aacc543e23
FossilOrigin-Name: 9b0be4fcc1cbca69f5fee906f86dfb36a323fe84
784 lines
26 KiB
C
784 lines
26 KiB
C
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This module contains C code that generates VDBE code used to process
|
|
** the WHERE clause of SQL statements. Also found here are subroutines
|
|
** to generate VDBE code to evaluate expressions.
|
|
**
|
|
** $Id: where.c,v 1.31 2002/01/06 17:07:41 drh Exp $
|
|
*/
|
|
#include "sqliteInt.h"
|
|
|
|
/*
|
|
** The query generator uses an array of instances of this structure to
|
|
** help it analyze the subexpressions of the WHERE clause. Each WHERE
|
|
** clause subexpression is separated from the others by an AND operator.
|
|
*/
|
|
typedef struct ExprInfo ExprInfo;
|
|
struct ExprInfo {
|
|
Expr *p; /* Pointer to the subexpression */
|
|
int indexable; /* True if this subexprssion is usable by an index */
|
|
int idxLeft; /* p->pLeft is a column in this table number. -1 if
|
|
** p->pLeft is not the column of any table */
|
|
int idxRight; /* p->pRight is a column in this table number. -1 if
|
|
** p->pRight is not the column of any table */
|
|
unsigned prereqLeft; /* Tables referenced by p->pLeft */
|
|
unsigned prereqRight; /* Tables referenced by p->pRight */
|
|
};
|
|
|
|
/*
|
|
** Determine the number of elements in an array.
|
|
*/
|
|
#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
|
|
|
|
/*
|
|
** This routine is used to divide the WHERE expression into subexpressions
|
|
** separated by the AND operator.
|
|
**
|
|
** aSlot[] is an array of subexpressions structures.
|
|
** There are nSlot spaces left in this array. This routine attempts to
|
|
** split pExpr into subexpressions and fills aSlot[] with those subexpressions.
|
|
** The return value is the number of slots filled.
|
|
*/
|
|
static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
|
|
int cnt = 0;
|
|
if( pExpr==0 || nSlot<1 ) return 0;
|
|
if( nSlot==1 || pExpr->op!=TK_AND ){
|
|
aSlot[0].p = pExpr;
|
|
return 1;
|
|
}
|
|
if( pExpr->pLeft->op!=TK_AND ){
|
|
aSlot[0].p = pExpr->pLeft;
|
|
cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
|
|
}else{
|
|
cnt = exprSplit(nSlot, aSlot, pExpr->pRight);
|
|
cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pLeft);
|
|
}
|
|
return cnt;
|
|
}
|
|
|
|
/*
|
|
** This routine walks (recursively) an expression tree and generates
|
|
** a bitmask indicating which tables are used in that expression
|
|
** tree. Bit 0 of the mask is set if table 0 is used. But 1 is set
|
|
** if table 1 is used. And so forth.
|
|
**
|
|
** In order for this routine to work, the calling function must have
|
|
** previously invoked sqliteExprResolveIds() on the expression. See
|
|
** the header comment on that routine for additional information.
|
|
**
|
|
** "base" is the cursor number (the value of the iTable field) that
|
|
** corresponds to the first entry in the table list. This is the
|
|
** same as pParse->nTab.
|
|
*/
|
|
static int exprTableUsage(int base, Expr *p){
|
|
unsigned int mask = 0;
|
|
if( p==0 ) return 0;
|
|
if( p->op==TK_COLUMN ){
|
|
return 1<< (p->iTable - base);
|
|
}
|
|
if( p->pRight ){
|
|
mask = exprTableUsage(base, p->pRight);
|
|
}
|
|
if( p->pLeft ){
|
|
mask |= exprTableUsage(base, p->pLeft);
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if the given operator is one of the operators that is
|
|
** allowed for an indexable WHERE clause. The allowed operators are
|
|
** "=", "<", ">", "<=", and ">=".
|
|
*/
|
|
static int allowedOp(int op){
|
|
switch( op ){
|
|
case TK_LT:
|
|
case TK_LE:
|
|
case TK_GT:
|
|
case TK_GE:
|
|
case TK_EQ:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The input to this routine is an ExprInfo structure with only the
|
|
** "p" field filled in. The job of this routine is to analyze the
|
|
** subexpression and populate all the other fields of the ExprInfo
|
|
** structure.
|
|
**
|
|
** "base" is the cursor number (the value of the iTable field) that
|
|
** corresponds to the first entry in the table list. This is the
|
|
** same as pParse->nTab.
|
|
*/
|
|
static void exprAnalyze(int base, ExprInfo *pInfo){
|
|
Expr *pExpr = pInfo->p;
|
|
pInfo->prereqLeft = exprTableUsage(base, pExpr->pLeft);
|
|
pInfo->prereqRight = exprTableUsage(base, pExpr->pRight);
|
|
pInfo->indexable = 0;
|
|
pInfo->idxLeft = -1;
|
|
pInfo->idxRight = -1;
|
|
if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
|
|
if( pExpr->pRight->op==TK_COLUMN ){
|
|
pInfo->idxRight = pExpr->pRight->iTable - base;
|
|
pInfo->indexable = 1;
|
|
}
|
|
if( pExpr->pLeft->op==TK_COLUMN ){
|
|
pInfo->idxLeft = pExpr->pLeft->iTable - base;
|
|
pInfo->indexable = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generating the beginning of the loop used for WHERE clause processing.
|
|
** The return value is a pointer to an (opaque) structure that contains
|
|
** information needed to terminate the loop. Later, the calling routine
|
|
** should invoke sqliteWhereEnd() with the return value of this function
|
|
** in order to complete the WHERE clause processing.
|
|
**
|
|
** If an error occurs, this routine returns NULL.
|
|
*/
|
|
WhereInfo *sqliteWhereBegin(
|
|
Parse *pParse, /* The parser context */
|
|
IdList *pTabList, /* A list of all tables */
|
|
Expr *pWhere, /* The WHERE clause */
|
|
int pushKey /* If TRUE, leave the table key on the stack */
|
|
){
|
|
int i; /* Loop counter */
|
|
WhereInfo *pWInfo; /* Will become the return value of this function */
|
|
Vdbe *v = pParse->pVdbe; /* The virtual database engine */
|
|
int brk, cont; /* Addresses used during code generation */
|
|
int *aOrder; /* Order in which pTabList entries are searched */
|
|
int nExpr; /* Number of subexpressions in the WHERE clause */
|
|
int loopMask; /* One bit set for each outer loop */
|
|
int haveKey; /* True if KEY is on the stack */
|
|
int base; /* First available index for OP_Open opcodes */
|
|
int nCur; /* Next unused cursor number */
|
|
int aDirect[32]; /* If TRUE, then index this table using ROWID */
|
|
int iDirectEq[32]; /* Term of the form ROWID==X for the N-th table */
|
|
int iDirectLt[32]; /* Term of the form ROWID<X or ROWID<=X */
|
|
int iDirectGt[32]; /* Term of the form ROWID>X or ROWID>=X */
|
|
ExprInfo aExpr[50]; /* The WHERE clause is divided into these expressions */
|
|
|
|
/* Allocate space for aOrder[] and aiMem[]. */
|
|
aOrder = sqliteMalloc( sizeof(int) * pTabList->nId );
|
|
|
|
/* Allocate and initialize the WhereInfo structure that will become the
|
|
** return value.
|
|
*/
|
|
pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nId*sizeof(WhereLevel) );
|
|
if( sqlite_malloc_failed ){
|
|
sqliteFree(aOrder);
|
|
sqliteFree(pWInfo);
|
|
return 0;
|
|
}
|
|
pWInfo->pParse = pParse;
|
|
pWInfo->pTabList = pTabList;
|
|
base = pWInfo->base = pParse->nTab;
|
|
nCur = base + pTabList->nId;
|
|
|
|
/* Split the WHERE clause into as many as 32 separate subexpressions
|
|
** where each subexpression is separated by an AND operator. Any additional
|
|
** subexpressions are attached in the aExpr[32] and will not enter
|
|
** into the query optimizer computations. 32 is chosen as the cutoff
|
|
** since that is the number of bits in an integer that we use for an
|
|
** expression-used mask.
|
|
*/
|
|
memset(aExpr, 0, sizeof(aExpr));
|
|
nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
|
|
|
|
/* Analyze all of the subexpressions.
|
|
*/
|
|
for(i=0; i<nExpr; i++){
|
|
exprAnalyze(pParse->nTab, &aExpr[i]);
|
|
}
|
|
|
|
/* Figure out a good nesting order for the tables. aOrder[0] will
|
|
** be the index in pTabList of the outermost table. aOrder[1] will
|
|
** be the first nested loop and so on. aOrder[pTabList->nId-1] will
|
|
** be the innermost loop.
|
|
**
|
|
** Someday will put in a good algorithm here to reorder the loops
|
|
** for an effiecient query. But for now, just use whatever order the
|
|
** tables appear in in the pTabList.
|
|
*/
|
|
for(i=0; i<pTabList->nId; i++){
|
|
aOrder[i] = i;
|
|
}
|
|
|
|
/* Figure out what index to use (if any) for each nested loop.
|
|
** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
|
|
** loop where i==0 is the outer loop and i==pTabList->nId-1 is the inner
|
|
** loop.
|
|
**
|
|
** If terms exist that use the ROWID of any table, then set the
|
|
** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table
|
|
** to the index of the term containing the ROWID. We always prefer
|
|
** to use a ROWID which can directly access a table rather than an
|
|
** index which requires two accesses.
|
|
**
|
|
** Actually, if there are more than 32 tables in the join, only the
|
|
** first 32 tables are candidates for indices.
|
|
*/
|
|
loopMask = 0;
|
|
for(i=0; i<pTabList->nId && i<ARRAYSIZE(aDirect); i++){
|
|
int j;
|
|
int idx = aOrder[i];
|
|
Table *pTab = pTabList->a[idx].pTab;
|
|
Index *pIdx;
|
|
Index *pBestIdx = 0;
|
|
int bestScore = 0;
|
|
|
|
/* Check to see if there is an expression that uses only the
|
|
** ROWID field of this table. For terms of the form ROWID==expr
|
|
** set iDirectEq[i] to the index of the term. For terms of the
|
|
** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index.
|
|
** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i].
|
|
*/
|
|
iDirectEq[i] = -1;
|
|
iDirectLt[i] = -1;
|
|
iDirectGt[i] = -1;
|
|
for(j=0; j<nExpr; j++){
|
|
if( aExpr[j].idxLeft==idx && aExpr[j].p->pLeft->iColumn<0
|
|
&& (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
|
|
switch( aExpr[j].p->op ){
|
|
case TK_EQ: iDirectEq[i] = j; break;
|
|
case TK_LE:
|
|
case TK_LT: iDirectLt[i] = j; break;
|
|
case TK_GE:
|
|
case TK_GT: iDirectGt[i] = j; break;
|
|
}
|
|
}
|
|
if( aExpr[j].idxRight==idx && aExpr[j].p->pRight->iColumn<0
|
|
&& (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
|
|
switch( aExpr[j].p->op ){
|
|
case TK_EQ: iDirectEq[i] = j; break;
|
|
case TK_LE:
|
|
case TK_LT: iDirectGt[i] = j; break;
|
|
case TK_GE:
|
|
case TK_GT: iDirectLt[i] = j; break;
|
|
}
|
|
}
|
|
}
|
|
if( iDirectEq[i]>=0 ){
|
|
loopMask |= 1<<idx;
|
|
pWInfo->a[i].pIdx = 0;
|
|
continue;
|
|
}
|
|
|
|
/* Do a search for usable indices. Leave pBestIdx pointing to
|
|
** the "best" index. pBestIdx is left set to NULL if no indices
|
|
** are usable.
|
|
**
|
|
** The best index is determined as follows. For each of the
|
|
** left-most terms that is fixed by an equality operator, add
|
|
** 4 to the score. The right-most term of the index may be
|
|
** constrained by an inequality. Add 1 if for an "x<..." constraint
|
|
** and add 2 for an "x>..." constraint. Chose the index that
|
|
** gives the best score.
|
|
**
|
|
** This scoring system is designed so that the score can later be
|
|
** used to determine how the index is used. If the score&3 is 0
|
|
** then all constraints are equalities. If score&1 is not 0 then
|
|
** there is an inequality used as a termination key. (ex: "x<...")
|
|
** If score&2 is not 0 then there is an inequality used as the
|
|
** start key. (ex: "x>...");
|
|
*/
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
int eqMask = 0; /* Index columns covered by an x=... constraint */
|
|
int ltMask = 0; /* Index columns covered by an x<... constraint */
|
|
int gtMask = 0; /* Index columns covered by an x>... constraing */
|
|
int nEq, m, score;
|
|
|
|
if( pIdx->nColumn>32 ) continue; /* Ignore indices too many columns */
|
|
for(j=0; j<nExpr; j++){
|
|
if( aExpr[j].idxLeft==idx
|
|
&& (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
|
|
int iColumn = aExpr[j].p->pLeft->iColumn;
|
|
int k;
|
|
for(k=0; k<pIdx->nColumn; k++){
|
|
if( pIdx->aiColumn[k]==iColumn ){
|
|
switch( aExpr[j].p->op ){
|
|
case TK_EQ: {
|
|
eqMask |= 1<<k;
|
|
break;
|
|
}
|
|
case TK_LE:
|
|
case TK_LT: {
|
|
ltMask |= 1<<k;
|
|
break;
|
|
}
|
|
case TK_GE:
|
|
case TK_GT: {
|
|
gtMask |= 1<<k;
|
|
break;
|
|
}
|
|
default: {
|
|
/* CANT_HAPPEN */
|
|
assert( 0 );
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if( aExpr[j].idxRight==idx
|
|
&& (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
|
|
int iColumn = aExpr[j].p->pRight->iColumn;
|
|
int k;
|
|
for(k=0; k<pIdx->nColumn; k++){
|
|
if( pIdx->aiColumn[k]==iColumn ){
|
|
switch( aExpr[j].p->op ){
|
|
case TK_EQ: {
|
|
eqMask |= 1<<k;
|
|
break;
|
|
}
|
|
case TK_LE:
|
|
case TK_LT: {
|
|
gtMask |= 1<<k;
|
|
break;
|
|
}
|
|
case TK_GE:
|
|
case TK_GT: {
|
|
ltMask |= 1<<k;
|
|
break;
|
|
}
|
|
default: {
|
|
/* CANT_HAPPEN */
|
|
assert( 0 );
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for(nEq=0; nEq<pIdx->nColumn; nEq++){
|
|
m = (1<<(nEq+1))-1;
|
|
if( (m & eqMask)!=m ) break;
|
|
}
|
|
score = nEq*4;
|
|
m = 1<<nEq;
|
|
if( m & ltMask ) score++;
|
|
if( m & gtMask ) score+=2;
|
|
if( score>bestScore ){
|
|
pBestIdx = pIdx;
|
|
bestScore = score;
|
|
}
|
|
}
|
|
pWInfo->a[i].pIdx = pBestIdx;
|
|
pWInfo->a[i].score = bestScore;
|
|
loopMask |= 1<<idx;
|
|
if( pBestIdx ){
|
|
pWInfo->a[i].iCur = nCur++;
|
|
}
|
|
}
|
|
|
|
/* Open all tables in the pTabList and all indices used by those tables.
|
|
*/
|
|
for(i=0; i<pTabList->nId; i++){
|
|
int openOp;
|
|
Table *pTab;
|
|
|
|
pTab = pTabList->a[i].pTab;
|
|
openOp = pTab->isTemp ? OP_OpenAux : OP_Open;
|
|
sqliteVdbeAddOp(v, openOp, base+i, pTab->tnum);
|
|
sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
|
|
if( i==0 && !pParse->schemaVerified &&
|
|
(pParse->db->flags & SQLITE_InTrans)==0 ){
|
|
sqliteVdbeAddOp(v, OP_VerifyCookie, pParse->db->schema_cookie, 0);
|
|
pParse->schemaVerified = 1;
|
|
}
|
|
if( pWInfo->a[i].pIdx!=0 ){
|
|
sqliteVdbeAddOp(v, openOp, pWInfo->a[i].iCur, pWInfo->a[i].pIdx->tnum);
|
|
sqliteVdbeChangeP3(v, -1, pWInfo->a[i].pIdx->zName, P3_STATIC);
|
|
}
|
|
}
|
|
|
|
/* Generate the code to do the search
|
|
*/
|
|
loopMask = 0;
|
|
pWInfo->iBreak = sqliteVdbeMakeLabel(v);
|
|
for(i=0; i<pTabList->nId; i++){
|
|
int j, k;
|
|
int idx = aOrder[i];
|
|
Index *pIdx;
|
|
WhereLevel *pLevel = &pWInfo->a[i];
|
|
|
|
pIdx = pLevel->pIdx;
|
|
if( i<ARRAYSIZE(iDirectEq) && iDirectEq[i]>=0 ){
|
|
/* Case 1: We can directly reference a single row using an
|
|
** equality comparison against the ROWID field.
|
|
*/
|
|
k = iDirectEq[i];
|
|
assert( k<nExpr );
|
|
assert( aExpr[k].p!=0 );
|
|
assert( aExpr[k].idxLeft==idx || aExpr[k].idxRight==idx );
|
|
if( aExpr[k].idxLeft==idx ){
|
|
sqliteExprCode(pParse, aExpr[k].p->pRight);
|
|
}else{
|
|
sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
|
}
|
|
aExpr[k].p = 0;
|
|
brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
|
cont = pLevel->cont = brk;
|
|
sqliteVdbeAddOp(v, OP_MustBeInt, 0, brk);
|
|
if( i==pTabList->nId-1 && pushKey ){
|
|
haveKey = 1;
|
|
sqliteVdbeAddOp(v, OP_Distinct, base+idx, brk);
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_NotFound, base+idx, brk);
|
|
haveKey = 0;
|
|
}
|
|
pLevel->op = OP_Noop;
|
|
}else if( pIdx!=0 && pLevel->score%4==0 ){
|
|
/* Case 2: All index constraints are equality operators.
|
|
*/
|
|
int start;
|
|
int testOp;
|
|
int nColumn = pLevel->score/4;
|
|
for(j=0; j<nColumn; j++){
|
|
for(k=0; k<nExpr; k++){
|
|
if( aExpr[k].p==0 ) continue;
|
|
if( aExpr[k].idxLeft==idx
|
|
&& aExpr[k].p->op==TK_EQ
|
|
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
|
|
&& aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j]
|
|
){
|
|
sqliteExprCode(pParse, aExpr[k].p->pRight);
|
|
aExpr[k].p = 0;
|
|
break;
|
|
}
|
|
if( aExpr[k].idxRight==idx
|
|
&& aExpr[k].p->op==TK_EQ
|
|
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
|
|
&& aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
|
|
){
|
|
sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
|
aExpr[k].p = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
pLevel->iMem = pParse->nMem++;
|
|
brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
|
cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
|
sqliteVdbeAddOp(v, OP_MakeKey, nColumn, 0);
|
|
if( nColumn==pIdx->nColumn ){
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
|
|
testOp = OP_IdxGT;
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
|
testOp = OP_IdxGE;
|
|
}
|
|
sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
|
|
start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
|
sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
|
|
sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
|
|
if( i==pTabList->nId-1 && pushKey ){
|
|
haveKey = 1;
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_MoveTo, base+idx, 0);
|
|
haveKey = 0;
|
|
}
|
|
pLevel->op = OP_Next;
|
|
pLevel->p1 = pLevel->iCur;
|
|
pLevel->p2 = start;
|
|
}else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){
|
|
/* Case 3: We have an inequality comparison against the ROWID field.
|
|
*/
|
|
int testOp = OP_Noop;
|
|
int start;
|
|
|
|
brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
|
cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
|
if( iDirectGt[i]>=0 ){
|
|
k = iDirectGt[i];
|
|
assert( k<nExpr );
|
|
assert( aExpr[k].p!=0 );
|
|
assert( aExpr[k].idxLeft==idx || aExpr[k].idxRight==idx );
|
|
if( aExpr[k].idxLeft==idx ){
|
|
sqliteExprCode(pParse, aExpr[k].p->pRight);
|
|
}else{
|
|
sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
|
}
|
|
sqliteVdbeAddOp(v, OP_MustBeInt, 0, brk);
|
|
if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){
|
|
sqliteVdbeAddOp(v, OP_AddImm, 1, 0);
|
|
}
|
|
sqliteVdbeAddOp(v, OP_MoveTo, base+idx, brk);
|
|
aExpr[k].p = 0;
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_Rewind, base+idx, brk);
|
|
}
|
|
if( iDirectLt[i]>=0 ){
|
|
k = iDirectLt[i];
|
|
assert( k<nExpr );
|
|
assert( aExpr[k].p!=0 );
|
|
assert( aExpr[k].idxLeft==idx || aExpr[k].idxRight==idx );
|
|
if( aExpr[k].idxLeft==idx ){
|
|
sqliteExprCode(pParse, aExpr[k].p->pRight);
|
|
}else{
|
|
sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
|
}
|
|
sqliteVdbeAddOp(v, OP_MustBeInt, 0, sqliteVdbeCurrentAddr(v)+1);
|
|
pLevel->iMem = pParse->nMem++;
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
|
|
if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){
|
|
testOp = OP_Ge;
|
|
}else{
|
|
testOp = OP_Gt;
|
|
}
|
|
aExpr[k].p = 0;
|
|
}
|
|
start = sqliteVdbeCurrentAddr(v);
|
|
pLevel->op = OP_Next;
|
|
pLevel->p1 = base+idx;
|
|
pLevel->p2 = start;
|
|
if( testOp!=OP_Noop ){
|
|
sqliteVdbeAddOp(v, OP_Recno, base+idx, 0);
|
|
sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
|
sqliteVdbeAddOp(v, testOp, 0, brk);
|
|
}
|
|
haveKey = 0;
|
|
}else if( pIdx==0 ){
|
|
/* Case 4: There was no usable index. We must do a complete
|
|
** scan of the entire database table.
|
|
*/
|
|
int start;
|
|
|
|
brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
|
cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
|
sqliteVdbeAddOp(v, OP_Rewind, base+idx, brk);
|
|
start = sqliteVdbeCurrentAddr(v);
|
|
pLevel->op = OP_Next;
|
|
pLevel->p1 = base+idx;
|
|
pLevel->p2 = start;
|
|
haveKey = 0;
|
|
}else{
|
|
/* Case 5: The contraint on the right-most index field is
|
|
** an inequality.
|
|
*/
|
|
int score = pLevel->score;
|
|
int nEqColumn = score/4;
|
|
int start;
|
|
int leFlag, geFlag;
|
|
int testOp;
|
|
|
|
/* Evaluate the equality constraints
|
|
*/
|
|
for(j=0; j<nEqColumn; j++){
|
|
for(k=0; k<nExpr; k++){
|
|
if( aExpr[k].p==0 ) continue;
|
|
if( aExpr[k].idxLeft==idx
|
|
&& aExpr[k].p->op==TK_EQ
|
|
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
|
|
&& aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j]
|
|
){
|
|
sqliteExprCode(pParse, aExpr[k].p->pRight);
|
|
aExpr[k].p = 0;
|
|
break;
|
|
}
|
|
if( aExpr[k].idxRight==idx
|
|
&& aExpr[k].p->op==TK_EQ
|
|
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
|
|
&& aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
|
|
){
|
|
sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
|
aExpr[k].p = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Duplicate the equality contraint values because they will all be
|
|
** used twice: once to make the termination key and once to make the
|
|
** start key.
|
|
*/
|
|
for(j=0; j<nEqColumn; j++){
|
|
sqliteVdbeAddOp(v, OP_Dup, nEqColumn-1, 0);
|
|
}
|
|
|
|
/* Generate the termination key. This is the key value that
|
|
** will end the search. There is no termination key if there
|
|
** are no equality contraints and no "X<..." constraint.
|
|
*/
|
|
if( (score & 1)!=0 ){
|
|
for(k=0; k<nExpr; k++){
|
|
Expr *pExpr = aExpr[k].p;
|
|
if( pExpr==0 ) continue;
|
|
if( aExpr[k].idxLeft==idx
|
|
&& (pExpr->op==TK_LT || pExpr->op==TK_LE)
|
|
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
|
|
&& pExpr->pLeft->iColumn==pIdx->aiColumn[j]
|
|
){
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
leFlag = pExpr->op==TK_LE;
|
|
aExpr[k].p = 0;
|
|
break;
|
|
}
|
|
if( aExpr[k].idxRight==idx
|
|
&& (pExpr->op==TK_GT || pExpr->op==TK_GE)
|
|
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
|
|
&& pExpr->pRight->iColumn==pIdx->aiColumn[j]
|
|
){
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
leFlag = pExpr->op==TK_GE;
|
|
aExpr[k].p = 0;
|
|
break;
|
|
}
|
|
}
|
|
testOp = OP_IdxGE;
|
|
}else{
|
|
testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop;
|
|
leFlag = 1;
|
|
}
|
|
if( testOp!=OP_Noop ){
|
|
pLevel->iMem = pParse->nMem++;
|
|
sqliteVdbeAddOp(v, OP_MakeKey, nEqColumn + (score & 1), 0);
|
|
if( leFlag ){
|
|
sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
|
|
}
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
|
}
|
|
|
|
/* Generate the start key. This is the key that defines the lower
|
|
** bound on the search. There is no start key if there are not
|
|
** equality constraints and if there is no "X>..." constraint. In
|
|
** that case, generate a "Rewind" instruction in place of the
|
|
** start key search.
|
|
*/
|
|
if( (score & 2)!=0 ){
|
|
for(k=0; k<nExpr; k++){
|
|
Expr *pExpr = aExpr[k].p;
|
|
if( pExpr==0 ) continue;
|
|
if( aExpr[k].idxLeft==idx
|
|
&& (pExpr->op==TK_GT || pExpr->op==TK_GE)
|
|
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
|
|
&& pExpr->pLeft->iColumn==pIdx->aiColumn[j]
|
|
){
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
geFlag = pExpr->op==TK_GE;
|
|
aExpr[k].p = 0;
|
|
break;
|
|
}
|
|
if( aExpr[k].idxRight==idx
|
|
&& (pExpr->op==TK_LT || pExpr->op==TK_LE)
|
|
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
|
|
&& pExpr->pRight->iColumn==pIdx->aiColumn[j]
|
|
){
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
geFlag = pExpr->op==TK_LE;
|
|
aExpr[k].p = 0;
|
|
break;
|
|
}
|
|
}
|
|
}else{
|
|
geFlag = 1;
|
|
}
|
|
brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
|
cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
|
if( nEqColumn>0 || (score&2)!=0 ){
|
|
sqliteVdbeAddOp(v, OP_MakeKey, nEqColumn + ((score&2)!=0), 0);
|
|
if( !geFlag ){
|
|
sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
|
|
}
|
|
sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_Rewind, pLevel->iCur, brk);
|
|
}
|
|
|
|
/* Generate the the top of the loop. If there is a termination
|
|
** key we have to test for that key and abort at the top of the
|
|
** loop.
|
|
*/
|
|
start = sqliteVdbeCurrentAddr(v);
|
|
if( testOp!=OP_Noop ){
|
|
sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
|
sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
|
|
}
|
|
sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
|
|
if( i==pTabList->nId-1 && pushKey ){
|
|
haveKey = 1;
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_MoveTo, base+idx, 0);
|
|
haveKey = 0;
|
|
}
|
|
|
|
/* Record the instruction used to terminate the loop.
|
|
*/
|
|
pLevel->op = OP_Next;
|
|
pLevel->p1 = pLevel->iCur;
|
|
pLevel->p2 = start;
|
|
}
|
|
loopMask |= 1<<idx;
|
|
|
|
/* Insert code to test every subexpression that can be completely
|
|
** computed using the current set of tables.
|
|
*/
|
|
for(j=0; j<nExpr; j++){
|
|
if( aExpr[j].p==0 ) continue;
|
|
if( (aExpr[j].prereqRight & loopMask)!=aExpr[j].prereqRight ) continue;
|
|
if( (aExpr[j].prereqLeft & loopMask)!=aExpr[j].prereqLeft ) continue;
|
|
if( haveKey ){
|
|
haveKey = 0;
|
|
sqliteVdbeAddOp(v, OP_MoveTo, base+idx, 0);
|
|
}
|
|
sqliteExprIfFalse(pParse, aExpr[j].p, cont);
|
|
aExpr[j].p = 0;
|
|
}
|
|
brk = cont;
|
|
}
|
|
pWInfo->iContinue = cont;
|
|
if( pushKey && !haveKey ){
|
|
sqliteVdbeAddOp(v, OP_Recno, base, 0);
|
|
}
|
|
sqliteFree(aOrder);
|
|
return pWInfo;
|
|
}
|
|
|
|
/*
|
|
** Generate the end of the WHERE loop.
|
|
*/
|
|
void sqliteWhereEnd(WhereInfo *pWInfo){
|
|
Vdbe *v = pWInfo->pParse->pVdbe;
|
|
int i;
|
|
int base = pWInfo->base;
|
|
WhereLevel *pLevel;
|
|
|
|
for(i=pWInfo->pTabList->nId-1; i>=0; i--){
|
|
pLevel = &pWInfo->a[i];
|
|
sqliteVdbeResolveLabel(v, pLevel->cont);
|
|
if( pLevel->op!=OP_Noop ){
|
|
sqliteVdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
|
|
}
|
|
sqliteVdbeResolveLabel(v, pLevel->brk);
|
|
}
|
|
sqliteVdbeResolveLabel(v, pWInfo->iBreak);
|
|
for(i=0; i<pWInfo->pTabList->nId; i++){
|
|
pLevel = &pWInfo->a[i];
|
|
sqliteVdbeAddOp(v, OP_Close, base+i, 0);
|
|
if( pLevel->pIdx!=0 ){
|
|
sqliteVdbeAddOp(v, OP_Close, pLevel->iCur, 0);
|
|
}
|
|
}
|
|
sqliteFree(pWInfo);
|
|
return;
|
|
}
|