786b068967
FossilOrigin-Name: 4e8dd19eef04777d800977faf1859a405e396f30
461 lines
13 KiB
Plaintext
461 lines
13 KiB
Plaintext
# 2009 December 03
|
|
#
|
|
# May you do good and not evil.
|
|
# May you find forgiveness for yourself and forgive others.
|
|
# May you share freely, never taking more than you give.
|
|
#
|
|
#***********************************************************************
|
|
#
|
|
# Brute force (random data) tests for FTS3.
|
|
#
|
|
|
|
#-------------------------------------------------------------------------
|
|
#
|
|
# The FTS3 tests implemented in this file focus on testing that FTS3
|
|
# returns the correct set of documents for various types of full-text
|
|
# query. This is done using pseudo-randomly generated data and queries.
|
|
# The expected result of each query is calculated using Tcl code.
|
|
#
|
|
# 1. The database is initialized to contain a single table with three
|
|
# columns. 100 rows are inserted into the table. Each of the three
|
|
# values in each row is a document consisting of between 0 and 100
|
|
# terms. Terms are selected from a vocabulary of $G(nVocab) terms.
|
|
#
|
|
# 2. The following is performed 100 times:
|
|
#
|
|
# a. A row is inserted into the database. The row contents are
|
|
# generated as in step 1. The docid is a pseudo-randomly selected
|
|
# value between 0 and 1000000.
|
|
#
|
|
# b. A psuedo-randomly selected row is updated. One of its columns is
|
|
# set to contain a new document generated in the same way as the
|
|
# documents in step 1.
|
|
#
|
|
# c. A psuedo-randomly selected row is deleted.
|
|
#
|
|
# d. For each of several types of fts3 queries, 10 SELECT queries
|
|
# of the form:
|
|
#
|
|
# SELECT docid FROM <tbl> WHERE <tbl> MATCH '<query>'
|
|
#
|
|
# are evaluated. The results are compared to those calculated by
|
|
# Tcl code in this file. The patterns used for the different query
|
|
# types are:
|
|
#
|
|
# 1. query = <term>
|
|
# 2. query = <prefix>
|
|
# 3. query = "<term> <term>"
|
|
# 4. query = "<term> <term> <term>"
|
|
# 5. query = "<prefix> <prefix> <prefix>"
|
|
# 6. query = <term> NEAR <term>
|
|
# 7. query = <term> NEAR/11 <term> NEAR/11 <term>
|
|
# 8. query = <term> OR <term>
|
|
# 9. query = <term> NOT <term>
|
|
# 10. query = <term> AND <term>
|
|
# 11. query = <term> NEAR <term> OR <term> NEAR <term>
|
|
# 12. query = <term> NEAR <term> NOT <term> NEAR <term>
|
|
# 13. query = <term> NEAR <term> AND <term> NEAR <term>
|
|
#
|
|
# where <term> is a term psuedo-randomly selected from the vocabulary
|
|
# and prefix is the first 2 characters of such a term followed by
|
|
# a "*" character.
|
|
#
|
|
# Every second iteration, steps (a) through (d) above are performed
|
|
# within a single transaction. This forces the queries in (d) to
|
|
# read data from both the database and the in-memory hash table
|
|
# that caches the full-text index entries created by steps (a), (b)
|
|
# and (c) until the transaction is committed.
|
|
#
|
|
# The procedure above is run 5 times, using advisory fts3 node sizes of 50,
|
|
# 500, 1000 and 2000 bytes.
|
|
#
|
|
# After the test using an advisory node-size of 50, an OOM test is run using
|
|
# the database. This test is similar to step (d) above, except that it tests
|
|
# the effects of transient and persistent OOM conditions encountered while
|
|
# executing each query.
|
|
#
|
|
|
|
set testdir [file dirname $argv0]
|
|
source $testdir/tester.tcl
|
|
|
|
# If this build does not include FTS3, skip the tests in this file.
|
|
#
|
|
ifcapable !fts3 { finish_test ; return }
|
|
source $testdir/fts3_common.tcl
|
|
source $testdir/malloc_common.tcl
|
|
|
|
set G(nVocab) 100
|
|
|
|
set nVocab 100
|
|
set lVocab [list]
|
|
|
|
expr srand(0)
|
|
|
|
# Generate a vocabulary of nVocab words. Each word is 3 characters long.
|
|
#
|
|
set lChar {a b c d e f g h i j k l m n o p q r s t u v w x y z}
|
|
for {set i 0} {$i < $nVocab} {incr i} {
|
|
set len [expr int(rand()*3)+2]
|
|
set word [lindex $lChar [expr int(rand()*26)]]
|
|
append word [lindex $lChar [expr int(rand()*26)]]
|
|
if {$len>2} { append word [lindex $lChar [expr int(rand()*26)]] }
|
|
if {$len>3} { append word [lindex $lChar [expr int(rand()*26)]] }
|
|
lappend lVocab $word
|
|
}
|
|
|
|
proc random_term {} {
|
|
lindex $::lVocab [expr {int(rand()*$::nVocab)}]
|
|
}
|
|
|
|
# Return a document consisting of $nWord arbitrarily selected terms
|
|
# from the $::lVocab list.
|
|
#
|
|
proc generate_doc {nWord} {
|
|
set doc [list]
|
|
for {set i 0} {$i < $nWord} {incr i} {
|
|
lappend doc [random_term]
|
|
}
|
|
return $doc
|
|
}
|
|
|
|
|
|
|
|
# Primitives to update the table.
|
|
#
|
|
unset -nocomplain t1
|
|
proc insert_row {rowid} {
|
|
set a [generate_doc [expr int((rand()*100))]]
|
|
set b [generate_doc [expr int((rand()*100))]]
|
|
set c [generate_doc [expr int((rand()*100))]]
|
|
execsql { INSERT INTO t1(docid, a, b, c) VALUES($rowid, $a, $b, $c) }
|
|
set ::t1($rowid) [list $a $b $c]
|
|
}
|
|
proc delete_row {rowid} {
|
|
execsql { DELETE FROM t1 WHERE rowid = $rowid }
|
|
catch {unset ::t1($rowid)}
|
|
}
|
|
proc update_row {rowid} {
|
|
set cols {a b c}
|
|
set iCol [expr int(rand()*3)]
|
|
set doc [generate_doc [expr int((rand()*100))]]
|
|
lset ::t1($rowid) $iCol $doc
|
|
execsql "UPDATE t1 SET [lindex $cols $iCol] = \$doc WHERE rowid = \$rowid"
|
|
}
|
|
|
|
proc simple_phrase {zPrefix} {
|
|
set ret [list]
|
|
|
|
set reg [string map {* {[^ ]*}} $zPrefix]
|
|
set reg " $reg "
|
|
|
|
foreach key [lsort -integer [array names ::t1]] {
|
|
set value $::t1($key)
|
|
set cnt [list]
|
|
foreach col $value {
|
|
if {[regexp $reg " $col "]} { lappend ret $key ; break }
|
|
}
|
|
}
|
|
|
|
#lsort -uniq -integer $ret
|
|
set ret
|
|
}
|
|
|
|
# This [proc] is used to test the FTS3 matchinfo() function.
|
|
#
|
|
proc simple_token_matchinfo {zToken bDesc} {
|
|
|
|
set nDoc(0) 0
|
|
set nDoc(1) 0
|
|
set nDoc(2) 0
|
|
set nHit(0) 0
|
|
set nHit(1) 0
|
|
set nHit(2) 0
|
|
|
|
set dir -inc
|
|
if {$bDesc} { set dir -dec }
|
|
|
|
foreach key [array names ::t1] {
|
|
set value $::t1($key)
|
|
set a($key) [list]
|
|
foreach i {0 1 2} col $value {
|
|
set hit [llength [lsearch -all $col $zToken]]
|
|
lappend a($key) $hit
|
|
incr nHit($i) $hit
|
|
if {$hit>0} { incr nDoc($i) }
|
|
}
|
|
}
|
|
|
|
set ret [list]
|
|
foreach docid [lsort -integer $dir [array names a]] {
|
|
if { [lindex [lsort -integer $a($docid)] end] } {
|
|
set matchinfo [list 1 3]
|
|
foreach i {0 1 2} hit $a($docid) {
|
|
lappend matchinfo $hit $nHit($i) $nDoc($i)
|
|
}
|
|
lappend ret $docid $matchinfo
|
|
}
|
|
}
|
|
|
|
set ret
|
|
}
|
|
|
|
proc simple_near {termlist nNear} {
|
|
set ret [list]
|
|
|
|
foreach {key value} [array get ::t1] {
|
|
foreach v $value {
|
|
|
|
set l [lsearch -exact -all $v [lindex $termlist 0]]
|
|
foreach T [lrange $termlist 1 end] {
|
|
set l2 [list]
|
|
foreach i $l {
|
|
set iStart [expr $i - $nNear - 1]
|
|
set iEnd [expr $i + $nNear + 1]
|
|
if {$iStart < 0} {set iStart 0}
|
|
foreach i2 [lsearch -exact -all [lrange $v $iStart $iEnd] $T] {
|
|
incr i2 $iStart
|
|
if {$i2 != $i} { lappend l2 $i2 }
|
|
}
|
|
}
|
|
set l [lsort -uniq -integer $l2]
|
|
}
|
|
|
|
if {[llength $l]} {
|
|
#puts "MATCH($key): $v"
|
|
lappend ret $key
|
|
}
|
|
}
|
|
}
|
|
|
|
lsort -unique -integer $ret
|
|
}
|
|
|
|
# The following three procs:
|
|
#
|
|
# setup_not A B
|
|
# setup_or A B
|
|
# setup_and A B
|
|
#
|
|
# each take two arguments. Both arguments must be lists of integer values
|
|
# sorted by value. The return value is the list produced by evaluating
|
|
# the equivalent of "A op B", where op is the FTS3 operator NOT, OR or
|
|
# AND.
|
|
#
|
|
proc setop_not {A B} {
|
|
foreach b $B { set n($b) {} }
|
|
set ret [list]
|
|
foreach a $A { if {![info exists n($a)]} {lappend ret $a} }
|
|
return $ret
|
|
}
|
|
proc setop_or {A B} {
|
|
lsort -integer -uniq [concat $A $B]
|
|
}
|
|
proc setop_and {A B} {
|
|
foreach b $B { set n($b) {} }
|
|
set ret [list]
|
|
foreach a $A { if {[info exists n($a)]} {lappend ret $a} }
|
|
return $ret
|
|
}
|
|
|
|
proc mit {blob} {
|
|
set scan(littleEndian) i*
|
|
set scan(bigEndian) I*
|
|
binary scan $blob $scan($::tcl_platform(byteOrder)) r
|
|
return $r
|
|
}
|
|
db func mit mit
|
|
set sqlite_fts3_enable_parentheses 1
|
|
|
|
proc do_orderbydocid_test {tn sql res} {
|
|
uplevel [list do_select_test $tn.asc "$sql ORDER BY docid ASC" $res]
|
|
uplevel [list do_select_test $tn.desc "$sql ORDER BY docid DESC" \
|
|
[lsort -int -dec $res]
|
|
]
|
|
}
|
|
|
|
set NUM_TRIALS 100
|
|
|
|
foreach {nodesize order} {
|
|
50 DESC
|
|
50 ASC
|
|
500 ASC
|
|
1000 DESC
|
|
2000 ASC
|
|
} {
|
|
catch { array unset ::t1 }
|
|
set testname "$nodesize/$order"
|
|
|
|
# Create the FTS3 table. Populate it (and the Tcl array) with 100 rows.
|
|
#
|
|
db transaction {
|
|
catchsql { DROP TABLE t1 }
|
|
execsql "CREATE VIRTUAL TABLE t1 USING fts4(a, b, c, order=$order)"
|
|
execsql "INSERT INTO t1(t1) VALUES('nodesize=$nodesize')"
|
|
for {set i 0} {$i < 100} {incr i} { insert_row $i }
|
|
}
|
|
|
|
for {set iTest 1} {$iTest <= $NUM_TRIALS} {incr iTest} {
|
|
catchsql COMMIT
|
|
|
|
set DO_MALLOC_TEST 0
|
|
set nRep 10
|
|
if {$iTest==100 && $nodesize==50} {
|
|
set DO_MALLOC_TEST 1
|
|
set nRep 2
|
|
}
|
|
|
|
set ::testprefix fts3rnd-1.$testname.$iTest
|
|
|
|
# Delete one row, update one row and insert one row.
|
|
#
|
|
set rows [array names ::t1]
|
|
set nRow [llength $rows]
|
|
set iUpdate [lindex $rows [expr {int(rand()*$nRow)}]]
|
|
set iDelete $iUpdate
|
|
while {$iDelete == $iUpdate} {
|
|
set iDelete [lindex $rows [expr {int(rand()*$nRow)}]]
|
|
}
|
|
set iInsert $iUpdate
|
|
while {[info exists ::t1($iInsert)]} {
|
|
set iInsert [expr {int(rand()*1000000)}]
|
|
}
|
|
execsql BEGIN
|
|
insert_row $iInsert
|
|
update_row $iUpdate
|
|
delete_row $iDelete
|
|
if {0==($iTest%2)} { execsql COMMIT }
|
|
|
|
if {0==($iTest%2)} {
|
|
#do_test 0 { fts3_integrity_check t1 } ok
|
|
}
|
|
|
|
# Pick 10 terms from the vocabulary. Check that the results of querying
|
|
# the database for the set of documents containing each of these terms
|
|
# is the same as the result obtained by scanning the contents of the Tcl
|
|
# array for each term.
|
|
#
|
|
for {set i 0} {$i < 10} {incr i} {
|
|
set term [random_term]
|
|
do_select_test 1.$i.asc {
|
|
SELECT docid, mit(matchinfo(t1)) FROM t1 WHERE t1 MATCH $term
|
|
ORDER BY docid ASC
|
|
} [simple_token_matchinfo $term 0]
|
|
do_select_test 1.$i.desc {
|
|
SELECT docid, mit(matchinfo(t1)) FROM t1 WHERE t1 MATCH $term
|
|
ORDER BY docid DESC
|
|
} [simple_token_matchinfo $term 1]
|
|
}
|
|
|
|
# This time, use the first two characters of each term as a term prefix
|
|
# to query for. Test that querying the Tcl array produces the same results
|
|
# as querying the FTS3 table for the prefix.
|
|
#
|
|
for {set i 0} {$i < $nRep} {incr i} {
|
|
set prefix [string range [random_term] 0 end-1]
|
|
set match "${prefix}*"
|
|
do_orderbydocid_test 2.$i {
|
|
SELECT docid FROM t1 WHERE t1 MATCH $match
|
|
} [simple_phrase $match]
|
|
}
|
|
|
|
# Similar to the above, except for phrase queries.
|
|
#
|
|
for {set i 0} {$i < $nRep} {incr i} {
|
|
set term [list [random_term] [random_term]]
|
|
set match "\"$term\""
|
|
do_orderbydocid_test 3.$i {
|
|
SELECT docid FROM t1 WHERE t1 MATCH $match
|
|
} [simple_phrase $term]
|
|
}
|
|
|
|
# Three word phrases.
|
|
#
|
|
for {set i 0} {$i < $nRep} {incr i} {
|
|
set term [list [random_term] [random_term] [random_term]]
|
|
set match "\"$term\""
|
|
do_orderbydocid_test 4.$i {
|
|
SELECT docid FROM t1 WHERE t1 MATCH $match
|
|
} [simple_phrase $term]
|
|
}
|
|
|
|
# Three word phrases made up of term-prefixes.
|
|
#
|
|
for {set i 0} {$i < $nRep} {incr i} {
|
|
set query "[string range [random_term] 0 end-1]* "
|
|
append query "[string range [random_term] 0 end-1]* "
|
|
append query "[string range [random_term] 0 end-1]*"
|
|
|
|
set match "\"$query\""
|
|
do_orderbydocid_test 5.$i {
|
|
SELECT docid FROM t1 WHERE t1 MATCH $match
|
|
} [simple_phrase $query]
|
|
}
|
|
|
|
# A NEAR query with terms as the arguments:
|
|
#
|
|
# ... MATCH '$term1 NEAR $term2' ...
|
|
#
|
|
for {set i 0} {$i < $nRep} {incr i} {
|
|
set terms [list [random_term] [random_term]]
|
|
set match [join $terms " NEAR "]
|
|
do_orderbydocid_test 6.$i {
|
|
SELECT docid FROM t1 WHERE t1 MATCH $match
|
|
} [simple_near $terms 10]
|
|
}
|
|
|
|
# A 3-way NEAR query with terms as the arguments.
|
|
#
|
|
for {set i 0} {$i < $nRep} {incr i} {
|
|
set terms [list [random_term] [random_term] [random_term]]
|
|
set nNear 11
|
|
set match [join $terms " NEAR/$nNear "]
|
|
do_orderbydocid_test 7.$i {
|
|
SELECT docid FROM t1 WHERE t1 MATCH $match
|
|
} [simple_near $terms $nNear]
|
|
}
|
|
|
|
# Set operations on simple term queries.
|
|
#
|
|
foreach {tn op proc} {
|
|
8 OR setop_or
|
|
9 NOT setop_not
|
|
10 AND setop_and
|
|
} {
|
|
for {set i 0} {$i < $nRep} {incr i} {
|
|
set term1 [random_term]
|
|
set term2 [random_term]
|
|
set match "$term1 $op $term2"
|
|
do_orderbydocid_test $tn.$i {
|
|
SELECT docid FROM t1 WHERE t1 MATCH $match
|
|
} [$proc [simple_phrase $term1] [simple_phrase $term2]]
|
|
}
|
|
}
|
|
|
|
# Set operations on NEAR queries.
|
|
#
|
|
foreach {tn op proc} {
|
|
11 OR setop_or
|
|
12 NOT setop_not
|
|
13 AND setop_and
|
|
} {
|
|
for {set i 0} {$i < $nRep} {incr i} {
|
|
set term1 [random_term]
|
|
set term2 [random_term]
|
|
set term3 [random_term]
|
|
set term4 [random_term]
|
|
set match "$term1 NEAR $term2 $op $term3 NEAR $term4"
|
|
do_orderbydocid_test $tn.$i {
|
|
SELECT docid FROM t1 WHERE t1 MATCH $match
|
|
} [$proc \
|
|
[simple_near [list $term1 $term2] 10] \
|
|
[simple_near [list $term3 $term4] 10]
|
|
]
|
|
}
|
|
}
|
|
|
|
catchsql COMMIT
|
|
}
|
|
}
|
|
|
|
finish_test
|