sqlite/src/main.c
drh b8a45bbdb8 Fix typos in comments. No changes to code.
FossilOrigin-Name: 6827338ecbe43e28da88d919851ebffde9f6d398
2011-12-31 21:51:55 +00:00

3030 lines
91 KiB
C

/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** Main file for the SQLite library. The routines in this file
** implement the programmer interface to the library. Routines in
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
*/
#include "sqliteInt.h"
#ifdef SQLITE_ENABLE_FTS3
# include "fts3.h"
#endif
#ifdef SQLITE_ENABLE_RTREE
# include "rtree.h"
#endif
#ifdef SQLITE_ENABLE_ICU
# include "sqliteicu.h"
#endif
#ifndef SQLITE_AMALGAMATION
/* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant
** contains the text of SQLITE_VERSION macro.
*/
const char sqlite3_version[] = SQLITE_VERSION;
#endif
/* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns
** a pointer to the to the sqlite3_version[] string constant.
*/
const char *sqlite3_libversion(void){ return sqlite3_version; }
/* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a
** pointer to a string constant whose value is the same as the
** SQLITE_SOURCE_ID C preprocessor macro.
*/
const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; }
/* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function
** returns an integer equal to SQLITE_VERSION_NUMBER.
*/
int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; }
/* IMPLEMENTATION-OF: R-54823-41343 The sqlite3_threadsafe() function returns
** zero if and only if SQLite was compiled with mutexing code omitted due to
** the SQLITE_THREADSAFE compile-time option being set to 0.
*/
int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; }
#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
/*
** If the following function pointer is not NULL and if
** SQLITE_ENABLE_IOTRACE is enabled, then messages describing
** I/O active are written using this function. These messages
** are intended for debugging activity only.
*/
void (*sqlite3IoTrace)(const char*, ...) = 0;
#endif
/*
** If the following global variable points to a string which is the
** name of a directory, then that directory will be used to store
** temporary files.
**
** See also the "PRAGMA temp_store_directory" SQL command.
*/
char *sqlite3_temp_directory = 0;
/*
** Initialize SQLite.
**
** This routine must be called to initialize the memory allocation,
** VFS, and mutex subsystems prior to doing any serious work with
** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT
** this routine will be called automatically by key routines such as
** sqlite3_open().
**
** This routine is a no-op except on its very first call for the process,
** or for the first call after a call to sqlite3_shutdown.
**
** The first thread to call this routine runs the initialization to
** completion. If subsequent threads call this routine before the first
** thread has finished the initialization process, then the subsequent
** threads must block until the first thread finishes with the initialization.
**
** The first thread might call this routine recursively. Recursive
** calls to this routine should not block, of course. Otherwise the
** initialization process would never complete.
**
** Let X be the first thread to enter this routine. Let Y be some other
** thread. Then while the initial invocation of this routine by X is
** incomplete, it is required that:
**
** * Calls to this routine from Y must block until the outer-most
** call by X completes.
**
** * Recursive calls to this routine from thread X return immediately
** without blocking.
*/
int sqlite3_initialize(void){
MUTEX_LOGIC( sqlite3_mutex *pMaster; ) /* The main static mutex */
int rc; /* Result code */
#ifdef SQLITE_OMIT_WSD
rc = sqlite3_wsd_init(4096, 24);
if( rc!=SQLITE_OK ){
return rc;
}
#endif
/* If SQLite is already completely initialized, then this call
** to sqlite3_initialize() should be a no-op. But the initialization
** must be complete. So isInit must not be set until the very end
** of this routine.
*/
if( sqlite3GlobalConfig.isInit ) return SQLITE_OK;
/* Make sure the mutex subsystem is initialized. If unable to
** initialize the mutex subsystem, return early with the error.
** If the system is so sick that we are unable to allocate a mutex,
** there is not much SQLite is going to be able to do.
**
** The mutex subsystem must take care of serializing its own
** initialization.
*/
rc = sqlite3MutexInit();
if( rc ) return rc;
/* Initialize the malloc() system and the recursive pInitMutex mutex.
** This operation is protected by the STATIC_MASTER mutex. Note that
** MutexAlloc() is called for a static mutex prior to initializing the
** malloc subsystem - this implies that the allocation of a static
** mutex must not require support from the malloc subsystem.
*/
MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
sqlite3_mutex_enter(pMaster);
sqlite3GlobalConfig.isMutexInit = 1;
if( !sqlite3GlobalConfig.isMallocInit ){
rc = sqlite3MallocInit();
}
if( rc==SQLITE_OK ){
sqlite3GlobalConfig.isMallocInit = 1;
if( !sqlite3GlobalConfig.pInitMutex ){
sqlite3GlobalConfig.pInitMutex =
sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){
rc = SQLITE_NOMEM;
}
}
}
if( rc==SQLITE_OK ){
sqlite3GlobalConfig.nRefInitMutex++;
}
sqlite3_mutex_leave(pMaster);
/* If rc is not SQLITE_OK at this point, then either the malloc
** subsystem could not be initialized or the system failed to allocate
** the pInitMutex mutex. Return an error in either case. */
if( rc!=SQLITE_OK ){
return rc;
}
/* Do the rest of the initialization under the recursive mutex so
** that we will be able to handle recursive calls into
** sqlite3_initialize(). The recursive calls normally come through
** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other
** recursive calls might also be possible.
**
** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls
** to the xInit method, so the xInit method need not be threadsafe.
**
** The following mutex is what serializes access to the appdef pcache xInit
** methods. The sqlite3_pcache_methods.xInit() all is embedded in the
** call to sqlite3PcacheInitialize().
*/
sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex);
if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){
FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
sqlite3GlobalConfig.inProgress = 1;
memset(pHash, 0, sizeof(sqlite3GlobalFunctions));
sqlite3RegisterGlobalFunctions();
if( sqlite3GlobalConfig.isPCacheInit==0 ){
rc = sqlite3PcacheInitialize();
}
if( rc==SQLITE_OK ){
sqlite3GlobalConfig.isPCacheInit = 1;
rc = sqlite3OsInit();
}
if( rc==SQLITE_OK ){
sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage,
sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage);
sqlite3GlobalConfig.isInit = 1;
}
sqlite3GlobalConfig.inProgress = 0;
}
sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex);
/* Go back under the static mutex and clean up the recursive
** mutex to prevent a resource leak.
*/
sqlite3_mutex_enter(pMaster);
sqlite3GlobalConfig.nRefInitMutex--;
if( sqlite3GlobalConfig.nRefInitMutex<=0 ){
assert( sqlite3GlobalConfig.nRefInitMutex==0 );
sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex);
sqlite3GlobalConfig.pInitMutex = 0;
}
sqlite3_mutex_leave(pMaster);
/* The following is just a sanity check to make sure SQLite has
** been compiled correctly. It is important to run this code, but
** we don't want to run it too often and soak up CPU cycles for no
** reason. So we run it once during initialization.
*/
#ifndef NDEBUG
#ifndef SQLITE_OMIT_FLOATING_POINT
/* This section of code's only "output" is via assert() statements. */
if ( rc==SQLITE_OK ){
u64 x = (((u64)1)<<63)-1;
double y;
assert(sizeof(x)==8);
assert(sizeof(x)==sizeof(y));
memcpy(&y, &x, 8);
assert( sqlite3IsNaN(y) );
}
#endif
#endif
/* Do extra initialization steps requested by the SQLITE_EXTRA_INIT
** compile-time option.
*/
#ifdef SQLITE_EXTRA_INIT
if( rc==SQLITE_OK && sqlite3GlobalConfig.isInit ){
int SQLITE_EXTRA_INIT(const char*);
rc = SQLITE_EXTRA_INIT(0);
}
#endif
return rc;
}
/*
** Undo the effects of sqlite3_initialize(). Must not be called while
** there are outstanding database connections or memory allocations or
** while any part of SQLite is otherwise in use in any thread. This
** routine is not threadsafe. But it is safe to invoke this routine
** on when SQLite is already shut down. If SQLite is already shut down
** when this routine is invoked, then this routine is a harmless no-op.
*/
int sqlite3_shutdown(void){
if( sqlite3GlobalConfig.isInit ){
#ifdef SQLITE_EXTRA_SHUTDOWN
void SQLITE_EXTRA_SHUTDOWN(void);
SQLITE_EXTRA_SHUTDOWN();
#endif
sqlite3_os_end();
sqlite3_reset_auto_extension();
sqlite3GlobalConfig.isInit = 0;
}
if( sqlite3GlobalConfig.isPCacheInit ){
sqlite3PcacheShutdown();
sqlite3GlobalConfig.isPCacheInit = 0;
}
if( sqlite3GlobalConfig.isMallocInit ){
sqlite3MallocEnd();
sqlite3GlobalConfig.isMallocInit = 0;
}
if( sqlite3GlobalConfig.isMutexInit ){
sqlite3MutexEnd();
sqlite3GlobalConfig.isMutexInit = 0;
}
return SQLITE_OK;
}
/*
** This API allows applications to modify the global configuration of
** the SQLite library at run-time.
**
** This routine should only be called when there are no outstanding
** database connections or memory allocations. This routine is not
** threadsafe. Failure to heed these warnings can lead to unpredictable
** behavior.
*/
int sqlite3_config(int op, ...){
va_list ap;
int rc = SQLITE_OK;
/* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while
** the SQLite library is in use. */
if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT;
va_start(ap, op);
switch( op ){
/* Mutex configuration options are only available in a threadsafe
** compile.
*/
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0
case SQLITE_CONFIG_SINGLETHREAD: {
/* Disable all mutexing */
sqlite3GlobalConfig.bCoreMutex = 0;
sqlite3GlobalConfig.bFullMutex = 0;
break;
}
case SQLITE_CONFIG_MULTITHREAD: {
/* Disable mutexing of database connections */
/* Enable mutexing of core data structures */
sqlite3GlobalConfig.bCoreMutex = 1;
sqlite3GlobalConfig.bFullMutex = 0;
break;
}
case SQLITE_CONFIG_SERIALIZED: {
/* Enable all mutexing */
sqlite3GlobalConfig.bCoreMutex = 1;
sqlite3GlobalConfig.bFullMutex = 1;
break;
}
case SQLITE_CONFIG_MUTEX: {
/* Specify an alternative mutex implementation */
sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*);
break;
}
case SQLITE_CONFIG_GETMUTEX: {
/* Retrieve the current mutex implementation */
*va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex;
break;
}
#endif
case SQLITE_CONFIG_MALLOC: {
/* Specify an alternative malloc implementation */
sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*);
break;
}
case SQLITE_CONFIG_GETMALLOC: {
/* Retrieve the current malloc() implementation */
if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault();
*va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m;
break;
}
case SQLITE_CONFIG_MEMSTATUS: {
/* Enable or disable the malloc status collection */
sqlite3GlobalConfig.bMemstat = va_arg(ap, int);
break;
}
case SQLITE_CONFIG_SCRATCH: {
/* Designate a buffer for scratch memory space */
sqlite3GlobalConfig.pScratch = va_arg(ap, void*);
sqlite3GlobalConfig.szScratch = va_arg(ap, int);
sqlite3GlobalConfig.nScratch = va_arg(ap, int);
break;
}
case SQLITE_CONFIG_PAGECACHE: {
/* Designate a buffer for page cache memory space */
sqlite3GlobalConfig.pPage = va_arg(ap, void*);
sqlite3GlobalConfig.szPage = va_arg(ap, int);
sqlite3GlobalConfig.nPage = va_arg(ap, int);
break;
}
case SQLITE_CONFIG_PCACHE: {
/* no-op */
break;
}
case SQLITE_CONFIG_GETPCACHE: {
/* now an error */
rc = SQLITE_ERROR;
break;
}
case SQLITE_CONFIG_PCACHE2: {
/* Specify an alternative page cache implementation */
sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*);
break;
}
case SQLITE_CONFIG_GETPCACHE2: {
if( sqlite3GlobalConfig.pcache2.xInit==0 ){
sqlite3PCacheSetDefault();
}
*va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2;
break;
}
#if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
case SQLITE_CONFIG_HEAP: {
/* Designate a buffer for heap memory space */
sqlite3GlobalConfig.pHeap = va_arg(ap, void*);
sqlite3GlobalConfig.nHeap = va_arg(ap, int);
sqlite3GlobalConfig.mnReq = va_arg(ap, int);
if( sqlite3GlobalConfig.mnReq<1 ){
sqlite3GlobalConfig.mnReq = 1;
}else if( sqlite3GlobalConfig.mnReq>(1<<12) ){
/* cap min request size at 2^12 */
sqlite3GlobalConfig.mnReq = (1<<12);
}
if( sqlite3GlobalConfig.pHeap==0 ){
/* If the heap pointer is NULL, then restore the malloc implementation
** back to NULL pointers too. This will cause the malloc to go
** back to its default implementation when sqlite3_initialize() is
** run.
*/
memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m));
}else{
/* The heap pointer is not NULL, then install one of the
** mem5.c/mem3.c methods. If neither ENABLE_MEMSYS3 nor
** ENABLE_MEMSYS5 is defined, return an error.
*/
#ifdef SQLITE_ENABLE_MEMSYS3
sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3();
#endif
#ifdef SQLITE_ENABLE_MEMSYS5
sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5();
#endif
}
break;
}
#endif
case SQLITE_CONFIG_LOOKASIDE: {
sqlite3GlobalConfig.szLookaside = va_arg(ap, int);
sqlite3GlobalConfig.nLookaside = va_arg(ap, int);
break;
}
/* Record a pointer to the logger funcction and its first argument.
** The default is NULL. Logging is disabled if the function pointer is
** NULL.
*/
case SQLITE_CONFIG_LOG: {
/* MSVC is picky about pulling func ptrs from va lists.
** http://support.microsoft.com/kb/47961
** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*));
*/
typedef void(*LOGFUNC_t)(void*,int,const char*);
sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t);
sqlite3GlobalConfig.pLogArg = va_arg(ap, void*);
break;
}
case SQLITE_CONFIG_URI: {
sqlite3GlobalConfig.bOpenUri = va_arg(ap, int);
break;
}
default: {
rc = SQLITE_ERROR;
break;
}
}
va_end(ap);
return rc;
}
/*
** Set up the lookaside buffers for a database connection.
** Return SQLITE_OK on success.
** If lookaside is already active, return SQLITE_BUSY.
**
** The sz parameter is the number of bytes in each lookaside slot.
** The cnt parameter is the number of slots. If pStart is NULL the
** space for the lookaside memory is obtained from sqlite3_malloc().
** If pStart is not NULL then it is sz*cnt bytes of memory to use for
** the lookaside memory.
*/
static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){
void *pStart;
if( db->lookaside.nOut ){
return SQLITE_BUSY;
}
/* Free any existing lookaside buffer for this handle before
** allocating a new one so we don't have to have space for
** both at the same time.
*/
if( db->lookaside.bMalloced ){
sqlite3_free(db->lookaside.pStart);
}
/* The size of a lookaside slot after ROUNDDOWN8 needs to be larger
** than a pointer to be useful.
*/
sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */
if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0;
if( cnt<0 ) cnt = 0;
if( sz==0 || cnt==0 ){
sz = 0;
pStart = 0;
}else if( pBuf==0 ){
sqlite3BeginBenignMalloc();
pStart = sqlite3Malloc( sz*cnt ); /* IMP: R-61949-35727 */
sqlite3EndBenignMalloc();
if( pStart ) cnt = sqlite3MallocSize(pStart)/sz;
}else{
pStart = pBuf;
}
db->lookaside.pStart = pStart;
db->lookaside.pFree = 0;
db->lookaside.sz = (u16)sz;
if( pStart ){
int i;
LookasideSlot *p;
assert( sz > (int)sizeof(LookasideSlot*) );
p = (LookasideSlot*)pStart;
for(i=cnt-1; i>=0; i--){
p->pNext = db->lookaside.pFree;
db->lookaside.pFree = p;
p = (LookasideSlot*)&((u8*)p)[sz];
}
db->lookaside.pEnd = p;
db->lookaside.bEnabled = 1;
db->lookaside.bMalloced = pBuf==0 ?1:0;
}else{
db->lookaside.pEnd = 0;
db->lookaside.bEnabled = 0;
db->lookaside.bMalloced = 0;
}
return SQLITE_OK;
}
/*
** Return the mutex associated with a database connection.
*/
sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){
return db->mutex;
}
/*
** Free up as much memory as we can from the given database
** connection.
*/
int sqlite3_db_release_memory(sqlite3 *db){
int i;
sqlite3_mutex_enter(db->mutex);
sqlite3BtreeEnterAll(db);
for(i=0; i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( pBt ){
Pager *pPager = sqlite3BtreePager(pBt);
sqlite3PagerShrink(pPager);
}
}
sqlite3BtreeLeaveAll(db);
sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
/*
** Configuration settings for an individual database connection
*/
int sqlite3_db_config(sqlite3 *db, int op, ...){
va_list ap;
int rc;
va_start(ap, op);
switch( op ){
case SQLITE_DBCONFIG_LOOKASIDE: {
void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */
int sz = va_arg(ap, int); /* IMP: R-47871-25994 */
int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */
rc = setupLookaside(db, pBuf, sz, cnt);
break;
}
default: {
static const struct {
int op; /* The opcode */
u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */
} aFlagOp[] = {
{ SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys },
{ SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger },
};
unsigned int i;
rc = SQLITE_ERROR; /* IMP: R-42790-23372 */
for(i=0; i<ArraySize(aFlagOp); i++){
if( aFlagOp[i].op==op ){
int onoff = va_arg(ap, int);
int *pRes = va_arg(ap, int*);
int oldFlags = db->flags;
if( onoff>0 ){
db->flags |= aFlagOp[i].mask;
}else if( onoff==0 ){
db->flags &= ~aFlagOp[i].mask;
}
if( oldFlags!=db->flags ){
sqlite3ExpirePreparedStatements(db);
}
if( pRes ){
*pRes = (db->flags & aFlagOp[i].mask)!=0;
}
rc = SQLITE_OK;
break;
}
}
break;
}
}
va_end(ap);
return rc;
}
/*
** Return true if the buffer z[0..n-1] contains all spaces.
*/
static int allSpaces(const char *z, int n){
while( n>0 && z[n-1]==' ' ){ n--; }
return n==0;
}
/*
** This is the default collating function named "BINARY" which is always
** available.
**
** If the padFlag argument is not NULL then space padding at the end
** of strings is ignored. This implements the RTRIM collation.
*/
static int binCollFunc(
void *padFlag,
int nKey1, const void *pKey1,
int nKey2, const void *pKey2
){
int rc, n;
n = nKey1<nKey2 ? nKey1 : nKey2;
rc = memcmp(pKey1, pKey2, n);
if( rc==0 ){
if( padFlag
&& allSpaces(((char*)pKey1)+n, nKey1-n)
&& allSpaces(((char*)pKey2)+n, nKey2-n)
){
/* Leave rc unchanged at 0 */
}else{
rc = nKey1 - nKey2;
}
}
return rc;
}
/*
** Another built-in collating sequence: NOCASE.
**
** This collating sequence is intended to be used for "case independant
** comparison". SQLite's knowledge of upper and lower case equivalents
** extends only to the 26 characters used in the English language.
**
** At the moment there is only a UTF-8 implementation.
*/
static int nocaseCollatingFunc(
void *NotUsed,
int nKey1, const void *pKey1,
int nKey2, const void *pKey2
){
int r = sqlite3StrNICmp(
(const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2);
UNUSED_PARAMETER(NotUsed);
if( 0==r ){
r = nKey1-nKey2;
}
return r;
}
/*
** Return the ROWID of the most recent insert
*/
sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){
return db->lastRowid;
}
/*
** Return the number of changes in the most recent call to sqlite3_exec().
*/
int sqlite3_changes(sqlite3 *db){
return db->nChange;
}
/*
** Return the number of changes since the database handle was opened.
*/
int sqlite3_total_changes(sqlite3 *db){
return db->nTotalChange;
}
/*
** Close all open savepoints. This function only manipulates fields of the
** database handle object, it does not close any savepoints that may be open
** at the b-tree/pager level.
*/
void sqlite3CloseSavepoints(sqlite3 *db){
while( db->pSavepoint ){
Savepoint *pTmp = db->pSavepoint;
db->pSavepoint = pTmp->pNext;
sqlite3DbFree(db, pTmp);
}
db->nSavepoint = 0;
db->nStatement = 0;
db->isTransactionSavepoint = 0;
}
/*
** Invoke the destructor function associated with FuncDef p, if any. Except,
** if this is not the last copy of the function, do not invoke it. Multiple
** copies of a single function are created when create_function() is called
** with SQLITE_ANY as the encoding.
*/
static void functionDestroy(sqlite3 *db, FuncDef *p){
FuncDestructor *pDestructor = p->pDestructor;
if( pDestructor ){
pDestructor->nRef--;
if( pDestructor->nRef==0 ){
pDestructor->xDestroy(pDestructor->pUserData);
sqlite3DbFree(db, pDestructor);
}
}
}
/*
** Close an existing SQLite database
*/
int sqlite3_close(sqlite3 *db){
HashElem *i; /* Hash table iterator */
int j;
if( !db ){
return SQLITE_OK;
}
if( !sqlite3SafetyCheckSickOrOk(db) ){
return SQLITE_MISUSE_BKPT;
}
sqlite3_mutex_enter(db->mutex);
/* Force xDestroy calls on all virtual tables */
sqlite3ResetInternalSchema(db, -1);
/* If a transaction is open, the ResetInternalSchema() call above
** will not have called the xDisconnect() method on any virtual
** tables in the db->aVTrans[] array. The following sqlite3VtabRollback()
** call will do so. We need to do this before the check for active
** SQL statements below, as the v-table implementation may be storing
** some prepared statements internally.
*/
sqlite3VtabRollback(db);
/* If there are any outstanding VMs, return SQLITE_BUSY. */
if( db->pVdbe ){
sqlite3Error(db, SQLITE_BUSY,
"unable to close due to unfinalised statements");
sqlite3_mutex_leave(db->mutex);
return SQLITE_BUSY;
}
assert( sqlite3SafetyCheckSickOrOk(db) );
for(j=0; j<db->nDb; j++){
Btree *pBt = db->aDb[j].pBt;
if( pBt && sqlite3BtreeIsInBackup(pBt) ){
sqlite3Error(db, SQLITE_BUSY,
"unable to close due to unfinished backup operation");
sqlite3_mutex_leave(db->mutex);
return SQLITE_BUSY;
}
}
/* Free any outstanding Savepoint structures. */
sqlite3CloseSavepoints(db);
for(j=0; j<db->nDb; j++){
struct Db *pDb = &db->aDb[j];
if( pDb->pBt ){
sqlite3BtreeClose(pDb->pBt);
pDb->pBt = 0;
if( j!=1 ){
pDb->pSchema = 0;
}
}
}
sqlite3ResetInternalSchema(db, -1);
/* Tell the code in notify.c that the connection no longer holds any
** locks and does not require any further unlock-notify callbacks.
*/
sqlite3ConnectionClosed(db);
assert( db->nDb<=2 );
assert( db->aDb==db->aDbStatic );
for(j=0; j<ArraySize(db->aFunc.a); j++){
FuncDef *pNext, *pHash, *p;
for(p=db->aFunc.a[j]; p; p=pHash){
pHash = p->pHash;
while( p ){
functionDestroy(db, p);
pNext = p->pNext;
sqlite3DbFree(db, p);
p = pNext;
}
}
}
for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){
CollSeq *pColl = (CollSeq *)sqliteHashData(i);
/* Invoke any destructors registered for collation sequence user data. */
for(j=0; j<3; j++){
if( pColl[j].xDel ){
pColl[j].xDel(pColl[j].pUser);
}
}
sqlite3DbFree(db, pColl);
}
sqlite3HashClear(&db->aCollSeq);
#ifndef SQLITE_OMIT_VIRTUALTABLE
for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){
Module *pMod = (Module *)sqliteHashData(i);
if( pMod->xDestroy ){
pMod->xDestroy(pMod->pAux);
}
sqlite3DbFree(db, pMod);
}
sqlite3HashClear(&db->aModule);
#endif
sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */
if( db->pErr ){
sqlite3ValueFree(db->pErr);
}
sqlite3CloseExtensions(db);
db->magic = SQLITE_MAGIC_ERROR;
/* The temp-database schema is allocated differently from the other schema
** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()).
** So it needs to be freed here. Todo: Why not roll the temp schema into
** the same sqliteMalloc() as the one that allocates the database
** structure?
*/
sqlite3DbFree(db, db->aDb[1].pSchema);
sqlite3_mutex_leave(db->mutex);
db->magic = SQLITE_MAGIC_CLOSED;
sqlite3_mutex_free(db->mutex);
assert( db->lookaside.nOut==0 ); /* Fails on a lookaside memory leak */
if( db->lookaside.bMalloced ){
sqlite3_free(db->lookaside.pStart);
}
sqlite3_free(db);
return SQLITE_OK;
}
/*
** Rollback all database files.
*/
void sqlite3RollbackAll(sqlite3 *db){
int i;
int inTrans = 0;
assert( sqlite3_mutex_held(db->mutex) );
sqlite3BeginBenignMalloc();
for(i=0; i<db->nDb; i++){
if( db->aDb[i].pBt ){
if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){
inTrans = 1;
}
sqlite3BtreeRollback(db->aDb[i].pBt);
db->aDb[i].inTrans = 0;
}
}
sqlite3VtabRollback(db);
sqlite3EndBenignMalloc();
if( db->flags&SQLITE_InternChanges ){
sqlite3ExpirePreparedStatements(db);
sqlite3ResetInternalSchema(db, -1);
}
/* Any deferred constraint violations have now been resolved. */
db->nDeferredCons = 0;
/* If one has been configured, invoke the rollback-hook callback */
if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){
db->xRollbackCallback(db->pRollbackArg);
}
}
/*
** Return a static string that describes the kind of error specified in the
** argument.
*/
const char *sqlite3ErrStr(int rc){
static const char* const aMsg[] = {
/* SQLITE_OK */ "not an error",
/* SQLITE_ERROR */ "SQL logic error or missing database",
/* SQLITE_INTERNAL */ 0,
/* SQLITE_PERM */ "access permission denied",
/* SQLITE_ABORT */ "callback requested query abort",
/* SQLITE_BUSY */ "database is locked",
/* SQLITE_LOCKED */ "database table is locked",
/* SQLITE_NOMEM */ "out of memory",
/* SQLITE_READONLY */ "attempt to write a readonly database",
/* SQLITE_INTERRUPT */ "interrupted",
/* SQLITE_IOERR */ "disk I/O error",
/* SQLITE_CORRUPT */ "database disk image is malformed",
/* SQLITE_NOTFOUND */ "unknown operation",
/* SQLITE_FULL */ "database or disk is full",
/* SQLITE_CANTOPEN */ "unable to open database file",
/* SQLITE_PROTOCOL */ "locking protocol",
/* SQLITE_EMPTY */ "table contains no data",
/* SQLITE_SCHEMA */ "database schema has changed",
/* SQLITE_TOOBIG */ "string or blob too big",
/* SQLITE_CONSTRAINT */ "constraint failed",
/* SQLITE_MISMATCH */ "datatype mismatch",
/* SQLITE_MISUSE */ "library routine called out of sequence",
/* SQLITE_NOLFS */ "large file support is disabled",
/* SQLITE_AUTH */ "authorization denied",
/* SQLITE_FORMAT */ "auxiliary database format error",
/* SQLITE_RANGE */ "bind or column index out of range",
/* SQLITE_NOTADB */ "file is encrypted or is not a database",
};
rc &= 0xff;
if( ALWAYS(rc>=0) && rc<(int)(sizeof(aMsg)/sizeof(aMsg[0])) && aMsg[rc]!=0 ){
return aMsg[rc];
}else{
return "unknown error";
}
}
/*
** This routine implements a busy callback that sleeps and tries
** again until a timeout value is reached. The timeout value is
** an integer number of milliseconds passed in as the first
** argument.
*/
static int sqliteDefaultBusyCallback(
void *ptr, /* Database connection */
int count /* Number of times table has been busy */
){
#if SQLITE_OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP)
static const u8 delays[] =
{ 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 };
static const u8 totals[] =
{ 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 };
# define NDELAY ArraySize(delays)
sqlite3 *db = (sqlite3 *)ptr;
int timeout = db->busyTimeout;
int delay, prior;
assert( count>=0 );
if( count < NDELAY ){
delay = delays[count];
prior = totals[count];
}else{
delay = delays[NDELAY-1];
prior = totals[NDELAY-1] + delay*(count-(NDELAY-1));
}
if( prior + delay > timeout ){
delay = timeout - prior;
if( delay<=0 ) return 0;
}
sqlite3OsSleep(db->pVfs, delay*1000);
return 1;
#else
sqlite3 *db = (sqlite3 *)ptr;
int timeout = ((sqlite3 *)ptr)->busyTimeout;
if( (count+1)*1000 > timeout ){
return 0;
}
sqlite3OsSleep(db->pVfs, 1000000);
return 1;
#endif
}
/*
** Invoke the given busy handler.
**
** This routine is called when an operation failed with a lock.
** If this routine returns non-zero, the lock is retried. If it
** returns 0, the operation aborts with an SQLITE_BUSY error.
*/
int sqlite3InvokeBusyHandler(BusyHandler *p){
int rc;
if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0;
rc = p->xFunc(p->pArg, p->nBusy);
if( rc==0 ){
p->nBusy = -1;
}else{
p->nBusy++;
}
return rc;
}
/*
** This routine sets the busy callback for an Sqlite database to the
** given callback function with the given argument.
*/
int sqlite3_busy_handler(
sqlite3 *db,
int (*xBusy)(void*,int),
void *pArg
){
sqlite3_mutex_enter(db->mutex);
db->busyHandler.xFunc = xBusy;
db->busyHandler.pArg = pArg;
db->busyHandler.nBusy = 0;
sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
/*
** This routine sets the progress callback for an Sqlite database to the
** given callback function with the given argument. The progress callback will
** be invoked every nOps opcodes.
*/
void sqlite3_progress_handler(
sqlite3 *db,
int nOps,
int (*xProgress)(void*),
void *pArg
){
sqlite3_mutex_enter(db->mutex);
if( nOps>0 ){
db->xProgress = xProgress;
db->nProgressOps = nOps;
db->pProgressArg = pArg;
}else{
db->xProgress = 0;
db->nProgressOps = 0;
db->pProgressArg = 0;
}
sqlite3_mutex_leave(db->mutex);
}
#endif
/*
** This routine installs a default busy handler that waits for the
** specified number of milliseconds before returning 0.
*/
int sqlite3_busy_timeout(sqlite3 *db, int ms){
if( ms>0 ){
db->busyTimeout = ms;
sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db);
}else{
sqlite3_busy_handler(db, 0, 0);
}
return SQLITE_OK;
}
/*
** Cause any pending operation to stop at its earliest opportunity.
*/
void sqlite3_interrupt(sqlite3 *db){
db->u1.isInterrupted = 1;
}
/*
** This function is exactly the same as sqlite3_create_function(), except
** that it is designed to be called by internal code. The difference is
** that if a malloc() fails in sqlite3_create_function(), an error code
** is returned and the mallocFailed flag cleared.
*/
int sqlite3CreateFunc(
sqlite3 *db,
const char *zFunctionName,
int nArg,
int enc,
void *pUserData,
void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
void (*xStep)(sqlite3_context*,int,sqlite3_value **),
void (*xFinal)(sqlite3_context*),
FuncDestructor *pDestructor
){
FuncDef *p;
int nName;
assert( sqlite3_mutex_held(db->mutex) );
if( zFunctionName==0 ||
(xFunc && (xFinal || xStep)) ||
(!xFunc && (xFinal && !xStep)) ||
(!xFunc && (!xFinal && xStep)) ||
(nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) ||
(255<(nName = sqlite3Strlen30( zFunctionName))) ){
return SQLITE_MISUSE_BKPT;
}
#ifndef SQLITE_OMIT_UTF16
/* If SQLITE_UTF16 is specified as the encoding type, transform this
** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
**
** If SQLITE_ANY is specified, add three versions of the function
** to the hash table.
*/
if( enc==SQLITE_UTF16 ){
enc = SQLITE_UTF16NATIVE;
}else if( enc==SQLITE_ANY ){
int rc;
rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8,
pUserData, xFunc, xStep, xFinal, pDestructor);
if( rc==SQLITE_OK ){
rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE,
pUserData, xFunc, xStep, xFinal, pDestructor);
}
if( rc!=SQLITE_OK ){
return rc;
}
enc = SQLITE_UTF16BE;
}
#else
enc = SQLITE_UTF8;
#endif
/* Check if an existing function is being overridden or deleted. If so,
** and there are active VMs, then return SQLITE_BUSY. If a function
** is being overridden/deleted but there are no active VMs, allow the
** operation to continue but invalidate all precompiled statements.
*/
p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0);
if( p && p->iPrefEnc==enc && p->nArg==nArg ){
if( db->activeVdbeCnt ){
sqlite3Error(db, SQLITE_BUSY,
"unable to delete/modify user-function due to active statements");
assert( !db->mallocFailed );
return SQLITE_BUSY;
}else{
sqlite3ExpirePreparedStatements(db);
}
}
p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 1);
assert(p || db->mallocFailed);
if( !p ){
return SQLITE_NOMEM;
}
/* If an older version of the function with a configured destructor is
** being replaced invoke the destructor function here. */
functionDestroy(db, p);
if( pDestructor ){
pDestructor->nRef++;
}
p->pDestructor = pDestructor;
p->flags = 0;
p->xFunc = xFunc;
p->xStep = xStep;
p->xFinalize = xFinal;
p->pUserData = pUserData;
p->nArg = (u16)nArg;
return SQLITE_OK;
}
/*
** Create new user functions.
*/
int sqlite3_create_function(
sqlite3 *db,
const char *zFunc,
int nArg,
int enc,
void *p,
void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
void (*xStep)(sqlite3_context*,int,sqlite3_value **),
void (*xFinal)(sqlite3_context*)
){
return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xFunc, xStep,
xFinal, 0);
}
int sqlite3_create_function_v2(
sqlite3 *db,
const char *zFunc,
int nArg,
int enc,
void *p,
void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
void (*xStep)(sqlite3_context*,int,sqlite3_value **),
void (*xFinal)(sqlite3_context*),
void (*xDestroy)(void *)
){
int rc = SQLITE_ERROR;
FuncDestructor *pArg = 0;
sqlite3_mutex_enter(db->mutex);
if( xDestroy ){
pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor));
if( !pArg ){
xDestroy(p);
goto out;
}
pArg->xDestroy = xDestroy;
pArg->pUserData = p;
}
rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xFunc, xStep, xFinal, pArg);
if( pArg && pArg->nRef==0 ){
assert( rc!=SQLITE_OK );
xDestroy(p);
sqlite3DbFree(db, pArg);
}
out:
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
#ifndef SQLITE_OMIT_UTF16
int sqlite3_create_function16(
sqlite3 *db,
const void *zFunctionName,
int nArg,
int eTextRep,
void *p,
void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
void (*xStep)(sqlite3_context*,int,sqlite3_value**),
void (*xFinal)(sqlite3_context*)
){
int rc;
char *zFunc8;
sqlite3_mutex_enter(db->mutex);
assert( !db->mallocFailed );
zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE);
rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0);
sqlite3DbFree(db, zFunc8);
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
#endif
/*
** Declare that a function has been overloaded by a virtual table.
**
** If the function already exists as a regular global function, then
** this routine is a no-op. If the function does not exist, then create
** a new one that always throws a run-time error.
**
** When virtual tables intend to provide an overloaded function, they
** should call this routine to make sure the global function exists.
** A global function must exist in order for name resolution to work
** properly.
*/
int sqlite3_overload_function(
sqlite3 *db,
const char *zName,
int nArg
){
int nName = sqlite3Strlen30(zName);
int rc = SQLITE_OK;
sqlite3_mutex_enter(db->mutex);
if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){
rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8,
0, sqlite3InvalidFunction, 0, 0, 0);
}
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
#ifndef SQLITE_OMIT_TRACE
/*
** Register a trace function. The pArg from the previously registered trace
** is returned.
**
** A NULL trace function means that no tracing is executes. A non-NULL
** trace is a pointer to a function that is invoked at the start of each
** SQL statement.
*/
void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){
void *pOld;
sqlite3_mutex_enter(db->mutex);
pOld = db->pTraceArg;
db->xTrace = xTrace;
db->pTraceArg = pArg;
sqlite3_mutex_leave(db->mutex);
return pOld;
}
/*
** Register a profile function. The pArg from the previously registered
** profile function is returned.
**
** A NULL profile function means that no profiling is executes. A non-NULL
** profile is a pointer to a function that is invoked at the conclusion of
** each SQL statement that is run.
*/
void *sqlite3_profile(
sqlite3 *db,
void (*xProfile)(void*,const char*,sqlite_uint64),
void *pArg
){
void *pOld;
sqlite3_mutex_enter(db->mutex);
pOld = db->pProfileArg;
db->xProfile = xProfile;
db->pProfileArg = pArg;
sqlite3_mutex_leave(db->mutex);
return pOld;
}
#endif /* SQLITE_OMIT_TRACE */
/*** EXPERIMENTAL ***
**
** Register a function to be invoked when a transaction comments.
** If the invoked function returns non-zero, then the commit becomes a
** rollback.
*/
void *sqlite3_commit_hook(
sqlite3 *db, /* Attach the hook to this database */
int (*xCallback)(void*), /* Function to invoke on each commit */
void *pArg /* Argument to the function */
){
void *pOld;
sqlite3_mutex_enter(db->mutex);
pOld = db->pCommitArg;
db->xCommitCallback = xCallback;
db->pCommitArg = pArg;
sqlite3_mutex_leave(db->mutex);
return pOld;
}
/*
** Register a callback to be invoked each time a row is updated,
** inserted or deleted using this database connection.
*/
void *sqlite3_update_hook(
sqlite3 *db, /* Attach the hook to this database */
void (*xCallback)(void*,int,char const *,char const *,sqlite_int64),
void *pArg /* Argument to the function */
){
void *pRet;
sqlite3_mutex_enter(db->mutex);
pRet = db->pUpdateArg;
db->xUpdateCallback = xCallback;
db->pUpdateArg = pArg;
sqlite3_mutex_leave(db->mutex);
return pRet;
}
/*
** Register a callback to be invoked each time a transaction is rolled
** back by this database connection.
*/
void *sqlite3_rollback_hook(
sqlite3 *db, /* Attach the hook to this database */
void (*xCallback)(void*), /* Callback function */
void *pArg /* Argument to the function */
){
void *pRet;
sqlite3_mutex_enter(db->mutex);
pRet = db->pRollbackArg;
db->xRollbackCallback = xCallback;
db->pRollbackArg = pArg;
sqlite3_mutex_leave(db->mutex);
return pRet;
}
#ifndef SQLITE_OMIT_WAL
/*
** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint().
** Invoke sqlite3_wal_checkpoint if the number of frames in the log file
** is greater than sqlite3.pWalArg cast to an integer (the value configured by
** wal_autocheckpoint()).
*/
int sqlite3WalDefaultHook(
void *pClientData, /* Argument */
sqlite3 *db, /* Connection */
const char *zDb, /* Database */
int nFrame /* Size of WAL */
){
if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){
sqlite3BeginBenignMalloc();
sqlite3_wal_checkpoint(db, zDb);
sqlite3EndBenignMalloc();
}
return SQLITE_OK;
}
#endif /* SQLITE_OMIT_WAL */
/*
** Configure an sqlite3_wal_hook() callback to automatically checkpoint
** a database after committing a transaction if there are nFrame or
** more frames in the log file. Passing zero or a negative value as the
** nFrame parameter disables automatic checkpoints entirely.
**
** The callback registered by this function replaces any existing callback
** registered using sqlite3_wal_hook(). Likewise, registering a callback
** using sqlite3_wal_hook() disables the automatic checkpoint mechanism
** configured by this function.
*/
int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){
#ifdef SQLITE_OMIT_WAL
UNUSED_PARAMETER(db);
UNUSED_PARAMETER(nFrame);
#else
if( nFrame>0 ){
sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame));
}else{
sqlite3_wal_hook(db, 0, 0);
}
#endif
return SQLITE_OK;
}
/*
** Register a callback to be invoked each time a transaction is written
** into the write-ahead-log by this database connection.
*/
void *sqlite3_wal_hook(
sqlite3 *db, /* Attach the hook to this db handle */
int(*xCallback)(void *, sqlite3*, const char*, int),
void *pArg /* First argument passed to xCallback() */
){
#ifndef SQLITE_OMIT_WAL
void *pRet;
sqlite3_mutex_enter(db->mutex);
pRet = db->pWalArg;
db->xWalCallback = xCallback;
db->pWalArg = pArg;
sqlite3_mutex_leave(db->mutex);
return pRet;
#else
return 0;
#endif
}
/*
** Checkpoint database zDb.
*/
int sqlite3_wal_checkpoint_v2(
sqlite3 *db, /* Database handle */
const char *zDb, /* Name of attached database (or NULL) */
int eMode, /* SQLITE_CHECKPOINT_* value */
int *pnLog, /* OUT: Size of WAL log in frames */
int *pnCkpt /* OUT: Total number of frames checkpointed */
){
#ifdef SQLITE_OMIT_WAL
return SQLITE_OK;
#else
int rc; /* Return code */
int iDb = SQLITE_MAX_ATTACHED; /* sqlite3.aDb[] index of db to checkpoint */
/* Initialize the output variables to -1 in case an error occurs. */
if( pnLog ) *pnLog = -1;
if( pnCkpt ) *pnCkpt = -1;
assert( SQLITE_CHECKPOINT_FULL>SQLITE_CHECKPOINT_PASSIVE );
assert( SQLITE_CHECKPOINT_FULL<SQLITE_CHECKPOINT_RESTART );
assert( SQLITE_CHECKPOINT_PASSIVE+2==SQLITE_CHECKPOINT_RESTART );
if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_RESTART ){
return SQLITE_MISUSE;
}
sqlite3_mutex_enter(db->mutex);
if( zDb && zDb[0] ){
iDb = sqlite3FindDbName(db, zDb);
}
if( iDb<0 ){
rc = SQLITE_ERROR;
sqlite3Error(db, SQLITE_ERROR, "unknown database: %s", zDb);
}else{
rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt);
sqlite3Error(db, rc, 0);
}
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
#endif
}
/*
** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points
** to contains a zero-length string, all attached databases are
** checkpointed.
*/
int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){
return sqlite3_wal_checkpoint_v2(db, zDb, SQLITE_CHECKPOINT_PASSIVE, 0, 0);
}
#ifndef SQLITE_OMIT_WAL
/*
** Run a checkpoint on database iDb. This is a no-op if database iDb is
** not currently open in WAL mode.
**
** If a transaction is open on the database being checkpointed, this
** function returns SQLITE_LOCKED and a checkpoint is not attempted. If
** an error occurs while running the checkpoint, an SQLite error code is
** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK.
**
** The mutex on database handle db should be held by the caller. The mutex
** associated with the specific b-tree being checkpointed is taken by
** this function while the checkpoint is running.
**
** If iDb is passed SQLITE_MAX_ATTACHED, then all attached databases are
** checkpointed. If an error is encountered it is returned immediately -
** no attempt is made to checkpoint any remaining databases.
**
** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
*/
int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){
int rc = SQLITE_OK; /* Return code */
int i; /* Used to iterate through attached dbs */
int bBusy = 0; /* True if SQLITE_BUSY has been encountered */
assert( sqlite3_mutex_held(db->mutex) );
assert( !pnLog || *pnLog==-1 );
assert( !pnCkpt || *pnCkpt==-1 );
for(i=0; i<db->nDb && rc==SQLITE_OK; i++){
if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){
rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt);
pnLog = 0;
pnCkpt = 0;
if( rc==SQLITE_BUSY ){
bBusy = 1;
rc = SQLITE_OK;
}
}
}
return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc;
}
#endif /* SQLITE_OMIT_WAL */
/*
** This function returns true if main-memory should be used instead of
** a temporary file for transient pager files and statement journals.
** The value returned depends on the value of db->temp_store (runtime
** parameter) and the compile time value of SQLITE_TEMP_STORE. The
** following table describes the relationship between these two values
** and this functions return value.
**
** SQLITE_TEMP_STORE db->temp_store Location of temporary database
** ----------------- -------------- ------------------------------
** 0 any file (return 0)
** 1 1 file (return 0)
** 1 2 memory (return 1)
** 1 0 file (return 0)
** 2 1 file (return 0)
** 2 2 memory (return 1)
** 2 0 memory (return 1)
** 3 any memory (return 1)
*/
int sqlite3TempInMemory(const sqlite3 *db){
#if SQLITE_TEMP_STORE==1
return ( db->temp_store==2 );
#endif
#if SQLITE_TEMP_STORE==2
return ( db->temp_store!=1 );
#endif
#if SQLITE_TEMP_STORE==3
return 1;
#endif
#if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3
return 0;
#endif
}
/*
** Return UTF-8 encoded English language explanation of the most recent
** error.
*/
const char *sqlite3_errmsg(sqlite3 *db){
const char *z;
if( !db ){
return sqlite3ErrStr(SQLITE_NOMEM);
}
if( !sqlite3SafetyCheckSickOrOk(db) ){
return sqlite3ErrStr(SQLITE_MISUSE_BKPT);
}
sqlite3_mutex_enter(db->mutex);
if( db->mallocFailed ){
z = sqlite3ErrStr(SQLITE_NOMEM);
}else{
z = (char*)sqlite3_value_text(db->pErr);
assert( !db->mallocFailed );
if( z==0 ){
z = sqlite3ErrStr(db->errCode);
}
}
sqlite3_mutex_leave(db->mutex);
return z;
}
#ifndef SQLITE_OMIT_UTF16
/*
** Return UTF-16 encoded English language explanation of the most recent
** error.
*/
const void *sqlite3_errmsg16(sqlite3 *db){
static const u16 outOfMem[] = {
'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0
};
static const u16 misuse[] = {
'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ',
'r', 'o', 'u', 't', 'i', 'n', 'e', ' ',
'c', 'a', 'l', 'l', 'e', 'd', ' ',
'o', 'u', 't', ' ',
'o', 'f', ' ',
's', 'e', 'q', 'u', 'e', 'n', 'c', 'e', 0
};
const void *z;
if( !db ){
return (void *)outOfMem;
}
if( !sqlite3SafetyCheckSickOrOk(db) ){
return (void *)misuse;
}
sqlite3_mutex_enter(db->mutex);
if( db->mallocFailed ){
z = (void *)outOfMem;
}else{
z = sqlite3_value_text16(db->pErr);
if( z==0 ){
sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode),
SQLITE_UTF8, SQLITE_STATIC);
z = sqlite3_value_text16(db->pErr);
}
/* A malloc() may have failed within the call to sqlite3_value_text16()
** above. If this is the case, then the db->mallocFailed flag needs to
** be cleared before returning. Do this directly, instead of via
** sqlite3ApiExit(), to avoid setting the database handle error message.
*/
db->mallocFailed = 0;
}
sqlite3_mutex_leave(db->mutex);
return z;
}
#endif /* SQLITE_OMIT_UTF16 */
/*
** Return the most recent error code generated by an SQLite routine. If NULL is
** passed to this function, we assume a malloc() failed during sqlite3_open().
*/
int sqlite3_errcode(sqlite3 *db){
if( db && !sqlite3SafetyCheckSickOrOk(db) ){
return SQLITE_MISUSE_BKPT;
}
if( !db || db->mallocFailed ){
return SQLITE_NOMEM;
}
return db->errCode & db->errMask;
}
int sqlite3_extended_errcode(sqlite3 *db){
if( db && !sqlite3SafetyCheckSickOrOk(db) ){
return SQLITE_MISUSE_BKPT;
}
if( !db || db->mallocFailed ){
return SQLITE_NOMEM;
}
return db->errCode;
}
/*
** Create a new collating function for database "db". The name is zName
** and the encoding is enc.
*/
static int createCollation(
sqlite3* db,
const char *zName,
u8 enc,
void* pCtx,
int(*xCompare)(void*,int,const void*,int,const void*),
void(*xDel)(void*)
){
CollSeq *pColl;
int enc2;
int nName = sqlite3Strlen30(zName);
assert( sqlite3_mutex_held(db->mutex) );
/* If SQLITE_UTF16 is specified as the encoding type, transform this
** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
*/
enc2 = enc;
testcase( enc2==SQLITE_UTF16 );
testcase( enc2==SQLITE_UTF16_ALIGNED );
if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){
enc2 = SQLITE_UTF16NATIVE;
}
if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){
return SQLITE_MISUSE_BKPT;
}
/* Check if this call is removing or replacing an existing collation
** sequence. If so, and there are active VMs, return busy. If there
** are no active VMs, invalidate any pre-compiled statements.
*/
pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0);
if( pColl && pColl->xCmp ){
if( db->activeVdbeCnt ){
sqlite3Error(db, SQLITE_BUSY,
"unable to delete/modify collation sequence due to active statements");
return SQLITE_BUSY;
}
sqlite3ExpirePreparedStatements(db);
/* If collation sequence pColl was created directly by a call to
** sqlite3_create_collation, and not generated by synthCollSeq(),
** then any copies made by synthCollSeq() need to be invalidated.
** Also, collation destructor - CollSeq.xDel() - function may need
** to be called.
*/
if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){
CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
int j;
for(j=0; j<3; j++){
CollSeq *p = &aColl[j];
if( p->enc==pColl->enc ){
if( p->xDel ){
p->xDel(p->pUser);
}
p->xCmp = 0;
}
}
}
}
pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1);
if( pColl==0 ) return SQLITE_NOMEM;
pColl->xCmp = xCompare;
pColl->pUser = pCtx;
pColl->xDel = xDel;
pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED));
sqlite3Error(db, SQLITE_OK, 0);
return SQLITE_OK;
}
/*
** This array defines hard upper bounds on limit values. The
** initializer must be kept in sync with the SQLITE_LIMIT_*
** #defines in sqlite3.h.
*/
static const int aHardLimit[] = {
SQLITE_MAX_LENGTH,
SQLITE_MAX_SQL_LENGTH,
SQLITE_MAX_COLUMN,
SQLITE_MAX_EXPR_DEPTH,
SQLITE_MAX_COMPOUND_SELECT,
SQLITE_MAX_VDBE_OP,
SQLITE_MAX_FUNCTION_ARG,
SQLITE_MAX_ATTACHED,
SQLITE_MAX_LIKE_PATTERN_LENGTH,
SQLITE_MAX_VARIABLE_NUMBER,
SQLITE_MAX_TRIGGER_DEPTH,
};
/*
** Make sure the hard limits are set to reasonable values
*/
#if SQLITE_MAX_LENGTH<100
# error SQLITE_MAX_LENGTH must be at least 100
#endif
#if SQLITE_MAX_SQL_LENGTH<100
# error SQLITE_MAX_SQL_LENGTH must be at least 100
#endif
#if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH
# error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH
#endif
#if SQLITE_MAX_COMPOUND_SELECT<2
# error SQLITE_MAX_COMPOUND_SELECT must be at least 2
#endif
#if SQLITE_MAX_VDBE_OP<40
# error SQLITE_MAX_VDBE_OP must be at least 40
#endif
#if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000
# error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000
#endif
#if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>62
# error SQLITE_MAX_ATTACHED must be between 0 and 62
#endif
#if SQLITE_MAX_LIKE_PATTERN_LENGTH<1
# error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1
#endif
#if SQLITE_MAX_COLUMN>32767
# error SQLITE_MAX_COLUMN must not exceed 32767
#endif
#if SQLITE_MAX_TRIGGER_DEPTH<1
# error SQLITE_MAX_TRIGGER_DEPTH must be at least 1
#endif
/*
** Change the value of a limit. Report the old value.
** If an invalid limit index is supplied, report -1.
** Make no changes but still report the old value if the
** new limit is negative.
**
** A new lower limit does not shrink existing constructs.
** It merely prevents new constructs that exceed the limit
** from forming.
*/
int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){
int oldLimit;
/* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME
** there is a hard upper bound set at compile-time by a C preprocessor
** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to
** "_MAX_".)
*/
assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH );
assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH );
assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN );
assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH );
assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT);
assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP );
assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG );
assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED );
assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]==
SQLITE_MAX_LIKE_PATTERN_LENGTH );
assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER);
assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH );
assert( SQLITE_LIMIT_TRIGGER_DEPTH==(SQLITE_N_LIMIT-1) );
if( limitId<0 || limitId>=SQLITE_N_LIMIT ){
return -1;
}
oldLimit = db->aLimit[limitId];
if( newLimit>=0 ){ /* IMP: R-52476-28732 */
if( newLimit>aHardLimit[limitId] ){
newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */
}
db->aLimit[limitId] = newLimit;
}
return oldLimit; /* IMP: R-53341-35419 */
}
/*
** This function is used to parse both URIs and non-URI filenames passed by the
** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database
** URIs specified as part of ATTACH statements.
**
** The first argument to this function is the name of the VFS to use (or
** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx"
** query parameter. The second argument contains the URI (or non-URI filename)
** itself. When this function is called the *pFlags variable should contain
** the default flags to open the database handle with. The value stored in
** *pFlags may be updated before returning if the URI filename contains
** "cache=xxx" or "mode=xxx" query parameters.
**
** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to
** the VFS that should be used to open the database file. *pzFile is set to
** point to a buffer containing the name of the file to open. It is the
** responsibility of the caller to eventually call sqlite3_free() to release
** this buffer.
**
** If an error occurs, then an SQLite error code is returned and *pzErrMsg
** may be set to point to a buffer containing an English language error
** message. It is the responsibility of the caller to eventually release
** this buffer by calling sqlite3_free().
*/
int sqlite3ParseUri(
const char *zDefaultVfs, /* VFS to use if no "vfs=xxx" query option */
const char *zUri, /* Nul-terminated URI to parse */
unsigned int *pFlags, /* IN/OUT: SQLITE_OPEN_XXX flags */
sqlite3_vfs **ppVfs, /* OUT: VFS to use */
char **pzFile, /* OUT: Filename component of URI */
char **pzErrMsg /* OUT: Error message (if rc!=SQLITE_OK) */
){
int rc = SQLITE_OK;
unsigned int flags = *pFlags;
const char *zVfs = zDefaultVfs;
char *zFile;
char c;
int nUri = sqlite3Strlen30(zUri);
assert( *pzErrMsg==0 );
if( ((flags & SQLITE_OPEN_URI) || sqlite3GlobalConfig.bOpenUri)
&& nUri>=5 && memcmp(zUri, "file:", 5)==0
){
char *zOpt;
int eState; /* Parser state when parsing URI */
int iIn; /* Input character index */
int iOut = 0; /* Output character index */
int nByte = nUri+2; /* Bytes of space to allocate */
/* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen
** method that there may be extra parameters following the file-name. */
flags |= SQLITE_OPEN_URI;
for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&');
zFile = sqlite3_malloc(nByte);
if( !zFile ) return SQLITE_NOMEM;
/* Discard the scheme and authority segments of the URI. */
if( zUri[5]=='/' && zUri[6]=='/' ){
iIn = 7;
while( zUri[iIn] && zUri[iIn]!='/' ) iIn++;
if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){
*pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s",
iIn-7, &zUri[7]);
rc = SQLITE_ERROR;
goto parse_uri_out;
}
}else{
iIn = 5;
}
/* Copy the filename and any query parameters into the zFile buffer.
** Decode %HH escape codes along the way.
**
** Within this loop, variable eState may be set to 0, 1 or 2, depending
** on the parsing context. As follows:
**
** 0: Parsing file-name.
** 1: Parsing name section of a name=value query parameter.
** 2: Parsing value section of a name=value query parameter.
*/
eState = 0;
while( (c = zUri[iIn])!=0 && c!='#' ){
iIn++;
if( c=='%'
&& sqlite3Isxdigit(zUri[iIn])
&& sqlite3Isxdigit(zUri[iIn+1])
){
int octet = (sqlite3HexToInt(zUri[iIn++]) << 4);
octet += sqlite3HexToInt(zUri[iIn++]);
assert( octet>=0 && octet<256 );
if( octet==0 ){
/* This branch is taken when "%00" appears within the URI. In this
** case we ignore all text in the remainder of the path, name or
** value currently being parsed. So ignore the current character
** and skip to the next "?", "=" or "&", as appropriate. */
while( (c = zUri[iIn])!=0 && c!='#'
&& (eState!=0 || c!='?')
&& (eState!=1 || (c!='=' && c!='&'))
&& (eState!=2 || c!='&')
){
iIn++;
}
continue;
}
c = octet;
}else if( eState==1 && (c=='&' || c=='=') ){
if( zFile[iOut-1]==0 ){
/* An empty option name. Ignore this option altogether. */
while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++;
continue;
}
if( c=='&' ){
zFile[iOut++] = '\0';
}else{
eState = 2;
}
c = 0;
}else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){
c = 0;
eState = 1;
}
zFile[iOut++] = c;
}
if( eState==1 ) zFile[iOut++] = '\0';
zFile[iOut++] = '\0';
zFile[iOut++] = '\0';
/* Check if there were any options specified that should be interpreted
** here. Options that are interpreted here include "vfs" and those that
** correspond to flags that may be passed to the sqlite3_open_v2()
** method. */
zOpt = &zFile[sqlite3Strlen30(zFile)+1];
while( zOpt[0] ){
int nOpt = sqlite3Strlen30(zOpt);
char *zVal = &zOpt[nOpt+1];
int nVal = sqlite3Strlen30(zVal);
if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){
zVfs = zVal;
}else{
struct OpenMode {
const char *z;
int mode;
} *aMode = 0;
char *zModeType = 0;
int mask = 0;
int limit = 0;
if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){
static struct OpenMode aCacheMode[] = {
{ "shared", SQLITE_OPEN_SHAREDCACHE },
{ "private", SQLITE_OPEN_PRIVATECACHE },
{ 0, 0 }
};
mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE;
aMode = aCacheMode;
limit = mask;
zModeType = "cache";
}
if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){
static struct OpenMode aOpenMode[] = {
{ "ro", SQLITE_OPEN_READONLY },
{ "rw", SQLITE_OPEN_READWRITE },
{ "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE },
{ 0, 0 }
};
mask = SQLITE_OPEN_READONLY|SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE;
aMode = aOpenMode;
limit = mask & flags;
zModeType = "access";
}
if( aMode ){
int i;
int mode = 0;
for(i=0; aMode[i].z; i++){
const char *z = aMode[i].z;
if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){
mode = aMode[i].mode;
break;
}
}
if( mode==0 ){
*pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal);
rc = SQLITE_ERROR;
goto parse_uri_out;
}
if( mode>limit ){
*pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s",
zModeType, zVal);
rc = SQLITE_PERM;
goto parse_uri_out;
}
flags = (flags & ~mask) | mode;
}
}
zOpt = &zVal[nVal+1];
}
}else{
zFile = sqlite3_malloc(nUri+2);
if( !zFile ) return SQLITE_NOMEM;
memcpy(zFile, zUri, nUri);
zFile[nUri] = '\0';
zFile[nUri+1] = '\0';
}
*ppVfs = sqlite3_vfs_find(zVfs);
if( *ppVfs==0 ){
*pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs);
rc = SQLITE_ERROR;
}
parse_uri_out:
if( rc!=SQLITE_OK ){
sqlite3_free(zFile);
zFile = 0;
}
*pFlags = flags;
*pzFile = zFile;
return rc;
}
/*
** This routine does the work of opening a database on behalf of
** sqlite3_open() and sqlite3_open16(). The database filename "zFilename"
** is UTF-8 encoded.
*/
static int openDatabase(
const char *zFilename, /* Database filename UTF-8 encoded */
sqlite3 **ppDb, /* OUT: Returned database handle */
unsigned int flags, /* Operational flags */
const char *zVfs /* Name of the VFS to use */
){
sqlite3 *db; /* Store allocated handle here */
int rc; /* Return code */
int isThreadsafe; /* True for threadsafe connections */
char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */
char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */
*ppDb = 0;
#ifndef SQLITE_OMIT_AUTOINIT
rc = sqlite3_initialize();
if( rc ) return rc;
#endif
/* Only allow sensible combinations of bits in the flags argument.
** Throw an error if any non-sense combination is used. If we
** do not block illegal combinations here, it could trigger
** assert() statements in deeper layers. Sensible combinations
** are:
**
** 1: SQLITE_OPEN_READONLY
** 2: SQLITE_OPEN_READWRITE
** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE
*/
assert( SQLITE_OPEN_READONLY == 0x01 );
assert( SQLITE_OPEN_READWRITE == 0x02 );
assert( SQLITE_OPEN_CREATE == 0x04 );
testcase( (1<<(flags&7))==0x02 ); /* READONLY */
testcase( (1<<(flags&7))==0x04 ); /* READWRITE */
testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */
if( ((1<<(flags&7)) & 0x46)==0 ) return SQLITE_MISUSE_BKPT;
if( sqlite3GlobalConfig.bCoreMutex==0 ){
isThreadsafe = 0;
}else if( flags & SQLITE_OPEN_NOMUTEX ){
isThreadsafe = 0;
}else if( flags & SQLITE_OPEN_FULLMUTEX ){
isThreadsafe = 1;
}else{
isThreadsafe = sqlite3GlobalConfig.bFullMutex;
}
if( flags & SQLITE_OPEN_PRIVATECACHE ){
flags &= ~SQLITE_OPEN_SHAREDCACHE;
}else if( sqlite3GlobalConfig.sharedCacheEnabled ){
flags |= SQLITE_OPEN_SHAREDCACHE;
}
/* Remove harmful bits from the flags parameter
**
** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were
** dealt with in the previous code block. Besides these, the only
** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY,
** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE,
** SQLITE_OPEN_PRIVATECACHE, and some reserved bits. Silently mask
** off all other flags.
*/
flags &= ~( SQLITE_OPEN_DELETEONCLOSE |
SQLITE_OPEN_EXCLUSIVE |
SQLITE_OPEN_MAIN_DB |
SQLITE_OPEN_TEMP_DB |
SQLITE_OPEN_TRANSIENT_DB |
SQLITE_OPEN_MAIN_JOURNAL |
SQLITE_OPEN_TEMP_JOURNAL |
SQLITE_OPEN_SUBJOURNAL |
SQLITE_OPEN_MASTER_JOURNAL |
SQLITE_OPEN_NOMUTEX |
SQLITE_OPEN_FULLMUTEX |
SQLITE_OPEN_WAL
);
/* Allocate the sqlite data structure */
db = sqlite3MallocZero( sizeof(sqlite3) );
if( db==0 ) goto opendb_out;
if( isThreadsafe ){
db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
if( db->mutex==0 ){
sqlite3_free(db);
db = 0;
goto opendb_out;
}
}
sqlite3_mutex_enter(db->mutex);
db->errMask = 0xff;
db->nDb = 2;
db->magic = SQLITE_MAGIC_BUSY;
db->aDb = db->aDbStatic;
assert( sizeof(db->aLimit)==sizeof(aHardLimit) );
memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit));
db->autoCommit = 1;
db->nextAutovac = -1;
db->nextPagesize = 0;
db->flags |= SQLITE_ShortColNames | SQLITE_AutoIndex | SQLITE_EnableTrigger
#if SQLITE_DEFAULT_FILE_FORMAT<4
| SQLITE_LegacyFileFmt
#endif
#ifdef SQLITE_ENABLE_LOAD_EXTENSION
| SQLITE_LoadExtension
#endif
#if SQLITE_DEFAULT_RECURSIVE_TRIGGERS
| SQLITE_RecTriggers
#endif
#if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS
| SQLITE_ForeignKeys
#endif
;
sqlite3HashInit(&db->aCollSeq);
#ifndef SQLITE_OMIT_VIRTUALTABLE
sqlite3HashInit(&db->aModule);
#endif
/* Add the default collation sequence BINARY. BINARY works for both UTF-8
** and UTF-16, so add a version for each to avoid any unnecessary
** conversions. The only error that can occur here is a malloc() failure.
*/
createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0);
createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0);
createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0);
createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0);
if( db->mallocFailed ){
goto opendb_out;
}
db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0);
assert( db->pDfltColl!=0 );
/* Also add a UTF-8 case-insensitive collation sequence. */
createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);
/* Parse the filename/URI argument. */
db->openFlags = flags;
rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg);
if( rc!=SQLITE_OK ){
if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
sqlite3Error(db, rc, zErrMsg ? "%s" : 0, zErrMsg);
sqlite3_free(zErrMsg);
goto opendb_out;
}
/* Open the backend database driver */
rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0,
flags | SQLITE_OPEN_MAIN_DB);
if( rc!=SQLITE_OK ){
if( rc==SQLITE_IOERR_NOMEM ){
rc = SQLITE_NOMEM;
}
sqlite3Error(db, rc, 0);
goto opendb_out;
}
db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt);
db->aDb[1].pSchema = sqlite3SchemaGet(db, 0);
/* The default safety_level for the main database is 'full'; for the temp
** database it is 'NONE'. This matches the pager layer defaults.
*/
db->aDb[0].zName = "main";
db->aDb[0].safety_level = 3;
db->aDb[1].zName = "temp";
db->aDb[1].safety_level = 1;
db->magic = SQLITE_MAGIC_OPEN;
if( db->mallocFailed ){
goto opendb_out;
}
/* Register all built-in functions, but do not attempt to read the
** database schema yet. This is delayed until the first time the database
** is accessed.
*/
sqlite3Error(db, SQLITE_OK, 0);
sqlite3RegisterBuiltinFunctions(db);
/* Load automatic extensions - extensions that have been registered
** using the sqlite3_automatic_extension() API.
*/
rc = sqlite3_errcode(db);
if( rc==SQLITE_OK ){
sqlite3AutoLoadExtensions(db);
rc = sqlite3_errcode(db);
if( rc!=SQLITE_OK ){
goto opendb_out;
}
}
#ifdef SQLITE_ENABLE_FTS1
if( !db->mallocFailed ){
extern int sqlite3Fts1Init(sqlite3*);
rc = sqlite3Fts1Init(db);
}
#endif
#ifdef SQLITE_ENABLE_FTS2
if( !db->mallocFailed && rc==SQLITE_OK ){
extern int sqlite3Fts2Init(sqlite3*);
rc = sqlite3Fts2Init(db);
}
#endif
#ifdef SQLITE_ENABLE_FTS3
if( !db->mallocFailed && rc==SQLITE_OK ){
rc = sqlite3Fts3Init(db);
}
#endif
#ifdef SQLITE_ENABLE_ICU
if( !db->mallocFailed && rc==SQLITE_OK ){
rc = sqlite3IcuInit(db);
}
#endif
#ifdef SQLITE_ENABLE_RTREE
if( !db->mallocFailed && rc==SQLITE_OK){
rc = sqlite3RtreeInit(db);
}
#endif
sqlite3Error(db, rc, 0);
/* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking
** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking
** mode. Doing nothing at all also makes NORMAL the default.
*/
#ifdef SQLITE_DEFAULT_LOCKING_MODE
db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE;
sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt),
SQLITE_DEFAULT_LOCKING_MODE);
#endif
/* Enable the lookaside-malloc subsystem */
setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside,
sqlite3GlobalConfig.nLookaside);
sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT);
opendb_out:
sqlite3_free(zOpen);
if( db ){
assert( db->mutex!=0 || isThreadsafe==0 || sqlite3GlobalConfig.bFullMutex==0 );
sqlite3_mutex_leave(db->mutex);
}
rc = sqlite3_errcode(db);
assert( db!=0 || rc==SQLITE_NOMEM );
if( rc==SQLITE_NOMEM ){
sqlite3_close(db);
db = 0;
}else if( rc!=SQLITE_OK ){
db->magic = SQLITE_MAGIC_SICK;
}
*ppDb = db;
return sqlite3ApiExit(0, rc);
}
/*
** Open a new database handle.
*/
int sqlite3_open(
const char *zFilename,
sqlite3 **ppDb
){
return openDatabase(zFilename, ppDb,
SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
}
int sqlite3_open_v2(
const char *filename, /* Database filename (UTF-8) */
sqlite3 **ppDb, /* OUT: SQLite db handle */
int flags, /* Flags */
const char *zVfs /* Name of VFS module to use */
){
return openDatabase(filename, ppDb, (unsigned int)flags, zVfs);
}
#ifndef SQLITE_OMIT_UTF16
/*
** Open a new database handle.
*/
int sqlite3_open16(
const void *zFilename,
sqlite3 **ppDb
){
char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */
sqlite3_value *pVal;
int rc;
assert( zFilename );
assert( ppDb );
*ppDb = 0;
#ifndef SQLITE_OMIT_AUTOINIT
rc = sqlite3_initialize();
if( rc ) return rc;
#endif
pVal = sqlite3ValueNew(0);
sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC);
zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8);
if( zFilename8 ){
rc = openDatabase(zFilename8, ppDb,
SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
assert( *ppDb || rc==SQLITE_NOMEM );
if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){
ENC(*ppDb) = SQLITE_UTF16NATIVE;
}
}else{
rc = SQLITE_NOMEM;
}
sqlite3ValueFree(pVal);
return sqlite3ApiExit(0, rc);
}
#endif /* SQLITE_OMIT_UTF16 */
/*
** Register a new collation sequence with the database handle db.
*/
int sqlite3_create_collation(
sqlite3* db,
const char *zName,
int enc,
void* pCtx,
int(*xCompare)(void*,int,const void*,int,const void*)
){
int rc;
sqlite3_mutex_enter(db->mutex);
assert( !db->mallocFailed );
rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, 0);
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
/*
** Register a new collation sequence with the database handle db.
*/
int sqlite3_create_collation_v2(
sqlite3* db,
const char *zName,
int enc,
void* pCtx,
int(*xCompare)(void*,int,const void*,int,const void*),
void(*xDel)(void*)
){
int rc;
sqlite3_mutex_enter(db->mutex);
assert( !db->mallocFailed );
rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel);
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
#ifndef SQLITE_OMIT_UTF16
/*
** Register a new collation sequence with the database handle db.
*/
int sqlite3_create_collation16(
sqlite3* db,
const void *zName,
int enc,
void* pCtx,
int(*xCompare)(void*,int,const void*,int,const void*)
){
int rc = SQLITE_OK;
char *zName8;
sqlite3_mutex_enter(db->mutex);
assert( !db->mallocFailed );
zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE);
if( zName8 ){
rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0);
sqlite3DbFree(db, zName8);
}
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
#endif /* SQLITE_OMIT_UTF16 */
/*
** Register a collation sequence factory callback with the database handle
** db. Replace any previously installed collation sequence factory.
*/
int sqlite3_collation_needed(
sqlite3 *db,
void *pCollNeededArg,
void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*)
){
sqlite3_mutex_enter(db->mutex);
db->xCollNeeded = xCollNeeded;
db->xCollNeeded16 = 0;
db->pCollNeededArg = pCollNeededArg;
sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
#ifndef SQLITE_OMIT_UTF16
/*
** Register a collation sequence factory callback with the database handle
** db. Replace any previously installed collation sequence factory.
*/
int sqlite3_collation_needed16(
sqlite3 *db,
void *pCollNeededArg,
void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*)
){
sqlite3_mutex_enter(db->mutex);
db->xCollNeeded = 0;
db->xCollNeeded16 = xCollNeeded16;
db->pCollNeededArg = pCollNeededArg;
sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
#endif /* SQLITE_OMIT_UTF16 */
#ifndef SQLITE_OMIT_DEPRECATED
/*
** This function is now an anachronism. It used to be used to recover from a
** malloc() failure, but SQLite now does this automatically.
*/
int sqlite3_global_recover(void){
return SQLITE_OK;
}
#endif
/*
** Test to see whether or not the database connection is in autocommit
** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on
** by default. Autocommit is disabled by a BEGIN statement and reenabled
** by the next COMMIT or ROLLBACK.
**
******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
*/
int sqlite3_get_autocommit(sqlite3 *db){
return db->autoCommit;
}
/*
** The following routines are subtitutes for constants SQLITE_CORRUPT,
** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error
** constants. They server two purposes:
**
** 1. Serve as a convenient place to set a breakpoint in a debugger
** to detect when version error conditions occurs.
**
** 2. Invoke sqlite3_log() to provide the source code location where
** a low-level error is first detected.
*/
int sqlite3CorruptError(int lineno){
testcase( sqlite3GlobalConfig.xLog!=0 );
sqlite3_log(SQLITE_CORRUPT,
"database corruption at line %d of [%.10s]",
lineno, 20+sqlite3_sourceid());
return SQLITE_CORRUPT;
}
int sqlite3MisuseError(int lineno){
testcase( sqlite3GlobalConfig.xLog!=0 );
sqlite3_log(SQLITE_MISUSE,
"misuse at line %d of [%.10s]",
lineno, 20+sqlite3_sourceid());
return SQLITE_MISUSE;
}
int sqlite3CantopenError(int lineno){
testcase( sqlite3GlobalConfig.xLog!=0 );
sqlite3_log(SQLITE_CANTOPEN,
"cannot open file at line %d of [%.10s]",
lineno, 20+sqlite3_sourceid());
return SQLITE_CANTOPEN;
}
#ifndef SQLITE_OMIT_DEPRECATED
/*
** This is a convenience routine that makes sure that all thread-specific
** data for this thread has been deallocated.
**
** SQLite no longer uses thread-specific data so this routine is now a
** no-op. It is retained for historical compatibility.
*/
void sqlite3_thread_cleanup(void){
}
#endif
/*
** Return meta information about a specific column of a database table.
** See comment in sqlite3.h (sqlite.h.in) for details.
*/
#ifdef SQLITE_ENABLE_COLUMN_METADATA
int sqlite3_table_column_metadata(
sqlite3 *db, /* Connection handle */
const char *zDbName, /* Database name or NULL */
const char *zTableName, /* Table name */
const char *zColumnName, /* Column name */
char const **pzDataType, /* OUTPUT: Declared data type */
char const **pzCollSeq, /* OUTPUT: Collation sequence name */
int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
int *pPrimaryKey, /* OUTPUT: True if column part of PK */
int *pAutoinc /* OUTPUT: True if column is auto-increment */
){
int rc;
char *zErrMsg = 0;
Table *pTab = 0;
Column *pCol = 0;
int iCol;
char const *zDataType = 0;
char const *zCollSeq = 0;
int notnull = 0;
int primarykey = 0;
int autoinc = 0;
/* Ensure the database schema has been loaded */
sqlite3_mutex_enter(db->mutex);
sqlite3BtreeEnterAll(db);
rc = sqlite3Init(db, &zErrMsg);
if( SQLITE_OK!=rc ){
goto error_out;
}
/* Locate the table in question */
pTab = sqlite3FindTable(db, zTableName, zDbName);
if( !pTab || pTab->pSelect ){
pTab = 0;
goto error_out;
}
/* Find the column for which info is requested */
if( sqlite3IsRowid(zColumnName) ){
iCol = pTab->iPKey;
if( iCol>=0 ){
pCol = &pTab->aCol[iCol];
}
}else{
for(iCol=0; iCol<pTab->nCol; iCol++){
pCol = &pTab->aCol[iCol];
if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){
break;
}
}
if( iCol==pTab->nCol ){
pTab = 0;
goto error_out;
}
}
/* The following block stores the meta information that will be returned
** to the caller in local variables zDataType, zCollSeq, notnull, primarykey
** and autoinc. At this point there are two possibilities:
**
** 1. The specified column name was rowid", "oid" or "_rowid_"
** and there is no explicitly declared IPK column.
**
** 2. The table is not a view and the column name identified an
** explicitly declared column. Copy meta information from *pCol.
*/
if( pCol ){
zDataType = pCol->zType;
zCollSeq = pCol->zColl;
notnull = pCol->notNull!=0;
primarykey = pCol->isPrimKey!=0;
autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0;
}else{
zDataType = "INTEGER";
primarykey = 1;
}
if( !zCollSeq ){
zCollSeq = "BINARY";
}
error_out:
sqlite3BtreeLeaveAll(db);
/* Whether the function call succeeded or failed, set the output parameters
** to whatever their local counterparts contain. If an error did occur,
** this has the effect of zeroing all output parameters.
*/
if( pzDataType ) *pzDataType = zDataType;
if( pzCollSeq ) *pzCollSeq = zCollSeq;
if( pNotNull ) *pNotNull = notnull;
if( pPrimaryKey ) *pPrimaryKey = primarykey;
if( pAutoinc ) *pAutoinc = autoinc;
if( SQLITE_OK==rc && !pTab ){
sqlite3DbFree(db, zErrMsg);
zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName,
zColumnName);
rc = SQLITE_ERROR;
}
sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg);
sqlite3DbFree(db, zErrMsg);
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
#endif
/*
** Sleep for a little while. Return the amount of time slept.
*/
int sqlite3_sleep(int ms){
sqlite3_vfs *pVfs;
int rc;
pVfs = sqlite3_vfs_find(0);
if( pVfs==0 ) return 0;
/* This function works in milliseconds, but the underlying OsSleep()
** API uses microseconds. Hence the 1000's.
*/
rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000);
return rc;
}
/*
** Enable or disable the extended result codes.
*/
int sqlite3_extended_result_codes(sqlite3 *db, int onoff){
sqlite3_mutex_enter(db->mutex);
db->errMask = onoff ? 0xffffffff : 0xff;
sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
/*
** Invoke the xFileControl method on a particular database.
*/
int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){
int rc = SQLITE_ERROR;
int iDb;
sqlite3_mutex_enter(db->mutex);
if( zDbName==0 ){
iDb = 0;
}else{
for(iDb=0; iDb<db->nDb; iDb++){
if( strcmp(db->aDb[iDb].zName, zDbName)==0 ) break;
}
}
if( iDb<db->nDb ){
Btree *pBtree = db->aDb[iDb].pBt;
if( pBtree ){
Pager *pPager;
sqlite3_file *fd;
sqlite3BtreeEnter(pBtree);
pPager = sqlite3BtreePager(pBtree);
assert( pPager!=0 );
fd = sqlite3PagerFile(pPager);
assert( fd!=0 );
if( op==SQLITE_FCNTL_FILE_POINTER ){
*(sqlite3_file**)pArg = fd;
rc = SQLITE_OK;
}else if( fd->pMethods ){
rc = sqlite3OsFileControl(fd, op, pArg);
}else{
rc = SQLITE_NOTFOUND;
}
sqlite3BtreeLeave(pBtree);
}
}
sqlite3_mutex_leave(db->mutex);
return rc;
}
/*
** Interface to the testing logic.
*/
int sqlite3_test_control(int op, ...){
int rc = 0;
#ifndef SQLITE_OMIT_BUILTIN_TEST
va_list ap;
va_start(ap, op);
switch( op ){
/*
** Save the current state of the PRNG.
*/
case SQLITE_TESTCTRL_PRNG_SAVE: {
sqlite3PrngSaveState();
break;
}
/*
** Restore the state of the PRNG to the last state saved using
** PRNG_SAVE. If PRNG_SAVE has never before been called, then
** this verb acts like PRNG_RESET.
*/
case SQLITE_TESTCTRL_PRNG_RESTORE: {
sqlite3PrngRestoreState();
break;
}
/*
** Reset the PRNG back to its uninitialized state. The next call
** to sqlite3_randomness() will reseed the PRNG using a single call
** to the xRandomness method of the default VFS.
*/
case SQLITE_TESTCTRL_PRNG_RESET: {
sqlite3PrngResetState();
break;
}
/*
** sqlite3_test_control(BITVEC_TEST, size, program)
**
** Run a test against a Bitvec object of size. The program argument
** is an array of integers that defines the test. Return -1 on a
** memory allocation error, 0 on success, or non-zero for an error.
** See the sqlite3BitvecBuiltinTest() for additional information.
*/
case SQLITE_TESTCTRL_BITVEC_TEST: {
int sz = va_arg(ap, int);
int *aProg = va_arg(ap, int*);
rc = sqlite3BitvecBuiltinTest(sz, aProg);
break;
}
/*
** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd)
**
** Register hooks to call to indicate which malloc() failures
** are benign.
*/
case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: {
typedef void (*void_function)(void);
void_function xBenignBegin;
void_function xBenignEnd;
xBenignBegin = va_arg(ap, void_function);
xBenignEnd = va_arg(ap, void_function);
sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd);
break;
}
/*
** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X)
**
** Set the PENDING byte to the value in the argument, if X>0.
** Make no changes if X==0. Return the value of the pending byte
** as it existing before this routine was called.
**
** IMPORTANT: Changing the PENDING byte from 0x40000000 results in
** an incompatible database file format. Changing the PENDING byte
** while any database connection is open results in undefined and
** dileterious behavior.
*/
case SQLITE_TESTCTRL_PENDING_BYTE: {
rc = PENDING_BYTE;
#ifndef SQLITE_OMIT_WSD
{
unsigned int newVal = va_arg(ap, unsigned int);
if( newVal ) sqlite3PendingByte = newVal;
}
#endif
break;
}
/*
** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X)
**
** This action provides a run-time test to see whether or not
** assert() was enabled at compile-time. If X is true and assert()
** is enabled, then the return value is true. If X is true and
** assert() is disabled, then the return value is zero. If X is
** false and assert() is enabled, then the assertion fires and the
** process aborts. If X is false and assert() is disabled, then the
** return value is zero.
*/
case SQLITE_TESTCTRL_ASSERT: {
volatile int x = 0;
assert( (x = va_arg(ap,int))!=0 );
rc = x;
break;
}
/*
** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X)
**
** This action provides a run-time test to see how the ALWAYS and
** NEVER macros were defined at compile-time.
**
** The return value is ALWAYS(X).
**
** The recommended test is X==2. If the return value is 2, that means
** ALWAYS() and NEVER() are both no-op pass-through macros, which is the
** default setting. If the return value is 1, then ALWAYS() is either
** hard-coded to true or else it asserts if its argument is false.
** The first behavior (hard-coded to true) is the case if
** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second
** behavior (assert if the argument to ALWAYS() is false) is the case if
** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled.
**
** The run-time test procedure might look something like this:
**
** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){
** // ALWAYS() and NEVER() are no-op pass-through macros
** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){
** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false.
** }else{
** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0.
** }
*/
case SQLITE_TESTCTRL_ALWAYS: {
int x = va_arg(ap,int);
rc = ALWAYS(x);
break;
}
/* sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N)
**
** Set the nReserve size to N for the main database on the database
** connection db.
*/
case SQLITE_TESTCTRL_RESERVE: {
sqlite3 *db = va_arg(ap, sqlite3*);
int x = va_arg(ap,int);
sqlite3_mutex_enter(db->mutex);
sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0);
sqlite3_mutex_leave(db->mutex);
break;
}
/* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N)
**
** Enable or disable various optimizations for testing purposes. The
** argument N is a bitmask of optimizations to be disabled. For normal
** operation N should be 0. The idea is that a test program (like the
** SQL Logic Test or SLT test module) can run the same SQL multiple times
** with various optimizations disabled to verify that the same answer
** is obtained in every case.
*/
case SQLITE_TESTCTRL_OPTIMIZATIONS: {
sqlite3 *db = va_arg(ap, sqlite3*);
int x = va_arg(ap,int);
db->flags = (x & SQLITE_OptMask) | (db->flags & ~SQLITE_OptMask);
break;
}
#ifdef SQLITE_N_KEYWORD
/* sqlite3_test_control(SQLITE_TESTCTRL_ISKEYWORD, const char *zWord)
**
** If zWord is a keyword recognized by the parser, then return the
** number of keywords. Or if zWord is not a keyword, return 0.
**
** This test feature is only available in the amalgamation since
** the SQLITE_N_KEYWORD macro is not defined in this file if SQLite
** is built using separate source files.
*/
case SQLITE_TESTCTRL_ISKEYWORD: {
const char *zWord = va_arg(ap, const char*);
int n = sqlite3Strlen30(zWord);
rc = (sqlite3KeywordCode((u8*)zWord, n)!=TK_ID) ? SQLITE_N_KEYWORD : 0;
break;
}
#endif
/* sqlite3_test_control(SQLITE_TESTCTRL_SCRATCHMALLOC, sz, &pNew, pFree);
**
** Pass pFree into sqlite3ScratchFree().
** If sz>0 then allocate a scratch buffer into pNew.
*/
case SQLITE_TESTCTRL_SCRATCHMALLOC: {
void *pFree, **ppNew;
int sz;
sz = va_arg(ap, int);
ppNew = va_arg(ap, void**);
pFree = va_arg(ap, void*);
if( sz ) *ppNew = sqlite3ScratchMalloc(sz);
sqlite3ScratchFree(pFree);
break;
}
/* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff);
**
** If parameter onoff is non-zero, configure the wrappers so that all
** subsequent calls to localtime() and variants fail. If onoff is zero,
** undo this setting.
*/
case SQLITE_TESTCTRL_LOCALTIME_FAULT: {
sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int);
break;
}
#if defined(SQLITE_ENABLE_TREE_EXPLAIN)
/* sqlite3_test_control(SQLITE_TESTCTRL_EXPLAIN_STMT,
** sqlite3_stmt*,const char**);
**
** If compiled with SQLITE_ENABLE_TREE_EXPLAIN, each sqlite3_stmt holds
** a string that describes the optimized parse tree. This test-control
** returns a pointer to that string.
*/
case SQLITE_TESTCTRL_EXPLAIN_STMT: {
sqlite3_stmt *pStmt = va_arg(ap, sqlite3_stmt*);
const char **pzRet = va_arg(ap, const char**);
*pzRet = sqlite3VdbeExplanation((Vdbe*)pStmt);
break;
}
#endif
}
va_end(ap);
#endif /* SQLITE_OMIT_BUILTIN_TEST */
return rc;
}
/*
** This is a utility routine, useful to VFS implementations, that checks
** to see if a database file was a URI that contained a specific query
** parameter, and if so obtains the value of the query parameter.
**
** The zFilename argument is the filename pointer passed into the xOpen()
** method of a VFS implementation. The zParam argument is the name of the
** query parameter we seek. This routine returns the value of the zParam
** parameter if it exists. If the parameter does not exist, this routine
** returns a NULL pointer.
*/
const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){
if( zFilename==0 ) return 0;
zFilename += sqlite3Strlen30(zFilename) + 1;
while( zFilename[0] ){
int x = strcmp(zFilename, zParam);
zFilename += sqlite3Strlen30(zFilename) + 1;
if( x==0 ) return zFilename;
zFilename += sqlite3Strlen30(zFilename) + 1;
}
return 0;
}
/*
** Return a boolean value for a query parameter.
*/
int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){
const char *z = sqlite3_uri_parameter(zFilename, zParam);
return z ? sqlite3GetBoolean(z) : (bDflt!=0);
}
/*
** Return a 64-bit integer value for a query parameter.
*/
sqlite3_int64 sqlite3_uri_int64(
const char *zFilename, /* Filename as passed to xOpen */
const char *zParam, /* URI parameter sought */
sqlite3_int64 bDflt /* return if parameter is missing */
){
const char *z = sqlite3_uri_parameter(zFilename, zParam);
sqlite3_int64 v;
if( z && sqlite3Atoi64(z, &v, sqlite3Strlen30(z), SQLITE_UTF8)==SQLITE_OK ){
bDflt = v;
}
return bDflt;
}
/*
** Return the filename of the database associated with a database
** connection.
*/
const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){
int i;
for(i=0; i<db->nDb; i++){
if( db->aDb[i].pBt && sqlite3StrICmp(zDbName, db->aDb[i].zName)==0 ){
return sqlite3BtreeGetFilename(db->aDb[i].pBt);
}
}
return 0;
}