mark for a varint */
|
|
u32 nSize; /* Size value to return */
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/* The value returned by this function should always be the same as
|
|
** the (CellInfo.nSize) value found by doing a full parse of the
|
|
** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
|
|
** this function verifies that this invariant is not violated. */
|
|
CellInfo debuginfo;
|
|
pPage->xParseCell(pPage, pCell, &debuginfo);
|
|
#endif
|
|
|
|
assert( pPage->childPtrSize==0 );
|
|
nSize = *pIter;
|
|
if( nSize>=0x80 ){
|
|
pEnd = &pIter[8];
|
|
nSize &= 0x7f;
|
|
do{
|
|
nSize = (nSize<<7) | (*++pIter & 0x7f);
|
|
}while( *(pIter)>=0x80 && pIter<pEnd );
|
|
}
|
|
pIter++;
|
|
testcase( nSize==pPage->maxLocal );
|
|
testcase( nSize==(u32)pPage->maxLocal+1 );
|
|
if( nSize<=pPage->maxLocal ){
|
|
nSize += (u32)(pIter - pCell);
|
|
if( nSize<4 ) nSize = 4;
|
|
}else{
|
|
int minLocal = pPage->minLocal;
|
|
nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
|
|
testcase( nSize==pPage->maxLocal );
|
|
testcase( nSize==(u32)pPage->maxLocal+1 );
|
|
if( nSize>pPage->maxLocal ){
|
|
nSize = minLocal;
|
|
}
|
|
nSize += 4 + (u16)(pIter - pCell);
|
|
}
|
|
assert( nSize==debuginfo.nSize || CORRUPT_DB );
|
|
return (u16)nSize;
|
|
}
|
|
static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
|
|
u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
|
|
u8 *pEnd; /* End mark for a varint */
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/* The value returned by this function should always be the same as
|
|
** the (CellInfo.nSize) value found by doing a full parse of the
|
|
** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
|
|
** this function verifies that this invariant is not violated. */
|
|
CellInfo debuginfo;
|
|
pPage->xParseCell(pPage, pCell, &debuginfo);
|
|
#else
|
|
UNUSED_PARAMETER(pPage);
|
|
#endif
|
|
|
|
assert( pPage->childPtrSize==4 );
|
|
pEnd = pIter + 9;
|
|
while( (*pIter++)&0x80 && pIter<pEnd );
|
|
assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
|
|
return (u16)(pIter - pCell);
|
|
}
|
|
static u16 cellSizePtrTableLeaf(MemPage *pPage, u8 *pCell){
|
|
u8 *pIter = pCell; /* For looping over bytes of pCell */
|
|
u8 *pEnd; /* End mark for a varint */
|
|
u32 nSize; /* Size value to return */
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/* The value returned by this function should always be the same as
|
|
** the (CellInfo.nSize) value found by doing a full parse of the
|
|
** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
|
|
** this function verifies that this invariant is not violated. */
|
|
CellInfo debuginfo;
|
|
pPage->xParseCell(pPage, pCell, &debuginfo);
|
|
#endif
|
|
|
|
nSize = *pIter;
|
|
if( nSize>=0x80 ){
|
|
pEnd = &pIter[8];
|
|
nSize &= 0x7f;
|
|
do{
|
|
nSize = (nSize<<7) | (*++pIter & 0x7f);
|
|
}while( *(pIter)>=0x80 && pIter<pEnd );
|
|
}
|
|
pIter++;
|
|
/* pIter now points at the 64-bit integer key value, a variable length
|
|
** integer. The following block moves pIter to point at the first byte
|
|
** past the end of the key value. */
|
|
if( (*pIter++)&0x80
|
|
&& (*pIter++)&0x80
|
|
&& (*pIter++)&0x80
|
|
&& (*pIter++)&0x80
|
|
&& (*pIter++)&0x80
|
|
&& (*pIter++)&0x80
|
|
&& (*pIter++)&0x80
|
|
&& (*pIter++)&0x80 ){ pIter++; }
|
|
testcase( nSize==pPage->maxLocal );
|
|
testcase( nSize==(u32)pPage->maxLocal+1 );
|
|
if( nSize<=pPage->maxLocal ){
|
|
nSize += (u32)(pIter - pCell);
|
|
if( nSize<4 ) nSize = 4;
|
|
}else{
|
|
int minLocal = pPage->minLocal;
|
|
nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
|
|
testcase( nSize==pPage->maxLocal );
|
|
testcase( nSize==(u32)pPage->maxLocal+1 );
|
|
if( nSize>pPage->maxLocal ){
|
|
nSize = minLocal;
|
|
}
|
|
nSize += 4 + (u16)(pIter - pCell);
|
|
}
|
|
assert( nSize==debuginfo.nSize || CORRUPT_DB );
|
|
return (u16)nSize;
|
|
}
|
|
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/* This variation on cellSizePtr() is used inside of assert() statements
|
|
** only. */
|
|
static u16 cellSize(MemPage *pPage, int iCell){
|
|
return pPage->xCellSize(pPage, findCell(pPage, iCell));
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
/*
|
|
** The cell pCell is currently part of page pSrc but will ultimately be part
|
|
** of pPage. (pSrc and pPage are often the same.) If pCell contains a
|
|
** pointer to an overflow page, insert an entry into the pointer-map for
|
|
** the overflow page that will be valid after pCell has been moved to pPage.
|
|
*/
|
|
static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
|
|
CellInfo info;
|
|
if( *pRC ) return;
|
|
assert( pCell!=0 );
|
|
pPage->xParseCell(pPage, pCell, &info);
|
|
if( info.nLocal<info.nPayload ){
|
|
Pgno ovfl;
|
|
if( SQLITE_OVERFLOW(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
|
|
testcase( pSrc!=pPage );
|
|
*pRC = SQLITE_CORRUPT_BKPT;
|
|
return;
|
|
}
|
|
ovfl = get4byte(&pCell[info.nSize-4]);
|
|
ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Defragment the page given. This routine reorganizes cells within the
|
|
** page so that there are no free-blocks on the free-block list.
|
|
**
|
|
** Parameter nMaxFrag is the maximum amount of fragmented space that may be
|
|
** present in the page after this routine returns.
|
|
**
|
|
** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
|
|
** b-tree page so that there are no freeblocks or fragment bytes, all
|
|
** unused bytes are contained in the unallocated space region, and all
|
|
** cells are packed tightly at the end of the page.
|
|
*/
|
|
static int defragmentPage(MemPage *pPage, int nMaxFrag){
|
|
int i; /* Loop counter */
|
|
int pc; /* Address of the i-th cell */
|
|
int hdr; /* Offset to the page header */
|
|
int size; /* Size of a cell */
|
|
int usableSize; /* Number of usable bytes on a page */
|
|
int cellOffset; /* Offset to the cell pointer array */
|
|
int cbrk; /* Offset to the cell content area */
|
|
int nCell; /* Number of cells on the page */
|
|
unsigned char *data; /* The page data */
|
|
unsigned char *temp; /* Temp area for cell content */
|
|
unsigned char *src; /* Source of content */
|
|
int iCellFirst; /* First allowable cell index */
|
|
int iCellLast; /* Last possible cell index */
|
|
int iCellStart; /* First cell offset in input */
|
|
|
|
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
assert( pPage->pBt!=0 );
|
|
assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
|
|
assert( pPage->nOverflow==0 );
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
data = pPage->aData;
|
|
hdr = pPage->hdrOffset;
|
|
cellOffset = pPage->cellOffset;
|
|
nCell = pPage->nCell;
|
|
assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
|
|
iCellFirst = cellOffset + 2*nCell;
|
|
usableSize = pPage->pBt->usableSize;
|
|
|
|
/* This block handles pages with two or fewer free blocks and nMaxFrag
|
|
** or fewer fragmented bytes. In this case it is faster to move the
|
|
** two (or one) blocks of cells using memmove() and add the required
|
|
** offsets to each pointer in the cell-pointer array than it is to
|
|
** reconstruct the entire page. */
|
|
if( (int)data[hdr+7]<=nMaxFrag ){
|
|
int iFree = get2byte(&data[hdr+1]);
|
|
if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
|
|
if( iFree ){
|
|
int iFree2 = get2byte(&data[iFree]);
|
|
if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
|
|
if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
|
|
u8 *pEnd = &data[cellOffset + nCell*2];
|
|
u8 *pAddr;
|
|
int sz2 = 0;
|
|
int sz = get2byte(&data[iFree+2]);
|
|
int top = get2byte(&data[hdr+5]);
|
|
if( top>=iFree ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
if( iFree2 ){
|
|
if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
|
|
sz2 = get2byte(&data[iFree2+2]);
|
|
if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
|
|
memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
|
|
sz += sz2;
|
|
}else if( iFree+sz>usableSize ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
|
|
cbrk = top+sz;
|
|
assert( cbrk+(iFree-top) <= usableSize );
|
|
memmove(&data[cbrk], &data[top], iFree-top);
|
|
for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
|
|
pc = get2byte(pAddr);
|
|
if( pc<iFree ){ put2byte(pAddr, pc+sz); }
|
|
else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
|
|
}
|
|
goto defragment_out;
|
|
}
|
|
}
|
|
}
|
|
|
|
cbrk = usableSize;
|
|
iCellLast = usableSize - 4;
|
|
iCellStart = get2byte(&data[hdr+5]);
|
|
if( nCell>0 ){
|
|
temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
|
|
memcpy(temp, data, usableSize);
|
|
src = temp;
|
|
for(i=0; i<nCell; i++){
|
|
u8 *pAddr; /* The i-th cell pointer */
|
|
pAddr = &data[cellOffset + i*2];
|
|
pc = get2byte(pAddr);
|
|
testcase( pc==iCellFirst );
|
|
testcase( pc==iCellLast );
|
|
/* These conditions have already been verified in btreeInitPage()
|
|
** if PRAGMA cell_size_check=ON.
|
|
*/
|
|
if( pc>iCellLast ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
assert( pc>=0 && pc<=iCellLast );
|
|
size = pPage->xCellSize(pPage, &src[pc]);
|
|
cbrk -= size;
|
|
if( cbrk<iCellStart || pc+size>usableSize ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
assert( cbrk+size<=usableSize && cbrk>=iCellStart );
|
|
testcase( cbrk+size==usableSize );
|
|
testcase( pc+size==usableSize );
|
|
put2byte(pAddr, cbrk);
|
|
memcpy(&data[cbrk], &src[pc], size);
|
|
}
|
|
}
|
|
data[hdr+7] = 0;
|
|
|
|
defragment_out:
|
|
assert( pPage->nFree>=0 );
|
|
if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
assert( cbrk>=iCellFirst );
|
|
put2byte(&data[hdr+5], cbrk);
|
|
data[hdr+1] = 0;
|
|
data[hdr+2] = 0;
|
|
memset(&data[iCellFirst], 0, cbrk-iCellFirst);
|
|
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Search the free-list on page pPg for space to store a cell nByte bytes in
|
|
** size. If one can be found, return a pointer to the space and remove it
|
|
** from the free-list.
|
|
**
|
|
** If no suitable space can be found on the free-list, return NULL.
|
|
**
|
|
** This function may detect corruption within pPg. If corruption is
|
|
** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
|
|
**
|
|
** Slots on the free list that are between 1 and 3 bytes larger than nByte
|
|
** will be ignored if adding the extra space to the fragmentation count
|
|
** causes the fragmentation count to exceed 60.
|
|
*/
|
|
static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
|
|
const int hdr = pPg->hdrOffset; /* Offset to page header */
|
|
u8 * const aData = pPg->aData; /* Page data */
|
|
int iAddr = hdr + 1; /* Address of ptr to pc */
|
|
u8 *pTmp = &aData[iAddr]; /* Temporary ptr into aData[] */
|
|
int pc = get2byte(pTmp); /* Address of a free slot */
|
|
int x; /* Excess size of the slot */
|
|
int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */
|
|
int size; /* Size of the free slot */
|
|
|
|
assert( pc>0 );
|
|
while( pc<=maxPC ){
|
|
/* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
|
|
** freeblock form a big-endian integer which is the size of the freeblock
|
|
** in bytes, including the 4-byte header. */
|
|
pTmp = &aData[pc+2];
|
|
size = get2byte(pTmp);
|
|
if( (x = size - nByte)>=0 ){
|
|
testcase( x==4 );
|
|
testcase( x==3 );
|
|
if( x<4 ){
|
|
/* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
|
|
** number of bytes in fragments may not exceed 60. */
|
|
if( aData[hdr+7]>57 ) return 0;
|
|
|
|
/* Remove the slot from the free-list. Update the number of
|
|
** fragmented bytes within the page. */
|
|
memcpy(&aData[iAddr], &aData[pc], 2);
|
|
aData[hdr+7] += (u8)x;
|
|
return &aData[pc];
|
|
}else if( x+pc > maxPC ){
|
|
/* This slot extends off the end of the usable part of the page */
|
|
*pRc = SQLITE_CORRUPT_PAGE(pPg);
|
|
return 0;
|
|
}else{
|
|
/* The slot remains on the free-list. Reduce its size to account
|
|
** for the portion used by the new allocation. */
|
|
put2byte(&aData[pc+2], x);
|
|
}
|
|
return &aData[pc + x];
|
|
}
|
|
iAddr = pc;
|
|
pTmp = &aData[pc];
|
|
pc = get2byte(pTmp);
|
|
if( pc<=iAddr ){
|
|
if( pc ){
|
|
/* The next slot in the chain comes before the current slot */
|
|
*pRc = SQLITE_CORRUPT_PAGE(pPg);
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
if( pc>maxPC+nByte-4 ){
|
|
/* The free slot chain extends off the end of the page */
|
|
*pRc = SQLITE_CORRUPT_PAGE(pPg);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Allocate nByte bytes of space from within the B-Tree page passed
|
|
** as the first argument. Write into *pIdx the index into pPage->aData[]
|
|
** of the first byte of allocated space. Return either SQLITE_OK or
|
|
** an error code (usually SQLITE_CORRUPT).
|
|
**
|
|
** The caller guarantees that there is sufficient space to make the
|
|
** allocation. This routine might need to defragment in order to bring
|
|
** all the space together, however. This routine will avoid using
|
|
** the first two bytes past the cell pointer area since presumably this
|
|
** allocation is being made in order to insert a new cell, so we will
|
|
** also end up needing a new cell pointer.
|
|
*/
|
|
static SQLITE_INLINE int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
|
|
const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
|
|
u8 * const data = pPage->aData; /* Local cache of pPage->aData */
|
|
int top; /* First byte of cell content area */
|
|
int rc = SQLITE_OK; /* Integer return code */
|
|
u8 *pTmp; /* Temp ptr into data[] */
|
|
int gap; /* First byte of gap between cell pointers and cell content */
|
|
|
|
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
assert( pPage->pBt );
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
assert( nByte>=0 ); /* Minimum cell size is 4 */
|
|
assert( pPage->nFree>=nByte );
|
|
assert( pPage->nOverflow==0 );
|
|
assert( nByte < (int)(pPage->pBt->usableSize-8) );
|
|
|
|
assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
|
|
gap = pPage->cellOffset + 2*pPage->nCell;
|
|
assert( gap<=65536 );
|
|
/* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
|
|
** and the reserved space is zero (the usual value for reserved space)
|
|
** then the cell content offset of an empty page wants to be 65536.
|
|
** However, that integer is too large to be stored in a 2-byte unsigned
|
|
** integer, so a value of 0 is used in its place. */
|
|
pTmp = &data[hdr+5];
|
|
top = get2byte(pTmp);
|
|
if( gap>top ){
|
|
if( top==0 && pPage->pBt->usableSize==65536 ){
|
|
top = 65536;
|
|
}else{
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
}else if( top>(int)pPage->pBt->usableSize ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
|
|
/* If there is enough space between gap and top for one more cell pointer,
|
|
** and if the freelist is not empty, then search the
|
|
** freelist looking for a slot big enough to satisfy the request.
|
|
*/
|
|
testcase( gap+2==top );
|
|
testcase( gap+1==top );
|
|
testcase( gap==top );
|
|
if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
|
|
u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
|
|
if( pSpace ){
|
|
int g2;
|
|
assert( pSpace+nByte<=data+pPage->pBt->usableSize );
|
|
*pIdx = g2 = (int)(pSpace-data);
|
|
if( g2<=gap ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}else{
|
|
return SQLITE_OK;
|
|
}
|
|
}else if( rc ){
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
/* The request could not be fulfilled using a freelist slot. Check
|
|
** to see if defragmentation is necessary.
|
|
*/
|
|
testcase( gap+2+nByte==top );
|
|
if( gap+2+nByte>top ){
|
|
assert( pPage->nCell>0 || CORRUPT_DB );
|
|
assert( pPage->nFree>=0 );
|
|
rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
|
|
if( rc ) return rc;
|
|
top = get2byteNotZero(&data[hdr+5]);
|
|
assert( gap+2+nByte<=top );
|
|
}
|
|
|
|
|
|
/* Allocate memory from the gap in between the cell pointer array
|
|
** and the cell content area. The btreeComputeFreeSpace() call has already
|
|
** validated the freelist. Given that the freelist is valid, there
|
|
** is no way that the allocation can extend off the end of the page.
|
|
** The assert() below verifies the previous sentence.
|
|
*/
|
|
top -= nByte;
|
|
put2byte(&data[hdr+5], top);
|
|
assert( top+nByte <= (int)pPage->pBt->usableSize );
|
|
*pIdx = top;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Return a section of the pPage->aData to the freelist.
|
|
** The first byte of the new free block is pPage->aData[iStart]
|
|
** and the size of the block is iSize bytes.
|
|
**
|
|
** Adjacent freeblocks are coalesced.
|
|
**
|
|
** Even though the freeblock list was checked by btreeComputeFreeSpace(),
|
|
** that routine will not detect overlap between cells or freeblocks. Nor
|
|
** does it detect cells or freeblocks that encroach into the reserved bytes
|
|
** at the end of the page. So do additional corruption checks inside this
|
|
** routine and return SQLITE_CORRUPT if any problems are found.
|
|
*/
|
|
static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
|
|
u16 iPtr; /* Address of ptr to next freeblock */
|
|
u16 iFreeBlk; /* Address of the next freeblock */
|
|
u8 hdr; /* Page header size. 0 or 100 */
|
|
u8 nFrag = 0; /* Reduction in fragmentation */
|
|
u16 iOrigSize = iSize; /* Original value of iSize */
|
|
u16 x; /* Offset to cell content area */
|
|
u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
|
|
unsigned char *data = pPage->aData; /* Page content */
|
|
u8 *pTmp; /* Temporary ptr into data[] */
|
|
|
|
assert( pPage->pBt!=0 );
|
|
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
|
|
assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
assert( iSize>=4 ); /* Minimum cell size is 4 */
|
|
assert( CORRUPT_DB || iStart<=pPage->pBt->usableSize-4 );
|
|
|
|
/* The list of freeblocks must be in ascending order. Find the
|
|
** spot on the list where iStart should be inserted.
|
|
*/
|
|
hdr = pPage->hdrOffset;
|
|
iPtr = hdr + 1;
|
|
if( data[iPtr+1]==0 && data[iPtr]==0 ){
|
|
iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
|
|
}else{
|
|
while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
|
|
if( iFreeBlk<=iPtr ){
|
|
if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
iPtr = iFreeBlk;
|
|
}
|
|
if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
assert( iFreeBlk>iPtr || iFreeBlk==0 || CORRUPT_DB );
|
|
|
|
/* At this point:
|
|
** iFreeBlk: First freeblock after iStart, or zero if none
|
|
** iPtr: The address of a pointer to iFreeBlk
|
|
**
|
|
** Check to see if iFreeBlk should be coalesced onto the end of iStart.
|
|
*/
|
|
if( iFreeBlk && iEnd+3>=iFreeBlk ){
|
|
nFrag = iFreeBlk - iEnd;
|
|
if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
|
|
iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
|
|
if( iEnd > pPage->pBt->usableSize ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
iSize = iEnd - iStart;
|
|
iFreeBlk = get2byte(&data[iFreeBlk]);
|
|
}
|
|
|
|
/* If iPtr is another freeblock (that is, if iPtr is not the freelist
|
|
** pointer in the page header) then check to see if iStart should be
|
|
** coalesced onto the end of iPtr.
|
|
*/
|
|
if( iPtr>hdr+1 ){
|
|
int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
|
|
if( iPtrEnd+3>=iStart ){
|
|
if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
|
|
nFrag += iStart - iPtrEnd;
|
|
iSize = iEnd - iPtr;
|
|
iStart = iPtr;
|
|
}
|
|
}
|
|
if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
|
|
data[hdr+7] -= nFrag;
|
|
}
|
|
pTmp = &data[hdr+5];
|
|
x = get2byte(pTmp);
|
|
if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
|
|
/* Overwrite deleted information with zeros when the secure_delete
|
|
** option is enabled */
|
|
memset(&data[iStart], 0, iSize);
|
|
}
|
|
if( iStart<=x ){
|
|
/* The new freeblock is at the beginning of the cell content area,
|
|
** so just extend the cell content area rather than create another
|
|
** freelist entry */
|
|
if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
|
|
if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
|
|
put2byte(&data[hdr+1], iFreeBlk);
|
|
put2byte(&data[hdr+5], iEnd);
|
|
}else{
|
|
/* Insert the new freeblock into the freelist */
|
|
put2byte(&data[iPtr], iStart);
|
|
put2byte(&data[iStart], iFreeBlk);
|
|
put2byte(&data[iStart+2], iSize);
|
|
}
|
|
pPage->nFree += iOrigSize;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Decode the flags byte (the first byte of the header) for a page
|
|
** and initialize fields of the MemPage structure accordingly.
|
|
**
|
|
** Only the following combinations are supported. Anything different
|
|
** indicates a corrupt database files:
|
|
**
|
|
** PTF_ZERODATA (0x02, 2)
|
|
** PTF_LEAFDATA | PTF_INTKEY (0x05, 5)
|
|
** PTF_ZERODATA | PTF_LEAF (0x0a, 10)
|
|
** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF (0x0d, 13)
|
|
*/
|
|
static int decodeFlags(MemPage *pPage, int flagByte){
|
|
BtShared *pBt; /* A copy of pPage->pBt */
|
|
|
|
assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
pBt = pPage->pBt;
|
|
pPage->max1bytePayload = pBt->max1bytePayload;
|
|
if( flagByte>=(PTF_ZERODATA | PTF_LEAF) ){
|
|
pPage->childPtrSize = 0;
|
|
pPage->leaf = 1;
|
|
if( flagByte==(PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF) ){
|
|
pPage->intKeyLeaf = 1;
|
|
pPage->xCellSize = cellSizePtrTableLeaf;
|
|
pPage->xParseCell = btreeParseCellPtr;
|
|
pPage->intKey = 1;
|
|
pPage->maxLocal = pBt->maxLeaf;
|
|
pPage->minLocal = pBt->minLeaf;
|
|
}else if( flagByte==(PTF_ZERODATA | PTF_LEAF) ){
|
|
pPage->intKey = 0;
|
|
pPage->intKeyLeaf = 0;
|
|
pPage->xCellSize = cellSizePtrIdxLeaf;
|
|
pPage->xParseCell = btreeParseCellPtrIndex;
|
|
pPage->maxLocal = pBt->maxLocal;
|
|
pPage->minLocal = pBt->minLocal;
|
|
}else{
|
|
pPage->intKey = 0;
|
|
pPage->intKeyLeaf = 0;
|
|
pPage->xCellSize = cellSizePtrIdxLeaf;
|
|
pPage->xParseCell = btreeParseCellPtrIndex;
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
}else{
|
|
pPage->childPtrSize = 4;
|
|
pPage->leaf = 0;
|
|
if( flagByte==(PTF_ZERODATA) ){
|
|
pPage->intKey = 0;
|
|
pPage->intKeyLeaf = 0;
|
|
pPage->xCellSize = cellSizePtr;
|
|
pPage->xParseCell = btreeParseCellPtrIndex;
|
|
pPage->maxLocal = pBt->maxLocal;
|
|
pPage->minLocal = pBt->minLocal;
|
|
}else if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
|
|
pPage->intKeyLeaf = 0;
|
|
pPage->xCellSize = cellSizePtrNoPayload;
|
|
pPage->xParseCell = btreeParseCellPtrNoPayload;
|
|
pPage->intKey = 1;
|
|
pPage->maxLocal = pBt->maxLeaf;
|
|
pPage->minLocal = pBt->minLeaf;
|
|
}else{
|
|
pPage->intKey = 0;
|
|
pPage->intKeyLeaf = 0;
|
|
pPage->xCellSize = cellSizePtr;
|
|
pPage->xParseCell = btreeParseCellPtrIndex;
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Compute the amount of freespace on the page. In other words, fill
|
|
** in the pPage->nFree field.
|
|
*/
|
|
static int btreeComputeFreeSpace(MemPage *pPage){
|
|
int pc; /* Address of a freeblock within pPage->aData[] */
|
|
u8 hdr; /* Offset to beginning of page header */
|
|
u8 *data; /* Equal to pPage->aData */
|
|
int usableSize; /* Amount of usable space on each page */
|
|
int nFree; /* Number of unused bytes on the page */
|
|
int top; /* First byte of the cell content area */
|
|
int iCellFirst; /* First allowable cell or freeblock offset */
|
|
int iCellLast; /* Last possible cell or freeblock offset */
|
|
|
|
assert( pPage->pBt!=0 );
|
|
assert( pPage->pBt->db!=0 );
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
|
|
assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
|
|
assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
|
|
assert( pPage->isInit==1 );
|
|
assert( pPage->nFree<0 );
|
|
|
|
usableSize = pPage->pBt->usableSize;
|
|
hdr = pPage->hdrOffset;
|
|
data = pPage->aData;
|
|
/* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
|
|
** the start of the cell content area. A zero value for this integer is
|
|
** interpreted as 65536. */
|
|
top = get2byteNotZero(&data[hdr+5]);
|
|
iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
|
|
iCellLast = usableSize - 4;
|
|
|
|
/* Compute the total free space on the page
|
|
** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
|
|
** start of the first freeblock on the page, or is zero if there are no
|
|
** freeblocks. */
|
|
pc = get2byte(&data[hdr+1]);
|
|
nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
|
|
if( pc>0 ){
|
|
u32 next, size;
|
|
if( pc<top ){
|
|
/* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
|
|
** always be at least one cell before the first freeblock.
|
|
*/
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
while( 1 ){
|
|
if( pc>iCellLast ){
|
|
/* Freeblock off the end of the page */
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
next = get2byte(&data[pc]);
|
|
size = get2byte(&data[pc+2]);
|
|
nFree = nFree + size;
|
|
if( next<=pc+size+3 ) break;
|
|
pc = next;
|
|
}
|
|
if( next>0 ){
|
|
/* Freeblock not in ascending order */
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
if( pc+size>(unsigned int)usableSize ){
|
|
/* Last freeblock extends past page end */
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
}
|
|
|
|
/* At this point, nFree contains the sum of the offset to the start
|
|
** of the cell-content area plus the number of free bytes within
|
|
** the cell-content area. If this is greater than the usable-size
|
|
** of the page, then the page must be corrupted. This check also
|
|
** serves to verify that the offset to the start of the cell-content
|
|
** area, according to the page header, lies within the page.
|
|
*/
|
|
if( nFree>usableSize || nFree<iCellFirst ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
pPage->nFree = (u16)(nFree - iCellFirst);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Do additional sanity check after btreeInitPage() if
|
|
** PRAGMA cell_size_check=ON
|
|
*/
|
|
static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
|
|
int iCellFirst; /* First allowable cell or freeblock offset */
|
|
int iCellLast; /* Last possible cell or freeblock offset */
|
|
int i; /* Index into the cell pointer array */
|
|
int sz; /* Size of a cell */
|
|
int pc; /* Address of a freeblock within pPage->aData[] */
|
|
u8 *data; /* Equal to pPage->aData */
|
|
int usableSize; /* Maximum usable space on the page */
|
|
int cellOffset; /* Start of cell content area */
|
|
|
|
iCellFirst = pPage->cellOffset + 2*pPage->nCell;
|
|
usableSize = pPage->pBt->usableSize;
|
|
iCellLast = usableSize - 4;
|
|
data = pPage->aData;
|
|
cellOffset = pPage->cellOffset;
|
|
if( !pPage->leaf ) iCellLast--;
|
|
for(i=0; i<pPage->nCell; i++){
|
|
pc = get2byteAligned(&data[cellOffset+i*2]);
|
|
testcase( pc==iCellFirst );
|
|
testcase( pc==iCellLast );
|
|
if( pc<iCellFirst || pc>iCellLast ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
sz = pPage->xCellSize(pPage, &data[pc]);
|
|
testcase( pc+sz==usableSize );
|
|
if( pc+sz>usableSize ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Initialize the auxiliary information for a disk block.
|
|
**
|
|
** Return SQLITE_OK on success. If we see that the page does
|
|
** not contain a well-formed database page, then return
|
|
** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
|
|
** guarantee that the page is well-formed. It only shows that
|
|
** we failed to detect any corruption.
|
|
*/
|
|
static int btreeInitPage(MemPage *pPage){
|
|
u8 *data; /* Equal to pPage->aData */
|
|
BtShared *pBt; /* The main btree structure */
|
|
|
|
assert( pPage->pBt!=0 );
|
|
assert( pPage->pBt->db!=0 );
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
|
|
assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
|
|
assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
|
|
assert( pPage->isInit==0 );
|
|
|
|
pBt = pPage->pBt;
|
|
data = pPage->aData + pPage->hdrOffset;
|
|
/* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
|
|
** the b-tree page type. */
|
|
if( decodeFlags(pPage, data[0]) ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
|
|
pPage->maskPage = (u16)(pBt->pageSize - 1);
|
|
pPage->nOverflow = 0;
|
|
pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
|
|
pPage->aCellIdx = data + pPage->childPtrSize + 8;
|
|
pPage->aDataEnd = pPage->aData + pBt->pageSize;
|
|
pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
|
|
/* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
|
|
** number of cells on the page. */
|
|
pPage->nCell = get2byte(&data[3]);
|
|
if( pPage->nCell>MX_CELL(pBt) ){
|
|
/* To many cells for a single page. The page must be corrupt */
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
testcase( pPage->nCell==MX_CELL(pBt) );
|
|
/* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
|
|
** possible for a root page of a table that contains no rows) then the
|
|
** offset to the cell content area will equal the page size minus the
|
|
** bytes of reserved space. */
|
|
assert( pPage->nCell>0
|
|
|| get2byteNotZero(&data[5])==(int)pBt->usableSize
|
|
|| CORRUPT_DB );
|
|
pPage->nFree = -1; /* Indicate that this value is yet uncomputed */
|
|
pPage->isInit = 1;
|
|
if( pBt->db->flags & SQLITE_CellSizeCk ){
|
|
return btreeCellSizeCheck(pPage);
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Set up a raw page so that it looks like a database page holding
|
|
** no entries.
|
|
*/
|
|
static void zeroPage(MemPage *pPage, int flags){
|
|
unsigned char *data = pPage->aData;
|
|
BtShared *pBt = pPage->pBt;
|
|
u8 hdr = pPage->hdrOffset;
|
|
u16 first;
|
|
|
|
assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno || CORRUPT_DB );
|
|
assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
|
|
assert( sqlite3PagerGetData(pPage->pDbPage) == data );
|
|
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
if( pBt->btsFlags & BTS_FAST_SECURE ){
|
|
memset(&data[hdr], 0, pBt->usableSize - hdr);
|
|
}
|
|
data[hdr] = (char)flags;
|
|
first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
|
|
memset(&data[hdr+1], 0, 4);
|
|
data[hdr+7] = 0;
|
|
put2byte(&data[hdr+5], pBt->usableSize);
|
|
pPage->nFree = (u16)(pBt->usableSize - first);
|
|
decodeFlags(pPage, flags);
|
|
pPage->cellOffset = first;
|
|
pPage->aDataEnd = &data[pBt->pageSize];
|
|
pPage->aCellIdx = &data[first];
|
|
pPage->aDataOfst = &data[pPage->childPtrSize];
|
|
pPage->nOverflow = 0;
|
|
assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
|
|
pPage->maskPage = (u16)(pBt->pageSize - 1);
|
|
pPage->nCell = 0;
|
|
pPage->isInit = 1;
|
|
}
|
|
|
|
|
|
/*
|
|
** Convert a DbPage obtained from the pager into a MemPage used by
|
|
** the btree layer.
|
|
*/
|
|
static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
|
|
MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
|
|
if( pgno!=pPage->pgno ){
|
|
pPage->aData = sqlite3PagerGetData(pDbPage);
|
|
pPage->pDbPage = pDbPage;
|
|
pPage->pBt = pBt;
|
|
pPage->pgno = pgno;
|
|
pPage->hdrOffset = pgno==1 ? 100 : 0;
|
|
}
|
|
assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
|
|
return pPage;
|
|
}
|
|
|
|
/*
|
|
** Get a page from the pager. Initialize the MemPage.pBt and
|
|
** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
|
|
**
|
|
** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
|
|
** about the content of the page at this time. So do not go to the disk
|
|
** to fetch the content. Just fill in the content with zeros for now.
|
|
** If in the future we call sqlite3PagerWrite() on this page, that
|
|
** means we have started to be concerned about content and the disk
|
|
** read should occur at that point.
|
|
*/
|
|
static int btreeGetPage(
|
|
BtShared *pBt, /* The btree */
|
|
Pgno pgno, /* Number of the page to fetch */
|
|
MemPage **ppPage, /* Return the page in this parameter */
|
|
int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
|
|
){
|
|
int rc;
|
|
DbPage *pDbPage;
|
|
|
|
assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
|
|
if( rc ) return rc;
|
|
*ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Retrieve a page from the pager cache. If the requested page is not
|
|
** already in the pager cache return NULL. Initialize the MemPage.pBt and
|
|
** MemPage.aData elements if needed.
|
|
*/
|
|
static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
|
|
DbPage *pDbPage;
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
|
|
if( pDbPage ){
|
|
return btreePageFromDbPage(pDbPage, pgno, pBt);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Return the size of the database file in pages. If there is any kind of
|
|
** error, return ((unsigned int)-1).
|
|
*/
|
|
static Pgno btreePagecount(BtShared *pBt){
|
|
return pBt->nPage;
|
|
}
|
|
Pgno sqlite3BtreeLastPage(Btree *p){
|
|
assert( sqlite3BtreeHoldsMutex(p) );
|
|
return btreePagecount(p->pBt);
|
|
}
|
|
|
|
/*
|
|
** Get a page from the pager and initialize it.
|
|
*/
|
|
static int getAndInitPage(
|
|
BtShared *pBt, /* The database file */
|
|
Pgno pgno, /* Number of the page to get */
|
|
MemPage **ppPage, /* Write the page pointer here */
|
|
int bReadOnly /* True for a read-only page */
|
|
){
|
|
int rc;
|
|
DbPage *pDbPage;
|
|
MemPage *pPage;
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
|
|
if( pgno>btreePagecount(pBt) ){
|
|
*ppPage = 0;
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
|
|
if( rc ){
|
|
*ppPage = 0;
|
|
return rc;
|
|
}
|
|
pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
|
|
if( pPage->isInit==0 ){
|
|
btreePageFromDbPage(pDbPage, pgno, pBt);
|
|
rc = btreeInitPage(pPage);
|
|
if( rc!=SQLITE_OK ){
|
|
releasePage(pPage);
|
|
*ppPage = 0;
|
|
return rc;
|
|
}
|
|
}
|
|
assert( pPage->pgno==pgno || CORRUPT_DB );
|
|
assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
|
|
*ppPage = pPage;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Release a MemPage. This should be called once for each prior
|
|
** call to btreeGetPage.
|
|
**
|
|
** Page1 is a special case and must be released using releasePageOne().
|
|
*/
|
|
static void releasePageNotNull(MemPage *pPage){
|
|
assert( pPage->aData );
|
|
assert( pPage->pBt );
|
|
assert( pPage->pDbPage!=0 );
|
|
assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
|
|
assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
sqlite3PagerUnrefNotNull(pPage->pDbPage);
|
|
}
|
|
static void releasePage(MemPage *pPage){
|
|
if( pPage ) releasePageNotNull(pPage);
|
|
}
|
|
static void releasePageOne(MemPage *pPage){
|
|
assert( pPage!=0 );
|
|
assert( pPage->aData );
|
|
assert( pPage->pBt );
|
|
assert( pPage->pDbPage!=0 );
|
|
assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
|
|
assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
sqlite3PagerUnrefPageOne(pPage->pDbPage);
|
|
}
|
|
|
|
/*
|
|
** Get an unused page.
|
|
**
|
|
** This works just like btreeGetPage() with the addition:
|
|
**
|
|
** * If the page is already in use for some other purpose, immediately
|
|
** release it and return an SQLITE_CURRUPT error.
|
|
** * Make sure the isInit flag is clear
|
|
*/
|
|
static int btreeGetUnusedPage(
|
|
BtShared *pBt, /* The btree */
|
|
Pgno pgno, /* Number of the page to fetch */
|
|
MemPage **ppPage, /* Return the page in this parameter */
|
|
int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
|
|
){
|
|
int rc = btreeGetPage(pBt, pgno, ppPage, flags);
|
|
if( rc==SQLITE_OK ){
|
|
if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
|
|
releasePage(*ppPage);
|
|
*ppPage = 0;
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
(*ppPage)->isInit = 0;
|
|
}else{
|
|
*ppPage = 0;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** During a rollback, when the pager reloads information into the cache
|
|
** so that the cache is restored to its original state at the start of
|
|
** the transaction, for each page restored this routine is called.
|
|
**
|
|
** This routine needs to reset the extra data section at the end of the
|
|
** page to agree with the restored data.
|
|
*/
|
|
static void pageReinit(DbPage *pData){
|
|
MemPage *pPage;
|
|
pPage = (MemPage *)sqlite3PagerGetExtra(pData);
|
|
assert( sqlite3PagerPageRefcount(pData)>0 );
|
|
if( pPage->isInit ){
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
pPage->isInit = 0;
|
|
if( sqlite3PagerPageRefcount(pData)>1 ){
|
|
/* pPage might not be a btree page; it might be an overflow page
|
|
** or ptrmap page or a free page. In those cases, the following
|
|
** call to btreeInitPage() will likely return SQLITE_CORRUPT.
|
|
** But no harm is done by this. And it is very important that
|
|
** btreeInitPage() be called on every btree page so we make
|
|
** the call for every page that comes in for re-initializing. */
|
|
btreeInitPage(pPage);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Invoke the busy handler for a btree.
|
|
*/
|
|
static int btreeInvokeBusyHandler(void *pArg){
|
|
BtShared *pBt = (BtShared*)pArg;
|
|
assert( pBt->db );
|
|
assert( sqlite3_mutex_held(pBt->db->mutex) );
|
|
return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
|
|
}
|
|
|
|
/*
|
|
** Open a database file.
|
|
**
|
|
** zFilename is the name of the database file. If zFilename is NULL
|
|
** then an ephemeral database is created. The ephemeral database might
|
|
** be exclusively in memory, or it might use a disk-based memory cache.
|
|
** Either way, the ephemeral database will be automatically deleted
|
|
** when sqlite3BtreeClose() is called.
|
|
**
|
|
** If zFilename is ":memory:" then an in-memory database is created
|
|
** that is automatically destroyed when it is closed.
|
|
**
|
|
** The "flags" parameter is a bitmask that might contain bits like
|
|
** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
|
|
**
|
|
** If the database is already opened in the same database connection
|
|
** and we are in shared cache mode, then the open will fail with an
|
|
** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
|
|
** objects in the same database connection since doing so will lead
|
|
** to problems with locking.
|
|
*/
|
|
int sqlite3BtreeOpen(
|
|
sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
|
|
const char *zFilename, /* Name of the file containing the BTree database */
|
|
sqlite3 *db, /* Associated database handle */
|
|
Btree **ppBtree, /* Pointer to new Btree object written here */
|
|
int flags, /* Options */
|
|
int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
|
|
){
|
|
BtShared *pBt = 0; /* Shared part of btree structure */
|
|
Btree *p; /* Handle to return */
|
|
sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
|
|
int rc = SQLITE_OK; /* Result code from this function */
|
|
u8 nReserve; /* Byte of unused space on each page */
|
|
unsigned char zDbHeader[100]; /* Database header content */
|
|
|
|
/* True if opening an ephemeral, temporary database */
|
|
const int isTempDb = zFilename==0 || zFilename[0]==0;
|
|
|
|
/* Set the variable isMemdb to true for an in-memory database, or
|
|
** false for a file-based database.
|
|
*/
|
|
#ifdef SQLITE_OMIT_MEMORYDB
|
|
const int isMemdb = 0;
|
|
#else
|
|
const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
|
|
|| (isTempDb && sqlite3TempInMemory(db))
|
|
|| (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
|
|
#endif
|
|
|
|
assert( db!=0 );
|
|
assert( pVfs!=0 );
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
|
|
|
|
/* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
|
|
assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
|
|
|
|
/* A BTREE_SINGLE database is always a temporary and/or ephemeral */
|
|
assert( (flags & BTREE_SINGLE)==0 || isTempDb );
|
|
|
|
if( isMemdb ){
|
|
flags |= BTREE_MEMORY;
|
|
}
|
|
if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
|
|
vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
|
|
}
|
|
p = sqlite3MallocZero(sizeof(Btree));
|
|
if( !p ){
|
|
return SQLITE_NOMEM_BKPT;
|
|
}
|
|
p->inTrans = TRANS_NONE;
|
|
p->db = db;
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
p->lock.pBtree = p;
|
|
p->lock.iTable = 1;
|
|
#endif
|
|
|
|
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
|
|
/*
|
|
** If this Btree is a candidate for shared cache, try to find an
|
|
** existing BtShared object that we can share with
|
|
*/
|
|
if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
|
|
if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
|
|
int nFilename = sqlite3Strlen30(zFilename)+1;
|
|
int nFullPathname = pVfs->mxPathname+1;
|
|
char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
|
|
MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
|
|
|
|
p->sharable = 1;
|
|
if( !zFullPathname ){
|
|
sqlite3_free(p);
|
|
return SQLITE_NOMEM_BKPT;
|
|
}
|
|
if( isMemdb ){
|
|
memcpy(zFullPathname, zFilename, nFilename);
|
|
}else{
|
|
rc = sqlite3OsFullPathname(pVfs, zFilename,
|
|
nFullPathname, zFullPathname);
|
|
if( rc ){
|
|
if( rc==SQLITE_OK_SYMLINK ){
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
sqlite3_free(zFullPathname);
|
|
sqlite3_free(p);
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
#if SQLITE_THREADSAFE
|
|
mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
|
|
sqlite3_mutex_enter(mutexOpen);
|
|
mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
|
|
sqlite3_mutex_enter(mutexShared);
|
|
#endif
|
|
for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
|
|
assert( pBt->nRef>0 );
|
|
if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
|
|
&& sqlite3PagerVfs(pBt->pPager)==pVfs ){
|
|
int iDb;
|
|
for(iDb=db->nDb-1; iDb>=0; iDb--){
|
|
Btree *pExisting = db->aDb[iDb].pBt;
|
|
if( pExisting && pExisting->pBt==pBt ){
|
|
sqlite3_mutex_leave(mutexShared);
|
|
sqlite3_mutex_leave(mutexOpen);
|
|
sqlite3_free(zFullPathname);
|
|
sqlite3_free(p);
|
|
return SQLITE_CONSTRAINT;
|
|
}
|
|
}
|
|
p->pBt = pBt;
|
|
pBt->nRef++;
|
|
break;
|
|
}
|
|
}
|
|
sqlite3_mutex_leave(mutexShared);
|
|
sqlite3_free(zFullPathname);
|
|
}
|
|
#ifdef SQLITE_DEBUG
|
|
else{
|
|
/* In debug mode, we mark all persistent databases as sharable
|
|
** even when they are not. This exercises the locking code and
|
|
** gives more opportunity for asserts(sqlite3_mutex_held())
|
|
** statements to find locking problems.
|
|
*/
|
|
p->sharable = 1;
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
if( pBt==0 ){
|
|
/*
|
|
** The following asserts make sure that structures used by the btree are
|
|
** the right size. This is to guard against size changes that result
|
|
** when compiling on a different architecture.
|
|
*/
|
|
assert( sizeof(i64)==8 );
|
|
assert( sizeof(u64)==8 );
|
|
assert( sizeof(u32)==4 );
|
|
assert( sizeof(u16)==2 );
|
|
assert( sizeof(Pgno)==4 );
|
|
|
|
/* Suppress false-positive compiler warning from PVS-Studio */
|
|
memset(&zDbHeader[16], 0, 8);
|
|
|
|
pBt = sqlite3MallocZero( sizeof(*pBt) );
|
|
if( pBt==0 ){
|
|
rc = SQLITE_NOMEM_BKPT;
|
|
goto btree_open_out;
|
|
}
|
|
rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
|
|
sizeof(MemPage), flags, vfsFlags, pageReinit);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
|
|
rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
goto btree_open_out;
|
|
}
|
|
pBt->openFlags = (u8)flags;
|
|
pBt->db = db;
|
|
sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
|
|
p->pBt = pBt;
|
|
|
|
pBt->pCursor = 0;
|
|
pBt->pPage1 = 0;
|
|
if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
|
|
#if defined(SQLITE_SECURE_DELETE)
|
|
pBt->btsFlags |= BTS_SECURE_DELETE;
|
|
#elif defined(SQLITE_FAST_SECURE_DELETE)
|
|
pBt->btsFlags |= BTS_OVERWRITE;
|
|
#endif
|
|
/* EVIDENCE-OF: R-51873-39618 The page size for a database file is
|
|
** determined by the 2-byte integer located at an offset of 16 bytes from
|
|
** the beginning of the database file. */
|
|
pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
|
|
if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
|
|
|| ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
|
|
pBt->pageSize = 0;
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
/* If the magic name ":memory:" will create an in-memory database, then
|
|
** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
|
|
** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
|
|
** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
|
|
** regular file-name. In this case the auto-vacuum applies as per normal.
|
|
*/
|
|
if( zFilename && !isMemdb ){
|
|
pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
|
|
pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
|
|
}
|
|
#endif
|
|
nReserve = 0;
|
|
}else{
|
|
/* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
|
|
** determined by the one-byte unsigned integer found at an offset of 20
|
|
** into the database file header. */
|
|
nReserve = zDbHeader[20];
|
|
pBt->btsFlags |= BTS_PAGESIZE_FIXED;
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
|
|
pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
|
|
#endif
|
|
}
|
|
rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
|
|
if( rc ) goto btree_open_out;
|
|
pBt->usableSize = pBt->pageSize - nReserve;
|
|
assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
|
|
|
|
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
|
|
/* Add the new BtShared object to the linked list sharable BtShareds.
|
|
*/
|
|
pBt->nRef = 1;
|
|
if( p->sharable ){
|
|
MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
|
|
MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);)
|
|
if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
|
|
pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
|
|
if( pBt->mutex==0 ){
|
|
rc = SQLITE_NOMEM_BKPT;
|
|
goto btree_open_out;
|
|
}
|
|
}
|
|
sqlite3_mutex_enter(mutexShared);
|
|
pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
|
|
GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
|
|
sqlite3_mutex_leave(mutexShared);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
|
|
/* If the new Btree uses a sharable pBtShared, then link the new
|
|
** Btree into the list of all sharable Btrees for the same connection.
|
|
** The list is kept in ascending order by pBt address.
|
|
*/
|
|
if( p->sharable ){
|
|
int i;
|
|
Btree *pSib;
|
|
for(i=0; i<db->nDb; i++){
|
|
if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
|
|
while( pSib->pPrev ){ pSib = pSib->pPrev; }
|
|
if( (uptr)p->pBt<(uptr)pSib->pBt ){
|
|
p->pNext = pSib;
|
|
p->pPrev = 0;
|
|
pSib->pPrev = p;
|
|
}else{
|
|
while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
|
|
pSib = pSib->pNext;
|
|
}
|
|
p->pNext = pSib->pNext;
|
|
p->pPrev = pSib;
|
|
if( p->pNext ){
|
|
p->pNext->pPrev = p;
|
|
}
|
|
pSib->pNext = p;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
*ppBtree = p;
|
|
|
|
btree_open_out:
|
|
if( rc!=SQLITE_OK ){
|
|
if( pBt && pBt->pPager ){
|
|
sqlite3PagerClose(pBt->pPager, 0);
|
|
}
|
|
sqlite3_free(pBt);
|
|
sqlite3_free(p);
|
|
*ppBtree = 0;
|
|
}else{
|
|
sqlite3_file *pFile;
|
|
|
|
/* If the B-Tree was successfully opened, set the pager-cache size to the
|
|
** default value. Except, when opening on an existing shared pager-cache,
|
|
** do not change the pager-cache size.
|
|
*/
|
|
if( sqlite3BtreeSchema(p, 0, 0)==0 ){
|
|
sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE);
|
|
}
|
|
|
|
pFile = sqlite3PagerFile(pBt->pPager);
|
|
if( pFile->pMethods ){
|
|
sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
|
|
}
|
|
}
|
|
if( mutexOpen ){
|
|
assert( sqlite3_mutex_held(mutexOpen) );
|
|
sqlite3_mutex_leave(mutexOpen);
|
|
}
|
|
assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Decrement the BtShared.nRef counter. When it reaches zero,
|
|
** remove the BtShared structure from the sharing list. Return
|
|
** true if the BtShared.nRef counter reaches zero and return
|
|
** false if it is still positive.
|
|
*/
|
|
static int removeFromSharingList(BtShared *pBt){
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
MUTEX_LOGIC( sqlite3_mutex *pMainMtx; )
|
|
BtShared *pList;
|
|
int removed = 0;
|
|
|
|
assert( sqlite3_mutex_notheld(pBt->mutex) );
|
|
MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
|
|
sqlite3_mutex_enter(pMainMtx);
|
|
pBt->nRef--;
|
|
if( pBt->nRef<=0 ){
|
|
if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
|
|
GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
|
|
}else{
|
|
pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
|
|
while( ALWAYS(pList) && pList->pNext!=pBt ){
|
|
pList=pList->pNext;
|
|
}
|
|
if( ALWAYS(pList) ){
|
|
pList->pNext = pBt->pNext;
|
|
}
|
|
}
|
|
if( SQLITE_THREADSAFE ){
|
|
sqlite3_mutex_free(pBt->mutex);
|
|
}
|
|
removed = 1;
|
|
}
|
|
sqlite3_mutex_leave(pMainMtx);
|
|
return removed;
|
|
#else
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Make sure pBt->pTmpSpace points to an allocation of
|
|
** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
|
|
** pointer.
|
|
*/
|
|
static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){
|
|
assert( pBt!=0 );
|
|
assert( pBt->pTmpSpace==0 );
|
|
/* This routine is called only by btreeCursor() when allocating the
|
|
** first write cursor for the BtShared object */
|
|
assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 );
|
|
pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
|
|
if( pBt->pTmpSpace==0 ){
|
|
BtCursor *pCur = pBt->pCursor;
|
|
pBt->pCursor = pCur->pNext; /* Unlink the cursor */
|
|
memset(pCur, 0, sizeof(*pCur));
|
|
return SQLITE_NOMEM_BKPT;
|
|
}
|
|
|
|
/* One of the uses of pBt->pTmpSpace is to format cells before
|
|
** inserting them into a leaf page (function fillInCell()). If
|
|
** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
|
|
** by the various routines that manipulate binary cells. Which
|
|
** can mean that fillInCell() only initializes the first 2 or 3
|
|
** bytes of pTmpSpace, but that the first 4 bytes are copied from
|
|
** it into a database page. This is not actually a problem, but it
|
|
** does cause a valgrind error when the 1 or 2 bytes of uninitialized
|
|
** data is passed to system call write(). So to avoid this error,
|
|
** zero the first 4 bytes of temp space here.
|
|
**
|
|
** Also: Provide four bytes of initialized space before the
|
|
** beginning of pTmpSpace as an area available to prepend the
|
|
** left-child pointer to the beginning of a cell.
|
|
*/
|
|
memset(pBt->pTmpSpace, 0, 8);
|
|
pBt->pTmpSpace += 4;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Free the pBt->pTmpSpace allocation
|
|
*/
|
|
static void freeTempSpace(BtShared *pBt){
|
|
if( pBt->pTmpSpace ){
|
|
pBt->pTmpSpace -= 4;
|
|
sqlite3PageFree(pBt->pTmpSpace);
|
|
pBt->pTmpSpace = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Close an open database and invalidate all cursors.
|
|
*/
|
|
int sqlite3BtreeClose(Btree *p){
|
|
BtShared *pBt = p->pBt;
|
|
|
|
/* Close all cursors opened via this handle. */
|
|
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
sqlite3BtreeEnter(p);
|
|
|
|
/* Verify that no other cursors have this Btree open */
|
|
#ifdef SQLITE_DEBUG
|
|
{
|
|
BtCursor *pCur = pBt->pCursor;
|
|
while( pCur ){
|
|
BtCursor *pTmp = pCur;
|
|
pCur = pCur->pNext;
|
|
assert( pTmp->pBtree!=p );
|
|
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Rollback any active transaction and free the handle structure.
|
|
** The call to sqlite3BtreeRollback() drops any table-locks held by
|
|
** this handle.
|
|
*/
|
|
sqlite3BtreeRollback(p, SQLITE_OK, 0);
|
|
sqlite3BtreeLeave(p);
|
|
|
|
/* If there are still other outstanding references to the shared-btree
|
|
** structure, return now. The remainder of this procedure cleans
|
|
** up the shared-btree.
|
|
*/
|
|
assert( p->wantToLock==0 && p->locked==0 );
|
|
if( !p->sharable || removeFromSharingList(pBt) ){
|
|
/* The pBt is no longer on the sharing list, so we can access
|
|
** it without having to hold the mutex.
|
|
**
|
|
** Clean out and delete the BtShared object.
|
|
*/
|
|
assert( !pBt->pCursor );
|
|
sqlite3PagerClose(pBt->pPager, p->db);
|
|
if( pBt->xFreeSchema && pBt->pSchema ){
|
|
pBt->xFreeSchema(pBt->pSchema);
|
|
}
|
|
sqlite3DbFree(0, pBt->pSchema);
|
|
freeTempSpace(pBt);
|
|
sqlite3_free(pBt);
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
assert( p->wantToLock==0 );
|
|
assert( p->locked==0 );
|
|
if( p->pPrev ) p->pPrev->pNext = p->pNext;
|
|
if( p->pNext ) p->pNext->pPrev = p->pPrev;
|
|
#endif
|
|
|
|
sqlite3_free(p);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Change the "soft" limit on the number of pages in the cache.
|
|
** Unused and unmodified pages will be recycled when the number of
|
|
** pages in the cache exceeds this soft limit. But the size of the
|
|
** cache is allowed to grow larger than this limit if it contains
|
|
** dirty pages or pages still in active use.
|
|
*/
|
|
int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
|
|
BtShared *pBt = p->pBt;
|
|
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
sqlite3BtreeEnter(p);
|
|
sqlite3PagerSetCachesize(pBt->pPager, mxPage);
|
|
sqlite3BtreeLeave(p);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Change the "spill" limit on the number of pages in the cache.
|
|
** If the number of pages exceeds this limit during a write transaction,
|
|
** the pager might attempt to "spill" pages to the journal early in
|
|
** order to free up memory.
|
|
**
|
|
** The value returned is the current spill size. If zero is passed
|
|
** as an argument, no changes are made to the spill size setting, so
|
|
** using mxPage of 0 is a way to query the current spill size.
|
|
*/
|
|
int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
|
|
BtShared *pBt = p->pBt;
|
|
int res;
|
|
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
sqlite3BtreeEnter(p);
|
|
res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
|
|
sqlite3BtreeLeave(p);
|
|
return res;
|
|
}
|
|
|
|
#if SQLITE_MAX_MMAP_SIZE>0
|
|
/*
|
|
** Change the limit on the amount of the database file that may be
|
|
** memory mapped.
|
|
*/
|
|
int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
|
|
BtShared *pBt = p->pBt;
|
|
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
sqlite3BtreeEnter(p);
|
|
sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
|
|
sqlite3BtreeLeave(p);
|
|
return SQLITE_OK;
|
|
}
|
|
#endif /* SQLITE_MAX_MMAP_SIZE>0 */
|
|
|
|
/*
|
|
** Change the way data is synced to disk in order to increase or decrease
|
|
** how well the database resists damage due to OS crashes and power
|
|
** failures. Level 1 is the same as asynchronous (no syncs() occur and
|
|
** there is a high probability of damage) Level 2 is the default. There
|
|
** is a very low but non-zero probability of damage. Level 3 reduces the
|
|
** probability of damage to near zero but with a write performance reduction.
|
|
*/
|
|
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
int sqlite3BtreeSetPagerFlags(
|
|
Btree *p, /* The btree to set the safety level on */
|
|
unsigned pgFlags /* Various PAGER_* flags */
|
|
){
|
|
BtShared *pBt = p->pBt;
|
|
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
sqlite3BtreeEnter(p);
|
|
sqlite3PagerSetFlags(pBt->pPager, pgFlags);
|
|
sqlite3BtreeLeave(p);
|
|
return SQLITE_OK;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Change the default pages size and the number of reserved bytes per page.
|
|
** Or, if the page size has already been fixed, return SQLITE_READONLY
|
|
** without changing anything.
|
|
**
|
|
** The page size must be a power of 2 between 512 and 65536. If the page
|
|
** size supplied does not meet this constraint then the page size is not
|
|
** changed.
|
|
**
|
|
** Page sizes are constrained to be a power of two so that the region
|
|
** of the database file used for locking (beginning at PENDING_BYTE,
|
|
** the first byte past the 1GB boundary, 0x40000000) needs to occur
|
|
** at the beginning of a page.
|
|
**
|
|
** If parameter nReserve is less than zero, then the number of reserved
|
|
** bytes per page is left unchanged.
|
|
**
|
|
** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
|
|
** and autovacuum mode can no longer be changed.
|
|
*/
|
|
int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
|
|
int rc = SQLITE_OK;
|
|
int x;
|
|
BtShared *pBt = p->pBt;
|
|
assert( nReserve>=0 && nReserve<=255 );
|
|
sqlite3BtreeEnter(p);
|
|
pBt->nReserveWanted = nReserve;
|
|
x = pBt->pageSize - pBt->usableSize;
|
|
if( nReserve<x ) nReserve = x;
|
|
if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
|
|
sqlite3BtreeLeave(p);
|
|
return SQLITE_READONLY;
|
|
}
|
|
assert( nReserve>=0 && nReserve<=255 );
|
|
if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
|
|
((pageSize-1)&pageSize)==0 ){
|
|
assert( (pageSize & 7)==0 );
|
|
assert( !pBt->pCursor );
|
|
if( nReserve>32 && pageSize==512 ) pageSize = 1024;
|
|
pBt->pageSize = (u32)pageSize;
|
|
freeTempSpace(pBt);
|
|
}
|
|
rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
|
|
pBt->usableSize = pBt->pageSize - (u16)nReserve;
|
|
if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return the currently defined page size
|
|
*/
|
|
int sqlite3BtreeGetPageSize(Btree *p){
|
|
return p->pBt->pageSize;
|
|
}
|
|
|
|
/*
|
|
** This function is similar to sqlite3BtreeGetReserve(), except that it
|
|
** may only be called if it is guaranteed that the b-tree mutex is already
|
|
** held.
|
|
**
|
|
** This is useful in one special case in the backup API code where it is
|
|
** known that the shared b-tree mutex is held, but the mutex on the
|
|
** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
|
|
** were to be called, it might collide with some other operation on the
|
|
** database handle that owns *p, causing undefined behavior.
|
|
*/
|
|
int sqlite3BtreeGetReserveNoMutex(Btree *p){
|
|
int n;
|
|
assert( sqlite3_mutex_held(p->pBt->mutex) );
|
|
n = p->pBt->pageSize - p->pBt->usableSize;
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Return the number of bytes of space at the end of every page that
|
|
** are intentionally left unused. This is the "reserved" space that is
|
|
** sometimes used by extensions.
|
|
**
|
|
** The value returned is the larger of the current reserve size and
|
|
** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
|
|
** The amount of reserve can only grow - never shrink.
|
|
*/
|
|
int sqlite3BtreeGetRequestedReserve(Btree *p){
|
|
int n1, n2;
|
|
sqlite3BtreeEnter(p);
|
|
n1 = (int)p->pBt->nReserveWanted;
|
|
n2 = sqlite3BtreeGetReserveNoMutex(p);
|
|
sqlite3BtreeLeave(p);
|
|
return n1>n2 ? n1 : n2;
|
|
}
|
|
|
|
|
|
/*
|
|
** Set the maximum page count for a database if mxPage is positive.
|
|
** No changes are made if mxPage is 0 or negative.
|
|
** Regardless of the value of mxPage, return the maximum page count.
|
|
*/
|
|
Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){
|
|
Pgno n;
|
|
sqlite3BtreeEnter(p);
|
|
n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
|
|
sqlite3BtreeLeave(p);
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
|
|
**
|
|
** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
|
|
** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
|
|
** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
|
|
** newFlag==(-1) No changes
|
|
**
|
|
** This routine acts as a query if newFlag is less than zero
|
|
**
|
|
** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
|
|
** freelist leaf pages are not written back to the database. Thus in-page
|
|
** deleted content is cleared, but freelist deleted content is not.
|
|
**
|
|
** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
|
|
** that freelist leaf pages are written back into the database, increasing
|
|
** the amount of disk I/O.
|
|
*/
|
|
int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
|
|
int b;
|
|
if( p==0 ) return 0;
|
|
sqlite3BtreeEnter(p);
|
|
assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
|
|
assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
|
|
if( newFlag>=0 ){
|
|
p->pBt->btsFlags &= ~BTS_FAST_SECURE;
|
|
p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
|
|
}
|
|
b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
|
|
sqlite3BtreeLeave(p);
|
|
return b;
|
|
}
|
|
|
|
/*
|
|
** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
|
|
** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
|
|
** is disabled. The default value for the auto-vacuum property is
|
|
** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
|
|
*/
|
|
int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
|
|
#ifdef SQLITE_OMIT_AUTOVACUUM
|
|
return SQLITE_READONLY;
|
|
#else
|
|
BtShared *pBt = p->pBt;
|
|
int rc = SQLITE_OK;
|
|
u8 av = (u8)autoVacuum;
|
|
|
|
sqlite3BtreeEnter(p);
|
|
if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
|
|
rc = SQLITE_READONLY;
|
|
}else{
|
|
pBt->autoVacuum = av ?1:0;
|
|
pBt->incrVacuum = av==2 ?1:0;
|
|
}
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Return the value of the 'auto-vacuum' property. If auto-vacuum is
|
|
** enabled 1 is returned. Otherwise 0.
|
|
*/
|
|
int sqlite3BtreeGetAutoVacuum(Btree *p){
|
|
#ifdef SQLITE_OMIT_AUTOVACUUM
|
|
return BTREE_AUTOVACUUM_NONE;
|
|
#else
|
|
int rc;
|
|
sqlite3BtreeEnter(p);
|
|
rc = (
|
|
(!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
|
|
(!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
|
|
BTREE_AUTOVACUUM_INCR
|
|
);
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** If the user has not set the safety-level for this database connection
|
|
** using "PRAGMA synchronous", and if the safety-level is not already
|
|
** set to the value passed to this function as the second parameter,
|
|
** set it so.
|
|
*/
|
|
#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
|
|
&& !defined(SQLITE_OMIT_WAL)
|
|
static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
|
|
sqlite3 *db;
|
|
Db *pDb;
|
|
if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
|
|
while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
|
|
if( pDb->bSyncSet==0
|
|
&& pDb->safety_level!=safety_level
|
|
&& pDb!=&db->aDb[1]
|
|
){
|
|
pDb->safety_level = safety_level;
|
|
sqlite3PagerSetFlags(pBt->pPager,
|
|
pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
# define setDefaultSyncFlag(pBt,safety_level)
|
|
#endif
|
|
|
|
/* Forward declaration */
|
|
static int newDatabase(BtShared*);
|
|
|
|
|
|
/*
|
|
** Get a reference to pPage1 of the database file. This will
|
|
** also acquire a readlock on that file.
|
|
**
|
|
** SQLITE_OK is returned on success. If the file is not a
|
|
** well-formed database file, then SQLITE_CORRUPT is returned.
|
|
** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
|
|
** is returned if we run out of memory.
|
|
*/
|
|
static int lockBtree(BtShared *pBt){
|
|
int rc; /* Result code from subfunctions */
|
|
MemPage *pPage1; /* Page 1 of the database file */
|
|
u32 nPage; /* Number of pages in the database */
|
|
u32 nPageFile = 0; /* Number of pages in the database file */
|
|
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
assert( pBt->pPage1==0 );
|
|
rc = sqlite3PagerSharedLock(pBt->pPager);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
rc = btreeGetPage(pBt, 1, &pPage1, 0);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
/* Do some checking to help insure the file we opened really is
|
|
** a valid database file.
|
|
*/
|
|
nPage = get4byte(28+(u8*)pPage1->aData);
|
|
sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
|
|
if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
|
|
nPage = nPageFile;
|
|
}
|
|
if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
|
|
nPage = 0;
|
|
}
|
|
if( nPage>0 ){
|
|
u32 pageSize;
|
|
u32 usableSize;
|
|
u8 *page1 = pPage1->aData;
|
|
rc = SQLITE_NOTADB;
|
|
/* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
|
|
** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
|
|
** 61 74 20 33 00. */
|
|
if( memcmp(page1, zMagicHeader, 16)!=0 ){
|
|
goto page1_init_failed;
|
|
}
|
|
|
|
#ifdef SQLITE_OMIT_WAL
|
|
if( page1[18]>1 ){
|
|
pBt->btsFlags |= BTS_READ_ONLY;
|
|
}
|
|
if( page1[19]>1 ){
|
|
goto page1_init_failed;
|
|
}
|
|
#else
|
|
if( page1[18]>2 ){
|
|
pBt->btsFlags |= BTS_READ_ONLY;
|
|
}
|
|
if( page1[19]>2 ){
|
|
goto page1_init_failed;
|
|
}
|
|
|
|
/* If the read version is set to 2, this database should be accessed
|
|
** in WAL mode. If the log is not already open, open it now. Then
|
|
** return SQLITE_OK and return without populating BtShared.pPage1.
|
|
** The caller detects this and calls this function again. This is
|
|
** required as the version of page 1 currently in the page1 buffer
|
|
** may not be the latest version - there may be a newer one in the log
|
|
** file.
|
|
*/
|
|
if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
|
|
int isOpen = 0;
|
|
rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
|
|
if( rc!=SQLITE_OK ){
|
|
goto page1_init_failed;
|
|
}else{
|
|
setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
|
|
if( isOpen==0 ){
|
|
releasePageOne(pPage1);
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
rc = SQLITE_NOTADB;
|
|
}else{
|
|
setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
|
|
}
|
|
#endif
|
|
|
|
/* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
|
|
** fractions and the leaf payload fraction values must be 64, 32, and 32.
|
|
**
|
|
** The original design allowed these amounts to vary, but as of
|
|
** version 3.6.0, we require them to be fixed.
|
|
*/
|
|
if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
|
|
goto page1_init_failed;
|
|
}
|
|
/* EVIDENCE-OF: R-51873-39618 The page size for a database file is
|
|
** determined by the 2-byte integer located at an offset of 16 bytes from
|
|
** the beginning of the database file. */
|
|
pageSize = (page1[16]<<8) | (page1[17]<<16);
|
|
/* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
|
|
** between 512 and 65536 inclusive. */
|
|
if( ((pageSize-1)&pageSize)!=0
|
|
|| pageSize>SQLITE_MAX_PAGE_SIZE
|
|
|| pageSize<=256
|
|
){
|
|
goto page1_init_failed;
|
|
}
|
|
assert( (pageSize & 7)==0 );
|
|
/* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
|
|
** integer at offset 20 is the number of bytes of space at the end of
|
|
** each page to reserve for extensions.
|
|
**
|
|
** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
|
|
** determined by the one-byte unsigned integer found at an offset of 20
|
|
** into the database file header. */
|
|
usableSize = pageSize - page1[20];
|
|
if( (u32)pageSize!=pBt->pageSize ){
|
|
/* After reading the first page of the database assuming a page size
|
|
** of BtShared.pageSize, we have discovered that the page-size is
|
|
** actually pageSize. Unlock the database, leave pBt->pPage1 at
|
|
** zero and return SQLITE_OK. The caller will call this function
|
|
** again with the correct page-size.
|
|
*/
|
|
releasePageOne(pPage1);
|
|
pBt->usableSize = usableSize;
|
|
pBt->pageSize = pageSize;
|
|
pBt->btsFlags |= BTS_PAGESIZE_FIXED;
|
|
freeTempSpace(pBt);
|
|
rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
|
|
pageSize-usableSize);
|
|
return rc;
|
|
}
|
|
if( nPage>nPageFile ){
|
|
if( sqlite3WritableSchema(pBt->db)==0 ){
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
goto page1_init_failed;
|
|
}else{
|
|
nPage = nPageFile;
|
|
}
|
|
}
|
|
/* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
|
|
** be less than 480. In other words, if the page size is 512, then the
|
|
** reserved space size cannot exceed 32. */
|
|
if( usableSize<480 ){
|
|
goto page1_init_failed;
|
|
}
|
|
pBt->btsFlags |= BTS_PAGESIZE_FIXED;
|
|
pBt->pageSize = pageSize;
|
|
pBt->usableSize = usableSize;
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
|
|
pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
|
|
#endif
|
|
}
|
|
|
|
/* maxLocal is the maximum amount of payload to store locally for
|
|
** a cell. Make sure it is small enough so that at least minFanout
|
|
** cells can will fit on one page. We assume a 10-byte page header.
|
|
** Besides the payload, the cell must store:
|
|
** 2-byte pointer to the cell
|
|
** 4-byte child pointer
|
|
** 9-byte nKey value
|
|
** 4-byte nData value
|
|
** 4-byte overflow page pointer
|
|
** So a cell consists of a 2-byte pointer, a header which is as much as
|
|
** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
|
|
** page pointer.
|
|
*/
|
|
pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
|
|
pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
|
|
pBt->maxLeaf = (u16)(pBt->usableSize - 35);
|
|
pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
|
|
if( pBt->maxLocal>127 ){
|
|
pBt->max1bytePayload = 127;
|
|
}else{
|
|
pBt->max1bytePayload = (u8)pBt->maxLocal;
|
|
}
|
|
assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
|
|
pBt->pPage1 = pPage1;
|
|
pBt->nPage = nPage;
|
|
return SQLITE_OK;
|
|
|
|
page1_init_failed:
|
|
releasePageOne(pPage1);
|
|
pBt->pPage1 = 0;
|
|
return rc;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/*
|
|
** Return the number of cursors open on pBt. This is for use
|
|
** in assert() expressions, so it is only compiled if NDEBUG is not
|
|
** defined.
|
|
**
|
|
** Only write cursors are counted if wrOnly is true. If wrOnly is
|
|
** false then all cursors are counted.
|
|
**
|
|
** For the purposes of this routine, a cursor is any cursor that
|
|
** is capable of reading or writing to the database. Cursors that
|
|
** have been tripped into the CURSOR_FAULT state are not counted.
|
|
*/
|
|
static int countValidCursors(BtShared *pBt, int wrOnly){
|
|
BtCursor *pCur;
|
|
int r = 0;
|
|
for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
|
|
if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
|
|
&& pCur->eState!=CURSOR_FAULT ) r++;
|
|
}
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** If there are no outstanding cursors and we are not in the middle
|
|
** of a transaction but there is a read lock on the database, then
|
|
** this routine unrefs the first page of the database file which
|
|
** has the effect of releasing the read lock.
|
|
**
|
|
** If there is a transaction in progress, this routine is a no-op.
|
|
*/
|
|
static void unlockBtreeIfUnused(BtShared *pBt){
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
|
|
if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
|
|
MemPage *pPage1 = pBt->pPage1;
|
|
assert( pPage1->aData );
|
|
assert( sqlite3PagerRefcount(pBt->pPager)==1 );
|
|
pBt->pPage1 = 0;
|
|
releasePageOne(pPage1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** If pBt points to an empty file then convert that empty file
|
|
** into a new empty database by initializing the first page of
|
|
** the database.
|
|
*/
|
|
static int newDatabase(BtShared *pBt){
|
|
MemPage *pP1;
|
|
unsigned char *data;
|
|
int rc;
|
|
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
if( pBt->nPage>0 ){
|
|
return SQLITE_OK;
|
|
}
|
|
pP1 = pBt->pPage1;
|
|
assert( pP1!=0 );
|
|
data = pP1->aData;
|
|
rc = sqlite3PagerWrite(pP1->pDbPage);
|
|
if( rc ) return rc;
|
|
memcpy(data, zMagicHeader, sizeof(zMagicHeader));
|
|
assert( sizeof(zMagicHeader)==16 );
|
|
data[16] = (u8)((pBt->pageSize>>8)&0xff);
|
|
data[17] = (u8)((pBt->pageSize>>16)&0xff);
|
|
data[18] = 1;
|
|
data[19] = 1;
|
|
assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
|
|
data[20] = (u8)(pBt->pageSize - pBt->usableSize);
|
|
data[21] = 64;
|
|
data[22] = 32;
|
|
data[23] = 32;
|
|
memset(&data[24], 0, 100-24);
|
|
zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
|
|
pBt->btsFlags |= BTS_PAGESIZE_FIXED;
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
|
|
assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
|
|
put4byte(&data[36 + 4*4], pBt->autoVacuum);
|
|
put4byte(&data[36 + 7*4], pBt->incrVacuum);
|
|
#endif
|
|
pBt->nPage = 1;
|
|
data[31] = 1;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Initialize the first page of the database file (creating a database
|
|
** consisting of a single page and no schema objects). Return SQLITE_OK
|
|
** if successful, or an SQLite error code otherwise.
|
|
*/
|
|
int sqlite3BtreeNewDb(Btree *p){
|
|
int rc;
|
|
sqlite3BtreeEnter(p);
|
|
p->pBt->nPage = 0;
|
|
rc = newDatabase(p->pBt);
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Attempt to start a new transaction. A write-transaction
|
|
** is started if the second argument is nonzero, otherwise a read-
|
|
** transaction. If the second argument is 2 or more and exclusive
|
|
** transaction is started, meaning that no other process is allowed
|
|
** to access the database. A preexisting transaction may not be
|
|
** upgraded to exclusive by calling this routine a second time - the
|
|
** exclusivity flag only works for a new transaction.
|
|
**
|
|
** A write-transaction must be started before attempting any
|
|
** changes to the database. None of the following routines
|
|
** will work unless a transaction is started first:
|
|
**
|
|
** sqlite3BtreeCreateTable()
|
|
** sqlite3BtreeCreateIndex()
|
|
** sqlite3BtreeClearTable()
|
|
** sqlite3BtreeDropTable()
|
|
** sqlite3BtreeInsert()
|
|
** sqlite3BtreeDelete()
|
|
** sqlite3BtreeUpdateMeta()
|
|
**
|
|
** If an initial attempt to acquire the lock fails because of lock contention
|
|
** and the database was previously unlocked, then invoke the busy handler
|
|
** if there is one. But if there was previously a read-lock, do not
|
|
** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
|
|
** returned when there is already a read-lock in order to avoid a deadlock.
|
|
**
|
|
** Suppose there are two processes A and B. A has a read lock and B has
|
|
** a reserved lock. B tries to promote to exclusive but is blocked because
|
|
** of A's read lock. A tries to promote to reserved but is blocked by B.
|
|
** One or the other of the two processes must give way or there can be
|
|
** no progress. By returning SQLITE_BUSY and not invoking the busy callback
|
|
** when A already has a read lock, we encourage A to give up and let B
|
|
** proceed.
|
|
*/
|
|
static SQLITE_NOINLINE int btreeBeginTrans(
|
|
Btree *p, /* The btree in which to start the transaction */
|
|
int wrflag, /* True to start a write transaction */
|
|
int *pSchemaVersion /* Put schema version number here, if not NULL */
|
|
){
|
|
BtShared *pBt = p->pBt;
|
|
Pager *pPager = pBt->pPager;
|
|
int rc = SQLITE_OK;
|
|
|
|
sqlite3BtreeEnter(p);
|
|
btreeIntegrity(p);
|
|
|
|
/* If the btree is already in a write-transaction, or it
|
|
** is already in a read-transaction and a read-transaction
|
|
** is requested, this is a no-op.
|
|
*/
|
|
if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
|
|
goto trans_begun;
|
|
}
|
|
assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
|
|
|
|
if( (p->db->flags & SQLITE_ResetDatabase)
|
|
&& sqlite3PagerIsreadonly(pPager)==0
|
|
){
|
|
pBt->btsFlags &= ~BTS_READ_ONLY;
|
|
}
|
|
|
|
/* Write transactions are not possible on a read-only database */
|
|
if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
|
|
rc = SQLITE_READONLY;
|
|
goto trans_begun;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
{
|
|
sqlite3 *pBlock = 0;
|
|
/* If another database handle has already opened a write transaction
|
|
** on this shared-btree structure and a second write transaction is
|
|
** requested, return SQLITE_LOCKED.
|
|
*/
|
|
if( (wrflag && pBt->inTransaction==TRANS_WRITE)
|
|
|| (pBt->btsFlags & BTS_PENDING)!=0
|
|
){
|
|
pBlock = pBt->pWriter->db;
|
|
}else if( wrflag>1 ){
|
|
BtLock *pIter;
|
|
for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
|
|
if( pIter->pBtree!=p ){
|
|
pBlock = pIter->pBtree->db;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if( pBlock ){
|
|
sqlite3ConnectionBlocked(p->db, pBlock);
|
|
rc = SQLITE_LOCKED_SHAREDCACHE;
|
|
goto trans_begun;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Any read-only or read-write transaction implies a read-lock on
|
|
** page 1. So if some other shared-cache client already has a write-lock
|
|
** on page 1, the transaction cannot be opened. */
|
|
rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
|
|
if( SQLITE_OK!=rc ) goto trans_begun;
|
|
|
|
pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
|
|
if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
|
|
do {
|
|
sqlite3PagerWalDb(pPager, p->db);
|
|
|
|
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
|
|
/* If transitioning from no transaction directly to a write transaction,
|
|
** block for the WRITER lock first if possible. */
|
|
if( pBt->pPage1==0 && wrflag ){
|
|
assert( pBt->inTransaction==TRANS_NONE );
|
|
rc = sqlite3PagerWalWriteLock(pPager, 1);
|
|
if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break;
|
|
}
|
|
#endif
|
|
|
|
/* Call lockBtree() until either pBt->pPage1 is populated or
|
|
** lockBtree() returns something other than SQLITE_OK. lockBtree()
|
|
** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
|
|
** reading page 1 it discovers that the page-size of the database
|
|
** file is not pBt->pageSize. In this case lockBtree() will update
|
|
** pBt->pageSize to the page-size of the file on disk.
|
|
*/
|
|
while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
|
|
|
|
if( rc==SQLITE_OK && wrflag ){
|
|
if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
|
|
rc = SQLITE_READONLY;
|
|
}else{
|
|
rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db));
|
|
if( rc==SQLITE_OK ){
|
|
rc = newDatabase(pBt);
|
|
}else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
|
|
/* if there was no transaction opened when this function was
|
|
** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
|
|
** code to SQLITE_BUSY. */
|
|
rc = SQLITE_BUSY;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( rc!=SQLITE_OK ){
|
|
(void)sqlite3PagerWalWriteLock(pPager, 0);
|
|
unlockBtreeIfUnused(pBt);
|
|
}
|
|
}while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
|
|
btreeInvokeBusyHandler(pBt) );
|
|
sqlite3PagerWalDb(pPager, 0);
|
|
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
|
|
if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
|
|
#endif
|
|
|
|
if( rc==SQLITE_OK ){
|
|
if( p->inTrans==TRANS_NONE ){
|
|
pBt->nTransaction++;
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
if( p->sharable ){
|
|
assert( p->lock.pBtree==p && p->lock.iTable==1 );
|
|
p->lock.eLock = READ_LOCK;
|
|
p->lock.pNext = pBt->pLock;
|
|
pBt->pLock = &p->lock;
|
|
}
|
|
#endif
|
|
}
|
|
p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
|
|
if( p->inTrans>pBt->inTransaction ){
|
|
pBt->inTransaction = p->inTrans;
|
|
}
|
|
if( wrflag ){
|
|
MemPage *pPage1 = pBt->pPage1;
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
assert( !pBt->pWriter );
|
|
pBt->pWriter = p;
|
|
pBt->btsFlags &= ~BTS_EXCLUSIVE;
|
|
if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
|
|
#endif
|
|
|
|
/* If the db-size header field is incorrect (as it may be if an old
|
|
** client has been writing the database file), update it now. Doing
|
|
** this sooner rather than later means the database size can safely
|
|
** re-read the database size from page 1 if a savepoint or transaction
|
|
** rollback occurs within the transaction.
|
|
*/
|
|
if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
|
|
rc = sqlite3PagerWrite(pPage1->pDbPage);
|
|
if( rc==SQLITE_OK ){
|
|
put4byte(&pPage1->aData[28], pBt->nPage);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
trans_begun:
|
|
if( rc==SQLITE_OK ){
|
|
if( pSchemaVersion ){
|
|
*pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
|
|
}
|
|
if( wrflag ){
|
|
/* This call makes sure that the pager has the correct number of
|
|
** open savepoints. If the second parameter is greater than 0 and
|
|
** the sub-journal is not already open, then it will be opened here.
|
|
*/
|
|
rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint);
|
|
}
|
|
}
|
|
|
|
btreeIntegrity(p);
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
|
|
BtShared *pBt;
|
|
if( p->sharable
|
|
|| p->inTrans==TRANS_NONE
|
|
|| (p->inTrans==TRANS_READ && wrflag!=0)
|
|
){
|
|
return btreeBeginTrans(p,wrflag,pSchemaVersion);
|
|
}
|
|
pBt = p->pBt;
|
|
if( pSchemaVersion ){
|
|
*pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
|
|
}
|
|
if( wrflag ){
|
|
/* This call makes sure that the pager has the correct number of
|
|
** open savepoints. If the second parameter is greater than 0 and
|
|
** the sub-journal is not already open, then it will be opened here.
|
|
*/
|
|
return sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
|
|
}else{
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
|
|
/*
|
|
** Set the pointer-map entries for all children of page pPage. Also, if
|
|
** pPage contains cells that point to overflow pages, set the pointer
|
|
** map entries for the overflow pages as well.
|
|
*/
|
|
static int setChildPtrmaps(MemPage *pPage){
|
|
int i; /* Counter variable */
|
|
int nCell; /* Number of cells in page pPage */
|
|
int rc; /* Return code */
|
|
BtShared *pBt = pPage->pBt;
|
|
Pgno pgno = pPage->pgno;
|
|
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
nCell = pPage->nCell;
|
|
|
|
for(i=0; i<nCell; i++){
|
|
u8 *pCell = findCell(pPage, i);
|
|
|
|
ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
|
|
|
|
if( !pPage->leaf ){
|
|
Pgno childPgno = get4byte(pCell);
|
|
ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
|
|
}
|
|
}
|
|
|
|
if( !pPage->leaf ){
|
|
Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
|
|
ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
|
|
** that it points to iTo. Parameter eType describes the type of pointer to
|
|
** be modified, as follows:
|
|
**
|
|
** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
|
|
** page of pPage.
|
|
**
|
|
** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
|
|
** page pointed to by one of the cells on pPage.
|
|
**
|
|
** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
|
|
** overflow page in the list.
|
|
*/
|
|
static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
if( eType==PTRMAP_OVERFLOW2 ){
|
|
/* The pointer is always the first 4 bytes of the page in this case. */
|
|
if( get4byte(pPage->aData)!=iFrom ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
put4byte(pPage->aData, iTo);
|
|
}else{
|
|
int i;
|
|
int nCell;
|
|
int rc;
|
|
|
|
rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
|
|
if( rc ) return rc;
|
|
nCell = pPage->nCell;
|
|
|
|
for(i=0; i<nCell; i++){
|
|
u8 *pCell = findCell(pPage, i);
|
|
if( eType==PTRMAP_OVERFLOW1 ){
|
|
CellInfo info;
|
|
pPage->xParseCell(pPage, pCell, &info);
|
|
if( info.nLocal<info.nPayload ){
|
|
if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
if( iFrom==get4byte(pCell+info.nSize-4) ){
|
|
put4byte(pCell+info.nSize-4, iTo);
|
|
break;
|
|
}
|
|
}
|
|
}else{
|
|
if( pCell+4 > pPage->aData+pPage->pBt->usableSize ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
if( get4byte(pCell)==iFrom ){
|
|
put4byte(pCell, iTo);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( i==nCell ){
|
|
if( eType!=PTRMAP_BTREE ||
|
|
get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
|
|
}
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
/*
|
|
** Move the open database page pDbPage to location iFreePage in the
|
|
** database. The pDbPage reference remains valid.
|
|
**
|
|
** The isCommit flag indicates that there is no need to remember that
|
|
** the journal needs to be sync()ed before database page pDbPage->pgno
|
|
** can be written to. The caller has already promised not to write to that
|
|
** page.
|
|
*/
|
|
static int relocatePage(
|
|
BtShared *pBt, /* Btree */
|
|
MemPage *pDbPage, /* Open page to move */
|
|
u8 eType, /* Pointer map 'type' entry for pDbPage */
|
|
Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
|
|
Pgno iFreePage, /* The location to move pDbPage to */
|
|
int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
|
|
){
|
|
MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
|
|
Pgno iDbPage = pDbPage->pgno;
|
|
Pager *pPager = pBt->pPager;
|
|
int rc;
|
|
|
|
assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
|
|
eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
assert( pDbPage->pBt==pBt );
|
|
if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
|
|
|
|
/* Move page iDbPage from its current location to page number iFreePage */
|
|
TRACE(("AUTOVACUUM: Moving %u to free page %u (ptr page %u type %u)\n",
|
|
iDbPage, iFreePage, iPtrPage, eType));
|
|
rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
pDbPage->pgno = iFreePage;
|
|
|
|
/* If pDbPage was a btree-page, then it may have child pages and/or cells
|
|
** that point to overflow pages. The pointer map entries for all these
|
|
** pages need to be changed.
|
|
**
|
|
** If pDbPage is an overflow page, then the first 4 bytes may store a
|
|
** pointer to a subsequent overflow page. If this is the case, then
|
|
** the pointer map needs to be updated for the subsequent overflow page.
|
|
*/
|
|
if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
|
|
rc = setChildPtrmaps(pDbPage);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
}else{
|
|
Pgno nextOvfl = get4byte(pDbPage->aData);
|
|
if( nextOvfl!=0 ){
|
|
ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Fix the database pointer on page iPtrPage that pointed at iDbPage so
|
|
** that it points at iFreePage. Also fix the pointer map entry for
|
|
** iPtrPage.
|
|
*/
|
|
if( eType!=PTRMAP_ROOTPAGE ){
|
|
rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
rc = sqlite3PagerWrite(pPtrPage->pDbPage);
|
|
if( rc!=SQLITE_OK ){
|
|
releasePage(pPtrPage);
|
|
return rc;
|
|
}
|
|
rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
|
|
releasePage(pPtrPage);
|
|
if( rc==SQLITE_OK ){
|
|
ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* Forward declaration required by incrVacuumStep(). */
|
|
static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
|
|
|
|
/*
|
|
** Perform a single step of an incremental-vacuum. If successful, return
|
|
** SQLITE_OK. If there is no work to do (and therefore no point in
|
|
** calling this function again), return SQLITE_DONE. Or, if an error
|
|
** occurs, return some other error code.
|
|
**
|
|
** More specifically, this function attempts to re-organize the database so
|
|
** that the last page of the file currently in use is no longer in use.
|
|
**
|
|
** Parameter nFin is the number of pages that this database would contain
|
|
** were this function called until it returns SQLITE_DONE.
|
|
**
|
|
** If the bCommit parameter is non-zero, this function assumes that the
|
|
** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
|
|
** or an error. bCommit is passed true for an auto-vacuum-on-commit
|
|
** operation, or false for an incremental vacuum.
|
|
*/
|
|
static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
|
|
Pgno nFreeList; /* Number of pages still on the free-list */
|
|
int rc;
|
|
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
assert( iLastPg>nFin );
|
|
|
|
if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
|
|
u8 eType;
|
|
Pgno iPtrPage;
|
|
|
|
nFreeList = get4byte(&pBt->pPage1->aData[36]);
|
|
if( nFreeList==0 ){
|
|
return SQLITE_DONE;
|
|
}
|
|
|
|
rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
if( eType==PTRMAP_ROOTPAGE ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
|
|
if( eType==PTRMAP_FREEPAGE ){
|
|
if( bCommit==0 ){
|
|
/* Remove the page from the files free-list. This is not required
|
|
** if bCommit is non-zero. In that case, the free-list will be
|
|
** truncated to zero after this function returns, so it doesn't
|
|
** matter if it still contains some garbage entries.
|
|
*/
|
|
Pgno iFreePg;
|
|
MemPage *pFreePg;
|
|
rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
assert( iFreePg==iLastPg );
|
|
releasePage(pFreePg);
|
|
}
|
|
} else {
|
|
Pgno iFreePg; /* Index of free page to move pLastPg to */
|
|
MemPage *pLastPg;
|
|
u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
|
|
Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
|
|
|
|
rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
/* If bCommit is zero, this loop runs exactly once and page pLastPg
|
|
** is swapped with the first free page pulled off the free list.
|
|
**
|
|
** On the other hand, if bCommit is greater than zero, then keep
|
|
** looping until a free-page located within the first nFin pages
|
|
** of the file is found.
|
|
*/
|
|
if( bCommit==0 ){
|
|
eMode = BTALLOC_LE;
|
|
iNear = nFin;
|
|
}
|
|
do {
|
|
MemPage *pFreePg;
|
|
Pgno dbSize = btreePagecount(pBt);
|
|
rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
|
|
if( rc!=SQLITE_OK ){
|
|
releasePage(pLastPg);
|
|
return rc;
|
|
}
|
|
releasePage(pFreePg);
|
|
if( iFreePg>dbSize ){
|
|
releasePage(pLastPg);
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
}while( bCommit && iFreePg>nFin );
|
|
assert( iFreePg<iLastPg );
|
|
|
|
rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
|
|
releasePage(pLastPg);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( bCommit==0 ){
|
|
do {
|
|
iLastPg--;
|
|
}while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
|
|
pBt->bDoTruncate = 1;
|
|
pBt->nPage = iLastPg;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** The database opened by the first argument is an auto-vacuum database
|
|
** nOrig pages in size containing nFree free pages. Return the expected
|
|
** size of the database in pages following an auto-vacuum operation.
|
|
*/
|
|
static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
|
|
int nEntry; /* Number of entries on one ptrmap page */
|
|
Pgno nPtrmap; /* Number of PtrMap pages to be freed */
|
|
Pgno nFin; /* Return value */
|
|
|
|
nEntry = pBt->usableSize/5;
|
|
nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
|
|
nFin = nOrig - nFree - nPtrmap;
|
|
if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
|
|
nFin--;
|
|
}
|
|
while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
|
|
nFin--;
|
|
}
|
|
|
|
return nFin;
|
|
}
|
|
|
|
/*
|
|
** A write-transaction must be opened before calling this function.
|
|
** It performs a single unit of work towards an incremental vacuum.
|
|
**
|
|
** If the incremental vacuum is finished after this function has run,
|
|
** SQLITE_DONE is returned. If it is not finished, but no error occurred,
|
|
** SQLITE_OK is returned. Otherwise an SQLite error code.
|
|
*/
|
|
int sqlite3BtreeIncrVacuum(Btree *p){
|
|
int rc;
|
|
BtShared *pBt = p->pBt;
|
|
|
|
sqlite3BtreeEnter(p);
|
|
assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
|
|
if( !pBt->autoVacuum ){
|
|
rc = SQLITE_DONE;
|
|
}else{
|
|
Pgno nOrig = btreePagecount(pBt);
|
|
Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
|
|
Pgno nFin = finalDbSize(pBt, nOrig, nFree);
|
|
|
|
if( nOrig<nFin || nFree>=nOrig ){
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
}else if( nFree>0 ){
|
|
rc = saveAllCursors(pBt, 0, 0);
|
|
if( rc==SQLITE_OK ){
|
|
invalidateAllOverflowCache(pBt);
|
|
rc = incrVacuumStep(pBt, nFin, nOrig, 0);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
|
|
put4byte(&pBt->pPage1->aData[28], pBt->nPage);
|
|
}
|
|
}else{
|
|
rc = SQLITE_DONE;
|
|
}
|
|
}
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This routine is called prior to sqlite3PagerCommit when a transaction
|
|
** is committed for an auto-vacuum database.
|
|
*/
|
|
static int autoVacuumCommit(Btree *p){
|
|
int rc = SQLITE_OK;
|
|
Pager *pPager;
|
|
BtShared *pBt;
|
|
sqlite3 *db;
|
|
VVA_ONLY( int nRef );
|
|
|
|
assert( p!=0 );
|
|
pBt = p->pBt;
|
|
pPager = pBt->pPager;
|
|
VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); )
|
|
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
invalidateAllOverflowCache(pBt);
|
|
assert(pBt->autoVacuum);
|
|
if( !pBt->incrVacuum ){
|
|
Pgno nFin; /* Number of pages in database after autovacuuming */
|
|
Pgno nFree; /* Number of pages on the freelist initially */
|
|
Pgno nVac; /* Number of pages to vacuum */
|
|
Pgno iFree; /* The next page to be freed */
|
|
Pgno nOrig; /* Database size before freeing */
|
|
|
|
nOrig = btreePagecount(pBt);
|
|
if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
|
|
/* It is not possible to create a database for which the final page
|
|
** is either a pointer-map page or the pending-byte page. If one
|
|
** is encountered, this indicates corruption.
|
|
*/
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
|
|
nFree = get4byte(&pBt->pPage1->aData[36]);
|
|
db = p->db;
|
|
if( db->xAutovacPages ){
|
|
int iDb;
|
|
for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){
|
|
if( db->aDb[iDb].pBt==p ) break;
|
|
}
|
|
nVac = db->xAutovacPages(
|
|
db->pAutovacPagesArg,
|
|
db->aDb[iDb].zDbSName,
|
|
nOrig,
|
|
nFree,
|
|
pBt->pageSize
|
|
);
|
|
if( nVac>nFree ){
|
|
nVac = nFree;
|
|
}
|
|
if( nVac==0 ){
|
|
return SQLITE_OK;
|
|
}
|
|
}else{
|
|
nVac = nFree;
|
|
}
|
|
nFin = finalDbSize(pBt, nOrig, nVac);
|
|
if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
|
|
if( nFin<nOrig ){
|
|
rc = saveAllCursors(pBt, 0, 0);
|
|
}
|
|
for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
|
|
rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree);
|
|
}
|
|
if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
|
|
rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
|
|
if( nVac==nFree ){
|
|
put4byte(&pBt->pPage1->aData[32], 0);
|
|
put4byte(&pBt->pPage1->aData[36], 0);
|
|
}
|
|
put4byte(&pBt->pPage1->aData[28], nFin);
|
|
pBt->bDoTruncate = 1;
|
|
pBt->nPage = nFin;
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3PagerRollback(pPager);
|
|
}
|
|
}
|
|
|
|
assert( nRef>=sqlite3PagerRefcount(pPager) );
|
|
return rc;
|
|
}
|
|
|
|
#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
|
|
# define setChildPtrmaps(x) SQLITE_OK
|
|
#endif
|
|
|
|
/*
|
|
** This routine does the first phase of a two-phase commit. This routine
|
|
** causes a rollback journal to be created (if it does not already exist)
|
|
** and populated with enough information so that if a power loss occurs
|
|
** the database can be restored to its original state by playing back
|
|
** the journal. Then the contents of the journal are flushed out to
|
|
** the disk. After the journal is safely on oxide, the changes to the
|
|
** database are written into the database file and flushed to oxide.
|
|
** At the end of this call, the rollback journal still exists on the
|
|
** disk and we are still holding all locks, so the transaction has not
|
|
** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
|
|
** commit process.
|
|
**
|
|
** This call is a no-op if no write-transaction is currently active on pBt.
|
|
**
|
|
** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
|
|
** the name of a super-journal file that should be written into the
|
|
** individual journal file, or is NULL, indicating no super-journal file
|
|
** (single database transaction).
|
|
**
|
|
** When this is called, the super-journal should already have been
|
|
** created, populated with this journal pointer and synced to disk.
|
|
**
|
|
** Once this is routine has returned, the only thing required to commit
|
|
** the write-transaction for this database file is to delete the journal.
|
|
*/
|
|
int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){
|
|
int rc = SQLITE_OK;
|
|
if( p->inTrans==TRANS_WRITE ){
|
|
BtShared *pBt = p->pBt;
|
|
sqlite3BtreeEnter(p);
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pBt->autoVacuum ){
|
|
rc = autoVacuumCommit(p);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
}
|
|
if( pBt->bDoTruncate ){
|
|
sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
|
|
}
|
|
#endif
|
|
rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0);
|
|
sqlite3BtreeLeave(p);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
|
|
** at the conclusion of a transaction.
|
|
*/
|
|
static void btreeEndTransaction(Btree *p){
|
|
BtShared *pBt = p->pBt;
|
|
sqlite3 *db = p->db;
|
|
assert( sqlite3BtreeHoldsMutex(p) );
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
pBt->bDoTruncate = 0;
|
|
#endif
|
|
if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
|
|
/* If there are other active statements that belong to this database
|
|
** handle, downgrade to a read-only transaction. The other statements
|
|
** may still be reading from the database. */
|
|
downgradeAllSharedCacheTableLocks(p);
|
|
p->inTrans = TRANS_READ;
|
|
}else{
|
|
/* If the handle had any kind of transaction open, decrement the
|
|
** transaction count of the shared btree. If the transaction count
|
|
** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
|
|
** call below will unlock the pager. */
|
|
if( p->inTrans!=TRANS_NONE ){
|
|
clearAllSharedCacheTableLocks(p);
|
|
pBt->nTransaction--;
|
|
if( 0==pBt->nTransaction ){
|
|
pBt->inTransaction = TRANS_NONE;
|
|
}
|
|
}
|
|
|
|
/* Set the current transaction state to TRANS_NONE and unlock the
|
|
** pager if this call closed the only read or write transaction. */
|
|
p->inTrans = TRANS_NONE;
|
|
unlockBtreeIfUnused(pBt);
|
|
}
|
|
|
|
btreeIntegrity(p);
|
|
}
|
|
|
|
/*
|
|
** Commit the transaction currently in progress.
|
|
**
|
|
** This routine implements the second phase of a 2-phase commit. The
|
|
** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
|
|
** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
|
|
** routine did all the work of writing information out to disk and flushing the
|
|
** contents so that they are written onto the disk platter. All this
|
|
** routine has to do is delete or truncate or zero the header in the
|
|
** the rollback journal (which causes the transaction to commit) and
|
|
** drop locks.
|
|
**
|
|
** Normally, if an error occurs while the pager layer is attempting to
|
|
** finalize the underlying journal file, this function returns an error and
|
|
** the upper layer will attempt a rollback. However, if the second argument
|
|
** is non-zero then this b-tree transaction is part of a multi-file
|
|
** transaction. In this case, the transaction has already been committed
|
|
** (by deleting a super-journal file) and the caller will ignore this
|
|
** functions return code. So, even if an error occurs in the pager layer,
|
|
** reset the b-tree objects internal state to indicate that the write
|
|
** transaction has been closed. This is quite safe, as the pager will have
|
|
** transitioned to the error state.
|
|
**
|
|
** This will release the write lock on the database file. If there
|
|
** are no active cursors, it also releases the read lock.
|
|
*/
|
|
int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
|
|
|
|
if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
|
|
sqlite3BtreeEnter(p);
|
|
btreeIntegrity(p);
|
|
|
|
/* If the handle has a write-transaction open, commit the shared-btrees
|
|
** transaction and set the shared state to TRANS_READ.
|
|
*/
|
|
if( p->inTrans==TRANS_WRITE ){
|
|
int rc;
|
|
BtShared *pBt = p->pBt;
|
|
assert( pBt->inTransaction==TRANS_WRITE );
|
|
assert( pBt->nTransaction>0 );
|
|
rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
|
|
if( rc!=SQLITE_OK && bCleanup==0 ){
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */
|
|
pBt->inTransaction = TRANS_READ;
|
|
btreeClearHasContent(pBt);
|
|
}
|
|
|
|
btreeEndTransaction(p);
|
|
sqlite3BtreeLeave(p);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Do both phases of a commit.
|
|
*/
|
|
int sqlite3BtreeCommit(Btree *p){
|
|
int rc;
|
|
sqlite3BtreeEnter(p);
|
|
rc = sqlite3BtreeCommitPhaseOne(p, 0);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3BtreeCommitPhaseTwo(p, 0);
|
|
}
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This routine sets the state to CURSOR_FAULT and the error
|
|
** code to errCode for every cursor on any BtShared that pBtree
|
|
** references. Or if the writeOnly flag is set to 1, then only
|
|
** trip write cursors and leave read cursors unchanged.
|
|
**
|
|
** Every cursor is a candidate to be tripped, including cursors
|
|
** that belong to other database connections that happen to be
|
|
** sharing the cache with pBtree.
|
|
**
|
|
** This routine gets called when a rollback occurs. If the writeOnly
|
|
** flag is true, then only write-cursors need be tripped - read-only
|
|
** cursors save their current positions so that they may continue
|
|
** following the rollback. Or, if writeOnly is false, all cursors are
|
|
** tripped. In general, writeOnly is false if the transaction being
|
|
** rolled back modified the database schema. In this case b-tree root
|
|
** pages may be moved or deleted from the database altogether, making
|
|
** it unsafe for read cursors to continue.
|
|
**
|
|
** If the writeOnly flag is true and an error is encountered while
|
|
** saving the current position of a read-only cursor, all cursors,
|
|
** including all read-cursors are tripped.
|
|
**
|
|
** SQLITE_OK is returned if successful, or if an error occurs while
|
|
** saving a cursor position, an SQLite error code.
|
|
*/
|
|
int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
|
|
BtCursor *p;
|
|
int rc = SQLITE_OK;
|
|
|
|
assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
|
|
if( pBtree ){
|
|
sqlite3BtreeEnter(pBtree);
|
|
for(p=pBtree->pBt->pCursor; p; p=p->pNext){
|
|
if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
|
|
if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
|
|
rc = saveCursorPosition(p);
|
|
if( rc!=SQLITE_OK ){
|
|
(void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
|
|
break;
|
|
}
|
|
}
|
|
}else{
|
|
sqlite3BtreeClearCursor(p);
|
|
p->eState = CURSOR_FAULT;
|
|
p->skipNext = errCode;
|
|
}
|
|
btreeReleaseAllCursorPages(p);
|
|
}
|
|
sqlite3BtreeLeave(pBtree);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Set the pBt->nPage field correctly, according to the current
|
|
** state of the database. Assume pBt->pPage1 is valid.
|
|
*/
|
|
static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
|
|
int nPage = get4byte(&pPage1->aData[28]);
|
|
testcase( nPage==0 );
|
|
if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
|
|
testcase( pBt->nPage!=(u32)nPage );
|
|
pBt->nPage = nPage;
|
|
}
|
|
|
|
/*
|
|
** Rollback the transaction in progress.
|
|
**
|
|
** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
|
|
** Only write cursors are tripped if writeOnly is true but all cursors are
|
|
** tripped if writeOnly is false. Any attempt to use
|
|
** a tripped cursor will result in an error.
|
|
**
|
|
** This will release the write lock on the database file. If there
|
|
** are no active cursors, it also releases the read lock.
|
|
*/
|
|
int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
|
|
int rc;
|
|
BtShared *pBt = p->pBt;
|
|
MemPage *pPage1;
|
|
|
|
assert( writeOnly==1 || writeOnly==0 );
|
|
assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
|
|
sqlite3BtreeEnter(p);
|
|
if( tripCode==SQLITE_OK ){
|
|
rc = tripCode = saveAllCursors(pBt, 0, 0);
|
|
if( rc ) writeOnly = 0;
|
|
}else{
|
|
rc = SQLITE_OK;
|
|
}
|
|
if( tripCode ){
|
|
int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
|
|
assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
|
|
if( rc2!=SQLITE_OK ) rc = rc2;
|
|
}
|
|
btreeIntegrity(p);
|
|
|
|
if( p->inTrans==TRANS_WRITE ){
|
|
int rc2;
|
|
|
|
assert( TRANS_WRITE==pBt->inTransaction );
|
|
rc2 = sqlite3PagerRollback(pBt->pPager);
|
|
if( rc2!=SQLITE_OK ){
|
|
rc = rc2;
|
|
}
|
|
|
|
/* The rollback may have destroyed the pPage1->aData value. So
|
|
** call btreeGetPage() on page 1 again to make
|
|
** sure pPage1->aData is set correctly. */
|
|
if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
|
|
btreeSetNPage(pBt, pPage1);
|
|
releasePageOne(pPage1);
|
|
}
|
|
assert( countValidCursors(pBt, 1)==0 );
|
|
pBt->inTransaction = TRANS_READ;
|
|
btreeClearHasContent(pBt);
|
|
}
|
|
|
|
btreeEndTransaction(p);
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Start a statement subtransaction. The subtransaction can be rolled
|
|
** back independently of the main transaction. You must start a transaction
|
|
** before starting a subtransaction. The subtransaction is ended automatically
|
|
** if the main transaction commits or rolls back.
|
|
**
|
|
** Statement subtransactions are used around individual SQL statements
|
|
** that are contained within a BEGIN...COMMIT block. If a constraint
|
|
** error occurs within the statement, the effect of that one statement
|
|
** can be rolled back without having to rollback the entire transaction.
|
|
**
|
|
** A statement sub-transaction is implemented as an anonymous savepoint. The
|
|
** value passed as the second parameter is the total number of savepoints,
|
|
** including the new anonymous savepoint, open on the B-Tree. i.e. if there
|
|
** are no active savepoints and no other statement-transactions open,
|
|
** iStatement is 1. This anonymous savepoint can be released or rolled back
|
|
** using the sqlite3BtreeSavepoint() function.
|
|
*/
|
|
int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
|
|
int rc;
|
|
BtShared *pBt = p->pBt;
|
|
sqlite3BtreeEnter(p);
|
|
assert( p->inTrans==TRANS_WRITE );
|
|
assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
|
|
assert( iStatement>0 );
|
|
assert( iStatement>p->db->nSavepoint );
|
|
assert( pBt->inTransaction==TRANS_WRITE );
|
|
/* At the pager level, a statement transaction is a savepoint with
|
|
** an index greater than all savepoints created explicitly using
|
|
** SQL statements. It is illegal to open, release or rollback any
|
|
** such savepoints while the statement transaction savepoint is active.
|
|
*/
|
|
rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
|
|
** or SAVEPOINT_RELEASE. This function either releases or rolls back the
|
|
** savepoint identified by parameter iSavepoint, depending on the value
|
|
** of op.
|
|
**
|
|
** Normally, iSavepoint is greater than or equal to zero. However, if op is
|
|
** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
|
|
** contents of the entire transaction are rolled back. This is different
|
|
** from a normal transaction rollback, as no locks are released and the
|
|
** transaction remains open.
|
|
*/
|
|
int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
|
|
int rc = SQLITE_OK;
|
|
if( p && p->inTrans==TRANS_WRITE ){
|
|
BtShared *pBt = p->pBt;
|
|
assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
|
|
assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
|
|
sqlite3BtreeEnter(p);
|
|
if( op==SAVEPOINT_ROLLBACK ){
|
|
rc = saveAllCursors(pBt, 0, 0);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
|
|
pBt->nPage = 0;
|
|
}
|
|
rc = newDatabase(pBt);
|
|
btreeSetNPage(pBt, pBt->pPage1);
|
|
|
|
/* pBt->nPage might be zero if the database was corrupt when
|
|
** the transaction was started. Otherwise, it must be at least 1. */
|
|
assert( CORRUPT_DB || pBt->nPage>0 );
|
|
}
|
|
sqlite3BtreeLeave(p);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Create a new cursor for the BTree whose root is on the page
|
|
** iTable. If a read-only cursor is requested, it is assumed that
|
|
** the caller already has at least a read-only transaction open
|
|
** on the database already. If a write-cursor is requested, then
|
|
** the caller is assumed to have an open write transaction.
|
|
**
|
|
** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
|
|
** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
|
|
** can be used for reading or for writing if other conditions for writing
|
|
** are also met. These are the conditions that must be met in order
|
|
** for writing to be allowed:
|
|
**
|
|
** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
|
|
**
|
|
** 2: Other database connections that share the same pager cache
|
|
** but which are not in the READ_UNCOMMITTED state may not have
|
|
** cursors open with wrFlag==0 on the same table. Otherwise
|
|
** the changes made by this write cursor would be visible to
|
|
** the read cursors in the other database connection.
|
|
**
|
|
** 3: The database must be writable (not on read-only media)
|
|
**
|
|
** 4: There must be an active transaction.
|
|
**
|
|
** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
|
|
** is set. If FORDELETE is set, that is a hint to the implementation that
|
|
** this cursor will only be used to seek to and delete entries of an index
|
|
** as part of a larger DELETE statement. The FORDELETE hint is not used by
|
|
** this implementation. But in a hypothetical alternative storage engine
|
|
** in which index entries are automatically deleted when corresponding table
|
|
** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
|
|
** operations on this cursor can be no-ops and all READ operations can
|
|
** return a null row (2-bytes: 0x01 0x00).
|
|
**
|
|
** No checking is done to make sure that page iTable really is the
|
|
** root page of a b-tree. If it is not, then the cursor acquired
|
|
** will not work correctly.
|
|
**
|
|
** It is assumed that the sqlite3BtreeCursorZero() has been called
|
|
** on pCur to initialize the memory space prior to invoking this routine.
|
|
*/
|
|
static int btreeCursor(
|
|
Btree *p, /* The btree */
|
|
Pgno iTable, /* Root page of table to open */
|
|
int wrFlag, /* 1 to write. 0 read-only */
|
|
struct KeyInfo *pKeyInfo, /* First arg to comparison function */
|
|
BtCursor *pCur /* Space for new cursor */
|
|
){
|
|
BtShared *pBt = p->pBt; /* Shared b-tree handle */
|
|
BtCursor *pX; /* Looping over other all cursors */
|
|
|
|
assert( sqlite3BtreeHoldsMutex(p) );
|
|
assert( wrFlag==0
|
|
|| wrFlag==BTREE_WRCSR
|
|
|| wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
|
|
);
|
|
|
|
/* The following assert statements verify that if this is a sharable
|
|
** b-tree database, the connection is holding the required table locks,
|
|
** and that no other connection has any open cursor that conflicts with
|
|
** this lock. The iTable<1 term disables the check for corrupt schemas. */
|
|
assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
|
|
|| iTable<1 );
|
|
assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
|
|
|
|
/* Assert that the caller has opened the required transaction. */
|
|
assert( p->inTrans>TRANS_NONE );
|
|
assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
|
|
assert( pBt->pPage1 && pBt->pPage1->aData );
|
|
assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
|
|
|
|
if( iTable<=1 ){
|
|
if( iTable<1 ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}else if( btreePagecount(pBt)==0 ){
|
|
assert( wrFlag==0 );
|
|
iTable = 0;
|
|
}
|
|
}
|
|
|
|
/* Now that no other errors can occur, finish filling in the BtCursor
|
|
** variables and link the cursor into the BtShared list. */
|
|
pCur->pgnoRoot = iTable;
|
|
pCur->iPage = -1;
|
|
pCur->pKeyInfo = pKeyInfo;
|
|
pCur->pBtree = p;
|
|
pCur->pBt = pBt;
|
|
pCur->curFlags = 0;
|
|
/* If there are two or more cursors on the same btree, then all such
|
|
** cursors *must* have the BTCF_Multiple flag set. */
|
|
for(pX=pBt->pCursor; pX; pX=pX->pNext){
|
|
if( pX->pgnoRoot==iTable ){
|
|
pX->curFlags |= BTCF_Multiple;
|
|
pCur->curFlags = BTCF_Multiple;
|
|
}
|
|
}
|
|
pCur->eState = CURSOR_INVALID;
|
|
pCur->pNext = pBt->pCursor;
|
|
pBt->pCursor = pCur;
|
|
if( wrFlag ){
|
|
pCur->curFlags |= BTCF_WriteFlag;
|
|
pCur->curPagerFlags = 0;
|
|
if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt);
|
|
}else{
|
|
pCur->curPagerFlags = PAGER_GET_READONLY;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
static int btreeCursorWithLock(
|
|
Btree *p, /* The btree */
|
|
Pgno iTable, /* Root page of table to open */
|
|
int wrFlag, /* 1 to write. 0 read-only */
|
|
struct KeyInfo *pKeyInfo, /* First arg to comparison function */
|
|
BtCursor *pCur /* Space for new cursor */
|
|
){
|
|
int rc;
|
|
sqlite3BtreeEnter(p);
|
|
rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
int sqlite3BtreeCursor(
|
|
Btree *p, /* The btree */
|
|
Pgno iTable, /* Root page of table to open */
|
|
int wrFlag, /* 1 to write. 0 read-only */
|
|
struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
|
|
BtCursor *pCur /* Write new cursor here */
|
|
){
|
|
if( p->sharable ){
|
|
return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
|
|
}else{
|
|
return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the size of a BtCursor object in bytes.
|
|
**
|
|
** This interfaces is needed so that users of cursors can preallocate
|
|
** sufficient storage to hold a cursor. The BtCursor object is opaque
|
|
** to users so they cannot do the sizeof() themselves - they must call
|
|
** this routine.
|
|
*/
|
|
int sqlite3BtreeCursorSize(void){
|
|
return ROUND8(sizeof(BtCursor));
|
|
}
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** Return true if and only if the Btree object will be automatically
|
|
** closed with the BtCursor closes. This is used within assert() statements
|
|
** only.
|
|
*/
|
|
int sqlite3BtreeClosesWithCursor(
|
|
Btree *pBtree, /* the btree object */
|
|
BtCursor *pCur /* Corresponding cursor */
|
|
){
|
|
BtShared *pBt = pBtree->pBt;
|
|
if( (pBt->openFlags & BTREE_SINGLE)==0 ) return 0;
|
|
if( pBt->pCursor!=pCur ) return 0;
|
|
if( pCur->pNext!=0 ) return 0;
|
|
if( pCur->pBtree!=pBtree ) return 0;
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Initialize memory that will be converted into a BtCursor object.
|
|
**
|
|
** The simple approach here would be to memset() the entire object
|
|
** to zero. But it turns out that the apPage[] and aiIdx[] arrays
|
|
** do not need to be zeroed and they are large, so we can save a lot
|
|
** of run-time by skipping the initialization of those elements.
|
|
*/
|
|
void sqlite3BtreeCursorZero(BtCursor *p){
|
|
memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
|
|
}
|
|
|
|
/*
|
|
** Close a cursor. The read lock on the database file is released
|
|
** when the last cursor is closed.
|
|
*/
|
|
int sqlite3BtreeCloseCursor(BtCursor *pCur){
|
|
Btree *pBtree = pCur->pBtree;
|
|
if( pBtree ){
|
|
BtShared *pBt = pCur->pBt;
|
|
sqlite3BtreeEnter(pBtree);
|
|
assert( pBt->pCursor!=0 );
|
|
if( pBt->pCursor==pCur ){
|
|
pBt->pCursor = pCur->pNext;
|
|
}else{
|
|
BtCursor *pPrev = pBt->pCursor;
|
|
do{
|
|
if( pPrev->pNext==pCur ){
|
|
pPrev->pNext = pCur->pNext;
|
|
break;
|
|
}
|
|
pPrev = pPrev->pNext;
|
|
}while( ALWAYS(pPrev) );
|
|
}
|
|
btreeReleaseAllCursorPages(pCur);
|
|
unlockBtreeIfUnused(pBt);
|
|
sqlite3_free(pCur->aOverflow);
|
|
sqlite3_free(pCur->pKey);
|
|
if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){
|
|
/* Since the BtShared is not sharable, there is no need to
|
|
** worry about the missing sqlite3BtreeLeave() call here. */
|
|
assert( pBtree->sharable==0 );
|
|
sqlite3BtreeClose(pBtree);
|
|
}else{
|
|
sqlite3BtreeLeave(pBtree);
|
|
}
|
|
pCur->pBtree = 0;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Make sure the BtCursor* given in the argument has a valid
|
|
** BtCursor.info structure. If it is not already valid, call
|
|
** btreeParseCell() to fill it in.
|
|
**
|
|
** BtCursor.info is a cache of the information in the current cell.
|
|
** Using this cache reduces the number of calls to btreeParseCell().
|
|
*/
|
|
#ifndef NDEBUG
|
|
static int cellInfoEqual(CellInfo *a, CellInfo *b){
|
|
if( a->nKey!=b->nKey ) return 0;
|
|
if( a->pPayload!=b->pPayload ) return 0;
|
|
if( a->nPayload!=b->nPayload ) return 0;
|
|
if( a->nLocal!=b->nLocal ) return 0;
|
|
if( a->nSize!=b->nSize ) return 0;
|
|
return 1;
|
|
}
|
|
static void assertCellInfo(BtCursor *pCur){
|
|
CellInfo info;
|
|
memset(&info, 0, sizeof(info));
|
|
btreeParseCell(pCur->pPage, pCur->ix, &info);
|
|
assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
|
|
}
|
|
#else
|
|
#define assertCellInfo(x)
|
|
#endif
|
|
static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
|
|
if( pCur->info.nSize==0 ){
|
|
pCur->curFlags |= BTCF_ValidNKey;
|
|
btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
|
|
}else{
|
|
assertCellInfo(pCur);
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG /* The next routine used only within assert() statements */
|
|
/*
|
|
** Return true if the given BtCursor is valid. A valid cursor is one
|
|
** that is currently pointing to a row in a (non-empty) table.
|
|
** This is a verification routine is used only within assert() statements.
|
|
*/
|
|
int sqlite3BtreeCursorIsValid(BtCursor *pCur){
|
|
return pCur && pCur->eState==CURSOR_VALID;
|
|
}
|
|
#endif /* NDEBUG */
|
|
int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
|
|
assert( pCur!=0 );
|
|
return pCur->eState==CURSOR_VALID;
|
|
}
|
|
|
|
/*
|
|
** Return the value of the integer key or "rowid" for a table btree.
|
|
** This routine is only valid for a cursor that is pointing into a
|
|
** ordinary table btree. If the cursor points to an index btree or
|
|
** is invalid, the result of this routine is undefined.
|
|
*/
|
|
i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
|
|
assert( cursorHoldsMutex(pCur) );
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
assert( pCur->curIntKey );
|
|
getCellInfo(pCur);
|
|
return pCur->info.nKey;
|
|
}
|
|
|
|
/*
|
|
** Pin or unpin a cursor.
|
|
*/
|
|
void sqlite3BtreeCursorPin(BtCursor *pCur){
|
|
assert( (pCur->curFlags & BTCF_Pinned)==0 );
|
|
pCur->curFlags |= BTCF_Pinned;
|
|
}
|
|
void sqlite3BtreeCursorUnpin(BtCursor *pCur){
|
|
assert( (pCur->curFlags & BTCF_Pinned)!=0 );
|
|
pCur->curFlags &= ~BTCF_Pinned;
|
|
}
|
|
|
|
/*
|
|
** Return the offset into the database file for the start of the
|
|
** payload to which the cursor is pointing.
|
|
*/
|
|
i64 sqlite3BtreeOffset(BtCursor *pCur){
|
|
assert( cursorHoldsMutex(pCur) );
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
getCellInfo(pCur);
|
|
return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
|
|
(i64)(pCur->info.pPayload - pCur->pPage->aData);
|
|
}
|
|
|
|
/*
|
|
** Return the number of bytes of payload for the entry that pCur is
|
|
** currently pointing to. For table btrees, this will be the amount
|
|
** of data. For index btrees, this will be the size of the key.
|
|
**
|
|
** The caller must guarantee that the cursor is pointing to a non-NULL
|
|
** valid entry. In other words, the calling procedure must guarantee
|
|
** that the cursor has Cursor.eState==CURSOR_VALID.
|
|
*/
|
|
u32 sqlite3BtreePayloadSize(BtCursor *pCur){
|
|
assert( cursorHoldsMutex(pCur) );
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
getCellInfo(pCur);
|
|
return pCur->info.nPayload;
|
|
}
|
|
|
|
/*
|
|
** Return an upper bound on the size of any record for the table
|
|
** that the cursor is pointing into.
|
|
**
|
|
** This is an optimization. Everything will still work if this
|
|
** routine always returns 2147483647 (which is the largest record
|
|
** that SQLite can handle) or more. But returning a smaller value might
|
|
** prevent large memory allocations when trying to interpret a
|
|
** corrupt database.
|
|
**
|
|
** The current implementation merely returns the size of the underlying
|
|
** database file.
|
|
*/
|
|
sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
|
|
assert( cursorHoldsMutex(pCur) );
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
|
|
}
|
|
|
|
/*
|
|
** Given the page number of an overflow page in the database (parameter
|
|
** ovfl), this function finds the page number of the next page in the
|
|
** linked list of overflow pages. If possible, it uses the auto-vacuum
|
|
** pointer-map data instead of reading the content of page ovfl to do so.
|
|
**
|
|
** If an error occurs an SQLite error code is returned. Otherwise:
|
|
**
|
|
** The page number of the next overflow page in the linked list is
|
|
** written to *pPgnoNext. If page ovfl is the last page in its linked
|
|
** list, *pPgnoNext is set to zero.
|
|
**
|
|
** If ppPage is not NULL, and a reference to the MemPage object corresponding
|
|
** to page number pOvfl was obtained, then *ppPage is set to point to that
|
|
** reference. It is the responsibility of the caller to call releasePage()
|
|
** on *ppPage to free the reference. In no reference was obtained (because
|
|
** the pointer-map was used to obtain the value for *pPgnoNext), then
|
|
** *ppPage is set to zero.
|
|
*/
|
|
static int getOverflowPage(
|
|
BtShared *pBt, /* The database file */
|
|
Pgno ovfl, /* Current overflow page number */
|
|
MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
|
|
Pgno *pPgnoNext /* OUT: Next overflow page number */
|
|
){
|
|
Pgno next = 0;
|
|
MemPage *pPage = 0;
|
|
int rc = SQLITE_OK;
|
|
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
assert(pPgnoNext);
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
/* Try to find the next page in the overflow list using the
|
|
** autovacuum pointer-map pages. Guess that the next page in
|
|
** the overflow list is page number (ovfl+1). If that guess turns
|
|
** out to be wrong, fall back to loading the data of page
|
|
** number ovfl to determine the next page number.
|
|
*/
|
|
if( pBt->autoVacuum ){
|
|
Pgno pgno;
|
|
Pgno iGuess = ovfl+1;
|
|
u8 eType;
|
|
|
|
while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
|
|
iGuess++;
|
|
}
|
|
|
|
if( iGuess<=btreePagecount(pBt) ){
|
|
rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
|
|
if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
|
|
next = iGuess;
|
|
rc = SQLITE_DONE;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
assert( next==0 || rc==SQLITE_DONE );
|
|
if( rc==SQLITE_OK ){
|
|
rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
|
|
assert( rc==SQLITE_OK || pPage==0 );
|
|
if( rc==SQLITE_OK ){
|
|
next = get4byte(pPage->aData);
|
|
}
|
|
}
|
|
|
|
*pPgnoNext = next;
|
|
if( ppPage ){
|
|
*ppPage = pPage;
|
|
}else{
|
|
releasePage(pPage);
|
|
}
|
|
return (rc==SQLITE_DONE ? SQLITE_OK : rc);
|
|
}
|
|
|
|
/*
|
|
** Copy data from a buffer to a page, or from a page to a buffer.
|
|
**
|
|
** pPayload is a pointer to data stored on database page pDbPage.
|
|
** If argument eOp is false, then nByte bytes of data are copied
|
|
** from pPayload to the buffer pointed at by pBuf. If eOp is true,
|
|
** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
|
|
** of data are copied from the buffer pBuf to pPayload.
|
|
**
|
|
** SQLITE_OK is returned on success, otherwise an error code.
|
|
*/
|
|
static int copyPayload(
|
|
void *pPayload, /* Pointer to page data */
|
|
void *pBuf, /* Pointer to buffer */
|
|
int nByte, /* Number of bytes to copy */
|
|
int eOp, /* 0 -> copy from page, 1 -> copy to page */
|
|
DbPage *pDbPage /* Page containing pPayload */
|
|
){
|
|
if( eOp ){
|
|
/* Copy data from buffer to page (a write operation) */
|
|
int rc = sqlite3PagerWrite(pDbPage);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
memcpy(pPayload, pBuf, nByte);
|
|
}else{
|
|
/* Copy data from page to buffer (a read operation) */
|
|
memcpy(pBuf, pPayload, nByte);
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** This function is used to read or overwrite payload information
|
|
** for the entry that the pCur cursor is pointing to. The eOp
|
|
** argument is interpreted as follows:
|
|
**
|
|
** 0: The operation is a read. Populate the overflow cache.
|
|
** 1: The operation is a write. Populate the overflow cache.
|
|
**
|
|
** A total of "amt" bytes are read or written beginning at "offset".
|
|
** Data is read to or from the buffer pBuf.
|
|
**
|
|
** The content being read or written might appear on the main page
|
|
** or be scattered out on multiple overflow pages.
|
|
**
|
|
** If the current cursor entry uses one or more overflow pages
|
|
** this function may allocate space for and lazily populate
|
|
** the overflow page-list cache array (BtCursor.aOverflow).
|
|
** Subsequent calls use this cache to make seeking to the supplied offset
|
|
** more efficient.
|
|
**
|
|
** Once an overflow page-list cache has been allocated, it must be
|
|
** invalidated if some other cursor writes to the same table, or if
|
|
** the cursor is moved to a different row. Additionally, in auto-vacuum
|
|
** mode, the following events may invalidate an overflow page-list cache.
|
|
**
|
|
** * An incremental vacuum,
|
|
** * A commit in auto_vacuum="full" mode,
|
|
** * Creating a table (may require moving an overflow page).
|
|
*/
|
|
static int accessPayload(
|
|
BtCursor *pCur, /* Cursor pointing to entry to read from */
|
|
u32 offset, /* Begin reading this far into payload */
|
|
u32 amt, /* Read this many bytes */
|
|
unsigned char *pBuf, /* Write the bytes into this buffer */
|
|
int eOp /* zero to read. non-zero to write. */
|
|
){
|
|
unsigned char *aPayload;
|
|
int rc = SQLITE_OK;
|
|
int iIdx = 0;
|
|
MemPage *pPage = pCur->pPage; /* Btree page of current entry */
|
|
BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
|
|
#ifdef SQLITE_DIRECT_OVERFLOW_READ
|
|
unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
|
|
#endif
|
|
|
|
assert( pPage );
|
|
assert( eOp==0 || eOp==1 );
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
if( pCur->ix>=pPage->nCell ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
assert( cursorHoldsMutex(pCur) );
|
|
|
|
getCellInfo(pCur);
|
|
aPayload = pCur->info.pPayload;
|
|
assert( offset+amt <= pCur->info.nPayload );
|
|
|
|
assert( aPayload > pPage->aData );
|
|
if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
|
|
/* Trying to read or write past the end of the data is an error. The
|
|
** conditional above is really:
|
|
** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
|
|
** but is recast into its current form to avoid integer overflow problems
|
|
*/
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
|
|
/* Check if data must be read/written to/from the btree page itself. */
|
|
if( offset<pCur->info.nLocal ){
|
|
int a = amt;
|
|
if( a+offset>pCur->info.nLocal ){
|
|
a = pCur->info.nLocal - offset;
|
|
}
|
|
rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
|
|
offset = 0;
|
|
pBuf += a;
|
|
amt -= a;
|
|
}else{
|
|
offset -= pCur->info.nLocal;
|
|
}
|
|
|
|
|
|
if( rc==SQLITE_OK && amt>0 ){
|
|
const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
|
|
Pgno nextPage;
|
|
|
|
nextPage = get4byte(&aPayload[pCur->info.nLocal]);
|
|
|
|
/* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
|
|
**
|
|
** The aOverflow[] array is sized at one entry for each overflow page
|
|
** in the overflow chain. The page number of the first overflow page is
|
|
** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
|
|
** means "not yet known" (the cache is lazily populated).
|
|
*/
|
|
if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
|
|
int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
|
|
if( pCur->aOverflow==0
|
|
|| nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
|
|
){
|
|
Pgno *aNew;
|
|
if( sqlite3FaultSim(413) ){
|
|
aNew = 0;
|
|
}else{
|
|
aNew = (Pgno*)sqlite3Realloc(pCur->aOverflow, nOvfl*2*sizeof(Pgno));
|
|
}
|
|
if( aNew==0 ){
|
|
return SQLITE_NOMEM_BKPT;
|
|
}else{
|
|
pCur->aOverflow = aNew;
|
|
}
|
|
}
|
|
memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
|
|
pCur->curFlags |= BTCF_ValidOvfl;
|
|
}else{
|
|
/* Sanity check the validity of the overflow page cache */
|
|
assert( pCur->aOverflow[0]==nextPage
|
|
|| pCur->aOverflow[0]==0
|
|
|| CORRUPT_DB );
|
|
assert( pCur->aOverflow[0]!=0 || pCur->aOverflow[offset/ovflSize]==0 );
|
|
|
|
/* If the overflow page-list cache has been allocated and the
|
|
** entry for the first required overflow page is valid, skip
|
|
** directly to it.
|
|
*/
|
|
if( pCur->aOverflow[offset/ovflSize] ){
|
|
iIdx = (offset/ovflSize);
|
|
nextPage = pCur->aOverflow[iIdx];
|
|
offset = (offset%ovflSize);
|
|
}
|
|
}
|
|
|
|
assert( rc==SQLITE_OK && amt>0 );
|
|
while( nextPage ){
|
|
/* If required, populate the overflow page-list cache. */
|
|
if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT;
|
|
assert( pCur->aOverflow[iIdx]==0
|
|
|| pCur->aOverflow[iIdx]==nextPage
|
|
|| CORRUPT_DB );
|
|
pCur->aOverflow[iIdx] = nextPage;
|
|
|
|
if( offset>=ovflSize ){
|
|
/* The only reason to read this page is to obtain the page
|
|
** number for the next page in the overflow chain. The page
|
|
** data is not required. So first try to lookup the overflow
|
|
** page-list cache, if any, then fall back to the getOverflowPage()
|
|
** function.
|
|
*/
|
|
assert( pCur->curFlags & BTCF_ValidOvfl );
|
|
assert( pCur->pBtree->db==pBt->db );
|
|
if( pCur->aOverflow[iIdx+1] ){
|
|
nextPage = pCur->aOverflow[iIdx+1];
|
|
}else{
|
|
rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
|
|
}
|
|
offset -= ovflSize;
|
|
}else{
|
|
/* Need to read this page properly. It contains some of the
|
|
** range of data that is being read (eOp==0) or written (eOp!=0).
|
|
*/
|
|
int a = amt;
|
|
if( a + offset > ovflSize ){
|
|
a = ovflSize - offset;
|
|
}
|
|
|
|
#ifdef SQLITE_DIRECT_OVERFLOW_READ
|
|
/* If all the following are true:
|
|
**
|
|
** 1) this is a read operation, and
|
|
** 2) data is required from the start of this overflow page, and
|
|
** 3) there are no dirty pages in the page-cache
|
|
** 4) the database is file-backed, and
|
|
** 5) the page is not in the WAL file
|
|
** 6) at least 4 bytes have already been read into the output buffer
|
|
**
|
|
** then data can be read directly from the database file into the
|
|
** output buffer, bypassing the page-cache altogether. This speeds
|
|
** up loading large records that span many overflow pages.
|
|
*/
|
|
if( eOp==0 /* (1) */
|
|
&& offset==0 /* (2) */
|
|
&& sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */
|
|
&& &pBuf[-4]>=pBufStart /* (6) */
|
|
){
|
|
sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
|
|
u8 aSave[4];
|
|
u8 *aWrite = &pBuf[-4];
|
|
assert( aWrite>=pBufStart ); /* due to (6) */
|
|
memcpy(aSave, aWrite, 4);
|
|
rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
|
|
nextPage = get4byte(aWrite);
|
|
memcpy(aWrite, aSave, 4);
|
|
}else
|
|
#endif
|
|
|
|
{
|
|
DbPage *pDbPage;
|
|
rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
|
|
(eOp==0 ? PAGER_GET_READONLY : 0)
|
|
);
|
|
if( rc==SQLITE_OK ){
|
|
aPayload = sqlite3PagerGetData(pDbPage);
|
|
nextPage = get4byte(aPayload);
|
|
rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
|
|
sqlite3PagerUnref(pDbPage);
|
|
offset = 0;
|
|
}
|
|
}
|
|
amt -= a;
|
|
if( amt==0 ) return rc;
|
|
pBuf += a;
|
|
}
|
|
if( rc ) break;
|
|
iIdx++;
|
|
}
|
|
}
|
|
|
|
if( rc==SQLITE_OK && amt>0 ){
|
|
/* Overflow chain ends prematurely */
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Read part of the payload for the row at which that cursor pCur is currently
|
|
** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
|
|
** begins at "offset".
|
|
**
|
|
** pCur can be pointing to either a table or an index b-tree.
|
|
** If pointing to a table btree, then the content section is read. If
|
|
** pCur is pointing to an index b-tree then the key section is read.
|
|
**
|
|
** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
|
|
** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
|
|
** cursor might be invalid or might need to be restored before being read.
|
|
**
|
|
** Return SQLITE_OK on success or an error code if anything goes
|
|
** wrong. An error is returned if "offset+amt" is larger than
|
|
** the available payload.
|
|
*/
|
|
int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
|
|
assert( cursorHoldsMutex(pCur) );
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
assert( pCur->iPage>=0 && pCur->pPage );
|
|
return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
|
|
}
|
|
|
|
/*
|
|
** This variant of sqlite3BtreePayload() works even if the cursor has not
|
|
** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
|
|
** interface.
|
|
*/
|
|
#ifndef SQLITE_OMIT_INCRBLOB
|
|
static SQLITE_NOINLINE int accessPayloadChecked(
|
|
BtCursor *pCur,
|
|
u32 offset,
|
|
u32 amt,
|
|
void *pBuf
|
|
){
|
|
int rc;
|
|
if ( pCur->eState==CURSOR_INVALID ){
|
|
return SQLITE_ABORT;
|
|
}
|
|
assert( cursorOwnsBtShared(pCur) );
|
|
rc = btreeRestoreCursorPosition(pCur);
|
|
return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
|
|
}
|
|
int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
|
|
if( pCur->eState==CURSOR_VALID ){
|
|
assert( cursorOwnsBtShared(pCur) );
|
|
return accessPayload(pCur, offset, amt, pBuf, 0);
|
|
}else{
|
|
return accessPayloadChecked(pCur, offset, amt, pBuf);
|
|
}
|
|
}
|
|
#endif /* SQLITE_OMIT_INCRBLOB */
|
|
|
|
/*
|
|
** Return a pointer to payload information from the entry that the
|
|
** pCur cursor is pointing to. The pointer is to the beginning of
|
|
** the key if index btrees (pPage->intKey==0) and is the data for
|
|
** table btrees (pPage->intKey==1). The number of bytes of available
|
|
** key/data is written into *pAmt. If *pAmt==0, then the value
|
|
** returned will not be a valid pointer.
|
|
**
|
|
** This routine is an optimization. It is common for the entire key
|
|
** and data to fit on the local page and for there to be no overflow
|
|
** pages. When that is so, this routine can be used to access the
|
|
** key and data without making a copy. If the key and/or data spills
|
|
** onto overflow pages, then accessPayload() must be used to reassemble
|
|
** the key/data and copy it into a preallocated buffer.
|
|
**
|
|
** The pointer returned by this routine looks directly into the cached
|
|
** page of the database. The data might change or move the next time
|
|
** any btree routine is called.
|
|
*/
|
|
static const void *fetchPayload(
|
|
BtCursor *pCur, /* Cursor pointing to entry to read from */
|
|
u32 *pAmt /* Write the number of available bytes here */
|
|
){
|
|
int amt;
|
|
assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
|
|
assert( cursorOwnsBtShared(pCur) );
|
|
assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
|
|
assert( pCur->info.nSize>0 );
|
|
assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
|
|
assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
|
|
amt = pCur->info.nLocal;
|
|
if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
|
|
/* There is too little space on the page for the expected amount
|
|
** of local content. Database must be corrupt. */
|
|
assert( CORRUPT_DB );
|
|
amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
|
|
}
|
|
*pAmt = (u32)amt;
|
|
return (void*)pCur->info.pPayload;
|
|
}
|
|
|
|
|
|
/*
|
|
** For the entry that cursor pCur is point to, return as
|
|
** many bytes of the key or data as are available on the local
|
|
** b-tree page. Write the number of available bytes into *pAmt.
|
|
**
|
|
** The pointer returned is ephemeral. The key/data may move
|
|
** or be destroyed on the next call to any Btree routine,
|
|
** including calls from other threads against the same cache.
|
|
** Hence, a mutex on the BtShared should be held prior to calling
|
|
** this routine.
|
|
**
|
|
** These routines is used to get quick access to key and data
|
|
** in the common case where no overflow pages are used.
|
|
*/
|
|
const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
|
|
return fetchPayload(pCur, pAmt);
|
|
}
|
|
|
|
|
|
/*
|
|
** Move the cursor down to a new child page. The newPgno argument is the
|
|
** page number of the child page to move to.
|
|
**
|
|
** This function returns SQLITE_CORRUPT if the page-header flags field of
|
|
** the new child page does not match the flags field of the parent (i.e.
|
|
** if an intkey page appears to be the parent of a non-intkey page, or
|
|
** vice-versa).
|
|
*/
|
|
static int moveToChild(BtCursor *pCur, u32 newPgno){
|
|
int rc;
|
|
assert( cursorOwnsBtShared(pCur) );
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
|
|
assert( pCur->iPage>=0 );
|
|
if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
pCur->info.nSize = 0;
|
|
pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
|
|
pCur->aiIdx[pCur->iPage] = pCur->ix;
|
|
pCur->apPage[pCur->iPage] = pCur->pPage;
|
|
pCur->ix = 0;
|
|
pCur->iPage++;
|
|
rc = getAndInitPage(pCur->pBt, newPgno, &pCur->pPage, pCur->curPagerFlags);
|
|
assert( pCur->pPage!=0 || rc!=SQLITE_OK );
|
|
if( rc==SQLITE_OK
|
|
&& (pCur->pPage->nCell<1 || pCur->pPage->intKey!=pCur->curIntKey)
|
|
){
|
|
releasePage(pCur->pPage);
|
|
rc = SQLITE_CORRUPT_PGNO(newPgno);
|
|
}
|
|
if( rc ){
|
|
pCur->pPage = pCur->apPage[--pCur->iPage];
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** Page pParent is an internal (non-leaf) tree page. This function
|
|
** asserts that page number iChild is the left-child if the iIdx'th
|
|
** cell in page pParent. Or, if iIdx is equal to the total number of
|
|
** cells in pParent, that page number iChild is the right-child of
|
|
** the page.
|
|
*/
|
|
static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
|
|
if( CORRUPT_DB ) return; /* The conditions tested below might not be true
|
|
** in a corrupt database */
|
|
assert( iIdx<=pParent->nCell );
|
|
if( iIdx==pParent->nCell ){
|
|
assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
|
|
}else{
|
|
assert( get4byte(findCell(pParent, iIdx))==iChild );
|
|
}
|
|
}
|
|
#else
|
|
# define assertParentIndex(x,y,z)
|
|
#endif
|
|
|
|
/*
|
|
** Move the cursor up to the parent page.
|
|
**
|
|
** pCur->idx is set to the cell index that contains the pointer
|
|
** to the page we are coming from. If we are coming from the
|
|
** right-most child page then pCur->idx is set to one more than
|
|
** the largest cell index.
|
|
*/
|
|
static void moveToParent(BtCursor *pCur){
|
|
MemPage *pLeaf;
|
|
assert( cursorOwnsBtShared(pCur) );
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
assert( pCur->iPage>0 );
|
|
assert( pCur->pPage );
|
|
assertParentIndex(
|
|
pCur->apPage[pCur->iPage-1],
|
|
pCur->aiIdx[pCur->iPage-1],
|
|
pCur->pPage->pgno
|
|
);
|
|
testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
|
|
pCur->info.nSize = 0;
|
|
pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
|
|
pCur->ix = pCur->aiIdx[pCur->iPage-1];
|
|
pLeaf = pCur->pPage;
|
|
pCur->pPage = pCur->apPage[--pCur->iPage];
|
|
releasePageNotNull(pLeaf);
|
|
}
|
|
|
|
/*
|
|
** Move the cursor to point to the root page of its b-tree structure.
|
|
**
|
|
** If the table has a virtual root page, then the cursor is moved to point
|
|
** to the virtual root page instead of the actual root page. A table has a
|
|
** virtual root page when the actual root page contains no cells and a
|
|
** single child page. This can only happen with the table rooted at page 1.
|
|
**
|
|
** If the b-tree structure is empty, the cursor state is set to
|
|
** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
|
|
** the cursor is set to point to the first cell located on the root
|
|
** (or virtual root) page and the cursor state is set to CURSOR_VALID.
|
|
**
|
|
** If this function returns successfully, it may be assumed that the
|
|
** page-header flags indicate that the [virtual] root-page is the expected
|
|
** kind of b-tree page (i.e. if when opening the cursor the caller did not
|
|
** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
|
|
** indicating a table b-tree, or if the caller did specify a KeyInfo
|
|
** structure the flags byte is set to 0x02 or 0x0A, indicating an index
|
|
** b-tree).
|
|
*/
|
|
static int moveToRoot(BtCursor *pCur){
|
|
MemPage *pRoot;
|
|
int rc = SQLITE_OK;
|
|
|
|
assert( cursorOwnsBtShared(pCur) );
|
|
assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
|
|
assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
|
|
assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
|
|
assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
|
|
assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
|
|
|
|
if( pCur->iPage>=0 ){
|
|
if( pCur->iPage ){
|
|
releasePageNotNull(pCur->pPage);
|
|
while( --pCur->iPage ){
|
|
releasePageNotNull(pCur->apPage[pCur->iPage]);
|
|
}
|
|
pRoot = pCur->pPage = pCur->apPage[0];
|
|
goto skip_init;
|
|
}
|
|
}else if( pCur->pgnoRoot==0 ){
|
|
pCur->eState = CURSOR_INVALID;
|
|
return SQLITE_EMPTY;
|
|
}else{
|
|
assert( pCur->iPage==(-1) );
|
|
if( pCur->eState>=CURSOR_REQUIRESEEK ){
|
|
if( pCur->eState==CURSOR_FAULT ){
|
|
assert( pCur->skipNext!=SQLITE_OK );
|
|
return pCur->skipNext;
|
|
}
|
|
sqlite3BtreeClearCursor(pCur);
|
|
}
|
|
rc = getAndInitPage(pCur->pBt, pCur->pgnoRoot, &pCur->pPage,
|
|
pCur->curPagerFlags);
|
|
if( rc!=SQLITE_OK ){
|
|
pCur->eState = CURSOR_INVALID;
|
|
return rc;
|
|
}
|
|
pCur->iPage = 0;
|
|
pCur->curIntKey = pCur->pPage->intKey;
|
|
}
|
|
pRoot = pCur->pPage;
|
|
assert( pRoot->pgno==pCur->pgnoRoot || CORRUPT_DB );
|
|
|
|
/* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
|
|
** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
|
|
** NULL, the caller expects a table b-tree. If this is not the case,
|
|
** return an SQLITE_CORRUPT error.
|
|
**
|
|
** Earlier versions of SQLite assumed that this test could not fail
|
|
** if the root page was already loaded when this function was called (i.e.
|
|
** if pCur->iPage>=0). But this is not so if the database is corrupted
|
|
** in such a way that page pRoot is linked into a second b-tree table
|
|
** (or the freelist). */
|
|
assert( pRoot->intKey==1 || pRoot->intKey==0 );
|
|
if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
|
|
return SQLITE_CORRUPT_PAGE(pCur->pPage);
|
|
}
|
|
|
|
skip_init:
|
|
pCur->ix = 0;
|
|
pCur->info.nSize = 0;
|
|
pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
|
|
|
|
if( pRoot->nCell>0 ){
|
|
pCur->eState = CURSOR_VALID;
|
|
}else if( !pRoot->leaf ){
|
|
Pgno subpage;
|
|
if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
|
|
subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
|
|
pCur->eState = CURSOR_VALID;
|
|
rc = moveToChild(pCur, subpage);
|
|
}else{
|
|
pCur->eState = CURSOR_INVALID;
|
|
rc = SQLITE_EMPTY;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Move the cursor down to the left-most leaf entry beneath the
|
|
** entry to which it is currently pointing.
|
|
**
|
|
** The left-most leaf is the one with the smallest key - the first
|
|
** in ascending order.
|
|
*/
|
|
static int moveToLeftmost(BtCursor *pCur){
|
|
Pgno pgno;
|
|
int rc = SQLITE_OK;
|
|
MemPage *pPage;
|
|
|
|
assert( cursorOwnsBtShared(pCur) );
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
|
|
assert( pCur->ix<pPage->nCell );
|
|
pgno = get4byte(findCell(pPage, pCur->ix));
|
|
rc = moveToChild(pCur, pgno);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Move the cursor down to the right-most leaf entry beneath the
|
|
** page to which it is currently pointing. Notice the difference
|
|
** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
|
|
** finds the left-most entry beneath the *entry* whereas moveToRightmost()
|
|
** finds the right-most entry beneath the *page*.
|
|
**
|
|
** The right-most entry is the one with the largest key - the last
|
|
** key in ascending order.
|
|
*/
|
|
static int moveToRightmost(BtCursor *pCur){
|
|
Pgno pgno;
|
|
int rc = SQLITE_OK;
|
|
MemPage *pPage = 0;
|
|
|
|
assert( cursorOwnsBtShared(pCur) );
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
while( !(pPage = pCur->pPage)->leaf ){
|
|
pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
|
|
pCur->ix = pPage->nCell;
|
|
rc = moveToChild(pCur, pgno);
|
|
if( rc ) return rc;
|
|
}
|
|
pCur->ix = pPage->nCell-1;
|
|
assert( pCur->info.nSize==0 );
|
|
assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Move the cursor to the first entry in the table. Return SQLITE_OK
|
|
** on success. Set *pRes to 0 if the cursor actually points to something
|
|
** or set *pRes to 1 if the table is empty.
|
|
*/
|
|
int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
|
|
int rc;
|
|
|
|
assert( cursorOwnsBtShared(pCur) );
|
|
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
|
|
rc = moveToRoot(pCur);
|
|
if( rc==SQLITE_OK ){
|
|
assert( pCur->pPage->nCell>0 );
|
|
*pRes = 0;
|
|
rc = moveToLeftmost(pCur);
|
|
}else if( rc==SQLITE_EMPTY ){
|
|
assert( pCur->pgnoRoot==0 || (pCur->pPage!=0 && pCur->pPage->nCell==0) );
|
|
*pRes = 1;
|
|
rc = SQLITE_OK;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/* The cursors is CURSOR_VALID and has BTCF_AtLast set. Verify that
|
|
** this flags are true for a consistent database.
|
|
**
|
|
** This routine is is called from within assert() statements only.
|
|
** It is an internal verification routine and does not appear in production
|
|
** builds.
|
|
*/
|
|
static int cursorIsAtLastEntry(BtCursor *pCur){
|
|
int ii;
|
|
for(ii=0; ii<pCur->iPage; ii++){
|
|
if( pCur->aiIdx[ii]!=pCur->apPage[ii]->nCell ) return 0;
|
|
}
|
|
return pCur->ix==pCur->pPage->nCell-1 && pCur->pPage->leaf!=0;
|
|
}
|
|
#endif
|
|
|
|
/* Move the cursor to the last entry in the table. Return SQLITE_OK
|
|
** on success. Set *pRes to 0 if the cursor actually points to something
|
|
** or set *pRes to 1 if the table is empty.
|
|
*/
|
|
static SQLITE_NOINLINE int btreeLast(BtCursor *pCur, int *pRes){
|
|
int rc = moveToRoot(pCur);
|
|
if( rc==SQLITE_OK ){
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
*pRes = 0;
|
|
rc = moveToRightmost(pCur);
|
|
if( rc==SQLITE_OK ){
|
|
pCur->curFlags |= BTCF_AtLast;
|
|
}else{
|
|
pCur->curFlags &= ~BTCF_AtLast;
|
|
}
|
|
}else if( rc==SQLITE_EMPTY ){
|
|
assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
|
|
*pRes = 1;
|
|
rc = SQLITE_OK;
|
|
}
|
|
return rc;
|
|
}
|
|
int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
|
|
assert( cursorOwnsBtShared(pCur) );
|
|
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
|
|
|
|
/* If the cursor already points to the last entry, this is a no-op. */
|
|
if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
|
|
assert( cursorIsAtLastEntry(pCur) || CORRUPT_DB );
|
|
*pRes = 0;
|
|
return SQLITE_OK;
|
|
}
|
|
return btreeLast(pCur, pRes);
|
|
}
|
|
|
|
/* Move the cursor so that it points to an entry in a table (a.k.a INTKEY)
|
|
** table near the key intKey. Return a success code.
|
|
**
|
|
** If an exact match is not found, then the cursor is always
|
|
** left pointing at a leaf page which would hold the entry if it
|
|
** were present. The cursor might point to an entry that comes
|
|
** before or after the key.
|
|
**
|
|
** An integer is written into *pRes which is the result of
|
|
** comparing the key with the entry to which the cursor is
|
|
** pointing. The meaning of the integer written into
|
|
** *pRes is as follows:
|
|
**
|
|
** *pRes<0 The cursor is left pointing at an entry that
|
|
** is smaller than intKey or if the table is empty
|
|
** and the cursor is therefore left point to nothing.
|
|
**
|
|
** *pRes==0 The cursor is left pointing at an entry that
|
|
** exactly matches intKey.
|
|
**
|
|
** *pRes>0 The cursor is left pointing at an entry that
|
|
** is larger than intKey.
|
|
*/
|
|
int sqlite3BtreeTableMoveto(
|
|
BtCursor *pCur, /* The cursor to be moved */
|
|
i64 intKey, /* The table key */
|
|
int biasRight, /* If true, bias the search to the high end */
|
|
int *pRes /* Write search results here */
|
|
){
|
|
int rc;
|
|
|
|
assert( cursorOwnsBtShared(pCur) );
|
|
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
|
|
assert( pRes );
|
|
assert( pCur->pKeyInfo==0 );
|
|
assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 );
|
|
|
|
/* If the cursor is already positioned at the point we are trying
|
|
** to move to, then just return without doing any work */
|
|
if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){
|
|
if( pCur->info.nKey==intKey ){
|
|
*pRes = 0;
|
|
return SQLITE_OK;
|
|
}
|
|
if( pCur->info.nKey<intKey ){
|
|
if( (pCur->curFlags & BTCF_AtLast)!=0 ){
|
|
assert( cursorIsAtLastEntry(pCur) || CORRUPT_DB );
|
|
*pRes = -1;
|
|
return SQLITE_OK;
|
|
}
|
|
/* If the requested key is one more than the previous key, then
|
|
** try to get there using sqlite3BtreeNext() rather than a full
|
|
** binary search. This is an optimization only. The correct answer
|
|
** is still obtained without this case, only a little more slowly. */
|
|
if( pCur->info.nKey+1==intKey ){
|
|
*pRes = 0;
|
|
rc = sqlite3BtreeNext(pCur, 0);
|
|
if( rc==SQLITE_OK ){
|
|
getCellInfo(pCur);
|
|
if( pCur->info.nKey==intKey ){
|
|
return SQLITE_OK;
|
|
}
|
|
}else if( rc!=SQLITE_DONE ){
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
pCur->pBtree->nSeek++; /* Performance measurement during testing */
|
|
#endif
|
|
|
|
rc = moveToRoot(pCur);
|
|
if( rc ){
|
|
if( rc==SQLITE_EMPTY ){
|
|
assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
|
|
*pRes = -1;
|
|
return SQLITE_OK;
|
|
}
|
|
return rc;
|
|
}
|
|
assert( pCur->pPage );
|
|
assert( pCur->pPage->isInit );
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
assert( pCur->pPage->nCell > 0 );
|
|
assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
|
|
assert( pCur->curIntKey );
|
|
|
|
for(;;){
|
|
int lwr, upr, idx, c;
|
|
Pgno chldPg;
|
|
MemPage *pPage = pCur->pPage;
|
|
u8 *pCell; /* Pointer to current cell in pPage */
|
|
|
|
/* pPage->nCell must be greater than zero. If this is the root-page
|
|
** the cursor would have been INVALID above and this for(;;) loop
|
|
** not run. If this is not the root-page, then the moveToChild() routine
|
|
** would have already detected db corruption. Similarly, pPage must
|
|
** be the right kind (index or table) of b-tree page. Otherwise
|
|
** a moveToChild() or moveToRoot() call would have detected corruption. */
|
|
assert( pPage->nCell>0 );
|
|
assert( pPage->intKey );
|
|
lwr = 0;
|
|
upr = pPage->nCell-1;
|
|
assert( biasRight==0 || biasRight==1 );
|
|
idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
|
|
for(;;){
|
|
i64 nCellKey;
|
|
pCell = findCellPastPtr(pPage, idx);
|
|
if( pPage->intKeyLeaf ){
|
|
while( 0x80 <= *(pCell++) ){
|
|
if( pCell>=pPage->aDataEnd ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
}
|
|
}
|
|
getVarint(pCell, (u64*)&nCellKey);
|
|
if( nCellKey<intKey ){
|
|
lwr = idx+1;
|
|
if( lwr>upr ){ c = -1; break; }
|
|
}else if( nCellKey>intKey ){
|
|
upr = idx-1;
|
|
if( lwr>upr ){ c = +1; break; }
|
|
}else{
|
|
assert( nCellKey==intKey );
|
|
pCur->ix = (u16)idx;
|
|
if( !pPage->leaf ){
|
|
lwr = idx;
|
|
goto moveto_table_next_layer;
|
|
}else{
|
|
pCur->curFlags |= BTCF_ValidNKey;
|
|
pCur->info.nKey = nCellKey;
|
|
pCur->info.nSize = 0;
|
|
*pRes = 0;
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
assert( lwr+upr>=0 );
|
|
idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
|
|
}
|
|
assert( lwr==upr+1 || !pPage->leaf );
|
|
assert( pPage->isInit );
|
|
if( pPage->leaf ){
|
|
assert( pCur->ix<pCur->pPage->nCell );
|
|
pCur->ix = (u16)idx;
|
|
*pRes = c;
|
|
rc = SQLITE_OK;
|
|
goto moveto_table_finish;
|
|
}
|
|
moveto_table_next_layer:
|
|
if( lwr>=pPage->nCell ){
|
|
chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
|
|
}else{
|
|
chldPg = get4byte(findCell(pPage, lwr));
|
|
}
|
|
pCur->ix = (u16)lwr;
|
|
rc = moveToChild(pCur, chldPg);
|
|
if( rc ) break;
|
|
}
|
|
moveto_table_finish:
|
|
pCur->info.nSize = 0;
|
|
assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Compare the "idx"-th cell on the page the cursor pCur is currently
|
|
** pointing to to pIdxKey using xRecordCompare. Return negative or
|
|
** zero if the cell is less than or equal pIdxKey. Return positive
|
|
** if unknown.
|
|
**
|
|
** Return value negative: Cell at pCur[idx] less than pIdxKey
|
|
**
|
|
** Return value is zero: Cell at pCur[idx] equals pIdxKey
|
|
**
|
|
** Return value positive: Nothing is known about the relationship
|
|
** of the cell at pCur[idx] and pIdxKey.
|
|
**
|
|
** This routine is part of an optimization. It is always safe to return
|
|
** a positive value as that will cause the optimization to be skipped.
|
|
*/
|
|
static int indexCellCompare(
|
|
BtCursor *pCur,
|
|
int idx,
|
|
UnpackedRecord *pIdxKey,
|
|
RecordCompare xRecordCompare
|
|
){
|
|
MemPage *pPage = pCur->pPage;
|
|
int c;
|
|
int nCell; /* Size of the pCell cell in bytes */
|
|
u8 *pCell = findCellPastPtr(pPage, idx);
|
|
|
|
nCell = pCell[0];
|
|
if( nCell<=pPage->max1bytePayload ){
|
|
/* This branch runs if the record-size field of the cell is a
|
|
** single byte varint and the record fits entirely on the main
|
|
** b-tree page. */
|
|
testcase( pCell+nCell+1==pPage->aDataEnd );
|
|
c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
|
|
}else if( !(pCell[1] & 0x80)
|
|
&& (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
|
|
){
|
|
/* The record-size field is a 2 byte varint and the record
|
|
** fits entirely on the main b-tree page. */
|
|
testcase( pCell+nCell+2==pPage->aDataEnd );
|
|
c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
|
|
}else{
|
|
/* If the record extends into overflow pages, do not attempt
|
|
** the optimization. */
|
|
c = 99;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
** Return true (non-zero) if pCur is current pointing to the last
|
|
** page of a table.
|
|
*/
|
|
static int cursorOnLastPage(BtCursor *pCur){
|
|
int i;
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
for(i=0; i<pCur->iPage; i++){
|
|
MemPage *pPage = pCur->apPage[i];
|
|
if( pCur->aiIdx[i]<pPage->nCell ) return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Move the cursor so that it points to an entry in an index table
|
|
** near the key pIdxKey. Return a success code.
|
|
**
|
|
** If an exact match is not found, then the cursor is always
|
|
** left pointing at a leaf page which would hold the entry if it
|
|
** were present. The cursor might point to an entry that comes
|
|
** before or after the key.
|
|
**
|
|
** An integer is written into *pRes which is the result of
|
|
** comparing the key with the entry to which the cursor is
|
|
** pointing. The meaning of the integer written into
|
|
** *pRes is as follows:
|
|
**
|
|
** *pRes<0 The cursor is left pointing at an entry that
|
|
** is smaller than pIdxKey or if the table is empty
|
|
** and the cursor is therefore left point to nothing.
|
|
**
|
|
** *pRes==0 The cursor is left pointing at an entry that
|
|
** exactly matches pIdxKey.
|
|
**
|
|
** *pRes>0 The cursor is left pointing at an entry that
|
|
** is larger than pIdxKey.
|
|
**
|
|
** The pIdxKey->eqSeen field is set to 1 if there
|
|
** exists an entry in the table that exactly matches pIdxKey.
|
|
*/
|
|
int sqlite3BtreeIndexMoveto(
|
|
BtCursor *pCur, /* The cursor to be moved */
|
|
UnpackedRecord *pIdxKey, /* Unpacked index key */
|
|
int *pRes /* Write search results here */
|
|
){
|
|
int rc;
|
|
RecordCompare xRecordCompare;
|
|
|
|
assert( cursorOwnsBtShared(pCur) );
|
|
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
|
|
assert( pRes );
|
|
assert( pCur->pKeyInfo!=0 );
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
pCur->pBtree->nSeek++; /* Performance measurement during testing */
|
|
#endif
|
|
|
|
xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
|
|
pIdxKey->errCode = 0;
|
|
assert( pIdxKey->default_rc==1
|
|
|| pIdxKey->default_rc==0
|
|
|| pIdxKey->default_rc==-1
|
|
);
|
|
|
|
|
|
/* Check to see if we can skip a lot of work. Two cases:
|
|
**
|
|
** (1) If the cursor is already pointing to the very last cell
|
|
** in the table and the pIdxKey search key is greater than or
|
|
** equal to that last cell, then no movement is required.
|
|
**
|
|
** (2) If the cursor is on the last page of the table and the first
|
|
** cell on that last page is less than or equal to the pIdxKey
|
|
** search key, then we can start the search on the current page
|
|
** without needing to go back to root.
|
|
*/
|
|
if( pCur->eState==CURSOR_VALID
|
|
&& pCur->pPage->leaf
|
|
&& cursorOnLastPage(pCur)
|
|
){
|
|
int c;
|
|
if( pCur->ix==pCur->pPage->nCell-1
|
|
&& (c = indexCellCompare(pCur, pCur->ix, pIdxKey, xRecordCompare))<=0
|
|
&& pIdxKey->errCode==SQLITE_OK
|
|
){
|
|
*pRes = c;
|
|
return SQLITE_OK; /* Cursor already pointing at the correct spot */
|
|
}
|
|
if( pCur->iPage>0
|
|
&& indexCellCompare(pCur, 0, pIdxKey, xRecordCompare)<=0
|
|
&& pIdxKey->errCode==SQLITE_OK
|
|
){
|
|
pCur->curFlags &= ~(BTCF_ValidOvfl|BTCF_AtLast);
|
|
if( !pCur->pPage->isInit ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
goto bypass_moveto_root; /* Start search on the current page */
|
|
}
|
|
pIdxKey->errCode = SQLITE_OK;
|
|
}
|
|
|
|
rc = moveToRoot(pCur);
|
|
if( rc ){
|
|
if( rc==SQLITE_EMPTY ){
|
|
assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
|
|
*pRes = -1;
|
|
return SQLITE_OK;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
bypass_moveto_root:
|
|
assert( pCur->pPage );
|
|
assert( pCur->pPage->isInit );
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
assert( pCur->pPage->nCell > 0 );
|
|
assert( pCur->curIntKey==0 );
|
|
assert( pIdxKey!=0 );
|
|
for(;;){
|
|
int lwr, upr, idx, c;
|
|
Pgno chldPg;
|
|
MemPage *pPage = pCur->pPage;
|
|
u8 *pCell; /* Pointer to current cell in pPage */
|
|
|
|
/* pPage->nCell must be greater than zero. If this is the root-page
|
|
** the cursor would have been INVALID above and this for(;;) loop
|
|
** not run. If this is not the root-page, then the moveToChild() routine
|
|
** would have already detected db corruption. Similarly, pPage must
|
|
** be the right kind (index or table) of b-tree page. Otherwise
|
|
** a moveToChild() or moveToRoot() call would have detected corruption. */
|
|
assert( pPage->nCell>0 );
|
|
assert( pPage->intKey==0 );
|
|
lwr = 0;
|
|
upr = pPage->nCell-1;
|
|
idx = upr>>1; /* idx = (lwr+upr)/2; */
|
|
for(;;){
|
|
int nCell; /* Size of the pCell cell in bytes */
|
|
pCell = findCellPastPtr(pPage, idx);
|
|
|
|
/* The maximum supported page-size is 65536 bytes. This means that
|
|
** the maximum number of record bytes stored on an index B-Tree
|
|
** page is less than 16384 bytes and may be stored as a 2-byte
|
|
** varint. This information is used to attempt to avoid parsing
|
|
** the entire cell by checking for the cases where the record is
|
|
** stored entirely within the b-tree page by inspecting the first
|
|
** 2 bytes of the cell.
|
|
*/
|
|
nCell = pCell[0];
|
|
if( nCell<=pPage->max1bytePayload ){
|
|
/* This branch runs if the record-size field of the cell is a
|
|
** single byte varint and the record fits entirely on the main
|
|
** b-tree page. */
|
|
testcase( pCell+nCell+1==pPage->aDataEnd );
|
|
c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
|
|
}else if( !(pCell[1] & 0x80)
|
|
&& (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
|
|
){
|
|
/* The record-size field is a 2 byte varint and the record
|
|
** fits entirely on the main b-tree page. */
|
|
testcase( pCell+nCell+2==pPage->aDataEnd );
|
|
c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
|
|
}else{
|
|
/* The record flows over onto one or more overflow pages. In
|
|
** this case the whole cell needs to be parsed, a buffer allocated
|
|
** and accessPayload() used to retrieve the record into the
|
|
** buffer before VdbeRecordCompare() can be called.
|
|
**
|
|
** If the record is corrupt, the xRecordCompare routine may read
|
|
** up to two varints past the end of the buffer. An extra 18
|
|
** bytes of padding is allocated at the end of the buffer in
|
|
** case this happens. */
|
|
void *pCellKey;
|
|
u8 * const pCellBody = pCell - pPage->childPtrSize;
|
|
const int nOverrun = 18; /* Size of the overrun padding */
|
|
pPage->xParseCell(pPage, pCellBody, &pCur->info);
|
|
nCell = (int)pCur->info.nKey;
|
|
testcase( nCell<0 ); /* True if key size is 2^32 or more */
|
|
testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
|
|
testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
|
|
testcase( nCell==2 ); /* Minimum legal index key size */
|
|
if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
|
|
rc = SQLITE_CORRUPT_PAGE(pPage);
|
|
goto moveto_index_finish;
|
|
}
|
|
pCellKey = sqlite3Malloc( nCell+nOverrun );
|
|
if( pCellKey==0 ){
|
|
rc = SQLITE_NOMEM_BKPT;
|
|
goto moveto_index_finish;
|
|
}
|
|
pCur->ix = (u16)idx;
|
|
rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
|
|
memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
|
|
pCur->curFlags &= ~BTCF_ValidOvfl;
|
|
if( rc ){
|
|
sqlite3_free(pCellKey);
|
|
goto moveto_index_finish;
|
|
}
|
|
c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
|
|
sqlite3_free(pCellKey);
|
|
}
|
|
assert(
|
|
(pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
|
|
&& (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
|
|
);
|
|
if( c<0 ){
|
|
lwr = idx+1;
|
|
}else if( c>0 ){
|
|
upr = idx-1;
|
|
}else{
|
|
assert( c==0 );
|
|
*pRes = 0;
|
|
rc = SQLITE_OK;
|
|
pCur->ix = (u16)idx;
|
|
if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
|
|
goto moveto_index_finish;
|
|
}
|
|
if( lwr>upr ) break;
|
|
assert( lwr+upr>=0 );
|
|
idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
|
|
}
|
|
assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
|
|
assert( pPage->isInit );
|
|
if( pPage->leaf ){
|
|
assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
|
|
pCur->ix = (u16)idx;
|
|
*pRes = c;
|
|
rc = SQLITE_OK;
|
|
goto moveto_index_finish;
|
|
}
|
|
if( lwr>=pPage->nCell ){
|
|
chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
|
|
}else{
|
|
chldPg = get4byte(findCell(pPage, lwr));
|
|
}
|
|
|
|
/* This block is similar to an in-lined version of:
|
|
**
|
|
** pCur->ix = (u16)lwr;
|
|
** rc = moveToChild(pCur, chldPg);
|
|
** if( rc ) break;
|
|
*/
|
|
pCur->info.nSize = 0;
|
|
pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
|
|
if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
pCur->aiIdx[pCur->iPage] = (u16)lwr;
|
|
pCur->apPage[pCur->iPage] = pCur->pPage;
|
|
pCur->ix = 0;
|
|
pCur->iPage++;
|
|
rc = getAndInitPage(pCur->pBt, chldPg, &pCur->pPage, pCur->curPagerFlags);
|
|
if( rc==SQLITE_OK
|
|
&& (pCur->pPage->nCell<1 || pCur->pPage->intKey!=pCur->curIntKey)
|
|
){
|
|
releasePage(pCur->pPage);
|
|
rc = SQLITE_CORRUPT_PGNO(chldPg);
|
|
}
|
|
if( rc ){
|
|
pCur->pPage = pCur->apPage[--pCur->iPage];
|
|
break;
|
|
}
|
|
/*
|
|
***** End of in-lined moveToChild() call */
|
|
}
|
|
moveto_index_finish:
|
|
pCur->info.nSize = 0;
|
|
assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Return TRUE if the cursor is not pointing at an entry of the table.
|
|
**
|
|
** TRUE will be returned after a call to sqlite3BtreeNext() moves
|
|
** past the last entry in the table or sqlite3BtreePrev() moves past
|
|
** the first entry. TRUE is also returned if the table is empty.
|
|
*/
|
|
int sqlite3BtreeEof(BtCursor *pCur){
|
|
/* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
|
|
** have been deleted? This API will need to change to return an error code
|
|
** as well as the boolean result value.
|
|
*/
|
|
return (CURSOR_VALID!=pCur->eState);
|
|
}
|
|
|
|
/*
|
|
** Return an estimate for the number of rows in the table that pCur is
|
|
** pointing to. Return a negative number if no estimate is currently
|
|
** available.
|
|
*/
|
|
i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
|
|
i64 n;
|
|
u8 i;
|
|
|
|
assert( cursorOwnsBtShared(pCur) );
|
|
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
|
|
|
|
/* Currently this interface is only called by the OP_IfSizeBetween
|
|
** opcode and the OP_Count opcode with P3=1. In either case,
|
|
** the cursor will always be valid unless the btree is empty. */
|
|
if( pCur->eState!=CURSOR_VALID ) return 0;
|
|
if( NEVER(pCur->pPage->leaf==0) ) return -1;
|
|
|
|
n = pCur->pPage->nCell;
|
|
for(i=0; i<pCur->iPage; i++){
|
|
n *= pCur->apPage[i]->nCell;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Advance the cursor to the next entry in the database.
|
|
** Return value:
|
|
**
|
|
** SQLITE_OK success
|
|
** SQLITE_DONE cursor is already pointing at the last element
|
|
** otherwise some kind of error occurred
|
|
**
|
|
** The main entry point is sqlite3BtreeNext(). That routine is optimized
|
|
** for the common case of merely incrementing the cell counter BtCursor.aiIdx
|
|
** to the next cell on the current page. The (slower) btreeNext() helper
|
|
** routine is called when it is necessary to move to a different page or
|
|
** to restore the cursor.
|
|
**
|
|
** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
|
|
** cursor corresponds to an SQL index and this routine could have been
|
|
** skipped if the SQL index had been a unique index. The F argument
|
|
** is a hint to the implement. SQLite btree implementation does not use
|
|
** this hint, but COMDB2 does.
|
|
*/
|
|
static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
|
|
int rc;
|
|
int idx;
|
|
MemPage *pPage;
|
|
|
|
assert( cursorOwnsBtShared(pCur) );
|
|
if( pCur->eState!=CURSOR_VALID ){
|
|
assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
|
|
rc = restoreCursorPosition(pCur);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
if( CURSOR_INVALID==pCur->eState ){
|
|
return SQLITE_DONE;
|
|
}
|
|
if( pCur->eState==CURSOR_SKIPNEXT ){
|
|
pCur->eState = CURSOR_VALID;
|
|
if( pCur->skipNext>0 ) return SQLITE_OK;
|
|
}
|
|
}
|
|
|
|
pPage = pCur->pPage;
|
|
idx = ++pCur->ix;
|
|
if( sqlite3FaultSim(412) ) pPage->isInit = 0;
|
|
if( !pPage->isInit ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
|
|
if( idx>=pPage->nCell ){
|
|
if( !pPage->leaf ){
|
|
rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
|
|
if( rc ) return rc;
|
|
return moveToLeftmost(pCur);
|
|
}
|
|
do{
|
|
if( pCur->iPage==0 ){
|
|
pCur->eState = CURSOR_INVALID;
|
|
return SQLITE_DONE;
|
|
}
|
|
moveToParent(pCur);
|
|
pPage = pCur->pPage;
|
|
}while( pCur->ix>=pPage->nCell );
|
|
if( pPage->intKey ){
|
|
return sqlite3BtreeNext(pCur, 0);
|
|
}else{
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
if( pPage->leaf ){
|
|
return SQLITE_OK;
|
|
}else{
|
|
return moveToLeftmost(pCur);
|
|
}
|
|
}
|
|
int sqlite3BtreeNext(BtCursor *pCur, int flags){
|
|
MemPage *pPage;
|
|
UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
|
|
assert( cursorOwnsBtShared(pCur) );
|
|
assert( flags==0 || flags==1 );
|
|
pCur->info.nSize = 0;
|
|
pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
|
|
if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
|
|
pPage = pCur->pPage;
|
|
if( (++pCur->ix)>=pPage->nCell ){
|
|
pCur->ix--;
|
|
return btreeNext(pCur);
|
|
}
|
|
if( pPage->leaf ){
|
|
return SQLITE_OK;
|
|
}else{
|
|
return moveToLeftmost(pCur);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Step the cursor to the back to the previous entry in the database.
|
|
** Return values:
|
|
**
|
|
** SQLITE_OK success
|
|
** SQLITE_DONE the cursor is already on the first element of the table
|
|
** otherwise some kind of error occurred
|
|
**
|
|
** The main entry point is sqlite3BtreePrevious(). That routine is optimized
|
|
** for the common case of merely decrementing the cell counter BtCursor.aiIdx
|
|
** to the previous cell on the current page. The (slower) btreePrevious()
|
|
** helper routine is called when it is necessary to move to a different page
|
|
** or to restore the cursor.
|
|
**
|
|
** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
|
|
** the cursor corresponds to an SQL index and this routine could have been
|
|
** skipped if the SQL index had been a unique index. The F argument is a
|
|
** hint to the implement. The native SQLite btree implementation does not
|
|
** use this hint, but COMDB2 does.
|
|
*/
|
|
static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
|
|
int rc;
|
|
MemPage *pPage;
|
|
|
|
assert( cursorOwnsBtShared(pCur) );
|
|
assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
|
|
assert( pCur->info.nSize==0 );
|
|
if( pCur->eState!=CURSOR_VALID ){
|
|
rc = restoreCursorPosition(pCur);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
if( CURSOR_INVALID==pCur->eState ){
|
|
return SQLITE_DONE;
|
|
}
|
|
if( CURSOR_SKIPNEXT==pCur->eState ){
|
|
pCur->eState = CURSOR_VALID;
|
|
if( pCur->skipNext<0 ) return SQLITE_OK;
|
|
}
|
|
}
|
|
|
|
pPage = pCur->pPage;
|
|
if( sqlite3FaultSim(412) ) pPage->isInit = 0;
|
|
if( !pPage->isInit ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
if( !pPage->leaf ){
|
|
int idx = pCur->ix;
|
|
rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
|
|
if( rc ) return rc;
|
|
rc = moveToRightmost(pCur);
|
|
}else{
|
|
while( pCur->ix==0 ){
|
|
if( pCur->iPage==0 ){
|
|
pCur->eState = CURSOR_INVALID;
|
|
return SQLITE_DONE;
|
|
}
|
|
moveToParent(pCur);
|
|
}
|
|
assert( pCur->info.nSize==0 );
|
|
assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
|
|
|
|
pCur->ix--;
|
|
pPage = pCur->pPage;
|
|
if( pPage->intKey && !pPage->leaf ){
|
|
rc = sqlite3BtreePrevious(pCur, 0);
|
|
}else{
|
|
rc = SQLITE_OK;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
int sqlite3BtreePrevious(BtCursor *pCur, int flags){
|
|
assert( cursorOwnsBtShared(pCur) );
|
|
assert( flags==0 || flags==1 );
|
|
UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
|
|
pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
|
|
pCur->info.nSize = 0;
|
|
if( pCur->eState!=CURSOR_VALID
|
|
|| pCur->ix==0
|
|
|| pCur->pPage->leaf==0
|
|
){
|
|
return btreePrevious(pCur);
|
|
}
|
|
pCur->ix--;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Allocate a new page from the database file.
|
|
**
|
|
** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
|
|
** has already been called on the new page.) The new page has also
|
|
** been referenced and the calling routine is responsible for calling
|
|
** sqlite3PagerUnref() on the new page when it is done.
|
|
**
|
|
** SQLITE_OK is returned on success. Any other return value indicates
|
|
** an error. *ppPage is set to NULL in the event of an error.
|
|
**
|
|
** If the "nearby" parameter is not 0, then an effort is made to
|
|
** locate a page close to the page number "nearby". This can be used in an
|
|
** attempt to keep related pages close to each other in the database file,
|
|
** which in turn can make database access faster.
|
|
**
|
|
** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
|
|
** anywhere on the free-list, then it is guaranteed to be returned. If
|
|
** eMode is BTALLOC_LT then the page returned will be less than or equal
|
|
** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
|
|
** are no restrictions on which page is returned.
|
|
*/
|
|
static int allocateBtreePage(
|
|
BtShared *pBt, /* The btree */
|
|
MemPage **ppPage, /* Store pointer to the allocated page here */
|
|
Pgno *pPgno, /* Store the page number here */
|
|
Pgno nearby, /* Search for a page near this one */
|
|
u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
|
|
){
|
|
MemPage *pPage1;
|
|
int rc;
|
|
u32 n; /* Number of pages on the freelist */
|
|
u32 k; /* Number of leaves on the trunk of the freelist */
|
|
MemPage *pTrunk = 0;
|
|
MemPage *pPrevTrunk = 0;
|
|
Pgno mxPage; /* Total size of the database file */
|
|
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
|
|
pPage1 = pBt->pPage1;
|
|
mxPage = btreePagecount(pBt);
|
|
/* EVIDENCE-OF: R-21003-45125 The 4-byte big-endian integer at offset 36
|
|
** stores the total number of pages on the freelist. */
|
|
n = get4byte(&pPage1->aData[36]);
|
|
testcase( n==mxPage-1 );
|
|
if( n>=mxPage ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
if( n>0 ){
|
|
/* There are pages on the freelist. Reuse one of those pages. */
|
|
Pgno iTrunk;
|
|
u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
|
|
u32 nSearch = 0; /* Count of the number of search attempts */
|
|
|
|
/* If eMode==BTALLOC_EXACT and a query of the pointer-map
|
|
** shows that the page 'nearby' is somewhere on the free-list, then
|
|
** the entire-list will be searched for that page.
|
|
*/
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( eMode==BTALLOC_EXACT ){
|
|
if( nearby<=mxPage ){
|
|
u8 eType;
|
|
assert( nearby>0 );
|
|
assert( pBt->autoVacuum );
|
|
rc = ptrmapGet(pBt, nearby, &eType, 0);
|
|
if( rc ) return rc;
|
|
if( eType==PTRMAP_FREEPAGE ){
|
|
searchList = 1;
|
|
}
|
|
}
|
|
}else if( eMode==BTALLOC_LE ){
|
|
searchList = 1;
|
|
}
|
|
#endif
|
|
|
|
/* Decrement the free-list count by 1. Set iTrunk to the index of the
|
|
** first free-list trunk page. iPrevTrunk is initially 1.
|
|
*/
|
|
rc = sqlite3PagerWrite(pPage1->pDbPage);
|
|
if( rc ) return rc;
|
|
put4byte(&pPage1->aData[36], n-1);
|
|
|
|
/* The code within this loop is run only once if the 'searchList' variable
|
|
** is not true. Otherwise, it runs once for each trunk-page on the
|
|
** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
|
|
** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
|
|
*/
|
|
do {
|
|
pPrevTrunk = pTrunk;
|
|
if( pPrevTrunk ){
|
|
/* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
|
|
** is the page number of the next freelist trunk page in the list or
|
|
** zero if this is the last freelist trunk page. */
|
|
iTrunk = get4byte(&pPrevTrunk->aData[0]);
|
|
}else{
|
|
/* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
|
|
** stores the page number of the first page of the freelist, or zero if
|
|
** the freelist is empty. */
|
|
iTrunk = get4byte(&pPage1->aData[32]);
|
|
}
|
|
testcase( iTrunk==mxPage );
|
|
if( iTrunk>mxPage || nSearch++ > n ){
|
|
rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
|
|
}else{
|
|
rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
|
|
}
|
|
if( rc ){
|
|
pTrunk = 0;
|
|
goto end_allocate_page;
|
|
}
|
|
assert( pTrunk!=0 );
|
|
assert( pTrunk->aData!=0 );
|
|
/* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
|
|
** is the number of leaf page pointers to follow. */
|
|
k = get4byte(&pTrunk->aData[4]);
|
|
if( k==0 && !searchList ){
|
|
/* The trunk has no leaves and the list is not being searched.
|
|
** So extract the trunk page itself and use it as the newly
|
|
** allocated page */
|
|
assert( pPrevTrunk==0 );
|
|
rc = sqlite3PagerWrite(pTrunk->pDbPage);
|
|
if( rc ){
|
|
goto end_allocate_page;
|
|
}
|
|
*pPgno = iTrunk;
|
|
memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
|
|
*ppPage = pTrunk;
|
|
pTrunk = 0;
|
|
TRACE(("ALLOCATE: %u trunk - %u free pages left\n", *pPgno, n-1));
|
|
}else if( k>(u32)(pBt->usableSize/4 - 2) ){
|
|
/* Value of k is out of range. Database corruption */
|
|
rc = SQLITE_CORRUPT_PGNO(iTrunk);
|
|
goto end_allocate_page;
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
}else if( searchList
|
|
&& (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
|
|
){
|
|
/* The list is being searched and this trunk page is the page
|
|
** to allocate, regardless of whether it has leaves.
|
|
*/
|
|
*pPgno = iTrunk;
|
|
*ppPage = pTrunk;
|
|
searchList = 0;
|
|
rc = sqlite3PagerWrite(pTrunk->pDbPage);
|
|
if( rc ){
|
|
goto end_allocate_page;
|
|
}
|
|
if( k==0 ){
|
|
if( !pPrevTrunk ){
|
|
memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
|
|
}else{
|
|
rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
|
|
if( rc!=SQLITE_OK ){
|
|
goto end_allocate_page;
|
|
}
|
|
memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
|
|
}
|
|
}else{
|
|
/* The trunk page is required by the caller but it contains
|
|
** pointers to free-list leaves. The first leaf becomes a trunk
|
|
** page in this case.
|
|
*/
|
|
MemPage *pNewTrunk;
|
|
Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
|
|
if( iNewTrunk>mxPage ){
|
|
rc = SQLITE_CORRUPT_PGNO(iTrunk);
|
|
goto end_allocate_page;
|
|
}
|
|
testcase( iNewTrunk==mxPage );
|
|
rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
goto end_allocate_page;
|
|
}
|
|
rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
|
|
if( rc!=SQLITE_OK ){
|
|
releasePage(pNewTrunk);
|
|
goto end_allocate_page;
|
|
}
|
|
memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
|
|
put4byte(&pNewTrunk->aData[4], k-1);
|
|
memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
|
|
releasePage(pNewTrunk);
|
|
if( !pPrevTrunk ){
|
|
assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
|
|
put4byte(&pPage1->aData[32], iNewTrunk);
|
|
}else{
|
|
rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
|
|
if( rc ){
|
|
goto end_allocate_page;
|
|
}
|
|
put4byte(&pPrevTrunk->aData[0], iNewTrunk);
|
|
}
|
|
}
|
|
pTrunk = 0;
|
|
TRACE(("ALLOCATE: %u trunk - %u free pages left\n", *pPgno, n-1));
|
|
#endif
|
|
}else if( k>0 ){
|
|
/* Extract a leaf from the trunk */
|
|
u32 closest;
|
|
Pgno iPage;
|
|
unsigned char *aData = pTrunk->aData;
|
|
if( nearby>0 ){
|
|
u32 i;
|
|
closest = 0;
|
|
if( eMode==BTALLOC_LE ){
|
|
for(i=0; i<k; i++){
|
|
iPage = get4byte(&aData[8+i*4]);
|
|
if( iPage<=nearby ){
|
|
closest = i;
|
|
break;
|
|
}
|
|
}
|
|
}else{
|
|
int dist;
|
|
dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
|
|
for(i=1; i<k; i++){
|
|
int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
|
|
if( d2<dist ){
|
|
closest = i;
|
|
dist = d2;
|
|
}
|
|
}
|
|
}
|
|
}else{
|
|
closest = 0;
|
|
}
|
|
|
|
iPage = get4byte(&aData[8+closest*4]);
|
|
testcase( iPage==mxPage );
|
|
if( iPage>mxPage || iPage<2 ){
|
|
rc = SQLITE_CORRUPT_PGNO(iTrunk);
|
|
goto end_allocate_page;
|
|
}
|
|
testcase( iPage==mxPage );
|
|
if( !searchList
|
|
|| (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
|
|
){
|
|
int noContent;
|
|
*pPgno = iPage;
|
|
TRACE(("ALLOCATE: %u was leaf %u of %u on trunk %u"
|
|
": %u more free pages\n",
|
|
*pPgno, closest+1, k, pTrunk->pgno, n-1));
|
|
rc = sqlite3PagerWrite(pTrunk->pDbPage);
|
|
if( rc ) goto end_allocate_page;
|
|
if( closest<k-1 ){
|
|
memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
|
|
}
|
|
put4byte(&aData[4], k-1);
|
|
noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
|
|
rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3PagerWrite((*ppPage)->pDbPage);
|
|
if( rc!=SQLITE_OK ){
|
|
releasePage(*ppPage);
|
|
*ppPage = 0;
|
|
}
|
|
}
|
|
searchList = 0;
|
|
}
|
|
}
|
|
releasePage(pPrevTrunk);
|
|
pPrevTrunk = 0;
|
|
}while( searchList );
|
|
}else{
|
|
/* There are no pages on the freelist, so append a new page to the
|
|
** database image.
|
|
**
|
|
** Normally, new pages allocated by this block can be requested from the
|
|
** pager layer with the 'no-content' flag set. This prevents the pager
|
|
** from trying to read the pages content from disk. However, if the
|
|
** current transaction has already run one or more incremental-vacuum
|
|
** steps, then the page we are about to allocate may contain content
|
|
** that is required in the event of a rollback. In this case, do
|
|
** not set the no-content flag. This causes the pager to load and journal
|
|
** the current page content before overwriting it.
|
|
**
|
|
** Note that the pager will not actually attempt to load or journal
|
|
** content for any page that really does lie past the end of the database
|
|
** file on disk. So the effects of disabling the no-content optimization
|
|
** here are confined to those pages that lie between the end of the
|
|
** database image and the end of the database file.
|
|
*/
|
|
int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
|
|
|
|
rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
|
|
if( rc ) return rc;
|
|
pBt->nPage++;
|
|
if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
|
|
/* If *pPgno refers to a pointer-map page, allocate two new pages
|
|
** at the end of the file instead of one. The first allocated page
|
|
** becomes a new pointer-map page, the second is used by the caller.
|
|
*/
|
|
MemPage *pPg = 0;
|
|
TRACE(("ALLOCATE: %u from end of file (pointer-map page)\n", pBt->nPage));
|
|
assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
|
|
rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3PagerWrite(pPg->pDbPage);
|
|
releasePage(pPg);
|
|
}
|
|
if( rc ) return rc;
|
|
pBt->nPage++;
|
|
if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
|
|
}
|
|
#endif
|
|
put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
|
|
*pPgno = pBt->nPage;
|
|
|
|
assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
|
|
rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
|
|
if( rc ) return rc;
|
|
rc = sqlite3PagerWrite((*ppPage)->pDbPage);
|
|
if( rc!=SQLITE_OK ){
|
|
releasePage(*ppPage);
|
|
*ppPage = 0;
|
|
}
|
|
TRACE(("ALLOCATE: %u from end of file\n", *pPgno));
|
|
}
|
|
|
|
assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
|
|
|
|
end_allocate_page:
|
|
releasePage(pTrunk);
|
|
releasePage(pPrevTrunk);
|
|
assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
|
|
assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This function is used to add page iPage to the database file free-list.
|
|
** It is assumed that the page is not already a part of the free-list.
|
|
**
|
|
** The value passed as the second argument to this function is optional.
|
|
** If the caller happens to have a pointer to the MemPage object
|
|
** corresponding to page iPage handy, it may pass it as the second value.
|
|
** Otherwise, it may pass NULL.
|
|
**
|
|
** If a pointer to a MemPage object is passed as the second argument,
|
|
** its reference count is not altered by this function.
|
|
*/
|
|
static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
|
|
MemPage *pTrunk = 0; /* Free-list trunk page */
|
|
Pgno iTrunk = 0; /* Page number of free-list trunk page */
|
|
MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
|
|
MemPage *pPage; /* Page being freed. May be NULL. */
|
|
int rc; /* Return Code */
|
|
u32 nFree; /* Initial number of pages on free-list */
|
|
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
assert( CORRUPT_DB || iPage>1 );
|
|
assert( !pMemPage || pMemPage->pgno==iPage );
|
|
|
|
if( iPage<2 || iPage>pBt->nPage ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
if( pMemPage ){
|
|
pPage = pMemPage;
|
|
sqlite3PagerRef(pPage->pDbPage);
|
|
}else{
|
|
pPage = btreePageLookup(pBt, iPage);
|
|
}
|
|
|
|
/* Increment the free page count on pPage1 */
|
|
rc = sqlite3PagerWrite(pPage1->pDbPage);
|
|
if( rc ) goto freepage_out;
|
|
nFree = get4byte(&pPage1->aData[36]);
|
|
put4byte(&pPage1->aData[36], nFree+1);
|
|
|
|
if( pBt->btsFlags & BTS_SECURE_DELETE ){
|
|
/* If the secure_delete option is enabled, then
|
|
** always fully overwrite deleted information with zeros.
|
|
*/
|
|
if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
|
|
|| ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
|
|
){
|
|
goto freepage_out;
|
|
}
|
|
memset(pPage->aData, 0, pPage->pBt->pageSize);
|
|
}
|
|
|
|
/* If the database supports auto-vacuum, write an entry in the pointer-map
|
|
** to indicate that the page is free.
|
|
*/
|
|
if( ISAUTOVACUUM(pBt) ){
|
|
ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
|
|
if( rc ) goto freepage_out;
|
|
}
|
|
|
|
/* Now manipulate the actual database free-list structure. There are two
|
|
** possibilities. If the free-list is currently empty, or if the first
|
|
** trunk page in the free-list is full, then this page will become a
|
|
** new free-list trunk page. Otherwise, it will become a leaf of the
|
|
** first trunk page in the current free-list. This block tests if it
|
|
** is possible to add the page as a new free-list leaf.
|
|
*/
|
|
if( nFree!=0 ){
|
|
u32 nLeaf; /* Initial number of leaf cells on trunk page */
|
|
|
|
iTrunk = get4byte(&pPage1->aData[32]);
|
|
if( iTrunk>btreePagecount(pBt) ){
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
goto freepage_out;
|
|
}
|
|
rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
goto freepage_out;
|
|
}
|
|
|
|
nLeaf = get4byte(&pTrunk->aData[4]);
|
|
assert( pBt->usableSize>32 );
|
|
if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
goto freepage_out;
|
|
}
|
|
if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
|
|
/* In this case there is room on the trunk page to insert the page
|
|
** being freed as a new leaf.
|
|
**
|
|
** Note that the trunk page is not really full until it contains
|
|
** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
|
|
** coded. But due to a coding error in versions of SQLite prior to
|
|
** 3.6.0, databases with freelist trunk pages holding more than
|
|
** usableSize/4 - 8 entries will be reported as corrupt. In order
|
|
** to maintain backwards compatibility with older versions of SQLite,
|
|
** we will continue to restrict the number of entries to usableSize/4 - 8
|
|
** for now. At some point in the future (once everyone has upgraded
|
|
** to 3.6.0 or later) we should consider fixing the conditional above
|
|
** to read "usableSize/4-2" instead of "usableSize/4-8".
|
|
**
|
|
** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
|
|
** avoid using the last six entries in the freelist trunk page array in
|
|
** order that database files created by newer versions of SQLite can be
|
|
** read by older versions of SQLite.
|
|
*/
|
|
rc = sqlite3PagerWrite(pTrunk->pDbPage);
|
|
if( rc==SQLITE_OK ){
|
|
put4byte(&pTrunk->aData[4], nLeaf+1);
|
|
put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
|
|
if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
|
|
sqlite3PagerDontWrite(pPage->pDbPage);
|
|
}
|
|
rc = btreeSetHasContent(pBt, iPage);
|
|
}
|
|
TRACE(("FREE-PAGE: %u leaf on trunk page %u\n",pPage->pgno,pTrunk->pgno));
|
|
goto freepage_out;
|
|
}
|
|
}
|
|
|
|
/* If control flows to this point, then it was not possible to add the
|
|
** the page being freed as a leaf page of the first trunk in the free-list.
|
|
** Possibly because the free-list is empty, or possibly because the
|
|
** first trunk in the free-list is full. Either way, the page being freed
|
|
** will become the new first trunk page in the free-list.
|
|
*/
|
|
if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
|
|
goto freepage_out;
|
|
}
|
|
rc = sqlite3PagerWrite(pPage->pDbPage);
|
|
if( rc!=SQLITE_OK ){
|
|
goto freepage_out;
|
|
}
|
|
put4byte(pPage->aData, iTrunk);
|
|
put4byte(&pPage->aData[4], 0);
|
|
put4byte(&pPage1->aData[32], iPage);
|
|
TRACE(("FREE-PAGE: %u new trunk page replacing %u\n", pPage->pgno, iTrunk));
|
|
|
|
freepage_out:
|
|
if( pPage ){
|
|
pPage->isInit = 0;
|
|
}
|
|
releasePage(pPage);
|
|
releasePage(pTrunk);
|
|
return rc;
|
|
}
|
|
static void freePage(MemPage *pPage, int *pRC){
|
|
if( (*pRC)==SQLITE_OK ){
|
|
*pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Free the overflow pages associated with the given Cell.
|
|
*/
|
|
static SQLITE_NOINLINE int clearCellOverflow(
|
|
MemPage *pPage, /* The page that contains the Cell */
|
|
unsigned char *pCell, /* First byte of the Cell */
|
|
CellInfo *pInfo /* Size information about the cell */
|
|
){
|
|
BtShared *pBt;
|
|
Pgno ovflPgno;
|
|
int rc;
|
|
int nOvfl;
|
|
u32 ovflPageSize;
|
|
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
assert( pInfo->nLocal!=pInfo->nPayload );
|
|
testcase( pCell + pInfo->nSize == pPage->aDataEnd );
|
|
testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
|
|
if( pCell + pInfo->nSize > pPage->aDataEnd ){
|
|
/* Cell extends past end of page */
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
ovflPgno = get4byte(pCell + pInfo->nSize - 4);
|
|
pBt = pPage->pBt;
|
|
assert( pBt->usableSize > 4 );
|
|
ovflPageSize = pBt->usableSize - 4;
|
|
nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
|
|
assert( nOvfl>0 ||
|
|
(CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
|
|
);
|
|
while( nOvfl-- ){
|
|
Pgno iNext = 0;
|
|
MemPage *pOvfl = 0;
|
|
if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
|
|
/* 0 is not a legal page number and page 1 cannot be an
|
|
** overflow page. Therefore if ovflPgno<2 or past the end of the
|
|
** file the database must be corrupt. */
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
if( nOvfl ){
|
|
rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
|
|
if( rc ) return rc;
|
|
}
|
|
|
|
if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
|
|
&& sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
|
|
){
|
|
/* There is no reason any cursor should have an outstanding reference
|
|
** to an overflow page belonging to a cell that is being deleted/updated.
|
|
** So if there exists more than one reference to this page, then it
|
|
** must not really be an overflow page and the database must be corrupt.
|
|
** It is helpful to detect this before calling freePage2(), as
|
|
** freePage2() may zero the page contents if secure-delete mode is
|
|
** enabled. If this 'overflow' page happens to be a page that the
|
|
** caller is iterating through or using in some other way, this
|
|
** can be problematic.
|
|
*/
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
}else{
|
|
rc = freePage2(pBt, pOvfl, ovflPgno);
|
|
}
|
|
|
|
if( pOvfl ){
|
|
sqlite3PagerUnref(pOvfl->pDbPage);
|
|
}
|
|
if( rc ) return rc;
|
|
ovflPgno = iNext;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Call xParseCell to compute the size of a cell. If the cell contains
|
|
** overflow, then invoke cellClearOverflow to clear out that overflow.
|
|
** Store the result code (SQLITE_OK or some error code) in rc.
|
|
**
|
|
** Implemented as macro to force inlining for performance.
|
|
*/
|
|
#define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \
|
|
pPage->xParseCell(pPage, pCell, &sInfo); \
|
|
if( sInfo.nLocal!=sInfo.nPayload ){ \
|
|
rc = clearCellOverflow(pPage, pCell, &sInfo); \
|
|
}else{ \
|
|
rc = SQLITE_OK; \
|
|
}
|
|
|
|
|
|
/*
|
|
** Create the byte sequence used to represent a cell on page pPage
|
|
** and write that byte sequence into pCell[]. Overflow pages are
|
|
** allocated and filled in as necessary. The calling procedure
|
|
** is responsible for making sure sufficient space has been allocated
|
|
** for pCell[].
|
|
**
|
|
** Note that pCell does not necessary need to point to the pPage->aData
|
|
** area. pCell might point to some temporary storage. The cell will
|
|
** be constructed in this temporary area then copied into pPage->aData
|
|
** later.
|
|
*/
|
|
static int fillInCell(
|
|
MemPage *pPage, /* The page that contains the cell */
|
|
unsigned char *pCell, /* Complete text of the cell */
|
|
const BtreePayload *pX, /* Payload with which to construct the cell */
|
|
int *pnSize /* Write cell size here */
|
|
){
|
|
int nPayload;
|
|
const u8 *pSrc;
|
|
int nSrc, n, rc, mn;
|
|
int spaceLeft;
|
|
MemPage *pToRelease;
|
|
unsigned char *pPrior;
|
|
unsigned char *pPayload;
|
|
BtShared *pBt;
|
|
Pgno pgnoOvfl;
|
|
int nHeader;
|
|
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
|
|
/* pPage is not necessarily writeable since pCell might be auxiliary
|
|
** buffer space that is separate from the pPage buffer area */
|
|
assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
|
|
|| sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
|
|
/* Fill in the header. */
|
|
nHeader = pPage->childPtrSize;
|
|
if( pPage->intKey ){
|
|
nPayload = pX->nData + pX->nZero;
|
|
pSrc = pX->pData;
|
|
nSrc = pX->nData;
|
|
assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
|
|
nHeader += putVarint32(&pCell[nHeader], nPayload);
|
|
nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
|
|
}else{
|
|
assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
|
|
nSrc = nPayload = (int)pX->nKey;
|
|
pSrc = pX->pKey;
|
|
nHeader += putVarint32(&pCell[nHeader], nPayload);
|
|
}
|
|
|
|
/* Fill in the payload */
|
|
pPayload = &pCell[nHeader];
|
|
if( nPayload<=pPage->maxLocal ){
|
|
/* This is the common case where everything fits on the btree page
|
|
** and no overflow pages are required. */
|
|
n = nHeader + nPayload;
|
|
testcase( n==3 );
|
|
testcase( n==4 );
|
|
if( n<4 ){
|
|
n = 4;
|
|
pPayload[nPayload] = 0;
|
|
}
|
|
*pnSize = n;
|
|
assert( nSrc<=nPayload );
|
|
testcase( nSrc<nPayload );
|
|
memcpy(pPayload, pSrc, nSrc);
|
|
memset(pPayload+nSrc, 0, nPayload-nSrc);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* If we reach this point, it means that some of the content will need
|
|
** to spill onto overflow pages.
|
|
*/
|
|
mn = pPage->minLocal;
|
|
n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
|
|
testcase( n==pPage->maxLocal );
|
|
testcase( n==pPage->maxLocal+1 );
|
|
if( n > pPage->maxLocal ) n = mn;
|
|
spaceLeft = n;
|
|
*pnSize = n + nHeader + 4;
|
|
pPrior = &pCell[nHeader+n];
|
|
pToRelease = 0;
|
|
pgnoOvfl = 0;
|
|
pBt = pPage->pBt;
|
|
|
|
/* At this point variables should be set as follows:
|
|
**
|
|
** nPayload Total payload size in bytes
|
|
** pPayload Begin writing payload here
|
|
** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
|
|
** that means content must spill into overflow pages.
|
|
** *pnSize Size of the local cell (not counting overflow pages)
|
|
** pPrior Where to write the pgno of the first overflow page
|
|
**
|
|
** Use a call to btreeParseCellPtr() to verify that the values above
|
|
** were computed correctly.
|
|
*/
|
|
#ifdef SQLITE_DEBUG
|
|
{
|
|
CellInfo info;
|
|
pPage->xParseCell(pPage, pCell, &info);
|
|
assert( nHeader==(int)(info.pPayload - pCell) );
|
|
assert( info.nKey==pX->nKey );
|
|
assert( *pnSize == info.nSize );
|
|
assert( spaceLeft == info.nLocal );
|
|
}
|
|
#endif
|
|
|
|
/* Write the payload into the local Cell and any extra into overflow pages */
|
|
while( 1 ){
|
|
n = nPayload;
|
|
if( n>spaceLeft ) n = spaceLeft;
|
|
|
|
/* If pToRelease is not zero than pPayload points into the data area
|
|
** of pToRelease. Make sure pToRelease is still writeable. */
|
|
assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
|
|
|
|
/* If pPayload is part of the data area of pPage, then make sure pPage
|
|
** is still writeable */
|
|
assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
|
|
|| sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
|
|
if( nSrc>=n ){
|
|
memcpy(pPayload, pSrc, n);
|
|
}else if( nSrc>0 ){
|
|
n = nSrc;
|
|
memcpy(pPayload, pSrc, n);
|
|
}else{
|
|
memset(pPayload, 0, n);
|
|
}
|
|
nPayload -= n;
|
|
if( nPayload<=0 ) break;
|
|
pPayload += n;
|
|
pSrc += n;
|
|
nSrc -= n;
|
|
spaceLeft -= n;
|
|
if( spaceLeft==0 ){
|
|
MemPage *pOvfl = 0;
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
|
|
if( pBt->autoVacuum ){
|
|
do{
|
|
pgnoOvfl++;
|
|
} while(
|
|
PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
|
|
);
|
|
}
|
|
#endif
|
|
rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
/* If the database supports auto-vacuum, and the second or subsequent
|
|
** overflow page is being allocated, add an entry to the pointer-map
|
|
** for that page now.
|
|
**
|
|
** If this is the first overflow page, then write a partial entry
|
|
** to the pointer-map. If we write nothing to this pointer-map slot,
|
|
** then the optimistic overflow chain processing in clearCell()
|
|
** may misinterpret the uninitialized values and delete the
|
|
** wrong pages from the database.
|
|
*/
|
|
if( pBt->autoVacuum && rc==SQLITE_OK ){
|
|
u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
|
|
ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
|
|
if( rc ){
|
|
releasePage(pOvfl);
|
|
}
|
|
}
|
|
#endif
|
|
if( rc ){
|
|
releasePage(pToRelease);
|
|
return rc;
|
|
}
|
|
|
|
/* If pToRelease is not zero than pPrior points into the data area
|
|
** of pToRelease. Make sure pToRelease is still writeable. */
|
|
assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
|
|
|
|
/* If pPrior is part of the data area of pPage, then make sure pPage
|
|
** is still writeable */
|
|
assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
|
|
|| sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
|
|
put4byte(pPrior, pgnoOvfl);
|
|
releasePage(pToRelease);
|
|
pToRelease = pOvfl;
|
|
pPrior = pOvfl->aData;
|
|
put4byte(pPrior, 0);
|
|
pPayload = &pOvfl->aData[4];
|
|
spaceLeft = pBt->usableSize - 4;
|
|
}
|
|
}
|
|
releasePage(pToRelease);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Remove the i-th cell from pPage. This routine effects pPage only.
|
|
** The cell content is not freed or deallocated. It is assumed that
|
|
** the cell content has been copied someplace else. This routine just
|
|
** removes the reference to the cell from pPage.
|
|
**
|
|
** "sz" must be the number of bytes in the cell.
|
|
*/
|
|
static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
|
|
u32 pc; /* Offset to cell content of cell being deleted */
|
|
u8 *data; /* pPage->aData */
|
|
u8 *ptr; /* Used to move bytes around within data[] */
|
|
int rc; /* The return code */
|
|
int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
|
|
|
|
if( *pRC ) return;
|
|
assert( idx>=0 );
|
|
assert( idx<pPage->nCell );
|
|
assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
|
|
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
assert( pPage->nFree>=0 );
|
|
data = pPage->aData;
|
|
ptr = &pPage->aCellIdx[2*idx];
|
|
assert( pPage->pBt->usableSize > (u32)(ptr-data) );
|
|
pc = get2byte(ptr);
|
|
hdr = pPage->hdrOffset;
|
|
testcase( pc==(u32)get2byte(&data[hdr+5]) );
|
|
testcase( pc+sz==pPage->pBt->usableSize );
|
|
if( pc+sz > pPage->pBt->usableSize ){
|
|
*pRC = SQLITE_CORRUPT_BKPT;
|
|
return;
|
|
}
|
|
rc = freeSpace(pPage, pc, sz);
|
|
if( rc ){
|
|
*pRC = rc;
|
|
return;
|
|
}
|
|
pPage->nCell--;
|
|
if( pPage->nCell==0 ){
|
|
memset(&data[hdr+1], 0, 4);
|
|
data[hdr+7] = 0;
|
|
put2byte(&data[hdr+5], pPage->pBt->usableSize);
|
|
pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
|
|
- pPage->childPtrSize - 8;
|
|
}else{
|
|
memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
|
|
put2byte(&data[hdr+3], pPage->nCell);
|
|
pPage->nFree += 2;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Insert a new cell on pPage at cell index "i". pCell points to the
|
|
** content of the cell.
|
|
**
|
|
** If the cell content will fit on the page, then put it there. If it
|
|
** will not fit, then make a copy of the cell content into pTemp if
|
|
** pTemp is not null. Regardless of pTemp, allocate a new entry
|
|
** in pPage->apOvfl[] and make it point to the cell content (either
|
|
** in pTemp or the original pCell) and also record its index.
|
|
** Allocating a new entry in pPage->aCell[] implies that
|
|
** pPage->nOverflow is incremented.
|
|
**
|
|
** The insertCellFast() routine below works exactly the same as
|
|
** insertCell() except that it lacks the pTemp and iChild parameters
|
|
** which are assumed zero. Other than that, the two routines are the
|
|
** same.
|
|
**
|
|
** Fixes or enhancements to this routine should be reflected in
|
|
** insertCellFast()!
|
|
*/
|
|
static int insertCell(
|
|
MemPage *pPage, /* Page into which we are copying */
|
|
int i, /* New cell becomes the i-th cell of the page */
|
|
u8 *pCell, /* Content of the new cell */
|
|
int sz, /* Bytes of content in pCell */
|
|
u8 *pTemp, /* Temp storage space for pCell, if needed */
|
|
Pgno iChild /* If non-zero, replace first 4 bytes with this value */
|
|
){
|
|
int idx = 0; /* Where to write new cell content in data[] */
|
|
int j; /* Loop counter */
|
|
u8 *data; /* The content of the whole page */
|
|
u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
|
|
|
|
assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
|
|
assert( MX_CELL(pPage->pBt)<=10921 );
|
|
assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
|
|
assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
|
|
assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
|
|
assert( pPage->nFree>=0 );
|
|
assert( iChild>0 );
|
|
if( pPage->nOverflow || sz+2>pPage->nFree ){
|
|
if( pTemp ){
|
|
memcpy(pTemp, pCell, sz);
|
|
pCell = pTemp;
|
|
}
|
|
put4byte(pCell, iChild);
|
|
j = pPage->nOverflow++;
|
|
/* Comparison against ArraySize-1 since we hold back one extra slot
|
|
** as a contingency. In other words, never need more than 3 overflow
|
|
** slots but 4 are allocated, just to be safe. */
|
|
assert( j < ArraySize(pPage->apOvfl)-1 );
|
|
pPage->apOvfl[j] = pCell;
|
|
pPage->aiOvfl[j] = (u16)i;
|
|
|
|
/* When multiple overflows occur, they are always sequential and in
|
|
** sorted order. This invariants arise because multiple overflows can
|
|
** only occur when inserting divider cells into the parent page during
|
|
** balancing, and the dividers are adjacent and sorted.
|
|
*/
|
|
assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
|
|
assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
|
|
}else{
|
|
int rc = sqlite3PagerWrite(pPage->pDbPage);
|
|
if( NEVER(rc!=SQLITE_OK) ){
|
|
return rc;
|
|
}
|
|
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
data = pPage->aData;
|
|
assert( &data[pPage->cellOffset]==pPage->aCellIdx );
|
|
rc = allocateSpace(pPage, sz, &idx);
|
|
if( rc ){ return rc; }
|
|
/* The allocateSpace() routine guarantees the following properties
|
|
** if it returns successfully */
|
|
assert( idx >= 0 );
|
|
assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
|
|
assert( idx+sz <= (int)pPage->pBt->usableSize );
|
|
pPage->nFree -= (u16)(2 + sz);
|
|
/* In a corrupt database where an entry in the cell index section of
|
|
** a btree page has a value of 3 or less, the pCell value might point
|
|
** as many as 4 bytes in front of the start of the aData buffer for
|
|
** the source page. Make sure this does not cause problems by not
|
|
** reading the first 4 bytes */
|
|
memcpy(&data[idx+4], pCell+4, sz-4);
|
|
put4byte(&data[idx], iChild);
|
|
pIns = pPage->aCellIdx + i*2;
|
|
memmove(pIns+2, pIns, 2*(pPage->nCell - i));
|
|
put2byte(pIns, idx);
|
|
pPage->nCell++;
|
|
/* increment the cell count */
|
|
if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
|
|
assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pPage->pBt->autoVacuum ){
|
|
int rc2 = SQLITE_OK;
|
|
/* The cell may contain a pointer to an overflow page. If so, write
|
|
** the entry for the overflow page into the pointer map.
|
|
*/
|
|
ptrmapPutOvflPtr(pPage, pPage, pCell, &rc2);
|
|
if( rc2 ) return rc2;
|
|
}
|
|
#endif
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** This variant of insertCell() assumes that the pTemp and iChild
|
|
** parameters are both zero. Use this variant in sqlite3BtreeInsert()
|
|
** for performance improvement, and also so that this variant is only
|
|
** called from that one place, and is thus inlined, and thus runs must
|
|
** faster.
|
|
**
|
|
** Fixes or enhancements to this routine should be reflected into
|
|
** the insertCell() routine.
|
|
*/
|
|
static int insertCellFast(
|
|
MemPage *pPage, /* Page into which we are copying */
|
|
int i, /* New cell becomes the i-th cell of the page */
|
|
u8 *pCell, /* Content of the new cell */
|
|
int sz /* Bytes of content in pCell */
|
|
){
|
|
int idx = 0; /* Where to write new cell content in data[] */
|
|
int j; /* Loop counter */
|
|
u8 *data; /* The content of the whole page */
|
|
u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
|
|
|
|
assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
|
|
assert( MX_CELL(pPage->pBt)<=10921 );
|
|
assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
|
|
assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
|
|
assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
|
|
assert( pPage->nFree>=0 );
|
|
assert( pPage->nOverflow==0 );
|
|
if( sz+2>pPage->nFree ){
|
|
j = pPage->nOverflow++;
|
|
/* Comparison against ArraySize-1 since we hold back one extra slot
|
|
** as a contingency. In other words, never need more than 3 overflow
|
|
** slots but 4 are allocated, just to be safe. */
|
|
assert( j < ArraySize(pPage->apOvfl)-1 );
|
|
pPage->apOvfl[j] = pCell;
|
|
pPage->aiOvfl[j] = (u16)i;
|
|
|
|
/* When multiple overflows occur, they are always sequential and in
|
|
** sorted order. This invariants arise because multiple overflows can
|
|
** only occur when inserting divider cells into the parent page during
|
|
** balancing, and the dividers are adjacent and sorted.
|
|
*/
|
|
assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
|
|
assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
|
|
}else{
|
|
int rc = sqlite3PagerWrite(pPage->pDbPage);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
data = pPage->aData;
|
|
assert( &data[pPage->cellOffset]==pPage->aCellIdx );
|
|
rc = allocateSpace(pPage, sz, &idx);
|
|
if( rc ){ return rc; }
|
|
/* The allocateSpace() routine guarantees the following properties
|
|
** if it returns successfully */
|
|
assert( idx >= 0 );
|
|
assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
|
|
assert( idx+sz <= (int)pPage->pBt->usableSize );
|
|
pPage->nFree -= (u16)(2 + sz);
|
|
memcpy(&data[idx], pCell, sz);
|
|
pIns = pPage->aCellIdx + i*2;
|
|
memmove(pIns+2, pIns, 2*(pPage->nCell - i));
|
|
put2byte(pIns, idx);
|
|
pPage->nCell++;
|
|
/* increment the cell count */
|
|
if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
|
|
assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pPage->pBt->autoVacuum ){
|
|
int rc2 = SQLITE_OK;
|
|
/* The cell may contain a pointer to an overflow page. If so, write
|
|
** the entry for the overflow page into the pointer map.
|
|
*/
|
|
ptrmapPutOvflPtr(pPage, pPage, pCell, &rc2);
|
|
if( rc2 ) return rc2;
|
|
}
|
|
#endif
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** The following parameters determine how many adjacent pages get involved
|
|
** in a balancing operation. NN is the number of neighbors on either side
|
|
** of the page that participate in the balancing operation. NB is the
|
|
** total number of pages that participate, including the target page and
|
|
** NN neighbors on either side.
|
|
**
|
|
** The minimum value of NN is 1 (of course). Increasing NN above 1
|
|
** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
|
|
** in exchange for a larger degradation in INSERT and UPDATE performance.
|
|
** The value of NN appears to give the best results overall.
|
|
**
|
|
** (Later:) The description above makes it seem as if these values are
|
|
** tunable - as if you could change them and recompile and it would all work.
|
|
** But that is unlikely. NB has been 3 since the inception of SQLite and
|
|
** we have never tested any other value.
|
|
*/
|
|
#define NN 1 /* Number of neighbors on either side of pPage */
|
|
#define NB 3 /* (NN*2+1): Total pages involved in the balance */
|
|
|
|
/*
|
|
** A CellArray object contains a cache of pointers and sizes for a
|
|
** consecutive sequence of cells that might be held on multiple pages.
|
|
**
|
|
** The cells in this array are the divider cell or cells from the pParent
|
|
** page plus up to three child pages. There are a total of nCell cells.
|
|
**
|
|
** pRef is a pointer to one of the pages that contributes cells. This is
|
|
** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
|
|
** which should be common to all pages that contribute cells to this array.
|
|
**
|
|
** apCell[] and szCell[] hold, respectively, pointers to the start of each
|
|
** cell and the size of each cell. Some of the apCell[] pointers might refer
|
|
** to overflow cells. In other words, some apCel[] pointers might not point
|
|
** to content area of the pages.
|
|
**
|
|
** A szCell[] of zero means the size of that cell has not yet been computed.
|
|
**
|
|
** The cells come from as many as four different pages:
|
|
**
|
|
** -----------
|
|
** | Parent |
|
|
** -----------
|
|
** / | \
|
|
** / | \
|
|
** --------- --------- ---------
|
|
** |Child-1| |Child-2| |Child-3|
|
|
** --------- --------- ---------
|
|
**
|
|
** The order of cells is in the array is for an index btree is:
|
|
**
|
|
** 1. All cells from Child-1 in order
|
|
** 2. The first divider cell from Parent
|
|
** 3. All cells from Child-2 in order
|
|
** 4. The second divider cell from Parent
|
|
** 5. All cells from Child-3 in order
|
|
**
|
|
** For a table-btree (with rowids) the items 2 and 4 are empty because
|
|
** content exists only in leaves and there are no divider cells.
|
|
**
|
|
** For an index btree, the apEnd[] array holds pointer to the end of page
|
|
** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
|
|
** respectively. The ixNx[] array holds the number of cells contained in
|
|
** each of these 5 stages, and all stages to the left. Hence:
|
|
**
|
|
** ixNx[0] = Number of cells in Child-1.
|
|
** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
|
|
** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
|
|
** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
|
|
** ixNx[4] = Total number of cells.
|
|
**
|
|
** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
|
|
** are used and they point to the leaf pages only, and the ixNx value are:
|
|
**
|
|
** ixNx[0] = Number of cells in Child-1.
|
|
** ixNx[1] = Number of cells in Child-1 and Child-2.
|
|
** ixNx[2] = Total number of cells.
|
|
**
|
|
** Sometimes when deleting, a child page can have zero cells. In those
|
|
** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
|
|
** entries, shift down. The end result is that each ixNx[] entry should
|
|
** be larger than the previous
|
|
*/
|
|
typedef struct CellArray CellArray;
|
|
struct CellArray {
|
|
int nCell; /* Number of cells in apCell[] */
|
|
MemPage *pRef; /* Reference page */
|
|
u8 **apCell; /* All cells begin balanced */
|
|
u16 *szCell; /* Local size of all cells in apCell[] */
|
|
u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */
|
|
int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */
|
|
};
|
|
|
|
/*
|
|
** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
|
|
** computed.
|
|
*/
|
|
static void populateCellCache(CellArray *p, int idx, int N){
|
|
MemPage *pRef = p->pRef;
|
|
u16 *szCell = p->szCell;
|
|
assert( idx>=0 && idx+N<=p->nCell );
|
|
while( N>0 ){
|
|
assert( p->apCell[idx]!=0 );
|
|
if( szCell[idx]==0 ){
|
|
szCell[idx] = pRef->xCellSize(pRef, p->apCell[idx]);
|
|
}else{
|
|
assert( CORRUPT_DB ||
|
|
szCell[idx]==pRef->xCellSize(pRef, p->apCell[idx]) );
|
|
}
|
|
idx++;
|
|
N--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the size of the Nth element of the cell array
|
|
*/
|
|
static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
|
|
assert( N>=0 && N<p->nCell );
|
|
assert( p->szCell[N]==0 );
|
|
p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
|
|
return p->szCell[N];
|
|
}
|
|
static u16 cachedCellSize(CellArray *p, int N){
|
|
assert( N>=0 && N<p->nCell );
|
|
if( p->szCell[N] ) return p->szCell[N];
|
|
return computeCellSize(p, N);
|
|
}
|
|
|
|
/*
|
|
** Array apCell[] contains pointers to nCell b-tree page cells. The
|
|
** szCell[] array contains the size in bytes of each cell. This function
|
|
** replaces the current contents of page pPg with the contents of the cell
|
|
** array.
|
|
**
|
|
** Some of the cells in apCell[] may currently be stored in pPg. This
|
|
** function works around problems caused by this by making a copy of any
|
|
** such cells before overwriting the page data.
|
|
**
|
|
** The MemPage.nFree field is invalidated by this function. It is the
|
|
** responsibility of the caller to set it correctly.
|
|
*/
|
|
static int rebuildPage(
|
|
CellArray *pCArray, /* Content to be added to page pPg */
|
|
int iFirst, /* First cell in pCArray to use */
|
|
int nCell, /* Final number of cells on page */
|
|
MemPage *pPg /* The page to be reconstructed */
|
|
){
|
|
const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
|
|
u8 * const aData = pPg->aData; /* Pointer to data for pPg */
|
|
const int usableSize = pPg->pBt->usableSize;
|
|
u8 * const pEnd = &aData[usableSize];
|
|
int i = iFirst; /* Which cell to copy from pCArray*/
|
|
u32 j; /* Start of cell content area */
|
|
int iEnd = i+nCell; /* Loop terminator */
|
|
u8 *pCellptr = pPg->aCellIdx;
|
|
u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
|
|
u8 *pData;
|
|
int k; /* Current slot in pCArray->apEnd[] */
|
|
u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */
|
|
|
|
assert( nCell>0 );
|
|
assert( i<iEnd );
|
|
j = get2byte(&aData[hdr+5]);
|
|
if( j>(u32)usableSize ){ j = 0; }
|
|
memcpy(&pTmp[j], &aData[j], usableSize - j);
|
|
|
|
assert( pCArray->ixNx[NB*2-1]>i );
|
|
for(k=0; pCArray->ixNx[k]<=i; k++){}
|
|
pSrcEnd = pCArray->apEnd[k];
|
|
|
|
pData = pEnd;
|
|
while( 1/*exit by break*/ ){
|
|
u8 *pCell = pCArray->apCell[i];
|
|
u16 sz = pCArray->szCell[i];
|
|
assert( sz>0 );
|
|
if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){
|
|
if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
|
|
pCell = &pTmp[pCell - aData];
|
|
}else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
|
|
&& (uptr)(pCell)<(uptr)pSrcEnd
|
|
){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
|
|
pData -= sz;
|
|
put2byte(pCellptr, (pData - aData));
|
|
pCellptr += 2;
|
|
if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
|
|
memmove(pData, pCell, sz);
|
|
assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
|
|
i++;
|
|
if( i>=iEnd ) break;
|
|
if( pCArray->ixNx[k]<=i ){
|
|
k++;
|
|
pSrcEnd = pCArray->apEnd[k];
|
|
}
|
|
}
|
|
|
|
/* The pPg->nFree field is now set incorrectly. The caller will fix it. */
|
|
pPg->nCell = nCell;
|
|
pPg->nOverflow = 0;
|
|
|
|
put2byte(&aData[hdr+1], 0);
|
|
put2byte(&aData[hdr+3], pPg->nCell);
|
|
put2byte(&aData[hdr+5], pData - aData);
|
|
aData[hdr+7] = 0x00;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** The pCArray objects contains pointers to b-tree cells and the cell sizes.
|
|
** This function attempts to add the cells stored in the array to page pPg.
|
|
** If it cannot (because the page needs to be defragmented before the cells
|
|
** will fit), non-zero is returned. Otherwise, if the cells are added
|
|
** successfully, zero is returned.
|
|
**
|
|
** Argument pCellptr points to the first entry in the cell-pointer array
|
|
** (part of page pPg) to populate. After cell apCell[0] is written to the
|
|
** page body, a 16-bit offset is written to pCellptr. And so on, for each
|
|
** cell in the array. It is the responsibility of the caller to ensure
|
|
** that it is safe to overwrite this part of the cell-pointer array.
|
|
**
|
|
** When this function is called, *ppData points to the start of the
|
|
** content area on page pPg. If the size of the content area is extended,
|
|
** *ppData is updated to point to the new start of the content area
|
|
** before returning.
|
|
**
|
|
** Finally, argument pBegin points to the byte immediately following the
|
|
** end of the space required by this page for the cell-pointer area (for
|
|
** all cells - not just those inserted by the current call). If the content
|
|
** area must be extended to before this point in order to accommodate all
|
|
** cells in apCell[], then the cells do not fit and non-zero is returned.
|
|
*/
|
|
static int pageInsertArray(
|
|
MemPage *pPg, /* Page to add cells to */
|
|
u8 *pBegin, /* End of cell-pointer array */
|
|
u8 **ppData, /* IN/OUT: Page content-area pointer */
|
|
u8 *pCellptr, /* Pointer to cell-pointer area */
|
|
int iFirst, /* Index of first cell to add */
|
|
int nCell, /* Number of cells to add to pPg */
|
|
CellArray *pCArray /* Array of cells */
|
|
){
|
|
int i = iFirst; /* Loop counter - cell index to insert */
|
|
u8 *aData = pPg->aData; /* Complete page */
|
|
u8 *pData = *ppData; /* Content area. A subset of aData[] */
|
|
int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */
|
|
int k; /* Current slot in pCArray->apEnd[] */
|
|
u8 *pEnd; /* Maximum extent of cell data */
|
|
assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
|
|
if( iEnd<=iFirst ) return 0;
|
|
assert( pCArray->ixNx[NB*2-1]>i );
|
|
for(k=0; pCArray->ixNx[k]<=i ; k++){}
|
|
pEnd = pCArray->apEnd[k];
|
|
while( 1 /*Exit by break*/ ){
|
|
int sz, rc;
|
|
u8 *pSlot;
|
|
assert( pCArray->szCell[i]!=0 );
|
|
sz = pCArray->szCell[i];
|
|
if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
|
|
if( (pData - pBegin)<sz ) return 1;
|
|
pData -= sz;
|
|
pSlot = pData;
|
|
}
|
|
/* pSlot and pCArray->apCell[i] will never overlap on a well-formed
|
|
** database. But they might for a corrupt database. Hence use memmove()
|
|
** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
|
|
assert( (pSlot+sz)<=pCArray->apCell[i]
|
|
|| pSlot>=(pCArray->apCell[i]+sz)
|
|
|| CORRUPT_DB );
|
|
if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
|
|
&& (uptr)(pCArray->apCell[i])<(uptr)pEnd
|
|
){
|
|
assert( CORRUPT_DB );
|
|
(void)SQLITE_CORRUPT_BKPT;
|
|
return 1;
|
|
}
|
|
memmove(pSlot, pCArray->apCell[i], sz);
|
|
put2byte(pCellptr, (pSlot - aData));
|
|
pCellptr += 2;
|
|
i++;
|
|
if( i>=iEnd ) break;
|
|
if( pCArray->ixNx[k]<=i ){
|
|
k++;
|
|
pEnd = pCArray->apEnd[k];
|
|
}
|
|
}
|
|
*ppData = pData;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** The pCArray object contains pointers to b-tree cells and their sizes.
|
|
**
|
|
** This function adds the space associated with each cell in the array
|
|
** that is currently stored within the body of pPg to the pPg free-list.
|
|
** The cell-pointers and other fields of the page are not updated.
|
|
**
|
|
** This function returns the total number of cells added to the free-list.
|
|
*/
|
|
static int pageFreeArray(
|
|
MemPage *pPg, /* Page to edit */
|
|
int iFirst, /* First cell to delete */
|
|
int nCell, /* Cells to delete */
|
|
CellArray *pCArray /* Array of cells */
|
|
){
|
|
u8 * const aData = pPg->aData;
|
|
u8 * const pEnd = &aData[pPg->pBt->usableSize];
|
|
u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
|
|
int nRet = 0;
|
|
int i, j;
|
|
int iEnd = iFirst + nCell;
|
|
int nFree = 0;
|
|
int aOfst[10];
|
|
int aAfter[10];
|
|
|
|
for(i=iFirst; i<iEnd; i++){
|
|
u8 *pCell = pCArray->apCell[i];
|
|
if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
|
|
int sz;
|
|
int iAfter;
|
|
int iOfst;
|
|
/* No need to use cachedCellSize() here. The sizes of all cells that
|
|
** are to be freed have already been computing while deciding which
|
|
** cells need freeing */
|
|
sz = pCArray->szCell[i]; assert( sz>0 );
|
|
iOfst = (u16)(pCell - aData);
|
|
iAfter = iOfst+sz;
|
|
for(j=0; j<nFree; j++){
|
|
if( aOfst[j]==iAfter ){
|
|
aOfst[j] = iOfst;
|
|
break;
|
|
}else if( aAfter[j]==iOfst ){
|
|
aAfter[j] = iAfter;
|
|
break;
|
|
}
|
|
}
|
|
if( j>=nFree ){
|
|
if( nFree>=(int)(sizeof(aOfst)/sizeof(aOfst[0])) ){
|
|
for(j=0; j<nFree; j++){
|
|
freeSpace(pPg, aOfst[j], aAfter[j]-aOfst[j]);
|
|
}
|
|
nFree = 0;
|
|
}
|
|
aOfst[nFree] = iOfst;
|
|
aAfter[nFree] = iAfter;
|
|
if( &aData[iAfter]>pEnd ) return 0;
|
|
nFree++;
|
|
}
|
|
nRet++;
|
|
}
|
|
}
|
|
for(j=0; j<nFree; j++){
|
|
freeSpace(pPg, aOfst[j], aAfter[j]-aOfst[j]);
|
|
}
|
|
return nRet;
|
|
}
|
|
|
|
/*
|
|
** pCArray contains pointers to and sizes of all cells in the page being
|
|
** balanced. The current page, pPg, has pPg->nCell cells starting with
|
|
** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
|
|
** starting at apCell[iNew].
|
|
**
|
|
** This routine makes the necessary adjustments to pPg so that it contains
|
|
** the correct cells after being balanced.
|
|
**
|
|
** The pPg->nFree field is invalid when this function returns. It is the
|
|
** responsibility of the caller to set it correctly.
|
|
*/
|
|
static int editPage(
|
|
MemPage *pPg, /* Edit this page */
|
|
int iOld, /* Index of first cell currently on page */
|
|
int iNew, /* Index of new first cell on page */
|
|
int nNew, /* Final number of cells on page */
|
|
CellArray *pCArray /* Array of cells and sizes */
|
|
){
|
|
u8 * const aData = pPg->aData;
|
|
const int hdr = pPg->hdrOffset;
|
|
u8 *pBegin = &pPg->aCellIdx[nNew * 2];
|
|
int nCell = pPg->nCell; /* Cells stored on pPg */
|
|
u8 *pData;
|
|
u8 *pCellptr;
|
|
int i;
|
|
int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
|
|
int iNewEnd = iNew + nNew;
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
|
|
memcpy(pTmp, aData, pPg->pBt->usableSize);
|
|
#endif
|
|
|
|
/* Remove cells from the start and end of the page */
|
|
assert( nCell>=0 );
|
|
if( iOld<iNew ){
|
|
int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
|
|
if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT;
|
|
memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
|
|
nCell -= nShift;
|
|
}
|
|
if( iNewEnd < iOldEnd ){
|
|
int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
|
|
assert( nCell>=nTail );
|
|
nCell -= nTail;
|
|
}
|
|
|
|
pData = &aData[get2byte(&aData[hdr+5])];
|
|
if( pData<pBegin ) goto editpage_fail;
|
|
if( NEVER(pData>pPg->aDataEnd) ) goto editpage_fail;
|
|
|
|
/* Add cells to the start of the page */
|
|
if( iNew<iOld ){
|
|
int nAdd = MIN(nNew,iOld-iNew);
|
|
assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
|
|
assert( nAdd>=0 );
|
|
pCellptr = pPg->aCellIdx;
|
|
memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
|
|
if( pageInsertArray(
|
|
pPg, pBegin, &pData, pCellptr,
|
|
iNew, nAdd, pCArray
|
|
) ) goto editpage_fail;
|
|
nCell += nAdd;
|
|
}
|
|
|
|
/* Add any overflow cells */
|
|
for(i=0; i<pPg->nOverflow; i++){
|
|
int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
|
|
if( iCell>=0 && iCell<nNew ){
|
|
pCellptr = &pPg->aCellIdx[iCell * 2];
|
|
if( nCell>iCell ){
|
|
memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
|
|
}
|
|
nCell++;
|
|
cachedCellSize(pCArray, iCell+iNew);
|
|
if( pageInsertArray(
|
|
pPg, pBegin, &pData, pCellptr,
|
|
iCell+iNew, 1, pCArray
|
|
) ) goto editpage_fail;
|
|
}
|
|
}
|
|
|
|
/* Append cells to the end of the page */
|
|
assert( nCell>=0 );
|
|
pCellptr = &pPg->aCellIdx[nCell*2];
|
|
if( pageInsertArray(
|
|
pPg, pBegin, &pData, pCellptr,
|
|
iNew+nCell, nNew-nCell, pCArray
|
|
) ) goto editpage_fail;
|
|
|
|
pPg->nCell = nNew;
|
|
pPg->nOverflow = 0;
|
|
|
|
put2byte(&aData[hdr+3], pPg->nCell);
|
|
put2byte(&aData[hdr+5], pData - aData);
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
for(i=0; i<nNew && !CORRUPT_DB; i++){
|
|
u8 *pCell = pCArray->apCell[i+iNew];
|
|
int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
|
|
if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
|
|
pCell = &pTmp[pCell - aData];
|
|
}
|
|
assert( 0==memcmp(pCell, &aData[iOff],
|
|
pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
|
|
}
|
|
#endif
|
|
|
|
return SQLITE_OK;
|
|
editpage_fail:
|
|
/* Unable to edit this page. Rebuild it from scratch instead. */
|
|
if( nNew<1 ) return SQLITE_CORRUPT_BKPT;
|
|
populateCellCache(pCArray, iNew, nNew);
|
|
return rebuildPage(pCArray, iNew, nNew, pPg);
|
|
}
|
|
|
|
|
|
#ifndef SQLITE_OMIT_QUICKBALANCE
|
|
/*
|
|
** This version of balance() handles the common special case where
|
|
** a new entry is being inserted on the extreme right-end of the
|
|
** tree, in other words, when the new entry will become the largest
|
|
** entry in the tree.
|
|
**
|
|
** Instead of trying to balance the 3 right-most leaf pages, just add
|
|
** a new page to the right-hand side and put the one new entry in
|
|
** that page. This leaves the right side of the tree somewhat
|
|
** unbalanced. But odds are that we will be inserting new entries
|
|
** at the end soon afterwards so the nearly empty page will quickly
|
|
** fill up. On average.
|
|
**
|
|
** pPage is the leaf page which is the right-most page in the tree.
|
|
** pParent is its parent. pPage must have a single overflow entry
|
|
** which is also the right-most entry on the page.
|
|
**
|
|
** The pSpace buffer is used to store a temporary copy of the divider
|
|
** cell that will be inserted into pParent. Such a cell consists of a 4
|
|
** byte page number followed by a variable length integer. In other
|
|
** words, at most 13 bytes. Hence the pSpace buffer must be at
|
|
** least 13 bytes in size.
|
|
*/
|
|
static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
|
|
BtShared *const pBt = pPage->pBt; /* B-Tree Database */
|
|
MemPage *pNew; /* Newly allocated page */
|
|
int rc; /* Return Code */
|
|
Pgno pgnoNew; /* Page number of pNew */
|
|
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
assert( sqlite3PagerIswriteable(pParent->pDbPage) );
|
|
assert( pPage->nOverflow==1 );
|
|
|
|
if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
|
|
assert( pPage->nFree>=0 );
|
|
assert( pParent->nFree>=0 );
|
|
|
|
/* Allocate a new page. This page will become the right-sibling of
|
|
** pPage. Make the parent page writable, so that the new divider cell
|
|
** may be inserted. If both these operations are successful, proceed.
|
|
*/
|
|
rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
|
|
|
|
if( rc==SQLITE_OK ){
|
|
|
|
u8 *pOut = &pSpace[4];
|
|
u8 *pCell = pPage->apOvfl[0];
|
|
u16 szCell = pPage->xCellSize(pPage, pCell);
|
|
u8 *pStop;
|
|
CellArray b;
|
|
|
|
assert( sqlite3PagerIswriteable(pNew->pDbPage) );
|
|
assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
|
|
zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
|
|
b.nCell = 1;
|
|
b.pRef = pPage;
|
|
b.apCell = &pCell;
|
|
b.szCell = &szCell;
|
|
b.apEnd[0] = pPage->aDataEnd;
|
|
b.ixNx[0] = 2;
|
|
b.ixNx[NB*2-1] = 0x7fffffff;
|
|
rc = rebuildPage(&b, 0, 1, pNew);
|
|
if( NEVER(rc) ){
|
|
releasePage(pNew);
|
|
return rc;
|
|
}
|
|
pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
|
|
|
|
/* If this is an auto-vacuum database, update the pointer map
|
|
** with entries for the new page, and any pointer from the
|
|
** cell on the page to an overflow page. If either of these
|
|
** operations fails, the return code is set, but the contents
|
|
** of the parent page are still manipulated by the code below.
|
|
** That is Ok, at this point the parent page is guaranteed to
|
|
** be marked as dirty. Returning an error code will cause a
|
|
** rollback, undoing any changes made to the parent page.
|
|
*/
|
|
if( ISAUTOVACUUM(pBt) ){
|
|
ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
|
|
if( szCell>pNew->minLocal ){
|
|
ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
|
|
}
|
|
}
|
|
|
|
/* Create a divider cell to insert into pParent. The divider cell
|
|
** consists of a 4-byte page number (the page number of pPage) and
|
|
** a variable length key value (which must be the same value as the
|
|
** largest key on pPage).
|
|
**
|
|
** To find the largest key value on pPage, first find the right-most
|
|
** cell on pPage. The first two fields of this cell are the
|
|
** record-length (a variable length integer at most 32-bits in size)
|
|
** and the key value (a variable length integer, may have any value).
|
|
** The first of the while(...) loops below skips over the record-length
|
|
** field. The second while(...) loop copies the key value from the
|
|
** cell on pPage into the pSpace buffer.
|
|
*/
|
|
pCell = findCell(pPage, pPage->nCell-1);
|
|
pStop = &pCell[9];
|
|
while( (*(pCell++)&0x80) && pCell<pStop );
|
|
pStop = &pCell[9];
|
|
while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
|
|
|
|
/* Insert the new divider cell into pParent. */
|
|
if( rc==SQLITE_OK ){
|
|
rc = insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
|
|
0, pPage->pgno);
|
|
}
|
|
|
|
/* Set the right-child pointer of pParent to point to the new page. */
|
|
put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
|
|
|
|
/* Release the reference to the new page. */
|
|
releasePage(pNew);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
#endif /* SQLITE_OMIT_QUICKBALANCE */
|
|
|
|
#if 0
|
|
/*
|
|
** This function does not contribute anything to the operation of SQLite.
|
|
** it is sometimes activated temporarily while debugging code responsible
|
|
** for setting pointer-map entries.
|
|
*/
|
|
static int ptrmapCheckPages(MemPage **apPage, int nPage){
|
|
int i, j;
|
|
for(i=0; i<nPage; i++){
|
|
Pgno n;
|
|
u8 e;
|
|
MemPage *pPage = apPage[i];
|
|
BtShared *pBt = pPage->pBt;
|
|
assert( pPage->isInit );
|
|
|
|
for(j=0; j<pPage->nCell; j++){
|
|
CellInfo info;
|
|
u8 *z;
|
|
|
|
z = findCell(pPage, j);
|
|
pPage->xParseCell(pPage, z, &info);
|
|
if( info.nLocal<info.nPayload ){
|
|
Pgno ovfl = get4byte(&z[info.nSize-4]);
|
|
ptrmapGet(pBt, ovfl, &e, &n);
|
|
assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
|
|
}
|
|
if( !pPage->leaf ){
|
|
Pgno child = get4byte(z);
|
|
ptrmapGet(pBt, child, &e, &n);
|
|
assert( n==pPage->pgno && e==PTRMAP_BTREE );
|
|
}
|
|
}
|
|
if( !pPage->leaf ){
|
|
Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
|
|
ptrmapGet(pBt, child, &e, &n);
|
|
assert( n==pPage->pgno && e==PTRMAP_BTREE );
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** This function is used to copy the contents of the b-tree node stored
|
|
** on page pFrom to page pTo. If page pFrom was not a leaf page, then
|
|
** the pointer-map entries for each child page are updated so that the
|
|
** parent page stored in the pointer map is page pTo. If pFrom contained
|
|
** any cells with overflow page pointers, then the corresponding pointer
|
|
** map entries are also updated so that the parent page is page pTo.
|
|
**
|
|
** If pFrom is currently carrying any overflow cells (entries in the
|
|
** MemPage.apOvfl[] array), they are not copied to pTo.
|
|
**
|
|
** Before returning, page pTo is reinitialized using btreeInitPage().
|
|
**
|
|
** The performance of this function is not critical. It is only used by
|
|
** the balance_shallower() and balance_deeper() procedures, neither of
|
|
** which are called often under normal circumstances.
|
|
*/
|
|
static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
|
|
if( (*pRC)==SQLITE_OK ){
|
|
BtShared * const pBt = pFrom->pBt;
|
|
u8 * const aFrom = pFrom->aData;
|
|
u8 * const aTo = pTo->aData;
|
|
int const iFromHdr = pFrom->hdrOffset;
|
|
int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
|
|
int rc;
|
|
int iData;
|
|
|
|
|
|
assert( pFrom->isInit );
|
|
assert( pFrom->nFree>=iToHdr );
|
|
assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
|
|
|
|
/* Copy the b-tree node content from page pFrom to page pTo. */
|
|
iData = get2byte(&aFrom[iFromHdr+5]);
|
|
memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
|
|
memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
|
|
|
|
/* Reinitialize page pTo so that the contents of the MemPage structure
|
|
** match the new data. The initialization of pTo can actually fail under
|
|
** fairly obscure circumstances, even though it is a copy of initialized
|
|
** page pFrom.
|
|
*/
|
|
pTo->isInit = 0;
|
|
rc = btreeInitPage(pTo);
|
|
if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
|
|
if( rc!=SQLITE_OK ){
|
|
*pRC = rc;
|
|
return;
|
|
}
|
|
|
|
/* If this is an auto-vacuum database, update the pointer-map entries
|
|
** for any b-tree or overflow pages that pTo now contains the pointers to.
|
|
*/
|
|
if( ISAUTOVACUUM(pBt) ){
|
|
*pRC = setChildPtrmaps(pTo);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine redistributes cells on the iParentIdx'th child of pParent
|
|
** (hereafter "the page") and up to 2 siblings so that all pages have about the
|
|
** same amount of free space. Usually a single sibling on either side of the
|
|
** page are used in the balancing, though both siblings might come from one
|
|
** side if the page is the first or last child of its parent. If the page
|
|
** has fewer than 2 siblings (something which can only happen if the page
|
|
** is a root page or a child of a root page) then all available siblings
|
|
** participate in the balancing.
|
|
**
|
|
** The number of siblings of the page might be increased or decreased by
|
|
** one or two in an effort to keep pages nearly full but not over full.
|
|
**
|
|
** Note that when this routine is called, some of the cells on the page
|
|
** might not actually be stored in MemPage.aData[]. This can happen
|
|
** if the page is overfull. This routine ensures that all cells allocated
|
|
** to the page and its siblings fit into MemPage.aData[] before returning.
|
|
**
|
|
** In the course of balancing the page and its siblings, cells may be
|
|
** inserted into or removed from the parent page (pParent). Doing so
|
|
** may cause the parent page to become overfull or underfull. If this
|
|
** happens, it is the responsibility of the caller to invoke the correct
|
|
** balancing routine to fix this problem (see the balance() routine).
|
|
**
|
|
** If this routine fails for any reason, it might leave the database
|
|
** in a corrupted state. So if this routine fails, the database should
|
|
** be rolled back.
|
|
**
|
|
** The third argument to this function, aOvflSpace, is a pointer to a
|
|
** buffer big enough to hold one page. If while inserting cells into the parent
|
|
** page (pParent) the parent page becomes overfull, this buffer is
|
|
** used to store the parent's overflow cells. Because this function inserts
|
|
** a maximum of four divider cells into the parent page, and the maximum
|
|
** size of a cell stored within an internal node is always less than 1/4
|
|
** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
|
|
** enough for all overflow cells.
|
|
**
|
|
** If aOvflSpace is set to a null pointer, this function returns
|
|
** SQLITE_NOMEM.
|
|
*/
|
|
static int balance_nonroot(
|
|
MemPage *pParent, /* Parent page of siblings being balanced */
|
|
int iParentIdx, /* Index of "the page" in pParent */
|
|
u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
|
|
int isRoot, /* True if pParent is a root-page */
|
|
int bBulk /* True if this call is part of a bulk load */
|
|
){
|
|
BtShared *pBt; /* The whole database */
|
|
int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
|
|
int nNew = 0; /* Number of pages in apNew[] */
|
|
int nOld; /* Number of pages in apOld[] */
|
|
int i, j, k; /* Loop counters */
|
|
int nxDiv; /* Next divider slot in pParent->aCell[] */
|
|
int rc = SQLITE_OK; /* The return code */
|
|
u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
|
|
int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
|
|
int usableSpace; /* Bytes in pPage beyond the header */
|
|
int pageFlags; /* Value of pPage->aData[0] */
|
|
int iSpace1 = 0; /* First unused byte of aSpace1[] */
|
|
int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
|
|
int szScratch; /* Size of scratch memory requested */
|
|
MemPage *apOld[NB]; /* pPage and up to two siblings */
|
|
MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
|
|
u8 *pRight; /* Location in parent of right-sibling pointer */
|
|
u8 *apDiv[NB-1]; /* Divider cells in pParent */
|
|
int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
|
|
int cntOld[NB+2]; /* Old index in b.apCell[] */
|
|
int szNew[NB+2]; /* Combined size of cells placed on i-th page */
|
|
u8 *aSpace1; /* Space for copies of dividers cells */
|
|
Pgno pgno; /* Temp var to store a page number in */
|
|
u8 abDone[NB+2]; /* True after i'th new page is populated */
|
|
Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
|
|
CellArray b; /* Parsed information on cells being balanced */
|
|
|
|
memset(abDone, 0, sizeof(abDone));
|
|
assert( sizeof(b) - sizeof(b.ixNx) == offsetof(CellArray,ixNx) );
|
|
memset(&b, 0, sizeof(b)-sizeof(b.ixNx[0]));
|
|
b.ixNx[NB*2-1] = 0x7fffffff;
|
|
pBt = pParent->pBt;
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
assert( sqlite3PagerIswriteable(pParent->pDbPage) );
|
|
|
|
/* At this point pParent may have at most one overflow cell. And if
|
|
** this overflow cell is present, it must be the cell with
|
|
** index iParentIdx. This scenario comes about when this function
|
|
** is called (indirectly) from sqlite3BtreeDelete().
|
|
*/
|
|
assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
|
|
assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
|
|
|
|
if( !aOvflSpace ){
|
|
return SQLITE_NOMEM_BKPT;
|
|
}
|
|
assert( pParent->nFree>=0 );
|
|
|
|
/* Find the sibling pages to balance. Also locate the cells in pParent
|
|
** that divide the siblings. An attempt is made to find NN siblings on
|
|
** either side of pPage. More siblings are taken from one side, however,
|
|
** if there are fewer than NN siblings on the other side. If pParent
|
|
** has NB or fewer children then all children of pParent are taken.
|
|
**
|
|
** This loop also drops the divider cells from the parent page. This
|
|
** way, the remainder of the function does not have to deal with any
|
|
** overflow cells in the parent page, since if any existed they will
|
|
** have already been removed.
|
|
*/
|
|
i = pParent->nOverflow + pParent->nCell;
|
|
if( i<2 ){
|
|
nxDiv = 0;
|
|
}else{
|
|
assert( bBulk==0 || bBulk==1 );
|
|
if( iParentIdx==0 ){
|
|
nxDiv = 0;
|
|
}else if( iParentIdx==i ){
|
|
nxDiv = i-2+bBulk;
|
|
}else{
|
|
nxDiv = iParentIdx-1;
|
|
}
|
|
i = 2-bBulk;
|
|
}
|
|
nOld = i+1;
|
|
if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
|
|
pRight = &pParent->aData[pParent->hdrOffset+8];
|
|
}else{
|
|
pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
|
|
}
|
|
pgno = get4byte(pRight);
|
|
while( 1 ){
|
|
if( rc==SQLITE_OK ){
|
|
rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
|
|
}
|
|
if( rc ){
|
|
memset(apOld, 0, (i+1)*sizeof(MemPage*));
|
|
goto balance_cleanup;
|
|
}
|
|
if( apOld[i]->nFree<0 ){
|
|
rc = btreeComputeFreeSpace(apOld[i]);
|
|
if( rc ){
|
|
memset(apOld, 0, (i)*sizeof(MemPage*));
|
|
goto balance_cleanup;
|
|
}
|
|
}
|
|
nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl);
|
|
if( (i--)==0 ) break;
|
|
|
|
if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
|
|
apDiv[i] = pParent->apOvfl[0];
|
|
pgno = get4byte(apDiv[i]);
|
|
szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
|
|
pParent->nOverflow = 0;
|
|
}else{
|
|
apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
|
|
pgno = get4byte(apDiv[i]);
|
|
szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
|
|
|
|
/* Drop the cell from the parent page. apDiv[i] still points to
|
|
** the cell within the parent, even though it has been dropped.
|
|
** This is safe because dropping a cell only overwrites the first
|
|
** four bytes of it, and this function does not need the first
|
|
** four bytes of the divider cell. So the pointer is safe to use
|
|
** later on.
|
|
**
|
|
** But not if we are in secure-delete mode. In secure-delete mode,
|
|
** the dropCell() routine will overwrite the entire cell with zeroes.
|
|
** In this case, temporarily copy the cell into the aOvflSpace[]
|
|
** buffer. It will be copied out again as soon as the aSpace[] buffer
|
|
** is allocated. */
|
|
if( pBt->btsFlags & BTS_FAST_SECURE ){
|
|
int iOff;
|
|
|
|
/* If the following if() condition is not true, the db is corrupted.
|
|
** The call to dropCell() below will detect this. */
|
|
iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
|
|
if( (iOff+szNew[i])<=(int)pBt->usableSize ){
|
|
memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
|
|
apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
|
|
}
|
|
}
|
|
dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
|
|
}
|
|
}
|
|
|
|
/* Make nMaxCells a multiple of 4 in order to preserve 8-byte
|
|
** alignment */
|
|
nMaxCells = (nMaxCells + 3)&~3;
|
|
|
|
/*
|
|
** Allocate space for memory structures
|
|
*/
|
|
szScratch =
|
|
nMaxCells*sizeof(u8*) /* b.apCell */
|
|
+ nMaxCells*sizeof(u16) /* b.szCell */
|
|
+ pBt->pageSize; /* aSpace1 */
|
|
|
|
assert( szScratch<=7*(int)pBt->pageSize );
|
|
b.apCell = sqlite3StackAllocRaw(0, szScratch );
|
|
if( b.apCell==0 ){
|
|
rc = SQLITE_NOMEM_BKPT;
|
|
goto balance_cleanup;
|
|
}
|
|
b.szCell = (u16*)&b.apCell[nMaxCells];
|
|
aSpace1 = (u8*)&b.szCell[nMaxCells];
|
|
assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
|
|
|
|
/*
|
|
** Load pointers to all cells on sibling pages and the divider cells
|
|
** into the local b.apCell[] array. Make copies of the divider cells
|
|
** into space obtained from aSpace1[]. The divider cells have already
|
|
** been removed from pParent.
|
|
**
|
|
** If the siblings are on leaf pages, then the child pointers of the
|
|
** divider cells are stripped from the cells before they are copied
|
|
** into aSpace1[]. In this way, all cells in b.apCell[] are without
|
|
** child pointers. If siblings are not leaves, then all cell in
|
|
** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
|
|
** are alike.
|
|
**
|
|
** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
|
|
** leafData: 1 if pPage holds key+data and pParent holds only keys.
|
|
*/
|
|
b.pRef = apOld[0];
|
|
leafCorrection = b.pRef->leaf*4;
|
|
leafData = b.pRef->intKeyLeaf;
|
|
for(i=0; i<nOld; i++){
|
|
MemPage *pOld = apOld[i];
|
|
int limit = pOld->nCell;
|
|
u8 *aData = pOld->aData;
|
|
u16 maskPage = pOld->maskPage;
|
|
u8 *piCell = aData + pOld->cellOffset;
|
|
u8 *piEnd;
|
|
VVA_ONLY( int nCellAtStart = b.nCell; )
|
|
|
|
/* Verify that all sibling pages are of the same "type" (table-leaf,
|
|
** table-interior, index-leaf, or index-interior).
|
|
*/
|
|
if( pOld->aData[0]!=apOld[0]->aData[0] ){
|
|
rc = SQLITE_CORRUPT_PAGE(pOld);
|
|
goto balance_cleanup;
|
|
}
|
|
|
|
/* Load b.apCell[] with pointers to all cells in pOld. If pOld
|
|
** contains overflow cells, include them in the b.apCell[] array
|
|
** in the correct spot.
|
|
**
|
|
** Note that when there are multiple overflow cells, it is always the
|
|
** case that they are sequential and adjacent. This invariant arises
|
|
** because multiple overflows can only occurs when inserting divider
|
|
** cells into a parent on a prior balance, and divider cells are always
|
|
** adjacent and are inserted in order. There is an assert() tagged
|
|
** with "NOTE 1" in the overflow cell insertion loop to prove this
|
|
** invariant.
|
|
**
|
|
** This must be done in advance. Once the balance starts, the cell
|
|
** offset section of the btree page will be overwritten and we will no
|
|
** long be able to find the cells if a pointer to each cell is not saved
|
|
** first.
|
|
*/
|
|
memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
|
|
if( pOld->nOverflow>0 ){
|
|
if( NEVER(limit<pOld->aiOvfl[0]) ){
|
|
rc = SQLITE_CORRUPT_PAGE(pOld);
|
|
goto balance_cleanup;
|
|
}
|
|
limit = pOld->aiOvfl[0];
|
|
for(j=0; j<limit; j++){
|
|
b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
|
|
piCell += 2;
|
|
b.nCell++;
|
|
}
|
|
for(k=0; k<pOld->nOverflow; k++){
|
|
assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
|
|
b.apCell[b.nCell] = pOld->apOvfl[k];
|
|
b.nCell++;
|
|
}
|
|
}
|
|
piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
|
|
while( piCell<piEnd ){
|
|
assert( b.nCell<nMaxCells );
|
|
b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
|
|
piCell += 2;
|
|
b.nCell++;
|
|
}
|
|
assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
|
|
|
|
cntOld[i] = b.nCell;
|
|
if( i<nOld-1 && !leafData){
|
|
u16 sz = (u16)szNew[i];
|
|
u8 *pTemp;
|
|
assert( b.nCell<nMaxCells );
|
|
b.szCell[b.nCell] = sz;
|
|
pTemp = &aSpace1[iSpace1];
|
|
iSpace1 += sz;
|
|
assert( sz<=pBt->maxLocal+23 );
|
|
assert( iSpace1 <= (int)pBt->pageSize );
|
|
memcpy(pTemp, apDiv[i], sz);
|
|
b.apCell[b.nCell] = pTemp+leafCorrection;
|
|
assert( leafCorrection==0 || leafCorrection==4 );
|
|
b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
|
|
if( !pOld->leaf ){
|
|
assert( leafCorrection==0 );
|
|
assert( pOld->hdrOffset==0 || CORRUPT_DB );
|
|
/* The right pointer of the child page pOld becomes the left
|
|
** pointer of the divider cell */
|
|
memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
|
|
}else{
|
|
assert( leafCorrection==4 );
|
|
while( b.szCell[b.nCell]<4 ){
|
|
/* Do not allow any cells smaller than 4 bytes. If a smaller cell
|
|
** does exist, pad it with 0x00 bytes. */
|
|
assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
|
|
assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
|
|
aSpace1[iSpace1++] = 0x00;
|
|
b.szCell[b.nCell]++;
|
|
}
|
|
}
|
|
b.nCell++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Figure out the number of pages needed to hold all b.nCell cells.
|
|
** Store this number in "k". Also compute szNew[] which is the total
|
|
** size of all cells on the i-th page and cntNew[] which is the index
|
|
** in b.apCell[] of the cell that divides page i from page i+1.
|
|
** cntNew[k] should equal b.nCell.
|
|
**
|
|
** Values computed by this block:
|
|
**
|
|
** k: The total number of sibling pages
|
|
** szNew[i]: Spaced used on the i-th sibling page.
|
|
** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
|
|
** the right of the i-th sibling page.
|
|
** usableSpace: Number of bytes of space available on each sibling.
|
|
**
|
|
*/
|
|
usableSpace = pBt->usableSize - 12 + leafCorrection;
|
|
for(i=k=0; i<nOld; i++, k++){
|
|
MemPage *p = apOld[i];
|
|
b.apEnd[k] = p->aDataEnd;
|
|
b.ixNx[k] = cntOld[i];
|
|
if( k && b.ixNx[k]==b.ixNx[k-1] ){
|
|
k--; /* Omit b.ixNx[] entry for child pages with no cells */
|
|
}
|
|
if( !leafData ){
|
|
k++;
|
|
b.apEnd[k] = pParent->aDataEnd;
|
|
b.ixNx[k] = cntOld[i]+1;
|
|
}
|
|
assert( p->nFree>=0 );
|
|
szNew[i] = usableSpace - p->nFree;
|
|
for(j=0; j<p->nOverflow; j++){
|
|
szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
|
|
}
|
|
cntNew[i] = cntOld[i];
|
|
}
|
|
k = nOld;
|
|
for(i=0; i<k; i++){
|
|
int sz;
|
|
while( szNew[i]>usableSpace ){
|
|
if( i+1>=k ){
|
|
k = i+2;
|
|
if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
|
|
szNew[k-1] = 0;
|
|
cntNew[k-1] = b.nCell;
|
|
}
|
|
sz = 2 + cachedCellSize(&b, cntNew[i]-1);
|
|
szNew[i] -= sz;
|
|
if( !leafData ){
|
|
if( cntNew[i]<b.nCell ){
|
|
sz = 2 + cachedCellSize(&b, cntNew[i]);
|
|
}else{
|
|
sz = 0;
|
|
}
|
|
}
|
|
szNew[i+1] += sz;
|
|
cntNew[i]--;
|
|
}
|
|
while( cntNew[i]<b.nCell ){
|
|
sz = 2 + cachedCellSize(&b, cntNew[i]);
|
|
if( szNew[i]+sz>usableSpace ) break;
|
|
szNew[i] += sz;
|
|
cntNew[i]++;
|
|
if( !leafData ){
|
|
if( cntNew[i]<b.nCell ){
|
|
sz = 2 + cachedCellSize(&b, cntNew[i]);
|
|
}else{
|
|
sz = 0;
|
|
}
|
|
}
|
|
szNew[i+1] -= sz;
|
|
}
|
|
if( cntNew[i]>=b.nCell ){
|
|
k = i+1;
|
|
}else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
goto balance_cleanup;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The packing computed by the previous block is biased toward the siblings
|
|
** on the left side (siblings with smaller keys). The left siblings are
|
|
** always nearly full, while the right-most sibling might be nearly empty.
|
|
** The next block of code attempts to adjust the packing of siblings to
|
|
** get a better balance.
|
|
**
|
|
** This adjustment is more than an optimization. The packing above might
|
|
** be so out of balance as to be illegal. For example, the right-most
|
|
** sibling might be completely empty. This adjustment is not optional.
|
|
*/
|
|
for(i=k-1; i>0; i--){
|
|
int szRight = szNew[i]; /* Size of sibling on the right */
|
|
int szLeft = szNew[i-1]; /* Size of sibling on the left */
|
|
int r; /* Index of right-most cell in left sibling */
|
|
int d; /* Index of first cell to the left of right sibling */
|
|
|
|
r = cntNew[i-1] - 1;
|
|
d = r + 1 - leafData;
|
|
(void)cachedCellSize(&b, d);
|
|
do{
|
|
int szR, szD;
|
|
assert( d<nMaxCells );
|
|
assert( r<nMaxCells );
|
|
szR = cachedCellSize(&b, r);
|
|
szD = b.szCell[d];
|
|
if( szRight!=0
|
|
&& (bBulk || szRight+szD+2 > szLeft-(szR+(i==k-1?0:2)))){
|
|
break;
|
|
}
|
|
szRight += szD + 2;
|
|
szLeft -= szR + 2;
|
|
cntNew[i-1] = r;
|
|
r--;
|
|
d--;
|
|
}while( r>=0 );
|
|
szNew[i] = szRight;
|
|
szNew[i-1] = szLeft;
|
|
if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
goto balance_cleanup;
|
|
}
|
|
}
|
|
|
|
/* Sanity check: For a non-corrupt database file one of the following
|
|
** must be true:
|
|
** (1) We found one or more cells (cntNew[0])>0), or
|
|
** (2) pPage is a virtual root page. A virtual root page is when
|
|
** the real root page is page 1 and we are the only child of
|
|
** that page.
|
|
*/
|
|
assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
|
|
TRACE(("BALANCE: old: %u(nc=%u) %u(nc=%u) %u(nc=%u)\n",
|
|
apOld[0]->pgno, apOld[0]->nCell,
|
|
nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
|
|
nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
|
|
));
|
|
|
|
/*
|
|
** Allocate k new pages. Reuse old pages where possible.
|
|
*/
|
|
pageFlags = apOld[0]->aData[0];
|
|
for(i=0; i<k; i++){
|
|
MemPage *pNew;
|
|
if( i<nOld ){
|
|
pNew = apNew[i] = apOld[i];
|
|
apOld[i] = 0;
|
|
rc = sqlite3PagerWrite(pNew->pDbPage);
|
|
nNew++;
|
|
if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv))
|
|
&& rc==SQLITE_OK
|
|
){
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
}
|
|
if( rc ) goto balance_cleanup;
|
|
}else{
|
|
assert( i>0 );
|
|
rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
|
|
if( rc ) goto balance_cleanup;
|
|
zeroPage(pNew, pageFlags);
|
|
apNew[i] = pNew;
|
|
nNew++;
|
|
cntOld[i] = b.nCell;
|
|
|
|
/* Set the pointer-map entry for the new sibling page. */
|
|
if( ISAUTOVACUUM(pBt) ){
|
|
ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
|
|
if( rc!=SQLITE_OK ){
|
|
goto balance_cleanup;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Reassign page numbers so that the new pages are in ascending order.
|
|
** This helps to keep entries in the disk file in order so that a scan
|
|
** of the table is closer to a linear scan through the file. That in turn
|
|
** helps the operating system to deliver pages from the disk more rapidly.
|
|
**
|
|
** An O(N*N) sort algorithm is used, but since N is never more than NB+2
|
|
** (5), that is not a performance concern.
|
|
**
|
|
** When NB==3, this one optimization makes the database about 25% faster
|
|
** for large insertions and deletions.
|
|
*/
|
|
for(i=0; i<nNew; i++){
|
|
aPgno[i] = apNew[i]->pgno;
|
|
assert( apNew[i]->pDbPage->flags & PGHDR_WRITEABLE );
|
|
assert( apNew[i]->pDbPage->flags & PGHDR_DIRTY );
|
|
}
|
|
for(i=0; i<nNew-1; i++){
|
|
int iB = i;
|
|
for(j=i+1; j<nNew; j++){
|
|
if( apNew[j]->pgno < apNew[iB]->pgno ) iB = j;
|
|
}
|
|
|
|
/* If apNew[i] has a page number that is bigger than any of the
|
|
** subsequence apNew[i] entries, then swap apNew[i] with the subsequent
|
|
** entry that has the smallest page number (which we know to be
|
|
** entry apNew[iB]).
|
|
*/
|
|
if( iB!=i ){
|
|
Pgno pgnoA = apNew[i]->pgno;
|
|
Pgno pgnoB = apNew[iB]->pgno;
|
|
Pgno pgnoTemp = (PENDING_BYTE/pBt->pageSize)+1;
|
|
u16 fgA = apNew[i]->pDbPage->flags;
|
|
u16 fgB = apNew[iB]->pDbPage->flags;
|
|
sqlite3PagerRekey(apNew[i]->pDbPage, pgnoTemp, fgB);
|
|
sqlite3PagerRekey(apNew[iB]->pDbPage, pgnoA, fgA);
|
|
sqlite3PagerRekey(apNew[i]->pDbPage, pgnoB, fgB);
|
|
apNew[i]->pgno = pgnoB;
|
|
apNew[iB]->pgno = pgnoA;
|
|
}
|
|
}
|
|
|
|
TRACE(("BALANCE: new: %u(%u nc=%u) %u(%u nc=%u) %u(%u nc=%u) "
|
|
"%u(%u nc=%u) %u(%u nc=%u)\n",
|
|
apNew[0]->pgno, szNew[0], cntNew[0],
|
|
nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
|
|
nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
|
|
nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
|
|
nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
|
|
nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
|
|
nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
|
|
nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
|
|
nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
|
|
));
|
|
|
|
assert( sqlite3PagerIswriteable(pParent->pDbPage) );
|
|
assert( nNew>=1 && nNew<=ArraySize(apNew) );
|
|
assert( apNew[nNew-1]!=0 );
|
|
put4byte(pRight, apNew[nNew-1]->pgno);
|
|
|
|
/* If the sibling pages are not leaves, ensure that the right-child pointer
|
|
** of the right-most new sibling page is set to the value that was
|
|
** originally in the same field of the right-most old sibling page. */
|
|
if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
|
|
MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
|
|
memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
|
|
}
|
|
|
|
/* Make any required updates to pointer map entries associated with
|
|
** cells stored on sibling pages following the balance operation. Pointer
|
|
** map entries associated with divider cells are set by the insertCell()
|
|
** routine. The associated pointer map entries are:
|
|
**
|
|
** a) if the cell contains a reference to an overflow chain, the
|
|
** entry associated with the first page in the overflow chain, and
|
|
**
|
|
** b) if the sibling pages are not leaves, the child page associated
|
|
** with the cell.
|
|
**
|
|
** If the sibling pages are not leaves, then the pointer map entry
|
|
** associated with the right-child of each sibling may also need to be
|
|
** updated. This happens below, after the sibling pages have been
|
|
** populated, not here.
|
|
*/
|
|
if( ISAUTOVACUUM(pBt) ){
|
|
MemPage *pOld;
|
|
MemPage *pNew = pOld = apNew[0];
|
|
int cntOldNext = pNew->nCell + pNew->nOverflow;
|
|
int iNew = 0;
|
|
int iOld = 0;
|
|
|
|
for(i=0; i<b.nCell; i++){
|
|
u8 *pCell = b.apCell[i];
|
|
while( i==cntOldNext ){
|
|
iOld++;
|
|
assert( iOld<nNew || iOld<nOld );
|
|
assert( iOld>=0 && iOld<NB );
|
|
pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
|
|
cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
|
|
}
|
|
if( i==cntNew[iNew] ){
|
|
pNew = apNew[++iNew];
|
|
if( !leafData ) continue;
|
|
}
|
|
|
|
/* Cell pCell is destined for new sibling page pNew. Originally, it
|
|
** was either part of sibling page iOld (possibly an overflow cell),
|
|
** or else the divider cell to the left of sibling page iOld. So,
|
|
** if sibling page iOld had the same page number as pNew, and if
|
|
** pCell really was a part of sibling page iOld (not a divider or
|
|
** overflow cell), we can skip updating the pointer map entries. */
|
|
if( iOld>=nNew
|
|
|| pNew->pgno!=aPgno[iOld]
|
|
|| !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
|
|
){
|
|
if( !leafCorrection ){
|
|
ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
|
|
}
|
|
if( cachedCellSize(&b,i)>pNew->minLocal ){
|
|
ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
|
|
}
|
|
if( rc ) goto balance_cleanup;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Insert new divider cells into pParent. */
|
|
for(i=0; i<nNew-1; i++){
|
|
u8 *pCell;
|
|
u8 *pTemp;
|
|
int sz;
|
|
u8 *pSrcEnd;
|
|
MemPage *pNew = apNew[i];
|
|
j = cntNew[i];
|
|
|
|
assert( j<nMaxCells );
|
|
assert( b.apCell[j]!=0 );
|
|
pCell = b.apCell[j];
|
|
sz = b.szCell[j] + leafCorrection;
|
|
pTemp = &aOvflSpace[iOvflSpace];
|
|
if( !pNew->leaf ){
|
|
memcpy(&pNew->aData[8], pCell, 4);
|
|
}else if( leafData ){
|
|
/* If the tree is a leaf-data tree, and the siblings are leaves,
|
|
** then there is no divider cell in b.apCell[]. Instead, the divider
|
|
** cell consists of the integer key for the right-most cell of
|
|
** the sibling-page assembled above only.
|
|
*/
|
|
CellInfo info;
|
|
j--;
|
|
pNew->xParseCell(pNew, b.apCell[j], &info);
|
|
pCell = pTemp;
|
|
sz = 4 + putVarint(&pCell[4], info.nKey);
|
|
pTemp = 0;
|
|
}else{
|
|
pCell -= 4;
|
|
/* Obscure case for non-leaf-data trees: If the cell at pCell was
|
|
** previously stored on a leaf node, and its reported size was 4
|
|
** bytes, then it may actually be smaller than this
|
|
** (see btreeParseCellPtr(), 4 bytes is the minimum size of
|
|
** any cell). But it is important to pass the correct size to
|
|
** insertCell(), so reparse the cell now.
|
|
**
|
|
** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
|
|
** and WITHOUT ROWID tables with exactly one column which is the
|
|
** primary key.
|
|
*/
|
|
if( b.szCell[j]==4 ){
|
|
assert(leafCorrection==4);
|
|
sz = pParent->xCellSize(pParent, pCell);
|
|
}
|
|
}
|
|
iOvflSpace += sz;
|
|
assert( sz<=pBt->maxLocal+23 );
|
|
assert( iOvflSpace <= (int)pBt->pageSize );
|
|
assert( b.ixNx[NB*2-1]>j );
|
|
for(k=0; b.ixNx[k]<=j; k++){}
|
|
pSrcEnd = b.apEnd[k];
|
|
if( SQLITE_OVERFLOW(pSrcEnd, pCell, pCell+sz) ){
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
goto balance_cleanup;
|
|
}
|
|
rc = insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno);
|
|
if( rc!=SQLITE_OK ) goto balance_cleanup;
|
|
assert( sqlite3PagerIswriteable(pParent->pDbPage) );
|
|
}
|
|
|
|
/* Now update the actual sibling pages. The order in which they are updated
|
|
** is important, as this code needs to avoid disrupting any page from which
|
|
** cells may still to be read. In practice, this means:
|
|
**
|
|
** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
|
|
** then it is not safe to update page apNew[iPg] until after
|
|
** the left-hand sibling apNew[iPg-1] has been updated.
|
|
**
|
|
** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
|
|
** then it is not safe to update page apNew[iPg] until after
|
|
** the right-hand sibling apNew[iPg+1] has been updated.
|
|
**
|
|
** If neither of the above apply, the page is safe to update.
|
|
**
|
|
** The iPg value in the following loop starts at nNew-1 goes down
|
|
** to 0, then back up to nNew-1 again, thus making two passes over
|
|
** the pages. On the initial downward pass, only condition (1) above
|
|
** needs to be tested because (2) will always be true from the previous
|
|
** step. On the upward pass, both conditions are always true, so the
|
|
** upwards pass simply processes pages that were missed on the downward
|
|
** pass.
|
|
*/
|
|
for(i=1-nNew; i<nNew; i++){
|
|
int iPg = i<0 ? -i : i;
|
|
assert( iPg>=0 && iPg<nNew );
|
|
assert( iPg>=1 || i>=0 );
|
|
assert( iPg<ArraySize(cntOld) );
|
|
if( abDone[iPg] ) continue; /* Skip pages already processed */
|
|
if( i>=0 /* On the upwards pass, or... */
|
|
|| cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
|
|
){
|
|
int iNew;
|
|
int iOld;
|
|
int nNewCell;
|
|
|
|
/* Verify condition (1): If cells are moving left, update iPg
|
|
** only after iPg-1 has already been updated. */
|
|
assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
|
|
|
|
/* Verify condition (2): If cells are moving right, update iPg
|
|
** only after iPg+1 has already been updated. */
|
|
assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
|
|
|
|
if( iPg==0 ){
|
|
iNew = iOld = 0;
|
|
nNewCell = cntNew[0];
|
|
}else{
|
|
iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
|
|
iNew = cntNew[iPg-1] + !leafData;
|
|
nNewCell = cntNew[iPg] - iNew;
|
|
}
|
|
|
|
rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
|
|
if( rc ) goto balance_cleanup;
|
|
abDone[iPg]++;
|
|
apNew[iPg]->nFree = usableSpace-szNew[iPg];
|
|
assert( apNew[iPg]->nOverflow==0 );
|
|
assert( apNew[iPg]->nCell==nNewCell );
|
|
}
|
|
}
|
|
|
|
/* All pages have been processed exactly once */
|
|
assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
|
|
|
|
assert( nOld>0 );
|
|
assert( nNew>0 );
|
|
|
|
if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
|
|
/* The root page of the b-tree now contains no cells. The only sibling
|
|
** page is the right-child of the parent. Copy the contents of the
|
|
** child page into the parent, decreasing the overall height of the
|
|
** b-tree structure by one. This is described as the "balance-shallower"
|
|
** sub-algorithm in some documentation.
|
|
**
|
|
** If this is an auto-vacuum database, the call to copyNodeContent()
|
|
** sets all pointer-map entries corresponding to database image pages
|
|
** for which the pointer is stored within the content being copied.
|
|
**
|
|
** It is critical that the child page be defragmented before being
|
|
** copied into the parent, because if the parent is page 1 then it will
|
|
** by smaller than the child due to the database header, and so all the
|
|
** free space needs to be up front.
|
|
*/
|
|
assert( nNew==1 || CORRUPT_DB );
|
|
rc = defragmentPage(apNew[0], -1);
|
|
testcase( rc!=SQLITE_OK );
|
|
assert( apNew[0]->nFree ==
|
|
(get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
|
|
- apNew[0]->nCell*2)
|
|
|| rc!=SQLITE_OK
|
|
);
|
|
copyNodeContent(apNew[0], pParent, &rc);
|
|
freePage(apNew[0], &rc);
|
|
}else if( ISAUTOVACUUM(pBt) && !leafCorrection ){
|
|
/* Fix the pointer map entries associated with the right-child of each
|
|
** sibling page. All other pointer map entries have already been taken
|
|
** care of. */
|
|
for(i=0; i<nNew; i++){
|
|
u32 key = get4byte(&apNew[i]->aData[8]);
|
|
ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
|
|
}
|
|
}
|
|
|
|
assert( pParent->isInit );
|
|
TRACE(("BALANCE: finished: old=%u new=%u cells=%u\n",
|
|
nOld, nNew, b.nCell));
|
|
|
|
/* Free any old pages that were not reused as new pages.
|
|
*/
|
|
for(i=nNew; i<nOld; i++){
|
|
freePage(apOld[i], &rc);
|
|
}
|
|
|
|
#if 0
|
|
if( ISAUTOVACUUM(pBt) && rc==SQLITE_OK && apNew[0]->isInit ){
|
|
/* The ptrmapCheckPages() contains assert() statements that verify that
|
|
** all pointer map pages are set correctly. This is helpful while
|
|
** debugging. This is usually disabled because a corrupt database may
|
|
** cause an assert() statement to fail. */
|
|
ptrmapCheckPages(apNew, nNew);
|
|
ptrmapCheckPages(&pParent, 1);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Cleanup before returning.
|
|
*/
|
|
balance_cleanup:
|
|
sqlite3StackFree(0, b.apCell);
|
|
for(i=0; i<nOld; i++){
|
|
releasePage(apOld[i]);
|
|
}
|
|
for(i=0; i<nNew; i++){
|
|
releasePage(apNew[i]);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** This function is called when the root page of a b-tree structure is
|
|
** overfull (has one or more overflow pages).
|
|
**
|
|
** A new child page is allocated and the contents of the current root
|
|
** page, including overflow cells, are copied into the child. The root
|
|
** page is then overwritten to make it an empty page with the right-child
|
|
** pointer pointing to the new page.
|
|
**
|
|
** Before returning, all pointer-map entries corresponding to pages
|
|
** that the new child-page now contains pointers to are updated. The
|
|
** entry corresponding to the new right-child pointer of the root
|
|
** page is also updated.
|
|
**
|
|
** If successful, *ppChild is set to contain a reference to the child
|
|
** page and SQLITE_OK is returned. In this case the caller is required
|
|
** to call releasePage() on *ppChild exactly once. If an error occurs,
|
|
** an error code is returned and *ppChild is set to 0.
|
|
*/
|
|
static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
|
|
int rc; /* Return value from subprocedures */
|
|
MemPage *pChild = 0; /* Pointer to a new child page */
|
|
Pgno pgnoChild = 0; /* Page number of the new child page */
|
|
BtShared *pBt = pRoot->pBt; /* The BTree */
|
|
|
|
assert( pRoot->nOverflow>0 );
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
|
|
/* Make pRoot, the root page of the b-tree, writable. Allocate a new
|
|
** page that will become the new right-child of pPage. Copy the contents
|
|
** of the node stored on pRoot into the new child page.
|
|
*/
|
|
rc = sqlite3PagerWrite(pRoot->pDbPage);
|
|
if( rc==SQLITE_OK ){
|
|
rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
|
|
copyNodeContent(pRoot, pChild, &rc);
|
|
if( ISAUTOVACUUM(pBt) ){
|
|
ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
|
|
}
|
|
}
|
|
if( rc ){
|
|
*ppChild = 0;
|
|
releasePage(pChild);
|
|
return rc;
|
|
}
|
|
assert( sqlite3PagerIswriteable(pChild->pDbPage) );
|
|
assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
|
|
assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
|
|
|
|
TRACE(("BALANCE: copy root %u into %u\n", pRoot->pgno, pChild->pgno));
|
|
|
|
/* Copy the overflow cells from pRoot to pChild */
|
|
memcpy(pChild->aiOvfl, pRoot->aiOvfl,
|
|
pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
|
|
memcpy(pChild->apOvfl, pRoot->apOvfl,
|
|
pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
|
|
pChild->nOverflow = pRoot->nOverflow;
|
|
|
|
/* Zero the contents of pRoot. Then install pChild as the right-child. */
|
|
zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
|
|
put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
|
|
|
|
*ppChild = pChild;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
|
|
** on the same B-tree as pCur.
|
|
**
|
|
** This can occur if a database is corrupt with two or more SQL tables
|
|
** pointing to the same b-tree. If an insert occurs on one SQL table
|
|
** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
|
|
** table linked to the same b-tree. If the secondary insert causes a
|
|
** rebalance, that can change content out from under the cursor on the
|
|
** first SQL table, violating invariants on the first insert.
|
|
*/
|
|
static int anotherValidCursor(BtCursor *pCur){
|
|
BtCursor *pOther;
|
|
for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
|
|
if( pOther!=pCur
|
|
&& pOther->eState==CURSOR_VALID
|
|
&& pOther->pPage==pCur->pPage
|
|
){
|
|
return SQLITE_CORRUPT_PAGE(pCur->pPage);
|
|
}
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** The page that pCur currently points to has just been modified in
|
|
** some way. This function figures out if this modification means the
|
|
** tree needs to be balanced, and if so calls the appropriate balancing
|
|
** routine. Balancing routines are:
|
|
**
|
|
** balance_quick()
|
|
** balance_deeper()
|
|
** balance_nonroot()
|
|
*/
|
|
static int balance(BtCursor *pCur){
|
|
int rc = SQLITE_OK;
|
|
u8 aBalanceQuickSpace[13];
|
|
u8 *pFree = 0;
|
|
|
|
VVA_ONLY( int balance_quick_called = 0 );
|
|
VVA_ONLY( int balance_deeper_called = 0 );
|
|
|
|
do {
|
|
int iPage;
|
|
MemPage *pPage = pCur->pPage;
|
|
|
|
if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
|
|
if( pPage->nOverflow==0 && pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){
|
|
/* No rebalance required as long as:
|
|
** (1) There are no overflow cells
|
|
** (2) The amount of free space on the page is less than 2/3rds of
|
|
** the total usable space on the page. */
|
|
break;
|
|
}else if( (iPage = pCur->iPage)==0 ){
|
|
if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
|
|
/* The root page of the b-tree is overfull. In this case call the
|
|
** balance_deeper() function to create a new child for the root-page
|
|
** and copy the current contents of the root-page to it. The
|
|
** next iteration of the do-loop will balance the child page.
|
|
*/
|
|
assert( balance_deeper_called==0 );
|
|
VVA_ONLY( balance_deeper_called++ );
|
|
rc = balance_deeper(pPage, &pCur->apPage[1]);
|
|
if( rc==SQLITE_OK ){
|
|
pCur->iPage = 1;
|
|
pCur->ix = 0;
|
|
pCur->aiIdx[0] = 0;
|
|
pCur->apPage[0] = pPage;
|
|
pCur->pPage = pCur->apPage[1];
|
|
assert( pCur->pPage->nOverflow );
|
|
}
|
|
}else{
|
|
break;
|
|
}
|
|
}else if( sqlite3PagerPageRefcount(pPage->pDbPage)>1 ){
|
|
/* The page being written is not a root page, and there is currently
|
|
** more than one reference to it. This only happens if the page is one
|
|
** of its own ancestor pages. Corruption. */
|
|
rc = SQLITE_CORRUPT_PAGE(pPage);
|
|
}else{
|
|
MemPage * const pParent = pCur->apPage[iPage-1];
|
|
int const iIdx = pCur->aiIdx[iPage-1];
|
|
|
|
rc = sqlite3PagerWrite(pParent->pDbPage);
|
|
if( rc==SQLITE_OK && pParent->nFree<0 ){
|
|
rc = btreeComputeFreeSpace(pParent);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
#ifndef SQLITE_OMIT_QUICKBALANCE
|
|
if( pPage->intKeyLeaf
|
|
&& pPage->nOverflow==1
|
|
&& pPage->aiOvfl[0]==pPage->nCell
|
|
&& pParent->pgno!=1
|
|
&& pParent->nCell==iIdx
|
|
){
|
|
/* Call balance_quick() to create a new sibling of pPage on which
|
|
** to store the overflow cell. balance_quick() inserts a new cell
|
|
** into pParent, which may cause pParent overflow. If this
|
|
** happens, the next iteration of the do-loop will balance pParent
|
|
** use either balance_nonroot() or balance_deeper(). Until this
|
|
** happens, the overflow cell is stored in the aBalanceQuickSpace[]
|
|
** buffer.
|
|
**
|
|
** The purpose of the following assert() is to check that only a
|
|
** single call to balance_quick() is made for each call to this
|
|
** function. If this were not verified, a subtle bug involving reuse
|
|
** of the aBalanceQuickSpace[] might sneak in.
|
|
*/
|
|
assert( balance_quick_called==0 );
|
|
VVA_ONLY( balance_quick_called++ );
|
|
rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
|
|
}else
|
|
#endif
|
|
{
|
|
/* In this case, call balance_nonroot() to redistribute cells
|
|
** between pPage and up to 2 of its sibling pages. This involves
|
|
** modifying the contents of pParent, which may cause pParent to
|
|
** become overfull or underfull. The next iteration of the do-loop
|
|
** will balance the parent page to correct this.
|
|
**
|
|
** If the parent page becomes overfull, the overflow cell or cells
|
|
** are stored in the pSpace buffer allocated immediately below.
|
|
** A subsequent iteration of the do-loop will deal with this by
|
|
** calling balance_nonroot() (balance_deeper() may be called first,
|
|
** but it doesn't deal with overflow cells - just moves them to a
|
|
** different page). Once this subsequent call to balance_nonroot()
|
|
** has completed, it is safe to release the pSpace buffer used by
|
|
** the previous call, as the overflow cell data will have been
|
|
** copied either into the body of a database page or into the new
|
|
** pSpace buffer passed to the latter call to balance_nonroot().
|
|
*/
|
|
u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
|
|
rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
|
|
pCur->hints&BTREE_BULKLOAD);
|
|
if( pFree ){
|
|
/* If pFree is not NULL, it points to the pSpace buffer used
|
|
** by a previous call to balance_nonroot(). Its contents are
|
|
** now stored either on real database pages or within the
|
|
** new pSpace buffer, so it may be safely freed here. */
|
|
sqlite3PageFree(pFree);
|
|
}
|
|
|
|
/* The pSpace buffer will be freed after the next call to
|
|
** balance_nonroot(), or just before this function returns, whichever
|
|
** comes first. */
|
|
pFree = pSpace;
|
|
}
|
|
}
|
|
|
|
pPage->nOverflow = 0;
|
|
|
|
/* The next iteration of the do-loop balances the parent page. */
|
|
releasePage(pPage);
|
|
pCur->iPage--;
|
|
assert( pCur->iPage>=0 );
|
|
pCur->pPage = pCur->apPage[pCur->iPage];
|
|
}
|
|
}while( rc==SQLITE_OK );
|
|
|
|
if( pFree ){
|
|
sqlite3PageFree(pFree);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* Overwrite content from pX into pDest. Only do the write if the
|
|
** content is different from what is already there.
|
|
*/
|
|
static int btreeOverwriteContent(
|
|
MemPage *pPage, /* MemPage on which writing will occur */
|
|
u8 *pDest, /* Pointer to the place to start writing */
|
|
const BtreePayload *pX, /* Source of data to write */
|
|
int iOffset, /* Offset of first byte to write */
|
|
int iAmt /* Number of bytes to be written */
|
|
){
|
|
int nData = pX->nData - iOffset;
|
|
if( nData<=0 ){
|
|
/* Overwriting with zeros */
|
|
int i;
|
|
for(i=0; i<iAmt && pDest[i]==0; i++){}
|
|
if( i<iAmt ){
|
|
int rc = sqlite3PagerWrite(pPage->pDbPage);
|
|
if( rc ) return rc;
|
|
memset(pDest + i, 0, iAmt - i);
|
|
}
|
|
}else{
|
|
if( nData<iAmt ){
|
|
/* Mixed read data and zeros at the end. Make a recursive call
|
|
** to write the zeros then fall through to write the real data */
|
|
int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
|
|
iAmt-nData);
|
|
if( rc ) return rc;
|
|
iAmt = nData;
|
|
}
|
|
if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
|
|
int rc = sqlite3PagerWrite(pPage->pDbPage);
|
|
if( rc ) return rc;
|
|
/* In a corrupt database, it is possible for the source and destination
|
|
** buffers to overlap. This is harmless since the database is already
|
|
** corrupt but it does cause valgrind and ASAN warnings. So use
|
|
** memmove(). */
|
|
memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
|
|
}
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Overwrite the cell that cursor pCur is pointing to with fresh content
|
|
** contained in pX. In this variant, pCur is pointing to an overflow
|
|
** cell.
|
|
*/
|
|
static SQLITE_NOINLINE int btreeOverwriteOverflowCell(
|
|
BtCursor *pCur, /* Cursor pointing to cell to overwrite */
|
|
const BtreePayload *pX /* Content to write into the cell */
|
|
){
|
|
int iOffset; /* Next byte of pX->pData to write */
|
|
int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
|
|
int rc; /* Return code */
|
|
MemPage *pPage = pCur->pPage; /* Page being written */
|
|
BtShared *pBt; /* Btree */
|
|
Pgno ovflPgno; /* Next overflow page to write */
|
|
u32 ovflPageSize; /* Size to write on overflow page */
|
|
|
|
assert( pCur->info.nLocal<nTotal ); /* pCur is an overflow cell */
|
|
|
|
/* Overwrite the local portion first */
|
|
rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
|
|
0, pCur->info.nLocal);
|
|
if( rc ) return rc;
|
|
|
|
/* Now overwrite the overflow pages */
|
|
iOffset = pCur->info.nLocal;
|
|
assert( nTotal>=0 );
|
|
assert( iOffset>=0 );
|
|
ovflPgno = get4byte(pCur->info.pPayload + iOffset);
|
|
pBt = pPage->pBt;
|
|
ovflPageSize = pBt->usableSize - 4;
|
|
do{
|
|
rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
|
|
if( rc ) return rc;
|
|
if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){
|
|
rc = SQLITE_CORRUPT_PAGE(pPage);
|
|
}else{
|
|
if( iOffset+ovflPageSize<(u32)nTotal ){
|
|
ovflPgno = get4byte(pPage->aData);
|
|
}else{
|
|
ovflPageSize = nTotal - iOffset;
|
|
}
|
|
rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
|
|
iOffset, ovflPageSize);
|
|
}
|
|
sqlite3PagerUnref(pPage->pDbPage);
|
|
if( rc ) return rc;
|
|
iOffset += ovflPageSize;
|
|
}while( iOffset<nTotal );
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Overwrite the cell that cursor pCur is pointing to with fresh content
|
|
** contained in pX.
|
|
*/
|
|
static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
|
|
int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
|
|
MemPage *pPage = pCur->pPage; /* Page being written */
|
|
|
|
if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
|
|
|| pCur->info.pPayload < pPage->aData + pPage->cellOffset
|
|
){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
if( pCur->info.nLocal==nTotal ){
|
|
/* The entire cell is local */
|
|
return btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
|
|
0, pCur->info.nLocal);
|
|
}else{
|
|
/* The cell contains overflow content */
|
|
return btreeOverwriteOverflowCell(pCur, pX);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Insert a new record into the BTree. The content of the new record
|
|
** is described by the pX object. The pCur cursor is used only to
|
|
** define what table the record should be inserted into, and is left
|
|
** pointing at a random location.
|
|
**
|
|
** For a table btree (used for rowid tables), only the pX.nKey value of
|
|
** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
|
|
** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
|
|
** hold the content of the row.
|
|
**
|
|
** For an index btree (used for indexes and WITHOUT ROWID tables), the
|
|
** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
|
|
** pX.pData,nData,nZero fields must be zero.
|
|
**
|
|
** If the seekResult parameter is non-zero, then a successful call to
|
|
** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already
|
|
** been performed. In other words, if seekResult!=0 then the cursor
|
|
** is currently pointing to a cell that will be adjacent to the cell
|
|
** to be inserted. If seekResult<0 then pCur points to a cell that is
|
|
** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
|
|
** that is larger than (pKey,nKey).
|
|
**
|
|
** If seekResult==0, that means pCur is pointing at some unknown location.
|
|
** In that case, this routine must seek the cursor to the correct insertion
|
|
** point for (pKey,nKey) before doing the insertion. For index btrees,
|
|
** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
|
|
** key values and pX->aMem can be used instead of pX->pKey to avoid having
|
|
** to decode the key.
|
|
*/
|
|
int sqlite3BtreeInsert(
|
|
BtCursor *pCur, /* Insert data into the table of this cursor */
|
|
const BtreePayload *pX, /* Content of the row to be inserted */
|
|
int flags, /* True if this is likely an append */
|
|
int seekResult /* Result of prior IndexMoveto() call */
|
|
){
|
|
int rc;
|
|
int loc = seekResult; /* -1: before desired location +1: after */
|
|
int szNew = 0;
|
|
int idx;
|
|
MemPage *pPage;
|
|
Btree *p = pCur->pBtree;
|
|
unsigned char *oldCell;
|
|
unsigned char *newCell = 0;
|
|
|
|
assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags );
|
|
assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 );
|
|
|
|
/* Save the positions of any other cursors open on this table.
|
|
**
|
|
** In some cases, the call to btreeMoveto() below is a no-op. For
|
|
** example, when inserting data into a table with auto-generated integer
|
|
** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
|
|
** integer key to use. It then calls this function to actually insert the
|
|
** data into the intkey B-Tree. In this case btreeMoveto() recognizes
|
|
** that the cursor is already where it needs to be and returns without
|
|
** doing any work. To avoid thwarting these optimizations, it is important
|
|
** not to clear the cursor here.
|
|
*/
|
|
if( pCur->curFlags & BTCF_Multiple ){
|
|
rc = saveAllCursors(p->pBt, pCur->pgnoRoot, pCur);
|
|
if( rc ) return rc;
|
|
if( loc && pCur->iPage<0 ){
|
|
/* This can only happen if the schema is corrupt such that there is more
|
|
** than one table or index with the same root page as used by the cursor.
|
|
** Which can only happen if the SQLITE_NoSchemaError flag was set when
|
|
** the schema was loaded. This cannot be asserted though, as a user might
|
|
** set the flag, load the schema, and then unset the flag. */
|
|
return SQLITE_CORRUPT_PGNO(pCur->pgnoRoot);
|
|
}
|
|
}
|
|
|
|
/* Ensure that the cursor is not in the CURSOR_FAULT state and that it
|
|
** points to a valid cell.
|
|
*/
|
|
if( pCur->eState>=CURSOR_REQUIRESEEK ){
|
|
testcase( pCur->eState==CURSOR_REQUIRESEEK );
|
|
testcase( pCur->eState==CURSOR_FAULT );
|
|
rc = moveToRoot(pCur);
|
|
if( rc && rc!=SQLITE_EMPTY ) return rc;
|
|
}
|
|
|
|
assert( cursorOwnsBtShared(pCur) );
|
|
assert( (pCur->curFlags & BTCF_WriteFlag)!=0
|
|
&& p->pBt->inTransaction==TRANS_WRITE
|
|
&& (p->pBt->btsFlags & BTS_READ_ONLY)==0 );
|
|
assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
|
|
|
|
/* Assert that the caller has been consistent. If this cursor was opened
|
|
** expecting an index b-tree, then the caller should be inserting blob
|
|
** keys with no associated data. If the cursor was opened expecting an
|
|
** intkey table, the caller should be inserting integer keys with a
|
|
** blob of associated data. */
|
|
assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) );
|
|
|
|
if( pCur->pKeyInfo==0 ){
|
|
assert( pX->pKey==0 );
|
|
/* If this is an insert into a table b-tree, invalidate any incrblob
|
|
** cursors open on the row being replaced */
|
|
if( p->hasIncrblobCur ){
|
|
invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
|
|
}
|
|
|
|
/* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
|
|
** to a row with the same key as the new entry being inserted.
|
|
*/
|
|
#ifdef SQLITE_DEBUG
|
|
if( flags & BTREE_SAVEPOSITION ){
|
|
assert( pCur->curFlags & BTCF_ValidNKey );
|
|
assert( pX->nKey==pCur->info.nKey );
|
|
assert( loc==0 );
|
|
}
|
|
#endif
|
|
|
|
/* On the other hand, BTREE_SAVEPOSITION==0 does not imply
|
|
** that the cursor is not pointing to a row to be overwritten.
|
|
** So do a complete check.
|
|
*/
|
|
if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
|
|
/* The cursor is pointing to the entry that is to be
|
|
** overwritten */
|
|
assert( pX->nData>=0 && pX->nZero>=0 );
|
|
if( pCur->info.nSize!=0
|
|
&& pCur->info.nPayload==(u32)pX->nData+pX->nZero
|
|
){
|
|
/* New entry is the same size as the old. Do an overwrite */
|
|
return btreeOverwriteCell(pCur, pX);
|
|
}
|
|
assert( loc==0 );
|
|
}else if( loc==0 ){
|
|
/* The cursor is *not* pointing to the cell to be overwritten, nor
|
|
** to an adjacent cell. Move the cursor so that it is pointing either
|
|
** to the cell to be overwritten or an adjacent cell.
|
|
*/
|
|
rc = sqlite3BtreeTableMoveto(pCur, pX->nKey,
|
|
(flags & BTREE_APPEND)!=0, &loc);
|
|
if( rc ) return rc;
|
|
}
|
|
}else{
|
|
/* This is an index or a WITHOUT ROWID table */
|
|
|
|
/* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
|
|
** to a row with the same key as the new entry being inserted.
|
|
*/
|
|
assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
|
|
|
|
/* If the cursor is not already pointing either to the cell to be
|
|
** overwritten, or if a new cell is being inserted, if the cursor is
|
|
** not pointing to an immediately adjacent cell, then move the cursor
|
|
** so that it does.
|
|
*/
|
|
if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
|
|
if( pX->nMem ){
|
|
UnpackedRecord r;
|
|
r.pKeyInfo = pCur->pKeyInfo;
|
|
r.aMem = pX->aMem;
|
|
r.nField = pX->nMem;
|
|
r.default_rc = 0;
|
|
r.eqSeen = 0;
|
|
rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc);
|
|
}else{
|
|
rc = btreeMoveto(pCur, pX->pKey, pX->nKey,
|
|
(flags & BTREE_APPEND)!=0, &loc);
|
|
}
|
|
if( rc ) return rc;
|
|
}
|
|
|
|
/* If the cursor is currently pointing to an entry to be overwritten
|
|
** and the new content is the same as as the old, then use the
|
|
** overwrite optimization.
|
|
*/
|
|
if( loc==0 ){
|
|
getCellInfo(pCur);
|
|
if( pCur->info.nKey==pX->nKey ){
|
|
BtreePayload x2;
|
|
x2.pData = pX->pKey;
|
|
x2.nData = pX->nKey;
|
|
x2.nZero = 0;
|
|
return btreeOverwriteCell(pCur, &x2);
|
|
}
|
|
}
|
|
}
|
|
assert( pCur->eState==CURSOR_VALID
|
|
|| (pCur->eState==CURSOR_INVALID && loc) || CORRUPT_DB );
|
|
|
|
pPage = pCur->pPage;
|
|
assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) );
|
|
assert( pPage->leaf || !pPage->intKey );
|
|
if( pPage->nFree<0 ){
|
|
if( NEVER(pCur->eState>CURSOR_INVALID) ){
|
|
/* ^^^^^--- due to the moveToRoot() call above */
|
|
rc = SQLITE_CORRUPT_PAGE(pPage);
|
|
}else{
|
|
rc = btreeComputeFreeSpace(pPage);
|
|
}
|
|
if( rc ) return rc;
|
|
}
|
|
|
|
TRACE(("INSERT: table=%u nkey=%lld ndata=%u page=%u %s\n",
|
|
pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
|
|
loc==0 ? "overwrite" : "new entry"));
|
|
assert( pPage->isInit || CORRUPT_DB );
|
|
newCell = p->pBt->pTmpSpace;
|
|
assert( newCell!=0 );
|
|
assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT );
|
|
if( flags & BTREE_PREFORMAT ){
|
|
rc = SQLITE_OK;
|
|
szNew = p->pBt->nPreformatSize;
|
|
if( szNew<4 ){
|
|
szNew = 4;
|
|
newCell[3] = 0;
|
|
}
|
|
if( ISAUTOVACUUM(p->pBt) && szNew>pPage->maxLocal ){
|
|
CellInfo info;
|
|
pPage->xParseCell(pPage, newCell, &info);
|
|
if( info.nPayload!=info.nLocal ){
|
|
Pgno ovfl = get4byte(&newCell[szNew-4]);
|
|
ptrmapPut(p->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc);
|
|
if( NEVER(rc) ) goto end_insert;
|
|
}
|
|
}
|
|
}else{
|
|
rc = fillInCell(pPage, newCell, pX, &szNew);
|
|
if( rc ) goto end_insert;
|
|
}
|
|
assert( szNew==pPage->xCellSize(pPage, newCell) );
|
|
assert( szNew <= MX_CELL_SIZE(p->pBt) );
|
|
idx = pCur->ix;
|
|
pCur->info.nSize = 0;
|
|
if( loc==0 ){
|
|
CellInfo info;
|
|
assert( idx>=0 );
|
|
if( idx>=pPage->nCell ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
rc = sqlite3PagerWrite(pPage->pDbPage);
|
|
if( rc ){
|
|
goto end_insert;
|
|
}
|
|
oldCell = findCell(pPage, idx);
|
|
if( !pPage->leaf ){
|
|
memcpy(newCell, oldCell, 4);
|
|
}
|
|
BTREE_CLEAR_CELL(rc, pPage, oldCell, info);
|
|
testcase( pCur->curFlags & BTCF_ValidOvfl );
|
|
invalidateOverflowCache(pCur);
|
|
if( info.nSize==szNew && info.nLocal==info.nPayload
|
|
&& (!ISAUTOVACUUM(p->pBt) || szNew<pPage->minLocal)
|
|
){
|
|
/* Overwrite the old cell with the new if they are the same size.
|
|
** We could also try to do this if the old cell is smaller, then add
|
|
** the leftover space to the free list. But experiments show that
|
|
** doing that is no faster then skipping this optimization and just
|
|
** calling dropCell() and insertCell().
|
|
**
|
|
** This optimization cannot be used on an autovacuum database if the
|
|
** new entry uses overflow pages, as the insertCell() call below is
|
|
** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
|
|
assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
|
|
if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
if( oldCell+szNew > pPage->aDataEnd ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
memcpy(oldCell, newCell, szNew);
|
|
return SQLITE_OK;
|
|
}
|
|
dropCell(pPage, idx, info.nSize, &rc);
|
|
if( rc ) goto end_insert;
|
|
}else if( loc<0 && pPage->nCell>0 ){
|
|
assert( pPage->leaf );
|
|
idx = ++pCur->ix;
|
|
pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
|
|
}else{
|
|
assert( pPage->leaf );
|
|
}
|
|
rc = insertCellFast(pPage, idx, newCell, szNew);
|
|
assert( pPage->nOverflow==0 || rc==SQLITE_OK );
|
|
assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
|
|
|
|
/* If no error has occurred and pPage has an overflow cell, call balance()
|
|
** to redistribute the cells within the tree. Since balance() may move
|
|
** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
|
|
** variables.
|
|
**
|
|
** Previous versions of SQLite called moveToRoot() to move the cursor
|
|
** back to the root page as balance() used to invalidate the contents
|
|
** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
|
|
** set the cursor state to "invalid". This makes common insert operations
|
|
** slightly faster.
|
|
**
|
|
** There is a subtle but important optimization here too. When inserting
|
|
** multiple records into an intkey b-tree using a single cursor (as can
|
|
** happen while processing an "INSERT INTO ... SELECT" statement), it
|
|
** is advantageous to leave the cursor pointing to the last entry in
|
|
** the b-tree if possible. If the cursor is left pointing to the last
|
|
** entry in the table, and the next row inserted has an integer key
|
|
** larger than the largest existing key, it is possible to insert the
|
|
** row without seeking the cursor. This can be a big performance boost.
|
|
*/
|
|
if( pPage->nOverflow ){
|
|
assert( rc==SQLITE_OK );
|
|
pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
|
|
rc = balance(pCur);
|
|
|
|
/* Must make sure nOverflow is reset to zero even if the balance()
|
|
** fails. Internal data structure corruption will result otherwise.
|
|
** Also, set the cursor state to invalid. This stops saveCursorPosition()
|
|
** from trying to save the current position of the cursor. */
|
|
pCur->pPage->nOverflow = 0;
|
|
pCur->eState = CURSOR_INVALID;
|
|
if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
|
|
btreeReleaseAllCursorPages(pCur);
|
|
if( pCur->pKeyInfo ){
|
|
assert( pCur->pKey==0 );
|
|
pCur->pKey = sqlite3Malloc( pX->nKey );
|
|
if( pCur->pKey==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
memcpy(pCur->pKey, pX->pKey, pX->nKey);
|
|
}
|
|
}
|
|
pCur->eState = CURSOR_REQUIRESEEK;
|
|
pCur->nKey = pX->nKey;
|
|
}
|
|
}
|
|
assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
|
|
|
|
end_insert:
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This function is used as part of copying the current row from cursor
|
|
** pSrc into cursor pDest. If the cursors are open on intkey tables, then
|
|
** parameter iKey is used as the rowid value when the record is copied
|
|
** into pDest. Otherwise, the record is copied verbatim.
|
|
**
|
|
** This function does not actually write the new value to cursor pDest.
|
|
** Instead, it creates and populates any required overflow pages and
|
|
** writes the data for the new cell into the BtShared.pTmpSpace buffer
|
|
** for the destination database. The size of the cell, in bytes, is left
|
|
** in BtShared.nPreformatSize. The caller completes the insertion by
|
|
** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
|
|
**
|
|
** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
|
|
*/
|
|
int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){
|
|
BtShared *pBt = pDest->pBt;
|
|
u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */
|
|
const u8 *aIn; /* Pointer to next input buffer */
|
|
u32 nIn; /* Size of input buffer aIn[] */
|
|
u32 nRem; /* Bytes of data still to copy */
|
|
|
|
getCellInfo(pSrc);
|
|
if( pSrc->info.nPayload<0x80 ){
|
|
*(aOut++) = pSrc->info.nPayload;
|
|
}else{
|
|
aOut += sqlite3PutVarint(aOut, pSrc->info.nPayload);
|
|
}
|
|
if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey);
|
|
nIn = pSrc->info.nLocal;
|
|
aIn = pSrc->info.pPayload;
|
|
if( aIn+nIn>pSrc->pPage->aDataEnd ){
|
|
return SQLITE_CORRUPT_PAGE(pSrc->pPage);
|
|
}
|
|
nRem = pSrc->info.nPayload;
|
|
if( nIn==nRem && nIn<pDest->pPage->maxLocal ){
|
|
memcpy(aOut, aIn, nIn);
|
|
pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace);
|
|
return SQLITE_OK;
|
|
}else{
|
|
int rc = SQLITE_OK;
|
|
Pager *pSrcPager = pSrc->pBt->pPager;
|
|
u8 *pPgnoOut = 0;
|
|
Pgno ovflIn = 0;
|
|
DbPage *pPageIn = 0;
|
|
MemPage *pPageOut = 0;
|
|
u32 nOut; /* Size of output buffer aOut[] */
|
|
|
|
nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload);
|
|
pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace);
|
|
if( nOut<pSrc->info.nPayload ){
|
|
pPgnoOut = &aOut[nOut];
|
|
pBt->nPreformatSize += 4;
|
|
}
|
|
|
|
if( nRem>nIn ){
|
|
if( aIn+nIn+4>pSrc->pPage->aDataEnd ){
|
|
return SQLITE_CORRUPT_PAGE(pSrc->pPage);
|
|
}
|
|
ovflIn = get4byte(&pSrc->info.pPayload[nIn]);
|
|
}
|
|
|
|
do {
|
|
nRem -= nOut;
|
|
do{
|
|
assert( nOut>0 );
|
|
if( nIn>0 ){
|
|
int nCopy = MIN(nOut, nIn);
|
|
memcpy(aOut, aIn, nCopy);
|
|
nOut -= nCopy;
|
|
nIn -= nCopy;
|
|
aOut += nCopy;
|
|
aIn += nCopy;
|
|
}
|
|
if( nOut>0 ){
|
|
sqlite3PagerUnref(pPageIn);
|
|
pPageIn = 0;
|
|
rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY);
|
|
if( rc==SQLITE_OK ){
|
|
aIn = (const u8*)sqlite3PagerGetData(pPageIn);
|
|
ovflIn = get4byte(aIn);
|
|
aIn += 4;
|
|
nIn = pSrc->pBt->usableSize - 4;
|
|
}
|
|
}
|
|
}while( rc==SQLITE_OK && nOut>0 );
|
|
|
|
if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){
|
|
Pgno pgnoNew;
|
|
MemPage *pNew = 0;
|
|
rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
|
|
put4byte(pPgnoOut, pgnoNew);
|
|
if( ISAUTOVACUUM(pBt) && pPageOut ){
|
|
ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc);
|
|
}
|
|
releasePage(pPageOut);
|
|
pPageOut = pNew;
|
|
if( pPageOut ){
|
|
pPgnoOut = pPageOut->aData;
|
|
put4byte(pPgnoOut, 0);
|
|
aOut = &pPgnoOut[4];
|
|
nOut = MIN(pBt->usableSize - 4, nRem);
|
|
}
|
|
}
|
|
}while( nRem>0 && rc==SQLITE_OK );
|
|
|
|
releasePage(pPageOut);
|
|
sqlite3PagerUnref(pPageIn);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Delete the entry that the cursor is pointing to.
|
|
**
|
|
** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
|
|
** the cursor is left pointing at an arbitrary location after the delete.
|
|
** But if that bit is set, then the cursor is left in a state such that
|
|
** the next call to BtreeNext() or BtreePrev() moves it to the same row
|
|
** as it would have been on if the call to BtreeDelete() had been omitted.
|
|
**
|
|
** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
|
|
** associated with a single table entry and its indexes. Only one of those
|
|
** deletes is considered the "primary" delete. The primary delete occurs
|
|
** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
|
|
** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
|
|
** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
|
|
** but which might be used by alternative storage engines.
|
|
*/
|
|
int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
|
|
Btree *p = pCur->pBtree;
|
|
BtShared *pBt = p->pBt;
|
|
int rc; /* Return code */
|
|
MemPage *pPage; /* Page to delete cell from */
|
|
unsigned char *pCell; /* Pointer to cell to delete */
|
|
int iCellIdx; /* Index of cell to delete */
|
|
int iCellDepth; /* Depth of node containing pCell */
|
|
CellInfo info; /* Size of the cell being deleted */
|
|
u8 bPreserve; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */
|
|
|
|
assert( cursorOwnsBtShared(pCur) );
|
|
assert( pBt->inTransaction==TRANS_WRITE );
|
|
assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
|
|
assert( pCur->curFlags & BTCF_WriteFlag );
|
|
assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
|
|
assert( !hasReadConflicts(p, pCur->pgnoRoot) );
|
|
assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
|
|
if( pCur->eState!=CURSOR_VALID ){
|
|
if( pCur->eState>=CURSOR_REQUIRESEEK ){
|
|
rc = btreeRestoreCursorPosition(pCur);
|
|
assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
|
|
if( rc || pCur->eState!=CURSOR_VALID ) return rc;
|
|
}else{
|
|
return SQLITE_CORRUPT_PGNO(pCur->pgnoRoot);
|
|
}
|
|
}
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
|
|
iCellDepth = pCur->iPage;
|
|
iCellIdx = pCur->ix;
|
|
pPage = pCur->pPage;
|
|
if( pPage->nCell<=iCellIdx ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
pCell = findCell(pPage, iCellIdx);
|
|
if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
if( pCell<&pPage->aCellIdx[pPage->nCell] ){
|
|
return SQLITE_CORRUPT_PAGE(pPage);
|
|
}
|
|
|
|
/* If the BTREE_SAVEPOSITION bit is on, then the cursor position must
|
|
** be preserved following this delete operation. If the current delete
|
|
** will cause a b-tree rebalance, then this is done by saving the cursor
|
|
** key and leaving the cursor in CURSOR_REQUIRESEEK state before
|
|
** returning.
|
|
**
|
|
** If the current delete will not cause a rebalance, then the cursor
|
|
** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
|
|
** before or after the deleted entry.
|
|
**
|
|
** The bPreserve value records which path is required:
|
|
**
|
|
** bPreserve==0 Not necessary to save the cursor position
|
|
** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position
|
|
** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT.
|
|
*/
|
|
bPreserve = (flags & BTREE_SAVEPOSITION)!=0;
|
|
if( bPreserve ){
|
|
if( !pPage->leaf
|
|
|| (pPage->nFree+pPage->xCellSize(pPage,pCell)+2) >
|
|
(int)(pBt->usableSize*2/3)
|
|
|| pPage->nCell==1 /* See dbfuzz001.test for a test case */
|
|
){
|
|
/* A b-tree rebalance will be required after deleting this entry.
|
|
** Save the cursor key. */
|
|
rc = saveCursorKey(pCur);
|
|
if( rc ) return rc;
|
|
}else{
|
|
bPreserve = 2;
|
|
}
|
|
}
|
|
|
|
/* If the page containing the entry to delete is not a leaf page, move
|
|
** the cursor to the largest entry in the tree that is smaller than
|
|
** the entry being deleted. This cell will replace the cell being deleted
|
|
** from the internal node. The 'previous' entry is used for this instead
|
|
** of the 'next' entry, as the previous entry is always a part of the
|
|
** sub-tree headed by the child page of the cell being deleted. This makes
|
|
** balancing the tree following the delete operation easier. */
|
|
if( !pPage->leaf ){
|
|
rc = sqlite3BtreePrevious(pCur, 0);
|
|
assert( rc!=SQLITE_DONE );
|
|
if( rc ) return rc;
|
|
}
|
|
|
|
/* Save the positions of any other cursors open on this table before
|
|
** making any modifications. */
|
|
if( pCur->curFlags & BTCF_Multiple ){
|
|
rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
|
|
if( rc ) return rc;
|
|
}
|
|
|
|
/* If this is a delete operation to remove a row from a table b-tree,
|
|
** invalidate any incrblob cursors open on the row being deleted. */
|
|
if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){
|
|
invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
|
|
}
|
|
|
|
/* Make the page containing the entry to be deleted writable. Then free any
|
|
** overflow pages associated with the entry and finally remove the cell
|
|
** itself from within the page. */
|
|
rc = sqlite3PagerWrite(pPage->pDbPage);
|
|
if( rc ) return rc;
|
|
BTREE_CLEAR_CELL(rc, pPage, pCell, info);
|
|
dropCell(pPage, iCellIdx, info.nSize, &rc);
|
|
if( rc ) return rc;
|
|
|
|
/* If the cell deleted was not located on a leaf page, then the cursor
|
|
** is currently pointing to the largest entry in the sub-tree headed
|
|
** by the child-page of the cell that was just deleted from an internal
|
|
** node. The cell from the leaf node needs to be moved to the internal
|
|
** node to replace the deleted cell. */
|
|
if( !pPage->leaf ){
|
|
MemPage *pLeaf = pCur->pPage;
|
|
int nCell;
|
|
Pgno n;
|
|
unsigned char *pTmp;
|
|
|
|
if( pLeaf->nFree<0 ){
|
|
rc = btreeComputeFreeSpace(pLeaf);
|
|
if( rc ) return rc;
|
|
}
|
|
if( iCellDepth<pCur->iPage-1 ){
|
|
n = pCur->apPage[iCellDepth+1]->pgno;
|
|
}else{
|
|
n = pCur->pPage->pgno;
|
|
}
|
|
pCell = findCell(pLeaf, pLeaf->nCell-1);
|
|
if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_PAGE(pLeaf);
|
|
nCell = pLeaf->xCellSize(pLeaf, pCell);
|
|
assert( MX_CELL_SIZE(pBt) >= nCell );
|
|
pTmp = pBt->pTmpSpace;
|
|
assert( pTmp!=0 );
|
|
rc = sqlite3PagerWrite(pLeaf->pDbPage);
|
|
if( rc==SQLITE_OK ){
|
|
rc = insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n);
|
|
}
|
|
dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
|
|
if( rc ) return rc;
|
|
}
|
|
|
|
/* Balance the tree. If the entry deleted was located on a leaf page,
|
|
** then the cursor still points to that page. In this case the first
|
|
** call to balance() repairs the tree, and the if(...) condition is
|
|
** never true.
|
|
**
|
|
** Otherwise, if the entry deleted was on an internal node page, then
|
|
** pCur is pointing to the leaf page from which a cell was removed to
|
|
** replace the cell deleted from the internal node. This is slightly
|
|
** tricky as the leaf node may be underfull, and the internal node may
|
|
** be either under or overfull. In this case run the balancing algorithm
|
|
** on the leaf node first. If the balance proceeds far enough up the
|
|
** tree that we can be sure that any problem in the internal node has
|
|
** been corrected, so be it. Otherwise, after balancing the leaf node,
|
|
** walk the cursor up the tree to the internal node and balance it as
|
|
** well. */
|
|
assert( pCur->pPage->nOverflow==0 );
|
|
assert( pCur->pPage->nFree>=0 );
|
|
if( pCur->pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){
|
|
/* Optimization: If the free space is less than 2/3rds of the page,
|
|
** then balance() will always be a no-op. No need to invoke it. */
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
rc = balance(pCur);
|
|
}
|
|
if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
|
|
releasePageNotNull(pCur->pPage);
|
|
pCur->iPage--;
|
|
while( pCur->iPage>iCellDepth ){
|
|
releasePage(pCur->apPage[pCur->iPage--]);
|
|
}
|
|
pCur->pPage = pCur->apPage[pCur->iPage];
|
|
rc = balance(pCur);
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
if( bPreserve>1 ){
|
|
assert( (pCur->iPage==iCellDepth || CORRUPT_DB) );
|
|
assert( pPage==pCur->pPage || CORRUPT_DB );
|
|
assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
|
|
pCur->eState = CURSOR_SKIPNEXT;
|
|
if( iCellIdx>=pPage->nCell ){
|
|
pCur->skipNext = -1;
|
|
pCur->ix = pPage->nCell-1;
|
|
}else{
|
|
pCur->skipNext = 1;
|
|
}
|
|
}else{
|
|
rc = moveToRoot(pCur);
|
|
if( bPreserve ){
|
|
btreeReleaseAllCursorPages(pCur);
|
|
pCur->eState = CURSOR_REQUIRESEEK;
|
|
}
|
|
if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Create a new BTree table. Write into *piTable the page
|
|
** number for the root page of the new table.
|
|
**
|
|
** The type of type is determined by the flags parameter. Only the
|
|
** following values of flags are currently in use. Other values for
|
|
** flags might not work:
|
|
**
|
|
** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
|
|
** BTREE_ZERODATA Used for SQL indices
|
|
*/
|
|
static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){
|
|
BtShared *pBt = p->pBt;
|
|
MemPage *pRoot;
|
|
Pgno pgnoRoot;
|
|
int rc;
|
|
int ptfFlags; /* Page-type flags for the root page of new table */
|
|
|
|
assert( sqlite3BtreeHoldsMutex(p) );
|
|
assert( pBt->inTransaction==TRANS_WRITE );
|
|
assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
|
|
|
|
#ifdef SQLITE_OMIT_AUTOVACUUM
|
|
rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
|
|
if( rc ){
|
|
return rc;
|
|
}
|
|
#else
|
|
if( pBt->autoVacuum ){
|
|
Pgno pgnoMove; /* Move a page here to make room for the root-page */
|
|
MemPage *pPageMove; /* The page to move to. */
|
|
|
|
/* Creating a new table may probably require moving an existing database
|
|
** to make room for the new tables root page. In case this page turns
|
|
** out to be an overflow page, delete all overflow page-map caches
|
|
** held by open cursors.
|
|
*/
|
|
invalidateAllOverflowCache(pBt);
|
|
|
|
/* Read the value of meta[3] from the database to determine where the
|
|
** root page of the new table should go. meta[3] is the largest root-page
|
|
** created so far, so the new root-page is (meta[3]+1).
|
|
*/
|
|
sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
|
|
if( pgnoRoot>btreePagecount(pBt) ){
|
|
return SQLITE_CORRUPT_PGNO(pgnoRoot);
|
|
}
|
|
pgnoRoot++;
|
|
|
|
/* The new root-page may not be allocated on a pointer-map page, or the
|
|
** PENDING_BYTE page.
|
|
*/
|
|
while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
|
|
pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
|
|
pgnoRoot++;
|
|
}
|
|
assert( pgnoRoot>=3 );
|
|
|
|
/* Allocate a page. The page that currently resides at pgnoRoot will
|
|
** be moved to the allocated page (unless the allocated page happens
|
|
** to reside at pgnoRoot).
|
|
*/
|
|
rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
if( pgnoMove!=pgnoRoot ){
|
|
/* pgnoRoot is the page that will be used for the root-page of
|
|
** the new table (assuming an error did not occur). But we were
|
|
** allocated pgnoMove. If required (i.e. if it was not allocated
|
|
** by extending the file), the current page at position pgnoMove
|
|
** is already journaled.
|
|
*/
|
|
u8 eType = 0;
|
|
Pgno iPtrPage = 0;
|
|
|
|
/* Save the positions of any open cursors. This is required in
|
|
** case they are holding a reference to an xFetch reference
|
|
** corresponding to page pgnoRoot. */
|
|
rc = saveAllCursors(pBt, 0, 0);
|
|
releasePage(pPageMove);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
/* Move the page currently at pgnoRoot to pgnoMove. */
|
|
rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
|
|
if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
|
|
rc = SQLITE_CORRUPT_PGNO(pgnoRoot);
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
releasePage(pRoot);
|
|
return rc;
|
|
}
|
|
assert( eType!=PTRMAP_ROOTPAGE );
|
|
assert( eType!=PTRMAP_FREEPAGE );
|
|
rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
|
|
releasePage(pRoot);
|
|
|
|
/* Obtain the page at pgnoRoot */
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
rc = sqlite3PagerWrite(pRoot->pDbPage);
|
|
if( rc!=SQLITE_OK ){
|
|
releasePage(pRoot);
|
|
return rc;
|
|
}
|
|
}else{
|
|
pRoot = pPageMove;
|
|
}
|
|
|
|
/* Update the pointer-map and meta-data with the new root-page number. */
|
|
ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
|
|
if( rc ){
|
|
releasePage(pRoot);
|
|
return rc;
|
|
}
|
|
|
|
/* When the new root page was allocated, page 1 was made writable in
|
|
** order either to increase the database filesize, or to decrement the
|
|
** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
|
|
*/
|
|
assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
|
|
rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
|
|
if( NEVER(rc) ){
|
|
releasePage(pRoot);
|
|
return rc;
|
|
}
|
|
|
|
}else{
|
|
rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
|
|
if( rc ) return rc;
|
|
}
|
|
#endif
|
|
assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
|
|
if( createTabFlags & BTREE_INTKEY ){
|
|
ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
|
|
}else{
|
|
ptfFlags = PTF_ZERODATA | PTF_LEAF;
|
|
}
|
|
zeroPage(pRoot, ptfFlags);
|
|
sqlite3PagerUnref(pRoot->pDbPage);
|
|
assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
|
|
*piTable = pgnoRoot;
|
|
return SQLITE_OK;
|
|
}
|
|
int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){
|
|
int rc;
|
|
sqlite3BtreeEnter(p);
|
|
rc = btreeCreateTable(p, piTable, flags);
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Erase the given database page and all its children. Return
|
|
** the page to the freelist.
|
|
*/
|
|
static int clearDatabasePage(
|
|
BtShared *pBt, /* The BTree that contains the table */
|
|
Pgno pgno, /* Page number to clear */
|
|
int freePageFlag, /* Deallocate page if true */
|
|
i64 *pnChange /* Add number of Cells freed to this counter */
|
|
){
|
|
MemPage *pPage;
|
|
int rc;
|
|
unsigned char *pCell;
|
|
int i;
|
|
int hdr;
|
|
CellInfo info;
|
|
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
if( pgno>btreePagecount(pBt) ){
|
|
return SQLITE_CORRUPT_PGNO(pgno);
|
|
}
|
|
rc = getAndInitPage(pBt, pgno, &pPage, 0);
|
|
if( rc ) return rc;
|
|
if( (pBt->openFlags & BTREE_SINGLE)==0
|
|
&& sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1))
|
|
){
|
|
rc = SQLITE_CORRUPT_PAGE(pPage);
|
|
goto cleardatabasepage_out;
|
|
}
|
|
hdr = pPage->hdrOffset;
|
|
for(i=0; i<pPage->nCell; i++){
|
|
pCell = findCell(pPage, i);
|
|
if( !pPage->leaf ){
|
|
rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
|
|
if( rc ) goto cleardatabasepage_out;
|
|
}
|
|
BTREE_CLEAR_CELL(rc, pPage, pCell, info);
|
|
if( rc ) goto cleardatabasepage_out;
|
|
}
|
|
if( !pPage->leaf ){
|
|
rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
|
|
if( rc ) goto cleardatabasepage_out;
|
|
if( pPage->intKey ) pnChange = 0;
|
|
}
|
|
if( pnChange ){
|
|
testcase( !pPage->intKey );
|
|
*pnChange += pPage->nCell;
|
|
}
|
|
if( freePageFlag ){
|
|
freePage(pPage, &rc);
|
|
}else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
|
|
zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
|
|
}
|
|
|
|
cleardatabasepage_out:
|
|
releasePage(pPage);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Delete all information from a single table in the database. iTable is
|
|
** the page number of the root of the table. After this routine returns,
|
|
** the root page is empty, but still exists.
|
|
**
|
|
** This routine will fail with SQLITE_LOCKED if there are any open
|
|
** read cursors on the table. Open write cursors are moved to the
|
|
** root of the table.
|
|
**
|
|
** If pnChange is not NULL, then the integer value pointed to by pnChange
|
|
** is incremented by the number of entries in the table.
|
|
*/
|
|
int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){
|
|
int rc;
|
|
BtShared *pBt = p->pBt;
|
|
sqlite3BtreeEnter(p);
|
|
assert( p->inTrans==TRANS_WRITE );
|
|
|
|
rc = saveAllCursors(pBt, (Pgno)iTable, 0);
|
|
|
|
if( SQLITE_OK==rc ){
|
|
/* Invalidate all incrblob cursors open on table iTable (assuming iTable
|
|
** is the root of a table b-tree - if it is not, the following call is
|
|
** a no-op). */
|
|
if( p->hasIncrblobCur ){
|
|
invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
|
|
}
|
|
rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
|
|
}
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Delete all information from the single table that pCur is open on.
|
|
**
|
|
** This routine only work for pCur on an ephemeral table.
|
|
*/
|
|
int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
|
|
return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
|
|
}
|
|
|
|
/*
|
|
** Erase all information in a table and add the root of the table to
|
|
** the freelist. Except, the root of the principle table (the one on
|
|
** page 1) is never added to the freelist.
|
|
**
|
|
** This routine will fail with SQLITE_LOCKED if there are any open
|
|
** cursors on the table.
|
|
**
|
|
** If AUTOVACUUM is enabled and the page at iTable is not the last
|
|
** root page in the database file, then the last root page
|
|
** in the database file is moved into the slot formerly occupied by
|
|
** iTable and that last slot formerly occupied by the last root page
|
|
** is added to the freelist instead of iTable. In this say, all
|
|
** root pages are kept at the beginning of the database file, which
|
|
** is necessary for AUTOVACUUM to work right. *piMoved is set to the
|
|
** page number that used to be the last root page in the file before
|
|
** the move. If no page gets moved, *piMoved is set to 0.
|
|
** The last root page is recorded in meta[3] and the value of
|
|
** meta[3] is updated by this procedure.
|
|
*/
|
|
static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
|
|
int rc;
|
|
MemPage *pPage = 0;
|
|
BtShared *pBt = p->pBt;
|
|
|
|
assert( sqlite3BtreeHoldsMutex(p) );
|
|
assert( p->inTrans==TRANS_WRITE );
|
|
assert( iTable>=2 );
|
|
if( iTable>btreePagecount(pBt) ){
|
|
return SQLITE_CORRUPT_PGNO(iTable);
|
|
}
|
|
|
|
rc = sqlite3BtreeClearTable(p, iTable, 0);
|
|
if( rc ) return rc;
|
|
rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
|
|
if( NEVER(rc) ){
|
|
releasePage(pPage);
|
|
return rc;
|
|
}
|
|
|
|
*piMoved = 0;
|
|
|
|
#ifdef SQLITE_OMIT_AUTOVACUUM
|
|
freePage(pPage, &rc);
|
|
releasePage(pPage);
|
|
#else
|
|
if( pBt->autoVacuum ){
|
|
Pgno maxRootPgno;
|
|
sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
|
|
|
|
if( iTable==maxRootPgno ){
|
|
/* If the table being dropped is the table with the largest root-page
|
|
** number in the database, put the root page on the free list.
|
|
*/
|
|
freePage(pPage, &rc);
|
|
releasePage(pPage);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
}else{
|
|
/* The table being dropped does not have the largest root-page
|
|
** number in the database. So move the page that does into the
|
|
** gap left by the deleted root-page.
|
|
*/
|
|
MemPage *pMove;
|
|
releasePage(pPage);
|
|
rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
|
|
releasePage(pMove);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
pMove = 0;
|
|
rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
|
|
freePage(pMove, &rc);
|
|
releasePage(pMove);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
*piMoved = maxRootPgno;
|
|
}
|
|
|
|
/* Set the new 'max-root-page' value in the database header. This
|
|
** is the old value less one, less one more if that happens to
|
|
** be a root-page number, less one again if that is the
|
|
** PENDING_BYTE_PAGE.
|
|
*/
|
|
maxRootPgno--;
|
|
while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
|
|
|| PTRMAP_ISPAGE(pBt, maxRootPgno) ){
|
|
maxRootPgno--;
|
|
}
|
|
assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
|
|
|
|
rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
|
|
}else{
|
|
freePage(pPage, &rc);
|
|
releasePage(pPage);
|
|
}
|
|
#endif
|
|
return rc;
|
|
}
|
|
int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
|
|
int rc;
|
|
sqlite3BtreeEnter(p);
|
|
rc = btreeDropTable(p, iTable, piMoved);
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** This function may only be called if the b-tree connection already
|
|
** has a read or write transaction open on the database.
|
|
**
|
|
** Read the meta-information out of a database file. Meta[0]
|
|
** is the number of free pages currently in the database. Meta[1]
|
|
** through meta[15] are available for use by higher layers. Meta[0]
|
|
** is read-only, the others are read/write.
|
|
**
|
|
** The schema layer numbers meta values differently. At the schema
|
|
** layer (and the SetCookie and ReadCookie opcodes) the number of
|
|
** free pages is not visible. So Cookie[0] is the same as Meta[1].
|
|
**
|
|
** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
|
|
** of reading the value out of the header, it instead loads the "DataVersion"
|
|
** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
|
|
** database file. It is a number computed by the pager. But its access
|
|
** pattern is the same as header meta values, and so it is convenient to
|
|
** read it from this routine.
|
|
*/
|
|
void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
|
|
BtShared *pBt = p->pBt;
|
|
|
|
sqlite3BtreeEnter(p);
|
|
assert( p->inTrans>TRANS_NONE );
|
|
assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) );
|
|
assert( pBt->pPage1 );
|
|
assert( idx>=0 && idx<=15 );
|
|
|
|
if( idx==BTREE_DATA_VERSION ){
|
|
*pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion;
|
|
}else{
|
|
*pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
|
|
}
|
|
|
|
/* If auto-vacuum is disabled in this build and this is an auto-vacuum
|
|
** database, mark the database as read-only. */
|
|
#ifdef SQLITE_OMIT_AUTOVACUUM
|
|
if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
|
|
pBt->btsFlags |= BTS_READ_ONLY;
|
|
}
|
|
#endif
|
|
|
|
sqlite3BtreeLeave(p);
|
|
}
|
|
|
|
/*
|
|
** Write meta-information back into the database. Meta[0] is
|
|
** read-only and may not be written.
|
|
*/
|
|
int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
|
|
BtShared *pBt = p->pBt;
|
|
unsigned char *pP1;
|
|
int rc;
|
|
assert( idx>=1 && idx<=15 );
|
|
sqlite3BtreeEnter(p);
|
|
assert( p->inTrans==TRANS_WRITE );
|
|
assert( pBt->pPage1!=0 );
|
|
pP1 = pBt->pPage1->aData;
|
|
rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
|
|
if( rc==SQLITE_OK ){
|
|
put4byte(&pP1[36 + idx*4], iMeta);
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( idx==BTREE_INCR_VACUUM ){
|
|
assert( pBt->autoVacuum || iMeta==0 );
|
|
assert( iMeta==0 || iMeta==1 );
|
|
pBt->incrVacuum = (u8)iMeta;
|
|
}
|
|
#endif
|
|
}
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** The first argument, pCur, is a cursor opened on some b-tree. Count the
|
|
** number of entries in the b-tree and write the result to *pnEntry.
|
|
**
|
|
** SQLITE_OK is returned if the operation is successfully executed.
|
|
** Otherwise, if an error is encountered (i.e. an IO error or database
|
|
** corruption) an SQLite error code is returned.
|
|
*/
|
|
int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
|
|
i64 nEntry = 0; /* Value to return in *pnEntry */
|
|
int rc; /* Return code */
|
|
|
|
rc = moveToRoot(pCur);
|
|
if( rc==SQLITE_EMPTY ){
|
|
*pnEntry = 0;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Unless an error occurs, the following loop runs one iteration for each
|
|
** page in the B-Tree structure (not including overflow pages).
|
|
*/
|
|
while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
|
|
int iIdx; /* Index of child node in parent */
|
|
MemPage *pPage; /* Current page of the b-tree */
|
|
|
|
/* If this is a leaf page or the tree is not an int-key tree, then
|
|
** this page contains countable entries. Increment the entry counter
|
|
** accordingly.
|
|
*/
|
|
pPage = pCur->pPage;
|
|
if( pPage->leaf || !pPage->intKey ){
|
|
nEntry += pPage->nCell;
|
|
}
|
|
|
|
/* pPage is a leaf node. This loop navigates the cursor so that it
|
|
** points to the first interior cell that it points to the parent of
|
|
** the next page in the tree that has not yet been visited. The
|
|
** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
|
|
** of the page, or to the number of cells in the page if the next page
|
|
** to visit is the right-child of its parent.
|
|
**
|
|
** If all pages in the tree have been visited, return SQLITE_OK to the
|
|
** caller.
|
|
*/
|
|
if( pPage->leaf ){
|
|
do {
|
|
if( pCur->iPage==0 ){
|
|
/* All pages of the b-tree have been visited. Return successfully. */
|
|
*pnEntry = nEntry;
|
|
return moveToRoot(pCur);
|
|
}
|
|
moveToParent(pCur);
|
|
}while ( pCur->ix>=pCur->pPage->nCell );
|
|
|
|
pCur->ix++;
|
|
pPage = pCur->pPage;
|
|
}
|
|
|
|
/* Descend to the child node of the cell that the cursor currently
|
|
** points at. This is the right-child if (iIdx==pPage->nCell).
|
|
*/
|
|
iIdx = pCur->ix;
|
|
if( iIdx==pPage->nCell ){
|
|
rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
|
|
}else{
|
|
rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
|
|
}
|
|
}
|
|
|
|
/* An error has occurred. Return an error code. */
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return the pager associated with a BTree. This routine is used for
|
|
** testing and debugging only.
|
|
*/
|
|
Pager *sqlite3BtreePager(Btree *p){
|
|
return p->pBt->pPager;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
|
|
/*
|
|
** Record an OOM error during integrity_check
|
|
*/
|
|
static void checkOom(IntegrityCk *pCheck){
|
|
pCheck->rc = SQLITE_NOMEM;
|
|
pCheck->mxErr = 0; /* Causes integrity_check processing to stop */
|
|
if( pCheck->nErr==0 ) pCheck->nErr++;
|
|
}
|
|
|
|
/*
|
|
** Invoke the progress handler, if appropriate. Also check for an
|
|
** interrupt.
|
|
*/
|
|
static void checkProgress(IntegrityCk *pCheck){
|
|
sqlite3 *db = pCheck->db;
|
|
if( AtomicLoad(&db->u1.isInterrupted) ){
|
|
pCheck->rc = SQLITE_INTERRUPT;
|
|
pCheck->nErr++;
|
|
pCheck->mxErr = 0;
|
|
}
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
if( db->xProgress ){
|
|
assert( db->nProgressOps>0 );
|
|
pCheck->nStep++;
|
|
if( (pCheck->nStep % db->nProgressOps)==0
|
|
&& db->xProgress(db->pProgressArg)
|
|
){
|
|
pCheck->rc = SQLITE_INTERRUPT;
|
|
pCheck->nErr++;
|
|
pCheck->mxErr = 0;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Append a message to the error message string.
|
|
*/
|
|
static void checkAppendMsg(
|
|
IntegrityCk *pCheck,
|
|
const char *zFormat,
|
|
...
|
|
){
|
|
va_list ap;
|
|
checkProgress(pCheck);
|
|
if( !pCheck->mxErr ) return;
|
|
pCheck->mxErr--;
|
|
pCheck->nErr++;
|
|
va_start(ap, zFormat);
|
|
if( pCheck->errMsg.nChar ){
|
|
sqlite3_str_append(&pCheck->errMsg, "\n", 1);
|
|
}
|
|
if( pCheck->zPfx ){
|
|
sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx,
|
|
pCheck->v0, pCheck->v1, pCheck->v2);
|
|
}
|
|
sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
|
|
va_end(ap);
|
|
if( pCheck->errMsg.accError==SQLITE_NOMEM ){
|
|
checkOom(pCheck);
|
|
}
|
|
}
|
|
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
|
|
|
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
|
|
|
|
/*
|
|
** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
|
|
** corresponds to page iPg is already set.
|
|
*/
|
|
static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
|
|
assert( pCheck->aPgRef!=0 );
|
|
assert( iPg<=pCheck->nCkPage && sizeof(pCheck->aPgRef[0])==1 );
|
|
return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
|
|
}
|
|
|
|
/*
|
|
** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
|
|
*/
|
|
static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
|
|
assert( pCheck->aPgRef!=0 );
|
|
assert( iPg<=pCheck->nCkPage && sizeof(pCheck->aPgRef[0])==1 );
|
|
pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
|
|
}
|
|
|
|
|
|
/*
|
|
** Add 1 to the reference count for page iPage. If this is the second
|
|
** reference to the page, add an error message to pCheck->zErrMsg.
|
|
** Return 1 if there are 2 or more references to the page and 0 if
|
|
** if this is the first reference to the page.
|
|
**
|
|
** Also check that the page number is in bounds.
|
|
*/
|
|
static int checkRef(IntegrityCk *pCheck, Pgno iPage){
|
|
if( iPage>pCheck->nCkPage || iPage==0 ){
|
|
checkAppendMsg(pCheck, "invalid page number %u", iPage);
|
|
return 1;
|
|
}
|
|
if( getPageReferenced(pCheck, iPage) ){
|
|
checkAppendMsg(pCheck, "2nd reference to page %u", iPage);
|
|
return 1;
|
|
}
|
|
setPageReferenced(pCheck, iPage);
|
|
return 0;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
/*
|
|
** Check that the entry in the pointer-map for page iChild maps to
|
|
** page iParent, pointer type ptrType. If not, append an error message
|
|
** to pCheck.
|
|
*/
|
|
static void checkPtrmap(
|
|
IntegrityCk *pCheck, /* Integrity check context */
|
|
Pgno iChild, /* Child page number */
|
|
u8 eType, /* Expected pointer map type */
|
|
Pgno iParent /* Expected pointer map parent page number */
|
|
){
|
|
int rc;
|
|
u8 ePtrmapType;
|
|
Pgno iPtrmapParent;
|
|
|
|
rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
|
|
if( rc!=SQLITE_OK ){
|
|
if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) checkOom(pCheck);
|
|
checkAppendMsg(pCheck, "Failed to read ptrmap key=%u", iChild);
|
|
return;
|
|
}
|
|
|
|
if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
|
|
checkAppendMsg(pCheck,
|
|
"Bad ptr map entry key=%u expected=(%u,%u) got=(%u,%u)",
|
|
iChild, eType, iParent, ePtrmapType, iPtrmapParent);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Check the integrity of the freelist or of an overflow page list.
|
|
** Verify that the number of pages on the list is N.
|
|
*/
|
|
static void checkList(
|
|
IntegrityCk *pCheck, /* Integrity checking context */
|
|
int isFreeList, /* True for a freelist. False for overflow page list */
|
|
Pgno iPage, /* Page number for first page in the list */
|
|
u32 N /* Expected number of pages in the list */
|
|
){
|
|
int i;
|
|
u32 expected = N;
|
|
int nErrAtStart = pCheck->nErr;
|
|
while( iPage!=0 && pCheck->mxErr ){
|
|
DbPage *pOvflPage;
|
|
unsigned char *pOvflData;
|
|
if( checkRef(pCheck, iPage) ) break;
|
|
N--;
|
|
if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
|
|
checkAppendMsg(pCheck, "failed to get page %u", iPage);
|
|
break;
|
|
}
|
|
pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
|
|
if( isFreeList ){
|
|
u32 n = (u32)get4byte(&pOvflData[4]);
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pCheck->pBt->autoVacuum ){
|
|
checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
|
|
}
|
|
#endif
|
|
if( n>pCheck->pBt->usableSize/4-2 ){
|
|
checkAppendMsg(pCheck,
|
|
"freelist leaf count too big on page %u", iPage);
|
|
N--;
|
|
}else{
|
|
for(i=0; i<(int)n; i++){
|
|
Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pCheck->pBt->autoVacuum ){
|
|
checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
|
|
}
|
|
#endif
|
|
checkRef(pCheck, iFreePage);
|
|
}
|
|
N -= n;
|
|
}
|
|
}
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
else{
|
|
/* If this database supports auto-vacuum and iPage is not the last
|
|
** page in this overflow list, check that the pointer-map entry for
|
|
** the following page matches iPage.
|
|
*/
|
|
if( pCheck->pBt->autoVacuum && N>0 ){
|
|
i = get4byte(pOvflData);
|
|
checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
|
|
}
|
|
}
|
|
#endif
|
|
iPage = get4byte(pOvflData);
|
|
sqlite3PagerUnref(pOvflPage);
|
|
}
|
|
if( N && nErrAtStart==pCheck->nErr ){
|
|
checkAppendMsg(pCheck,
|
|
"%s is %u but should be %u",
|
|
isFreeList ? "size" : "overflow list length",
|
|
expected-N, expected);
|
|
}
|
|
}
|
|
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
|
|
|
/*
|
|
** An implementation of a min-heap.
|
|
**
|
|
** aHeap[0] is the number of elements on the heap. aHeap[1] is the
|
|
** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
|
|
** and aHeap[N*2+1].
|
|
**
|
|
** The heap property is this: Every node is less than or equal to both
|
|
** of its daughter nodes. A consequence of the heap property is that the
|
|
** root node aHeap[1] is always the minimum value currently in the heap.
|
|
**
|
|
** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
|
|
** the heap, preserving the heap property. The btreeHeapPull() routine
|
|
** removes the root element from the heap (the minimum value in the heap)
|
|
** and then moves other nodes around as necessary to preserve the heap
|
|
** property.
|
|
**
|
|
** This heap is used for cell overlap and coverage testing. Each u32
|
|
** entry represents the span of a cell or freeblock on a btree page.
|
|
** The upper 16 bits are the index of the first byte of a range and the
|
|
** lower 16 bits are the index of the last byte of that range.
|
|
*/
|
|
static void btreeHeapInsert(u32 *aHeap, u32 x){
|
|
u32 j, i;
|
|
assert( aHeap!=0 );
|
|
i = ++aHeap[0];
|
|
aHeap[i] = x;
|
|
while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
|
|
x = aHeap[j];
|
|
aHeap[j] = aHeap[i];
|
|
aHeap[i] = x;
|
|
i = j;
|
|
}
|
|
}
|
|
static int btreeHeapPull(u32 *aHeap, u32 *pOut){
|
|
u32 j, i, x;
|
|
if( (x = aHeap[0])==0 ) return 0;
|
|
*pOut = aHeap[1];
|
|
aHeap[1] = aHeap[x];
|
|
aHeap[x] = 0xffffffff;
|
|
aHeap[0]--;
|
|
i = 1;
|
|
while( (j = i*2)<=aHeap[0] ){
|
|
if( aHeap[j]>aHeap[j+1] ) j++;
|
|
if( aHeap[i]<aHeap[j] ) break;
|
|
x = aHeap[i];
|
|
aHeap[i] = aHeap[j];
|
|
aHeap[j] = x;
|
|
i = j;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
|
|
/*
|
|
** Do various sanity checks on a single page of a tree. Return
|
|
** the tree depth. Root pages return 0. Parents of root pages
|
|
** return 1, and so forth.
|
|
**
|
|
** These checks are done:
|
|
**
|
|
** 1. Make sure that cells and freeblocks do not overlap
|
|
** but combine to completely cover the page.
|
|
** 2. Make sure integer cell keys are in order.
|
|
** 3. Check the integrity of overflow pages.
|
|
** 4. Recursively call checkTreePage on all children.
|
|
** 5. Verify that the depth of all children is the same.
|
|
*/
|
|
static int checkTreePage(
|
|
IntegrityCk *pCheck, /* Context for the sanity check */
|
|
Pgno iPage, /* Page number of the page to check */
|
|
i64 *piMinKey, /* Write minimum integer primary key here */
|
|
i64 maxKey /* Error if integer primary key greater than this */
|
|
){
|
|
MemPage *pPage = 0; /* The page being analyzed */
|
|
int i; /* Loop counter */
|
|
int rc; /* Result code from subroutine call */
|
|
int depth = -1, d2; /* Depth of a subtree */
|
|
int pgno; /* Page number */
|
|
int nFrag; /* Number of fragmented bytes on the page */
|
|
int hdr; /* Offset to the page header */
|
|
int cellStart; /* Offset to the start of the cell pointer array */
|
|
int nCell; /* Number of cells */
|
|
int doCoverageCheck = 1; /* True if cell coverage checking should be done */
|
|
int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
|
|
** False if IPK must be strictly less than maxKey */
|
|
u8 *data; /* Page content */
|
|
u8 *pCell; /* Cell content */
|
|
u8 *pCellIdx; /* Next element of the cell pointer array */
|
|
BtShared *pBt; /* The BtShared object that owns pPage */
|
|
u32 pc; /* Address of a cell */
|
|
u32 usableSize; /* Usable size of the page */
|
|
u32 contentOffset; /* Offset to the start of the cell content area */
|
|
u32 *heap = 0; /* Min-heap used for checking cell coverage */
|
|
u32 x, prev = 0; /* Next and previous entry on the min-heap */
|
|
const char *saved_zPfx = pCheck->zPfx;
|
|
int saved_v1 = pCheck->v1;
|
|
int saved_v2 = pCheck->v2;
|
|
u8 savedIsInit = 0;
|
|
|
|
/* Check that the page exists
|
|
*/
|
|
checkProgress(pCheck);
|
|
if( pCheck->mxErr==0 ) goto end_of_check;
|
|
pBt = pCheck->pBt;
|
|
usableSize = pBt->usableSize;
|
|
if( iPage==0 ) return 0;
|
|
if( checkRef(pCheck, iPage) ) return 0;
|
|
pCheck->zPfx = "Tree %u page %u: ";
|
|
pCheck->v1 = iPage;
|
|
if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){
|
|
checkAppendMsg(pCheck,
|
|
"unable to get the page. error code=%d", rc);
|
|
if( rc==SQLITE_IOERR_NOMEM ) pCheck->rc = SQLITE_NOMEM;
|
|
goto end_of_check;
|
|
}
|
|
|
|
/* Clear MemPage.isInit to make sure the corruption detection code in
|
|
** btreeInitPage() is executed. */
|
|
savedIsInit = pPage->isInit;
|
|
pPage->isInit = 0;
|
|
if( (rc = btreeInitPage(pPage))!=0 ){
|
|
assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
|
|
checkAppendMsg(pCheck,
|
|
"btreeInitPage() returns error code %d", rc);
|
|
goto end_of_check;
|
|
}
|
|
if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
|
|
assert( rc==SQLITE_CORRUPT );
|
|
checkAppendMsg(pCheck, "free space corruption", rc);
|
|
goto end_of_check;
|
|
}
|
|
data = pPage->aData;
|
|
hdr = pPage->hdrOffset;
|
|
|
|
/* Set up for cell analysis */
|
|
pCheck->zPfx = "Tree %u page %u cell %u: ";
|
|
contentOffset = get2byteNotZero(&data[hdr+5]);
|
|
assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
|
|
|
|
/* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
|
|
** number of cells on the page. */
|
|
nCell = get2byte(&data[hdr+3]);
|
|
assert( pPage->nCell==nCell );
|
|
if( pPage->leaf || pPage->intKey==0 ){
|
|
pCheck->nRow += nCell;
|
|
}
|
|
|
|
/* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
|
|
** immediately follows the b-tree page header. */
|
|
cellStart = hdr + 12 - 4*pPage->leaf;
|
|
assert( pPage->aCellIdx==&data[cellStart] );
|
|
pCellIdx = &data[cellStart + 2*(nCell-1)];
|
|
|
|
if( !pPage->leaf ){
|
|
/* Analyze the right-child page of internal pages */
|
|
pgno = get4byte(&data[hdr+8]);
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pBt->autoVacuum ){
|
|
pCheck->zPfx = "Tree %u page %u right child: ";
|
|
checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
|
|
}
|
|
#endif
|
|
depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
|
|
keyCanBeEqual = 0;
|
|
}else{
|
|
/* For leaf pages, the coverage check will occur in the same loop
|
|
** as the other cell checks, so initialize the heap. */
|
|
heap = pCheck->heap;
|
|
heap[0] = 0;
|
|
}
|
|
|
|
/* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
|
|
** integer offsets to the cell contents. */
|
|
for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
|
|
CellInfo info;
|
|
|
|
/* Check cell size */
|
|
pCheck->v2 = i;
|
|
assert( pCellIdx==&data[cellStart + i*2] );
|
|
pc = get2byteAligned(pCellIdx);
|
|
pCellIdx -= 2;
|
|
if( pc<contentOffset || pc>usableSize-4 ){
|
|
checkAppendMsg(pCheck, "Offset %u out of range %u..%u",
|
|
pc, contentOffset, usableSize-4);
|
|
doCoverageCheck = 0;
|
|
continue;
|
|
}
|
|
pCell = &data[pc];
|
|
pPage->xParseCell(pPage, pCell, &info);
|
|
if( pc+info.nSize>usableSize ){
|
|
checkAppendMsg(pCheck, "Extends off end of page");
|
|
doCoverageCheck = 0;
|
|
continue;
|
|
}
|
|
|
|
/* Check for integer primary key out of range */
|
|
if( pPage->intKey ){
|
|
if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
|
|
checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
|
|
}
|
|
maxKey = info.nKey;
|
|
keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
|
|
}
|
|
|
|
/* Check the content overflow list */
|
|
if( info.nPayload>info.nLocal ){
|
|
u32 nPage; /* Number of pages on the overflow chain */
|
|
Pgno pgnoOvfl; /* First page of the overflow chain */
|
|
assert( pc + info.nSize - 4 <= usableSize );
|
|
nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
|
|
pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pBt->autoVacuum ){
|
|
checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
|
|
}
|
|
#endif
|
|
checkList(pCheck, 0, pgnoOvfl, nPage);
|
|
}
|
|
|
|
if( !pPage->leaf ){
|
|
/* Check sanity of left child page for internal pages */
|
|
pgno = get4byte(pCell);
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pBt->autoVacuum ){
|
|
checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
|
|
}
|
|
#endif
|
|
d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
|
|
keyCanBeEqual = 0;
|
|
if( d2!=depth ){
|
|
checkAppendMsg(pCheck, "Child page depth differs");
|
|
depth = d2;
|
|
}
|
|
}else{
|
|
/* Populate the coverage-checking heap for leaf pages */
|
|
btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
|
|
}
|
|
}
|
|
*piMinKey = maxKey;
|
|
|
|
/* Check for complete coverage of the page
|
|
*/
|
|
pCheck->zPfx = 0;
|
|
if( doCoverageCheck && pCheck->mxErr>0 ){
|
|
/* For leaf pages, the min-heap has already been initialized and the
|
|
** cells have already been inserted. But for internal pages, that has
|
|
** not yet been done, so do it now */
|
|
if( !pPage->leaf ){
|
|
heap = pCheck->heap;
|
|
heap[0] = 0;
|
|
for(i=nCell-1; i>=0; i--){
|
|
u32 size;
|
|
pc = get2byteAligned(&data[cellStart+i*2]);
|
|
size = pPage->xCellSize(pPage, &data[pc]);
|
|
btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
|
|
}
|
|
}
|
|
assert( heap!=0 );
|
|
/* Add the freeblocks to the min-heap
|
|
**
|
|
** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
|
|
** is the offset of the first freeblock, or zero if there are no
|
|
** freeblocks on the page.
|
|
*/
|
|
i = get2byte(&data[hdr+1]);
|
|
while( i>0 ){
|
|
int size, j;
|
|
assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
|
|
size = get2byte(&data[i+2]);
|
|
assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
|
|
btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
|
|
/* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
|
|
** big-endian integer which is the offset in the b-tree page of the next
|
|
** freeblock in the chain, or zero if the freeblock is the last on the
|
|
** chain. */
|
|
j = get2byte(&data[i]);
|
|
/* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
|
|
** increasing offset. */
|
|
assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */
|
|
assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
|
|
i = j;
|
|
}
|
|
/* Analyze the min-heap looking for overlap between cells and/or
|
|
** freeblocks, and counting the number of untracked bytes in nFrag.
|
|
**
|
|
** Each min-heap entry is of the form: (start_address<<16)|end_address.
|
|
** There is an implied first entry the covers the page header, the cell
|
|
** pointer index, and the gap between the cell pointer index and the start
|
|
** of cell content.
|
|
**
|
|
** The loop below pulls entries from the min-heap in order and compares
|
|
** the start_address against the previous end_address. If there is an
|
|
** overlap, that means bytes are used multiple times. If there is a gap,
|
|
** that gap is added to the fragmentation count.
|
|
*/
|
|
nFrag = 0;
|
|
prev = contentOffset - 1; /* Implied first min-heap entry */
|
|
while( btreeHeapPull(heap,&x) ){
|
|
if( (prev&0xffff)>=(x>>16) ){
|
|
checkAppendMsg(pCheck,
|
|
"Multiple uses for byte %u of page %u", x>>16, iPage);
|
|
break;
|
|
}else{
|
|
nFrag += (x>>16) - (prev&0xffff) - 1;
|
|
prev = x;
|
|
}
|
|
}
|
|
nFrag += usableSize - (prev&0xffff) - 1;
|
|
/* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
|
|
** is stored in the fifth field of the b-tree page header.
|
|
** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
|
|
** number of fragmented free bytes within the cell content area.
|
|
*/
|
|
if( heap[0]==0 && nFrag!=data[hdr+7] ){
|
|
checkAppendMsg(pCheck,
|
|
"Fragmentation of %u bytes reported as %u on page %u",
|
|
nFrag, data[hdr+7], iPage);
|
|
}
|
|
}
|
|
|
|
end_of_check:
|
|
if( !doCoverageCheck ) pPage->isInit = savedIsInit;
|
|
releasePage(pPage);
|
|
pCheck->zPfx = saved_zPfx;
|
|
pCheck->v1 = saved_v1;
|
|
pCheck->v2 = saved_v2;
|
|
return depth+1;
|
|
}
|
|
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
|
|
|
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
|
|
/*
|
|
** This routine does a complete check of the given BTree file. aRoot[] is
|
|
** an array of pages numbers were each page number is the root page of
|
|
** a table. nRoot is the number of entries in aRoot.
|
|
**
|
|
** A read-only or read-write transaction must be opened before calling
|
|
** this function.
|
|
**
|
|
** Write the number of error seen in *pnErr. Except for some memory
|
|
** allocation errors, an error message held in memory obtained from
|
|
** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
|
|
** returned. If a memory allocation error occurs, NULL is returned.
|
|
**
|
|
** If the first entry in aRoot[] is 0, that indicates that the list of
|
|
** root pages is incomplete. This is a "partial integrity-check". This
|
|
** happens when performing an integrity check on a single table. The
|
|
** zero is skipped, of course. But in addition, the freelist checks
|
|
** and the checks to make sure every page is referenced are also skipped,
|
|
** since obviously it is not possible to know which pages are covered by
|
|
** the unverified btrees. Except, if aRoot[1] is 1, then the freelist
|
|
** checks are still performed.
|
|
*/
|
|
int sqlite3BtreeIntegrityCheck(
|
|
sqlite3 *db, /* Database connection that is running the check */
|
|
Btree *p, /* The btree to be checked */
|
|
Pgno *aRoot, /* An array of root pages numbers for individual trees */
|
|
Mem *aCnt, /* Memory cells to write counts for each tree to */
|
|
int nRoot, /* Number of entries in aRoot[] */
|
|
int mxErr, /* Stop reporting errors after this many */
|
|
int *pnErr, /* OUT: Write number of errors seen to this variable */
|
|
char **pzOut /* OUT: Write the error message string here */
|
|
){
|
|
Pgno i;
|
|
IntegrityCk sCheck;
|
|
BtShared *pBt = p->pBt;
|
|
u64 savedDbFlags = pBt->db->flags;
|
|
char zErr[100];
|
|
int bPartial = 0; /* True if not checking all btrees */
|
|
int bCkFreelist = 1; /* True to scan the freelist */
|
|
VVA_ONLY( int nRef );
|
|
|
|
assert( nRoot>0 );
|
|
assert( aCnt!=0 );
|
|
|
|
/* aRoot[0]==0 means this is a partial check */
|
|
if( aRoot[0]==0 ){
|
|
assert( nRoot>1 );
|
|
bPartial = 1;
|
|
if( aRoot[1]!=1 ) bCkFreelist = 0;
|
|
}
|
|
|
|
sqlite3BtreeEnter(p);
|
|
assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
|
|
VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
|
|
assert( nRef>=0 );
|
|
memset(&sCheck, 0, sizeof(sCheck));
|
|
sCheck.db = db;
|
|
sCheck.pBt = pBt;
|
|
sCheck.pPager = pBt->pPager;
|
|
sCheck.nCkPage = btreePagecount(sCheck.pBt);
|
|
sCheck.mxErr = mxErr;
|
|
sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
|
|
sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
|
|
if( sCheck.nCkPage==0 ){
|
|
goto integrity_ck_cleanup;
|
|
}
|
|
|
|
sCheck.aPgRef = sqlite3MallocZero((sCheck.nCkPage / 8)+ 1);
|
|
if( !sCheck.aPgRef ){
|
|
checkOom(&sCheck);
|
|
goto integrity_ck_cleanup;
|
|
}
|
|
sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
|
|
if( sCheck.heap==0 ){
|
|
checkOom(&sCheck);
|
|
goto integrity_ck_cleanup;
|
|
}
|
|
|
|
i = PENDING_BYTE_PAGE(pBt);
|
|
if( i<=sCheck.nCkPage ) setPageReferenced(&sCheck, i);
|
|
|
|
/* Check the integrity of the freelist
|
|
*/
|
|
if( bCkFreelist ){
|
|
sCheck.zPfx = "Freelist: ";
|
|
checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
|
|
get4byte(&pBt->pPage1->aData[36]));
|
|
sCheck.zPfx = 0;
|
|
}
|
|
|
|
/* Check all the tables.
|
|
*/
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( !bPartial ){
|
|
if( pBt->autoVacuum ){
|
|
Pgno mx = 0;
|
|
Pgno mxInHdr;
|
|
for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
|
|
mxInHdr = get4byte(&pBt->pPage1->aData[52]);
|
|
if( mx!=mxInHdr ){
|
|
checkAppendMsg(&sCheck,
|
|
"max rootpage (%u) disagrees with header (%u)",
|
|
mx, mxInHdr
|
|
);
|
|
}
|
|
}else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
|
|
checkAppendMsg(&sCheck,
|
|
"incremental_vacuum enabled with a max rootpage of zero"
|
|
);
|
|
}
|
|
}
|
|
#endif
|
|
testcase( pBt->db->flags & SQLITE_CellSizeCk );
|
|
pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
|
|
for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
|
|
sCheck.nRow = 0;
|
|
if( aRoot[i] ){
|
|
i64 notUsed;
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){
|
|
checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
|
|
}
|
|
#endif
|
|
sCheck.v0 = aRoot[i];
|
|
checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64);
|
|
}
|
|
sqlite3MemSetArrayInt64(aCnt, i, sCheck.nRow);
|
|
}
|
|
pBt->db->flags = savedDbFlags;
|
|
|
|
/* Make sure every page in the file is referenced
|
|
*/
|
|
if( !bPartial ){
|
|
for(i=1; i<=sCheck.nCkPage && sCheck.mxErr; i++){
|
|
#ifdef SQLITE_OMIT_AUTOVACUUM
|
|
if( getPageReferenced(&sCheck, i)==0 ){
|
|
checkAppendMsg(&sCheck, "Page %u: never used", i);
|
|
}
|
|
#else
|
|
/* If the database supports auto-vacuum, make sure no tables contain
|
|
** references to pointer-map pages.
|
|
*/
|
|
if( getPageReferenced(&sCheck, i)==0 &&
|
|
(PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
|
|
checkAppendMsg(&sCheck, "Page %u: never used", i);
|
|
}
|
|
if( getPageReferenced(&sCheck, i)!=0 &&
|
|
(PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
|
|
checkAppendMsg(&sCheck, "Page %u: pointer map referenced", i);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* Clean up and report errors.
|
|
*/
|
|
integrity_ck_cleanup:
|
|
sqlite3PageFree(sCheck.heap);
|
|
sqlite3_free(sCheck.aPgRef);
|
|
*pnErr = sCheck.nErr;
|
|
if( sCheck.nErr==0 ){
|
|
sqlite3_str_reset(&sCheck.errMsg);
|
|
*pzOut = 0;
|
|
}else{
|
|
*pzOut = sqlite3StrAccumFinish(&sCheck.errMsg);
|
|
}
|
|
/* Make sure this analysis did not leave any unref() pages. */
|
|
assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
|
|
sqlite3BtreeLeave(p);
|
|
return sCheck.rc;
|
|
}
|
|
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
|
|
|
/*
|
|
** Return the full pathname of the underlying database file. Return
|
|
** an empty string if the database is in-memory or a TEMP database.
|
|
**
|
|
** The pager filename is invariant as long as the pager is
|
|
** open so it is safe to access without the BtShared mutex.
|
|
*/
|
|
const char *sqlite3BtreeGetFilename(Btree *p){
|
|
assert( p->pBt->pPager!=0 );
|
|
return sqlite3PagerFilename(p->pBt->pPager, 1);
|
|
}
|
|
|
|
/*
|
|
** Return the pathname of the journal file for this database. The return
|
|
** value of this routine is the same regardless of whether the journal file
|
|
** has been created or not.
|
|
**
|
|
** The pager journal filename is invariant as long as the pager is
|
|
** open so it is safe to access without the BtShared mutex.
|
|
*/
|
|
const char *sqlite3BtreeGetJournalname(Btree *p){
|
|
assert( p->pBt->pPager!=0 );
|
|
return sqlite3PagerJournalname(p->pBt->pPager);
|
|
}
|
|
|
|
/*
|
|
** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
|
|
** to describe the current transaction state of Btree p.
|
|
*/
|
|
int sqlite3BtreeTxnState(Btree *p){
|
|
assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
|
|
return p ? p->inTrans : 0;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_WAL
|
|
/*
|
|
** Run a checkpoint on the Btree passed as the first argument.
|
|
**
|
|
** Return SQLITE_LOCKED if this or any other connection has an open
|
|
** transaction on the shared-cache the argument Btree is connected to.
|
|
**
|
|
** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
|
|
*/
|
|
int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
|
|
int rc = SQLITE_OK;
|
|
if( p ){
|
|
BtShared *pBt = p->pBt;
|
|
sqlite3BtreeEnter(p);
|
|
if( pBt->inTransaction!=TRANS_NONE ){
|
|
rc = SQLITE_LOCKED;
|
|
}else{
|
|
rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
|
|
}
|
|
sqlite3BtreeLeave(p);
|
|
}
|
|
return rc;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Return true if there is currently a backup running on Btree p.
|
|
*/
|
|
int sqlite3BtreeIsInBackup(Btree *p){
|
|
assert( p );
|
|
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
return p->nBackup!=0;
|
|
}
|
|
|
|
/*
|
|
** This function returns a pointer to a blob of memory associated with
|
|
** a single shared-btree. The memory is used by client code for its own
|
|
** purposes (for example, to store a high-level schema associated with
|
|
** the shared-btree). The btree layer manages reference counting issues.
|
|
**
|
|
** The first time this is called on a shared-btree, nBytes bytes of memory
|
|
** are allocated, zeroed, and returned to the caller. For each subsequent
|
|
** call the nBytes parameter is ignored and a pointer to the same blob
|
|
** of memory returned.
|
|
**
|
|
** If the nBytes parameter is 0 and the blob of memory has not yet been
|
|
** allocated, a null pointer is returned. If the blob has already been
|
|
** allocated, it is returned as normal.
|
|
**
|
|
** Just before the shared-btree is closed, the function passed as the
|
|
** xFree argument when the memory allocation was made is invoked on the
|
|
** blob of allocated memory. The xFree function should not call sqlite3_free()
|
|
** on the memory, the btree layer does that.
|
|
*/
|
|
void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
|
|
BtShared *pBt = p->pBt;
|
|
sqlite3BtreeEnter(p);
|
|
if( !pBt->pSchema && nBytes ){
|
|
pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
|
|
pBt->xFreeSchema = xFree;
|
|
}
|
|
sqlite3BtreeLeave(p);
|
|
return pBt->pSchema;
|
|
}
|
|
|
|
/*
|
|
** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
|
|
** btree as the argument handle holds an exclusive lock on the
|
|
** sqlite_schema table. Otherwise SQLITE_OK.
|
|
*/
|
|
int sqlite3BtreeSchemaLocked(Btree *p){
|
|
int rc;
|
|
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
sqlite3BtreeEnter(p);
|
|
rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
|
|
assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
/*
|
|
** Obtain a lock on the table whose root page is iTab. The
|
|
** lock is a write lock if isWritelock is true or a read lock
|
|
** if it is false.
|
|
*/
|
|
int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
|
|
int rc = SQLITE_OK;
|
|
assert( p->inTrans!=TRANS_NONE );
|
|
if( p->sharable ){
|
|
u8 lockType = READ_LOCK + isWriteLock;
|
|
assert( READ_LOCK+1==WRITE_LOCK );
|
|
assert( isWriteLock==0 || isWriteLock==1 );
|
|
|
|
sqlite3BtreeEnter(p);
|
|
rc = querySharedCacheTableLock(p, iTab, lockType);
|
|
if( rc==SQLITE_OK ){
|
|
rc = setSharedCacheTableLock(p, iTab, lockType);
|
|
}
|
|
sqlite3BtreeLeave(p);
|
|
}
|
|
return rc;
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_INCRBLOB
|
|
/*
|
|
** Argument pCsr must be a cursor opened for writing on an
|
|
** INTKEY table currently pointing at a valid table entry.
|
|
** This function modifies the data stored as part of that entry.
|
|
**
|
|
** Only the data content may only be modified, it is not possible to
|
|
** change the length of the data stored. If this function is called with
|
|
** parameters that attempt to write past the end of the existing data,
|
|
** no modifications are made and SQLITE_CORRUPT is returned.
|
|
*/
|
|
int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
|
|
int rc;
|
|
assert( cursorOwnsBtShared(pCsr) );
|
|
assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
|
|
assert( pCsr->curFlags & BTCF_Incrblob );
|
|
|
|
rc = restoreCursorPosition(pCsr);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
assert( pCsr->eState!=CURSOR_REQUIRESEEK );
|
|
if( pCsr->eState!=CURSOR_VALID ){
|
|
return SQLITE_ABORT;
|
|
}
|
|
|
|
/* Save the positions of all other cursors open on this table. This is
|
|
** required in case any of them are holding references to an xFetch
|
|
** version of the b-tree page modified by the accessPayload call below.
|
|
**
|
|
** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
|
|
** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
|
|
** saveAllCursors can only return SQLITE_OK.
|
|
*/
|
|
VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
|
|
assert( rc==SQLITE_OK );
|
|
|
|
/* Check some assumptions:
|
|
** (a) the cursor is open for writing,
|
|
** (b) there is a read/write transaction open,
|
|
** (c) the connection holds a write-lock on the table (if required),
|
|
** (d) there are no conflicting read-locks, and
|
|
** (e) the cursor points at a valid row of an intKey table.
|
|
*/
|
|
if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
|
|
return SQLITE_READONLY;
|
|
}
|
|
assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
|
|
&& pCsr->pBt->inTransaction==TRANS_WRITE );
|
|
assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
|
|
assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
|
|
assert( pCsr->pPage->intKey );
|
|
|
|
return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
|
|
}
|
|
|
|
/*
|
|
** Mark this cursor as an incremental blob cursor.
|
|
*/
|
|
void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
|
|
pCur->curFlags |= BTCF_Incrblob;
|
|
pCur->pBtree->hasIncrblobCur = 1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Set both the "read version" (single byte at byte offset 18) and
|
|
** "write version" (single byte at byte offset 19) fields in the database
|
|
** header to iVersion.
|
|
*/
|
|
int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
|
|
BtShared *pBt = pBtree->pBt;
|
|
int rc; /* Return code */
|
|
|
|
assert( iVersion==1 || iVersion==2 );
|
|
|
|
/* If setting the version fields to 1, do not automatically open the
|
|
** WAL connection, even if the version fields are currently set to 2.
|
|
*/
|
|
pBt->btsFlags &= ~BTS_NO_WAL;
|
|
if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
|
|
|
|
rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
|
|
if( rc==SQLITE_OK ){
|
|
u8 *aData = pBt->pPage1->aData;
|
|
if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
|
|
rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
|
|
if( rc==SQLITE_OK ){
|
|
aData[18] = (u8)iVersion;
|
|
aData[19] = (u8)iVersion;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pBt->btsFlags &= ~BTS_NO_WAL;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return true if the cursor has a hint specified. This routine is
|
|
** only used from within assert() statements
|
|
*/
|
|
int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
|
|
return (pCsr->hints & mask)!=0;
|
|
}
|
|
|
|
/*
|
|
** Return true if the given Btree is read-only.
|
|
*/
|
|
int sqlite3BtreeIsReadonly(Btree *p){
|
|
return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
|
|
}
|
|
|
|
/*
|
|
** Return the size of the header added to each page by this module.
|
|
*/
|
|
int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
|
|
|
|
/*
|
|
** If no transaction is active and the database is not a temp-db, clear
|
|
** the in-memory pager cache.
|
|
*/
|
|
void sqlite3BtreeClearCache(Btree *p){
|
|
BtShared *pBt = p->pBt;
|
|
if( pBt->inTransaction==TRANS_NONE ){
|
|
sqlite3PagerClearCache(pBt->pPager);
|
|
}
|
|
}
|
|
|
|
#if !defined(SQLITE_OMIT_SHARED_CACHE)
|
|
/*
|
|
** Return true if the Btree passed as the only argument is sharable.
|
|
*/
|
|
int sqlite3BtreeSharable(Btree *p){
|
|
return p->sharable;
|
|
}
|
|
|
|
/*
|
|
** Return the number of connections to the BtShared object accessed by
|
|
** the Btree handle passed as the only argument. For private caches
|
|
** this is always 1. For shared caches it may be 1 or greater.
|
|
*/
|
|
int sqlite3BtreeConnectionCount(Btree *p){
|
|
testcase( p->sharable );
|
|
return p->pBt->nRef;
|
|
}
|
|
#endif
|