3194 lines
95 KiB
C
3194 lines
95 KiB
C
/*
|
|
** 2004 May 22
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
******************************************************************************
|
|
**
|
|
** This file contains code that is specific to windows.
|
|
*/
|
|
#include "sqliteInt.h"
|
|
#if SQLITE_OS_WIN /* This file is used for windows only */
|
|
|
|
|
|
/*
|
|
** A Note About Memory Allocation:
|
|
**
|
|
** This driver uses malloc()/free() directly rather than going through
|
|
** the SQLite-wrappers sqlite3_malloc()/sqlite3_free(). Those wrappers
|
|
** are designed for use on embedded systems where memory is scarce and
|
|
** malloc failures happen frequently. Win32 does not typically run on
|
|
** embedded systems, and when it does the developers normally have bigger
|
|
** problems to worry about than running out of memory. So there is not
|
|
** a compelling need to use the wrappers.
|
|
**
|
|
** But there is a good reason to not use the wrappers. If we use the
|
|
** wrappers then we will get simulated malloc() failures within this
|
|
** driver. And that causes all kinds of problems for our tests. We
|
|
** could enhance SQLite to deal with simulated malloc failures within
|
|
** the OS driver, but the code to deal with those failure would not
|
|
** be exercised on Linux (which does not need to malloc() in the driver)
|
|
** and so we would have difficulty writing coverage tests for that
|
|
** code. Better to leave the code out, we think.
|
|
**
|
|
** The point of this discussion is as follows: When creating a new
|
|
** OS layer for an embedded system, if you use this file as an example,
|
|
** avoid the use of malloc()/free(). Those routines work ok on windows
|
|
** desktops but not so well in embedded systems.
|
|
*/
|
|
|
|
#include <winbase.h>
|
|
|
|
#ifdef __CYGWIN__
|
|
# include <sys/cygwin.h>
|
|
#endif
|
|
|
|
/*
|
|
** Macros used to determine whether or not to use threads.
|
|
*/
|
|
#if defined(THREADSAFE) && THREADSAFE
|
|
# define SQLITE_W32_THREADS 1
|
|
#endif
|
|
|
|
/*
|
|
** Include code that is common to all os_*.c files
|
|
*/
|
|
#include "os_common.h"
|
|
|
|
/*
|
|
** Some microsoft compilers lack this definition.
|
|
*/
|
|
#ifndef INVALID_FILE_ATTRIBUTES
|
|
# define INVALID_FILE_ATTRIBUTES ((DWORD)-1)
|
|
#endif
|
|
|
|
/*
|
|
** Determine if we are dealing with WindowsCE - which has a much
|
|
** reduced API.
|
|
*/
|
|
#if SQLITE_OS_WINCE
|
|
# define AreFileApisANSI() 1
|
|
# define FormatMessageW(a,b,c,d,e,f,g) 0
|
|
#endif
|
|
|
|
/* Forward references */
|
|
typedef struct winShm winShm; /* A connection to shared-memory */
|
|
typedef struct winShmNode winShmNode; /* A region of shared-memory */
|
|
|
|
/*
|
|
** WinCE lacks native support for file locking so we have to fake it
|
|
** with some code of our own.
|
|
*/
|
|
#if SQLITE_OS_WINCE
|
|
typedef struct winceLock {
|
|
int nReaders; /* Number of reader locks obtained */
|
|
BOOL bPending; /* Indicates a pending lock has been obtained */
|
|
BOOL bReserved; /* Indicates a reserved lock has been obtained */
|
|
BOOL bExclusive; /* Indicates an exclusive lock has been obtained */
|
|
} winceLock;
|
|
#endif
|
|
|
|
/*
|
|
** The winFile structure is a subclass of sqlite3_file* specific to the win32
|
|
** portability layer.
|
|
*/
|
|
typedef struct winFile winFile;
|
|
struct winFile {
|
|
const sqlite3_io_methods *pMethod; /*** Must be first ***/
|
|
sqlite3_vfs *pVfs; /* The VFS used to open this file */
|
|
HANDLE h; /* Handle for accessing the file */
|
|
u8 locktype; /* Type of lock currently held on this file */
|
|
short sharedLockByte; /* Randomly chosen byte used as a shared lock */
|
|
u8 bPersistWal; /* True to persist WAL files */
|
|
DWORD lastErrno; /* The Windows errno from the last I/O error */
|
|
DWORD sectorSize; /* Sector size of the device file is on */
|
|
winShm *pShm; /* Instance of shared memory on this file */
|
|
const char *zPath; /* Full pathname of this file */
|
|
int szChunk; /* Chunk size configured by FCNTL_CHUNK_SIZE */
|
|
#if SQLITE_OS_WINCE
|
|
WCHAR *zDeleteOnClose; /* Name of file to delete when closing */
|
|
HANDLE hMutex; /* Mutex used to control access to shared lock */
|
|
HANDLE hShared; /* Shared memory segment used for locking */
|
|
winceLock local; /* Locks obtained by this instance of winFile */
|
|
winceLock *shared; /* Global shared lock memory for the file */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* If compiled with SQLITE_WIN32_MALLOC on Windows, we will use the
|
|
* various Win32 API heap functions instead of our own.
|
|
*/
|
|
#ifdef SQLITE_WIN32_MALLOC
|
|
/*
|
|
* The initial size of the Win32-specific heap. This value may be zero.
|
|
*/
|
|
#ifndef SQLITE_WIN32_HEAP_INIT_SIZE
|
|
# define SQLITE_WIN32_HEAP_INIT_SIZE ((SQLITE_DEFAULT_CACHE_SIZE) * \
|
|
(SQLITE_DEFAULT_PAGE_SIZE) + 4194304)
|
|
#endif
|
|
|
|
/*
|
|
* The maximum size of the Win32-specific heap. This value may be zero.
|
|
*/
|
|
#ifndef SQLITE_WIN32_HEAP_MAX_SIZE
|
|
# define SQLITE_WIN32_HEAP_MAX_SIZE (0)
|
|
#endif
|
|
|
|
/*
|
|
* The extra flags to use in calls to the Win32 heap APIs. This value may be
|
|
* zero for the default behavior.
|
|
*/
|
|
#ifndef SQLITE_WIN32_HEAP_FLAGS
|
|
# define SQLITE_WIN32_HEAP_FLAGS (0)
|
|
#endif
|
|
|
|
/*
|
|
** The winMemData structure stores information required by the Win32-specific
|
|
** sqlite3_mem_methods implementation.
|
|
*/
|
|
typedef struct winMemData winMemData;
|
|
struct winMemData {
|
|
#ifndef NDEBUG
|
|
u32 magic; /* Magic number to detect structure corruption. */
|
|
#endif
|
|
HANDLE hHeap; /* The handle to our heap. */
|
|
BOOL bOwned; /* Do we own the heap (i.e. destroy it on shutdown)? */
|
|
};
|
|
|
|
#ifndef NDEBUG
|
|
#define WINMEM_MAGIC 0x42b2830b
|
|
#endif
|
|
|
|
static struct winMemData win_mem_data = {
|
|
#ifndef NDEBUG
|
|
WINMEM_MAGIC,
|
|
#endif
|
|
NULL, FALSE
|
|
};
|
|
|
|
#ifndef NDEBUG
|
|
#define winMemAssertMagic() assert( win_mem_data.magic==WINMEM_MAGIC )
|
|
#else
|
|
#define winMemAssertMagic()
|
|
#endif
|
|
|
|
#define winMemGetHeap() win_mem_data.hHeap
|
|
|
|
static void *winMemMalloc(int nBytes);
|
|
static void winMemFree(void *pPrior);
|
|
static void *winMemRealloc(void *pPrior, int nBytes);
|
|
static int winMemSize(void *p);
|
|
static int winMemRoundup(int n);
|
|
static int winMemInit(void *pAppData);
|
|
static void winMemShutdown(void *pAppData);
|
|
|
|
const sqlite3_mem_methods *sqlite3MemGetWin32(void);
|
|
#endif /* SQLITE_WIN32_MALLOC */
|
|
|
|
/*
|
|
** Forward prototypes.
|
|
*/
|
|
static int getSectorSize(
|
|
sqlite3_vfs *pVfs,
|
|
const char *zRelative /* UTF-8 file name */
|
|
);
|
|
|
|
/*
|
|
** The following variable is (normally) set once and never changes
|
|
** thereafter. It records whether the operating system is Win95
|
|
** or WinNT.
|
|
**
|
|
** 0: Operating system unknown.
|
|
** 1: Operating system is Win95.
|
|
** 2: Operating system is WinNT.
|
|
**
|
|
** In order to facilitate testing on a WinNT system, the test fixture
|
|
** can manually set this value to 1 to emulate Win98 behavior.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
int sqlite3_os_type = 0;
|
|
#else
|
|
static int sqlite3_os_type = 0;
|
|
#endif
|
|
|
|
/*
|
|
** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
|
|
** or WinCE. Return false (zero) for Win95, Win98, or WinME.
|
|
**
|
|
** Here is an interesting observation: Win95, Win98, and WinME lack
|
|
** the LockFileEx() API. But we can still statically link against that
|
|
** API as long as we don't call it when running Win95/98/ME. A call to
|
|
** this routine is used to determine if the host is Win95/98/ME or
|
|
** WinNT/2K/XP so that we will know whether or not we can safely call
|
|
** the LockFileEx() API.
|
|
*/
|
|
#if SQLITE_OS_WINCE
|
|
# define isNT() (1)
|
|
#else
|
|
static int isNT(void){
|
|
if( sqlite3_os_type==0 ){
|
|
OSVERSIONINFO sInfo;
|
|
sInfo.dwOSVersionInfoSize = sizeof(sInfo);
|
|
GetVersionEx(&sInfo);
|
|
sqlite3_os_type = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
|
|
}
|
|
return sqlite3_os_type==2;
|
|
}
|
|
#endif /* SQLITE_OS_WINCE */
|
|
|
|
#ifdef SQLITE_WIN32_MALLOC
|
|
/*
|
|
** Allocate nBytes of memory.
|
|
*/
|
|
static void *winMemMalloc(int nBytes){
|
|
HANDLE hHeap;
|
|
void *p;
|
|
|
|
winMemAssertMagic();
|
|
hHeap = winMemGetHeap();
|
|
assert( hHeap!=0 );
|
|
assert( hHeap!=INVALID_HANDLE_VALUE );
|
|
#ifdef SQLITE_WIN32_MALLOC_VALIDATE
|
|
assert ( HeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) );
|
|
#endif
|
|
assert( nBytes>=0 );
|
|
p = HeapAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, (SIZE_T)nBytes);
|
|
if( !p ){
|
|
sqlite3_log(SQLITE_NOMEM, "failed to HeapAlloc %u bytes (%d), heap=%p",
|
|
nBytes, GetLastError(), (void*)hHeap);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Free memory.
|
|
*/
|
|
static void winMemFree(void *pPrior){
|
|
HANDLE hHeap;
|
|
|
|
winMemAssertMagic();
|
|
hHeap = winMemGetHeap();
|
|
assert( hHeap!=0 );
|
|
assert( hHeap!=INVALID_HANDLE_VALUE );
|
|
#ifdef SQLITE_WIN32_MALLOC_VALIDATE
|
|
assert ( HeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) );
|
|
#endif
|
|
if( !pPrior ) return; /* Passing NULL to HeapFree is undefined. */
|
|
if( !HeapFree(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) ){
|
|
sqlite3_log(SQLITE_NOMEM, "failed to HeapFree block %p (%d), heap=%p",
|
|
pPrior, GetLastError(), (void*)hHeap);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Change the size of an existing memory allocation
|
|
*/
|
|
static void *winMemRealloc(void *pPrior, int nBytes){
|
|
HANDLE hHeap;
|
|
void *p;
|
|
|
|
winMemAssertMagic();
|
|
hHeap = winMemGetHeap();
|
|
assert( hHeap!=0 );
|
|
assert( hHeap!=INVALID_HANDLE_VALUE );
|
|
#ifdef SQLITE_WIN32_MALLOC_VALIDATE
|
|
assert ( HeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) );
|
|
#endif
|
|
assert( nBytes>=0 );
|
|
if( !pPrior ){
|
|
p = HeapAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, (SIZE_T)nBytes);
|
|
}else{
|
|
p = HeapReAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior, (SIZE_T)nBytes);
|
|
}
|
|
if( !p ){
|
|
sqlite3_log(SQLITE_NOMEM, "failed to %s %u bytes (%d), heap=%p",
|
|
pPrior ? "HeapReAlloc" : "HeapAlloc", nBytes, GetLastError(),
|
|
(void*)hHeap);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Return the size of an outstanding allocation, in bytes.
|
|
*/
|
|
static int winMemSize(void *p){
|
|
HANDLE hHeap;
|
|
SIZE_T n;
|
|
|
|
winMemAssertMagic();
|
|
hHeap = winMemGetHeap();
|
|
assert( hHeap!=0 );
|
|
assert( hHeap!=INVALID_HANDLE_VALUE );
|
|
#ifdef SQLITE_WIN32_MALLOC_VALIDATE
|
|
assert ( HeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) );
|
|
#endif
|
|
if( !p ) return 0;
|
|
n = HeapSize(hHeap, SQLITE_WIN32_HEAP_FLAGS, p);
|
|
if( n==(SIZE_T)-1 ){
|
|
sqlite3_log(SQLITE_NOMEM, "failed to HeapSize block %p (%d), heap=%p",
|
|
p, GetLastError(), (void*)hHeap);
|
|
return 0;
|
|
}
|
|
return (int)n;
|
|
}
|
|
|
|
/*
|
|
** Round up a request size to the next valid allocation size.
|
|
*/
|
|
static int winMemRoundup(int n){
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Initialize this module.
|
|
*/
|
|
static int winMemInit(void *pAppData){
|
|
winMemData *pWinMemData = (winMemData *)pAppData;
|
|
|
|
if( !pWinMemData ) return SQLITE_ERROR;
|
|
assert( pWinMemData->magic==WINMEM_MAGIC );
|
|
if( !pWinMemData->hHeap ){
|
|
pWinMemData->hHeap = HeapCreate(SQLITE_WIN32_HEAP_FLAGS,
|
|
SQLITE_WIN32_HEAP_INIT_SIZE,
|
|
SQLITE_WIN32_HEAP_MAX_SIZE);
|
|
if( !pWinMemData->hHeap ){
|
|
sqlite3_log(SQLITE_NOMEM,
|
|
"failed to HeapCreate (%d), flags=%u, initSize=%u, maxSize=%u",
|
|
GetLastError(), SQLITE_WIN32_HEAP_FLAGS, SQLITE_WIN32_HEAP_INIT_SIZE,
|
|
SQLITE_WIN32_HEAP_MAX_SIZE);
|
|
return SQLITE_NOMEM;
|
|
}
|
|
pWinMemData->bOwned = TRUE;
|
|
}
|
|
assert( pWinMemData->hHeap!=0 );
|
|
assert( pWinMemData->hHeap!=INVALID_HANDLE_VALUE );
|
|
#ifdef SQLITE_WIN32_MALLOC_VALIDATE
|
|
assert( HeapValidate(pWinMemData->hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) );
|
|
#endif
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Deinitialize this module.
|
|
*/
|
|
static void winMemShutdown(void *pAppData){
|
|
winMemData *pWinMemData = (winMemData *)pAppData;
|
|
|
|
if( !pWinMemData ) return;
|
|
if( pWinMemData->hHeap ){
|
|
assert( pWinMemData->hHeap!=INVALID_HANDLE_VALUE );
|
|
#ifdef SQLITE_WIN32_MALLOC_VALIDATE
|
|
assert( HeapValidate(pWinMemData->hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) );
|
|
#endif
|
|
if( pWinMemData->bOwned ){
|
|
if( !HeapDestroy(pWinMemData->hHeap) ){
|
|
sqlite3_log(SQLITE_NOMEM, "failed to HeapDestroy (%d), heap=%p",
|
|
GetLastError(), (void*)pWinMemData->hHeap);
|
|
}
|
|
pWinMemData->bOwned = FALSE;
|
|
}
|
|
pWinMemData->hHeap = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Populate the low-level memory allocation function pointers in
|
|
** sqlite3GlobalConfig.m with pointers to the routines in this file. The
|
|
** arguments specify the block of memory to manage.
|
|
**
|
|
** This routine is only called by sqlite3_config(), and therefore
|
|
** is not required to be threadsafe (it is not).
|
|
*/
|
|
const sqlite3_mem_methods *sqlite3MemGetWin32(void){
|
|
static const sqlite3_mem_methods winMemMethods = {
|
|
winMemMalloc,
|
|
winMemFree,
|
|
winMemRealloc,
|
|
winMemSize,
|
|
winMemRoundup,
|
|
winMemInit,
|
|
winMemShutdown,
|
|
&win_mem_data
|
|
};
|
|
return &winMemMethods;
|
|
}
|
|
|
|
void sqlite3MemSetDefault(void){
|
|
sqlite3_config(SQLITE_CONFIG_MALLOC, sqlite3MemGetWin32());
|
|
}
|
|
#endif /* SQLITE_WIN32_MALLOC */
|
|
|
|
/*
|
|
** Convert a UTF-8 string to microsoft unicode (UTF-16?).
|
|
**
|
|
** Space to hold the returned string is obtained from malloc.
|
|
*/
|
|
static WCHAR *utf8ToUnicode(const char *zFilename){
|
|
int nChar;
|
|
WCHAR *zWideFilename;
|
|
|
|
nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0);
|
|
zWideFilename = malloc( nChar*sizeof(zWideFilename[0]) );
|
|
if( zWideFilename==0 ){
|
|
return 0;
|
|
}
|
|
nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename, nChar);
|
|
if( nChar==0 ){
|
|
free(zWideFilename);
|
|
zWideFilename = 0;
|
|
}
|
|
return zWideFilename;
|
|
}
|
|
|
|
/*
|
|
** Convert microsoft unicode to UTF-8. Space to hold the returned string is
|
|
** obtained from malloc().
|
|
*/
|
|
static char *unicodeToUtf8(const WCHAR *zWideFilename){
|
|
int nByte;
|
|
char *zFilename;
|
|
|
|
nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, 0, 0, 0, 0);
|
|
zFilename = malloc( nByte );
|
|
if( zFilename==0 ){
|
|
return 0;
|
|
}
|
|
nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, zFilename, nByte,
|
|
0, 0);
|
|
if( nByte == 0 ){
|
|
free(zFilename);
|
|
zFilename = 0;
|
|
}
|
|
return zFilename;
|
|
}
|
|
|
|
/*
|
|
** Convert an ansi string to microsoft unicode, based on the
|
|
** current codepage settings for file apis.
|
|
**
|
|
** Space to hold the returned string is obtained
|
|
** from malloc.
|
|
*/
|
|
static WCHAR *mbcsToUnicode(const char *zFilename){
|
|
int nByte;
|
|
WCHAR *zMbcsFilename;
|
|
int codepage = AreFileApisANSI() ? CP_ACP : CP_OEMCP;
|
|
|
|
nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, NULL,0)*sizeof(WCHAR);
|
|
zMbcsFilename = malloc( nByte*sizeof(zMbcsFilename[0]) );
|
|
if( zMbcsFilename==0 ){
|
|
return 0;
|
|
}
|
|
nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, zMbcsFilename, nByte);
|
|
if( nByte==0 ){
|
|
free(zMbcsFilename);
|
|
zMbcsFilename = 0;
|
|
}
|
|
return zMbcsFilename;
|
|
}
|
|
|
|
/*
|
|
** Convert microsoft unicode to multibyte character string, based on the
|
|
** user's Ansi codepage.
|
|
**
|
|
** Space to hold the returned string is obtained from
|
|
** malloc().
|
|
*/
|
|
static char *unicodeToMbcs(const WCHAR *zWideFilename){
|
|
int nByte;
|
|
char *zFilename;
|
|
int codepage = AreFileApisANSI() ? CP_ACP : CP_OEMCP;
|
|
|
|
nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, 0, 0, 0, 0);
|
|
zFilename = malloc( nByte );
|
|
if( zFilename==0 ){
|
|
return 0;
|
|
}
|
|
nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, zFilename, nByte,
|
|
0, 0);
|
|
if( nByte == 0 ){
|
|
free(zFilename);
|
|
zFilename = 0;
|
|
}
|
|
return zFilename;
|
|
}
|
|
|
|
/*
|
|
** Convert multibyte character string to UTF-8. Space to hold the
|
|
** returned string is obtained from malloc().
|
|
*/
|
|
char *sqlite3_win32_mbcs_to_utf8(const char *zFilename){
|
|
char *zFilenameUtf8;
|
|
WCHAR *zTmpWide;
|
|
|
|
zTmpWide = mbcsToUnicode(zFilename);
|
|
if( zTmpWide==0 ){
|
|
return 0;
|
|
}
|
|
zFilenameUtf8 = unicodeToUtf8(zTmpWide);
|
|
free(zTmpWide);
|
|
return zFilenameUtf8;
|
|
}
|
|
|
|
/*
|
|
** Convert UTF-8 to multibyte character string. Space to hold the
|
|
** returned string is obtained from malloc().
|
|
*/
|
|
char *sqlite3_win32_utf8_to_mbcs(const char *zFilename){
|
|
char *zFilenameMbcs;
|
|
WCHAR *zTmpWide;
|
|
|
|
zTmpWide = utf8ToUnicode(zFilename);
|
|
if( zTmpWide==0 ){
|
|
return 0;
|
|
}
|
|
zFilenameMbcs = unicodeToMbcs(zTmpWide);
|
|
free(zTmpWide);
|
|
return zFilenameMbcs;
|
|
}
|
|
|
|
|
|
/*
|
|
** The return value of getLastErrorMsg
|
|
** is zero if the error message fits in the buffer, or non-zero
|
|
** otherwise (if the message was truncated).
|
|
*/
|
|
static int getLastErrorMsg(int nBuf, char *zBuf){
|
|
/* FormatMessage returns 0 on failure. Otherwise it
|
|
** returns the number of TCHARs written to the output
|
|
** buffer, excluding the terminating null char.
|
|
*/
|
|
DWORD error = GetLastError();
|
|
DWORD dwLen = 0;
|
|
char *zOut = 0;
|
|
|
|
if( isNT() ){
|
|
WCHAR *zTempWide = NULL;
|
|
dwLen = FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
|
|
NULL,
|
|
error,
|
|
0,
|
|
(LPWSTR) &zTempWide,
|
|
0,
|
|
0);
|
|
if( dwLen > 0 ){
|
|
/* allocate a buffer and convert to UTF8 */
|
|
zOut = unicodeToUtf8(zTempWide);
|
|
/* free the system buffer allocated by FormatMessage */
|
|
LocalFree(zTempWide);
|
|
}
|
|
/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
|
|
** Since the ASCII version of these Windows API do not exist for WINCE,
|
|
** it's important to not reference them for WINCE builds.
|
|
*/
|
|
#if SQLITE_OS_WINCE==0
|
|
}else{
|
|
char *zTemp = NULL;
|
|
dwLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
|
|
NULL,
|
|
error,
|
|
0,
|
|
(LPSTR) &zTemp,
|
|
0,
|
|
0);
|
|
if( dwLen > 0 ){
|
|
/* allocate a buffer and convert to UTF8 */
|
|
zOut = sqlite3_win32_mbcs_to_utf8(zTemp);
|
|
/* free the system buffer allocated by FormatMessage */
|
|
LocalFree(zTemp);
|
|
}
|
|
#endif
|
|
}
|
|
if( 0 == dwLen ){
|
|
sqlite3_snprintf(nBuf, zBuf, "OsError 0x%x (%u)", error, error);
|
|
}else{
|
|
/* copy a maximum of nBuf chars to output buffer */
|
|
sqlite3_snprintf(nBuf, zBuf, "%s", zOut);
|
|
/* free the UTF8 buffer */
|
|
free(zOut);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
**
|
|
** This function - winLogErrorAtLine() - is only ever called via the macro
|
|
** winLogError().
|
|
**
|
|
** This routine is invoked after an error occurs in an OS function.
|
|
** It logs a message using sqlite3_log() containing the current value of
|
|
** error code and, if possible, the human-readable equivalent from
|
|
** FormatMessage.
|
|
**
|
|
** The first argument passed to the macro should be the error code that
|
|
** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN).
|
|
** The two subsequent arguments should be the name of the OS function that
|
|
** failed and the the associated file-system path, if any.
|
|
*/
|
|
#define winLogError(a,b,c) winLogErrorAtLine(a,b,c,__LINE__)
|
|
static int winLogErrorAtLine(
|
|
int errcode, /* SQLite error code */
|
|
const char *zFunc, /* Name of OS function that failed */
|
|
const char *zPath, /* File path associated with error */
|
|
int iLine /* Source line number where error occurred */
|
|
){
|
|
char zMsg[500]; /* Human readable error text */
|
|
int i; /* Loop counter */
|
|
DWORD iErrno = GetLastError(); /* Error code */
|
|
|
|
zMsg[0] = 0;
|
|
getLastErrorMsg(sizeof(zMsg), zMsg);
|
|
assert( errcode!=SQLITE_OK );
|
|
if( zPath==0 ) zPath = "";
|
|
for(i=0; zMsg[i] && zMsg[i]!='\r' && zMsg[i]!='\n'; i++){}
|
|
zMsg[i] = 0;
|
|
sqlite3_log(errcode,
|
|
"os_win.c:%d: (%d) %s(%s) - %s",
|
|
iLine, iErrno, zFunc, zPath, zMsg
|
|
);
|
|
|
|
return errcode;
|
|
}
|
|
|
|
/*
|
|
** The number of times that a ReadFile(), WriteFile(), and DeleteFile()
|
|
** will be retried following a locking error - probably caused by
|
|
** antivirus software. Also the initial delay before the first retry.
|
|
** The delay increases linearly with each retry.
|
|
*/
|
|
#ifndef SQLITE_WIN32_IOERR_RETRY
|
|
# define SQLITE_WIN32_IOERR_RETRY 10
|
|
#endif
|
|
#ifndef SQLITE_WIN32_IOERR_RETRY_DELAY
|
|
# define SQLITE_WIN32_IOERR_RETRY_DELAY 25
|
|
#endif
|
|
static int win32IoerrRetry = SQLITE_WIN32_IOERR_RETRY;
|
|
static int win32IoerrRetryDelay = SQLITE_WIN32_IOERR_RETRY_DELAY;
|
|
|
|
/*
|
|
** If a ReadFile() or WriteFile() error occurs, invoke this routine
|
|
** to see if it should be retried. Return TRUE to retry. Return FALSE
|
|
** to give up with an error.
|
|
*/
|
|
static int retryIoerr(int *pnRetry){
|
|
DWORD e;
|
|
if( *pnRetry>=win32IoerrRetry ){
|
|
return 0;
|
|
}
|
|
e = GetLastError();
|
|
if( e==ERROR_ACCESS_DENIED ||
|
|
e==ERROR_LOCK_VIOLATION ||
|
|
e==ERROR_SHARING_VIOLATION ){
|
|
Sleep(win32IoerrRetryDelay*(1+*pnRetry));
|
|
++*pnRetry;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Log a I/O error retry episode.
|
|
*/
|
|
static void logIoerr(int nRetry){
|
|
if( nRetry ){
|
|
sqlite3_log(SQLITE_IOERR,
|
|
"delayed %dms for lock/sharing conflict",
|
|
win32IoerrRetryDelay*nRetry*(nRetry+1)/2
|
|
);
|
|
}
|
|
}
|
|
|
|
#if SQLITE_OS_WINCE
|
|
/*************************************************************************
|
|
** This section contains code for WinCE only.
|
|
*/
|
|
/*
|
|
** WindowsCE does not have a localtime() function. So create a
|
|
** substitute.
|
|
*/
|
|
#include <time.h>
|
|
struct tm *__cdecl localtime(const time_t *t)
|
|
{
|
|
static struct tm y;
|
|
FILETIME uTm, lTm;
|
|
SYSTEMTIME pTm;
|
|
sqlite3_int64 t64;
|
|
t64 = *t;
|
|
t64 = (t64 + 11644473600)*10000000;
|
|
uTm.dwLowDateTime = (DWORD)(t64 & 0xFFFFFFFF);
|
|
uTm.dwHighDateTime= (DWORD)(t64 >> 32);
|
|
FileTimeToLocalFileTime(&uTm,&lTm);
|
|
FileTimeToSystemTime(&lTm,&pTm);
|
|
y.tm_year = pTm.wYear - 1900;
|
|
y.tm_mon = pTm.wMonth - 1;
|
|
y.tm_wday = pTm.wDayOfWeek;
|
|
y.tm_mday = pTm.wDay;
|
|
y.tm_hour = pTm.wHour;
|
|
y.tm_min = pTm.wMinute;
|
|
y.tm_sec = pTm.wSecond;
|
|
return &y;
|
|
}
|
|
|
|
/* This will never be called, but defined to make the code compile */
|
|
#define GetTempPathA(a,b)
|
|
|
|
#define LockFile(a,b,c,d,e) winceLockFile(&a, b, c, d, e)
|
|
#define UnlockFile(a,b,c,d,e) winceUnlockFile(&a, b, c, d, e)
|
|
#define LockFileEx(a,b,c,d,e,f) winceLockFileEx(&a, b, c, d, e, f)
|
|
|
|
#define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-(int)offsetof(winFile,h)]
|
|
|
|
/*
|
|
** Acquire a lock on the handle h
|
|
*/
|
|
static void winceMutexAcquire(HANDLE h){
|
|
DWORD dwErr;
|
|
do {
|
|
dwErr = WaitForSingleObject(h, INFINITE);
|
|
} while (dwErr != WAIT_OBJECT_0 && dwErr != WAIT_ABANDONED);
|
|
}
|
|
/*
|
|
** Release a lock acquired by winceMutexAcquire()
|
|
*/
|
|
#define winceMutexRelease(h) ReleaseMutex(h)
|
|
|
|
/*
|
|
** Create the mutex and shared memory used for locking in the file
|
|
** descriptor pFile
|
|
*/
|
|
static BOOL winceCreateLock(const char *zFilename, winFile *pFile){
|
|
WCHAR *zTok;
|
|
WCHAR *zName = utf8ToUnicode(zFilename);
|
|
BOOL bInit = TRUE;
|
|
|
|
/* Initialize the local lockdata */
|
|
ZeroMemory(&pFile->local, sizeof(pFile->local));
|
|
|
|
/* Replace the backslashes from the filename and lowercase it
|
|
** to derive a mutex name. */
|
|
zTok = CharLowerW(zName);
|
|
for (;*zTok;zTok++){
|
|
if (*zTok == '\\') *zTok = '_';
|
|
}
|
|
|
|
/* Create/open the named mutex */
|
|
pFile->hMutex = CreateMutexW(NULL, FALSE, zName);
|
|
if (!pFile->hMutex){
|
|
pFile->lastErrno = GetLastError();
|
|
winLogError(SQLITE_ERROR, "winceCreateLock1", zFilename);
|
|
free(zName);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Acquire the mutex before continuing */
|
|
winceMutexAcquire(pFile->hMutex);
|
|
|
|
/* Since the names of named mutexes, semaphores, file mappings etc are
|
|
** case-sensitive, take advantage of that by uppercasing the mutex name
|
|
** and using that as the shared filemapping name.
|
|
*/
|
|
CharUpperW(zName);
|
|
pFile->hShared = CreateFileMappingW(INVALID_HANDLE_VALUE, NULL,
|
|
PAGE_READWRITE, 0, sizeof(winceLock),
|
|
zName);
|
|
|
|
/* Set a flag that indicates we're the first to create the memory so it
|
|
** must be zero-initialized */
|
|
if (GetLastError() == ERROR_ALREADY_EXISTS){
|
|
bInit = FALSE;
|
|
}
|
|
|
|
free(zName);
|
|
|
|
/* If we succeeded in making the shared memory handle, map it. */
|
|
if (pFile->hShared){
|
|
pFile->shared = (winceLock*)MapViewOfFile(pFile->hShared,
|
|
FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock));
|
|
/* If mapping failed, close the shared memory handle and erase it */
|
|
if (!pFile->shared){
|
|
pFile->lastErrno = GetLastError();
|
|
winLogError(SQLITE_ERROR, "winceCreateLock2", zFilename);
|
|
CloseHandle(pFile->hShared);
|
|
pFile->hShared = NULL;
|
|
}
|
|
}
|
|
|
|
/* If shared memory could not be created, then close the mutex and fail */
|
|
if (pFile->hShared == NULL){
|
|
winceMutexRelease(pFile->hMutex);
|
|
CloseHandle(pFile->hMutex);
|
|
pFile->hMutex = NULL;
|
|
return FALSE;
|
|
}
|
|
|
|
/* Initialize the shared memory if we're supposed to */
|
|
if (bInit) {
|
|
ZeroMemory(pFile->shared, sizeof(winceLock));
|
|
}
|
|
|
|
winceMutexRelease(pFile->hMutex);
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
** Destroy the part of winFile that deals with wince locks
|
|
*/
|
|
static void winceDestroyLock(winFile *pFile){
|
|
if (pFile->hMutex){
|
|
/* Acquire the mutex */
|
|
winceMutexAcquire(pFile->hMutex);
|
|
|
|
/* The following blocks should probably assert in debug mode, but they
|
|
are to cleanup in case any locks remained open */
|
|
if (pFile->local.nReaders){
|
|
pFile->shared->nReaders --;
|
|
}
|
|
if (pFile->local.bReserved){
|
|
pFile->shared->bReserved = FALSE;
|
|
}
|
|
if (pFile->local.bPending){
|
|
pFile->shared->bPending = FALSE;
|
|
}
|
|
if (pFile->local.bExclusive){
|
|
pFile->shared->bExclusive = FALSE;
|
|
}
|
|
|
|
/* De-reference and close our copy of the shared memory handle */
|
|
UnmapViewOfFile(pFile->shared);
|
|
CloseHandle(pFile->hShared);
|
|
|
|
/* Done with the mutex */
|
|
winceMutexRelease(pFile->hMutex);
|
|
CloseHandle(pFile->hMutex);
|
|
pFile->hMutex = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** An implementation of the LockFile() API of windows for wince
|
|
*/
|
|
static BOOL winceLockFile(
|
|
HANDLE *phFile,
|
|
DWORD dwFileOffsetLow,
|
|
DWORD dwFileOffsetHigh,
|
|
DWORD nNumberOfBytesToLockLow,
|
|
DWORD nNumberOfBytesToLockHigh
|
|
){
|
|
winFile *pFile = HANDLE_TO_WINFILE(phFile);
|
|
BOOL bReturn = FALSE;
|
|
|
|
UNUSED_PARAMETER(dwFileOffsetHigh);
|
|
UNUSED_PARAMETER(nNumberOfBytesToLockHigh);
|
|
|
|
if (!pFile->hMutex) return TRUE;
|
|
winceMutexAcquire(pFile->hMutex);
|
|
|
|
/* Wanting an exclusive lock? */
|
|
if (dwFileOffsetLow == (DWORD)SHARED_FIRST
|
|
&& nNumberOfBytesToLockLow == (DWORD)SHARED_SIZE){
|
|
if (pFile->shared->nReaders == 0 && pFile->shared->bExclusive == 0){
|
|
pFile->shared->bExclusive = TRUE;
|
|
pFile->local.bExclusive = TRUE;
|
|
bReturn = TRUE;
|
|
}
|
|
}
|
|
|
|
/* Want a read-only lock? */
|
|
else if (dwFileOffsetLow == (DWORD)SHARED_FIRST &&
|
|
nNumberOfBytesToLockLow == 1){
|
|
if (pFile->shared->bExclusive == 0){
|
|
pFile->local.nReaders ++;
|
|
if (pFile->local.nReaders == 1){
|
|
pFile->shared->nReaders ++;
|
|
}
|
|
bReturn = TRUE;
|
|
}
|
|
}
|
|
|
|
/* Want a pending lock? */
|
|
else if (dwFileOffsetLow == (DWORD)PENDING_BYTE && nNumberOfBytesToLockLow == 1){
|
|
/* If no pending lock has been acquired, then acquire it */
|
|
if (pFile->shared->bPending == 0) {
|
|
pFile->shared->bPending = TRUE;
|
|
pFile->local.bPending = TRUE;
|
|
bReturn = TRUE;
|
|
}
|
|
}
|
|
|
|
/* Want a reserved lock? */
|
|
else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE && nNumberOfBytesToLockLow == 1){
|
|
if (pFile->shared->bReserved == 0) {
|
|
pFile->shared->bReserved = TRUE;
|
|
pFile->local.bReserved = TRUE;
|
|
bReturn = TRUE;
|
|
}
|
|
}
|
|
|
|
winceMutexRelease(pFile->hMutex);
|
|
return bReturn;
|
|
}
|
|
|
|
/*
|
|
** An implementation of the UnlockFile API of windows for wince
|
|
*/
|
|
static BOOL winceUnlockFile(
|
|
HANDLE *phFile,
|
|
DWORD dwFileOffsetLow,
|
|
DWORD dwFileOffsetHigh,
|
|
DWORD nNumberOfBytesToUnlockLow,
|
|
DWORD nNumberOfBytesToUnlockHigh
|
|
){
|
|
winFile *pFile = HANDLE_TO_WINFILE(phFile);
|
|
BOOL bReturn = FALSE;
|
|
|
|
UNUSED_PARAMETER(dwFileOffsetHigh);
|
|
UNUSED_PARAMETER(nNumberOfBytesToUnlockHigh);
|
|
|
|
if (!pFile->hMutex) return TRUE;
|
|
winceMutexAcquire(pFile->hMutex);
|
|
|
|
/* Releasing a reader lock or an exclusive lock */
|
|
if (dwFileOffsetLow == (DWORD)SHARED_FIRST){
|
|
/* Did we have an exclusive lock? */
|
|
if (pFile->local.bExclusive){
|
|
assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE);
|
|
pFile->local.bExclusive = FALSE;
|
|
pFile->shared->bExclusive = FALSE;
|
|
bReturn = TRUE;
|
|
}
|
|
|
|
/* Did we just have a reader lock? */
|
|
else if (pFile->local.nReaders){
|
|
assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE || nNumberOfBytesToUnlockLow == 1);
|
|
pFile->local.nReaders --;
|
|
if (pFile->local.nReaders == 0)
|
|
{
|
|
pFile->shared->nReaders --;
|
|
}
|
|
bReturn = TRUE;
|
|
}
|
|
}
|
|
|
|
/* Releasing a pending lock */
|
|
else if (dwFileOffsetLow == (DWORD)PENDING_BYTE && nNumberOfBytesToUnlockLow == 1){
|
|
if (pFile->local.bPending){
|
|
pFile->local.bPending = FALSE;
|
|
pFile->shared->bPending = FALSE;
|
|
bReturn = TRUE;
|
|
}
|
|
}
|
|
/* Releasing a reserved lock */
|
|
else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE && nNumberOfBytesToUnlockLow == 1){
|
|
if (pFile->local.bReserved) {
|
|
pFile->local.bReserved = FALSE;
|
|
pFile->shared->bReserved = FALSE;
|
|
bReturn = TRUE;
|
|
}
|
|
}
|
|
|
|
winceMutexRelease(pFile->hMutex);
|
|
return bReturn;
|
|
}
|
|
|
|
/*
|
|
** An implementation of the LockFileEx() API of windows for wince
|
|
*/
|
|
static BOOL winceLockFileEx(
|
|
HANDLE *phFile,
|
|
DWORD dwFlags,
|
|
DWORD dwReserved,
|
|
DWORD nNumberOfBytesToLockLow,
|
|
DWORD nNumberOfBytesToLockHigh,
|
|
LPOVERLAPPED lpOverlapped
|
|
){
|
|
UNUSED_PARAMETER(dwReserved);
|
|
UNUSED_PARAMETER(nNumberOfBytesToLockHigh);
|
|
|
|
/* If the caller wants a shared read lock, forward this call
|
|
** to winceLockFile */
|
|
if (lpOverlapped->Offset == (DWORD)SHARED_FIRST &&
|
|
dwFlags == 1 &&
|
|
nNumberOfBytesToLockLow == (DWORD)SHARED_SIZE){
|
|
return winceLockFile(phFile, SHARED_FIRST, 0, 1, 0);
|
|
}
|
|
return FALSE;
|
|
}
|
|
/*
|
|
** End of the special code for wince
|
|
*****************************************************************************/
|
|
#endif /* SQLITE_OS_WINCE */
|
|
|
|
/*****************************************************************************
|
|
** The next group of routines implement the I/O methods specified
|
|
** by the sqlite3_io_methods object.
|
|
******************************************************************************/
|
|
|
|
/*
|
|
** Some microsoft compilers lack this definition.
|
|
*/
|
|
#ifndef INVALID_SET_FILE_POINTER
|
|
# define INVALID_SET_FILE_POINTER ((DWORD)-1)
|
|
#endif
|
|
|
|
/*
|
|
** Move the current position of the file handle passed as the first
|
|
** argument to offset iOffset within the file. If successful, return 0.
|
|
** Otherwise, set pFile->lastErrno and return non-zero.
|
|
*/
|
|
static int seekWinFile(winFile *pFile, sqlite3_int64 iOffset){
|
|
LONG upperBits; /* Most sig. 32 bits of new offset */
|
|
LONG lowerBits; /* Least sig. 32 bits of new offset */
|
|
DWORD dwRet; /* Value returned by SetFilePointer() */
|
|
|
|
upperBits = (LONG)((iOffset>>32) & 0x7fffffff);
|
|
lowerBits = (LONG)(iOffset & 0xffffffff);
|
|
|
|
/* API oddity: If successful, SetFilePointer() returns a dword
|
|
** containing the lower 32-bits of the new file-offset. Or, if it fails,
|
|
** it returns INVALID_SET_FILE_POINTER. However according to MSDN,
|
|
** INVALID_SET_FILE_POINTER may also be a valid new offset. So to determine
|
|
** whether an error has actually occured, it is also necessary to call
|
|
** GetLastError().
|
|
*/
|
|
dwRet = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
|
|
if( (dwRet==INVALID_SET_FILE_POINTER && GetLastError()!=NO_ERROR) ){
|
|
pFile->lastErrno = GetLastError();
|
|
winLogError(SQLITE_IOERR_SEEK, "seekWinFile", pFile->zPath);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Close a file.
|
|
**
|
|
** It is reported that an attempt to close a handle might sometimes
|
|
** fail. This is a very unreasonable result, but windows is notorious
|
|
** for being unreasonable so I do not doubt that it might happen. If
|
|
** the close fails, we pause for 100 milliseconds and try again. As
|
|
** many as MX_CLOSE_ATTEMPT attempts to close the handle are made before
|
|
** giving up and returning an error.
|
|
*/
|
|
#define MX_CLOSE_ATTEMPT 3
|
|
static int winClose(sqlite3_file *id){
|
|
int rc, cnt = 0;
|
|
winFile *pFile = (winFile*)id;
|
|
|
|
assert( id!=0 );
|
|
assert( pFile->pShm==0 );
|
|
OSTRACE(("CLOSE %d\n", pFile->h));
|
|
do{
|
|
rc = CloseHandle(pFile->h);
|
|
/* SimulateIOError( rc=0; cnt=MX_CLOSE_ATTEMPT; ); */
|
|
}while( rc==0 && ++cnt < MX_CLOSE_ATTEMPT && (Sleep(100), 1) );
|
|
#if SQLITE_OS_WINCE
|
|
#define WINCE_DELETION_ATTEMPTS 3
|
|
winceDestroyLock(pFile);
|
|
if( pFile->zDeleteOnClose ){
|
|
int cnt = 0;
|
|
while(
|
|
DeleteFileW(pFile->zDeleteOnClose)==0
|
|
&& GetFileAttributesW(pFile->zDeleteOnClose)!=0xffffffff
|
|
&& cnt++ < WINCE_DELETION_ATTEMPTS
|
|
){
|
|
Sleep(100); /* Wait a little before trying again */
|
|
}
|
|
free(pFile->zDeleteOnClose);
|
|
}
|
|
#endif
|
|
OSTRACE(("CLOSE %d %s\n", pFile->h, rc ? "ok" : "failed"));
|
|
OpenCounter(-1);
|
|
return rc ? SQLITE_OK
|
|
: winLogError(SQLITE_IOERR_CLOSE, "winClose", pFile->zPath);
|
|
}
|
|
|
|
/*
|
|
** Read data from a file into a buffer. Return SQLITE_OK if all
|
|
** bytes were read successfully and SQLITE_IOERR if anything goes
|
|
** wrong.
|
|
*/
|
|
static int winRead(
|
|
sqlite3_file *id, /* File to read from */
|
|
void *pBuf, /* Write content into this buffer */
|
|
int amt, /* Number of bytes to read */
|
|
sqlite3_int64 offset /* Begin reading at this offset */
|
|
){
|
|
winFile *pFile = (winFile*)id; /* file handle */
|
|
DWORD nRead; /* Number of bytes actually read from file */
|
|
int nRetry = 0; /* Number of retrys */
|
|
|
|
assert( id!=0 );
|
|
SimulateIOError(return SQLITE_IOERR_READ);
|
|
OSTRACE(("READ %d lock=%d\n", pFile->h, pFile->locktype));
|
|
|
|
if( seekWinFile(pFile, offset) ){
|
|
return SQLITE_FULL;
|
|
}
|
|
while( !ReadFile(pFile->h, pBuf, amt, &nRead, 0) ){
|
|
if( retryIoerr(&nRetry) ) continue;
|
|
pFile->lastErrno = GetLastError();
|
|
return winLogError(SQLITE_IOERR_READ, "winRead", pFile->zPath);
|
|
}
|
|
logIoerr(nRetry);
|
|
if( nRead<(DWORD)amt ){
|
|
/* Unread parts of the buffer must be zero-filled */
|
|
memset(&((char*)pBuf)[nRead], 0, amt-nRead);
|
|
return SQLITE_IOERR_SHORT_READ;
|
|
}
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Write data from a buffer into a file. Return SQLITE_OK on success
|
|
** or some other error code on failure.
|
|
*/
|
|
static int winWrite(
|
|
sqlite3_file *id, /* File to write into */
|
|
const void *pBuf, /* The bytes to be written */
|
|
int amt, /* Number of bytes to write */
|
|
sqlite3_int64 offset /* Offset into the file to begin writing at */
|
|
){
|
|
int rc; /* True if error has occured, else false */
|
|
winFile *pFile = (winFile*)id; /* File handle */
|
|
int nRetry = 0; /* Number of retries */
|
|
|
|
assert( amt>0 );
|
|
assert( pFile );
|
|
SimulateIOError(return SQLITE_IOERR_WRITE);
|
|
SimulateDiskfullError(return SQLITE_FULL);
|
|
|
|
OSTRACE(("WRITE %d lock=%d\n", pFile->h, pFile->locktype));
|
|
|
|
rc = seekWinFile(pFile, offset);
|
|
if( rc==0 ){
|
|
u8 *aRem = (u8 *)pBuf; /* Data yet to be written */
|
|
int nRem = amt; /* Number of bytes yet to be written */
|
|
DWORD nWrite; /* Bytes written by each WriteFile() call */
|
|
|
|
while( nRem>0 ){
|
|
if( !WriteFile(pFile->h, aRem, nRem, &nWrite, 0) ){
|
|
if( retryIoerr(&nRetry) ) continue;
|
|
break;
|
|
}
|
|
if( nWrite<=0 ) break;
|
|
aRem += nWrite;
|
|
nRem -= nWrite;
|
|
}
|
|
if( nRem>0 ){
|
|
pFile->lastErrno = GetLastError();
|
|
rc = 1;
|
|
}
|
|
}
|
|
|
|
if( rc ){
|
|
if( ( pFile->lastErrno==ERROR_HANDLE_DISK_FULL )
|
|
|| ( pFile->lastErrno==ERROR_DISK_FULL )){
|
|
return SQLITE_FULL;
|
|
}
|
|
return winLogError(SQLITE_IOERR_WRITE, "winWrite", pFile->zPath);
|
|
}else{
|
|
logIoerr(nRetry);
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Truncate an open file to a specified size
|
|
*/
|
|
static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){
|
|
winFile *pFile = (winFile*)id; /* File handle object */
|
|
int rc = SQLITE_OK; /* Return code for this function */
|
|
|
|
assert( pFile );
|
|
|
|
OSTRACE(("TRUNCATE %d %lld\n", pFile->h, nByte));
|
|
SimulateIOError(return SQLITE_IOERR_TRUNCATE);
|
|
|
|
/* If the user has configured a chunk-size for this file, truncate the
|
|
** file so that it consists of an integer number of chunks (i.e. the
|
|
** actual file size after the operation may be larger than the requested
|
|
** size).
|
|
*/
|
|
if( pFile->szChunk>0 ){
|
|
nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
|
|
}
|
|
|
|
/* SetEndOfFile() returns non-zero when successful, or zero when it fails. */
|
|
if( seekWinFile(pFile, nByte) ){
|
|
rc = winLogError(SQLITE_IOERR_TRUNCATE, "winTruncate1", pFile->zPath);
|
|
}else if( 0==SetEndOfFile(pFile->h) ){
|
|
pFile->lastErrno = GetLastError();
|
|
rc = winLogError(SQLITE_IOERR_TRUNCATE, "winTruncate2", pFile->zPath);
|
|
}
|
|
|
|
OSTRACE(("TRUNCATE %d %lld %s\n", pFile->h, nByte, rc ? "failed" : "ok"));
|
|
return rc;
|
|
}
|
|
|
|
#ifdef SQLITE_TEST
|
|
/*
|
|
** Count the number of fullsyncs and normal syncs. This is used to test
|
|
** that syncs and fullsyncs are occuring at the right times.
|
|
*/
|
|
int sqlite3_sync_count = 0;
|
|
int sqlite3_fullsync_count = 0;
|
|
#endif
|
|
|
|
/*
|
|
** Make sure all writes to a particular file are committed to disk.
|
|
*/
|
|
static int winSync(sqlite3_file *id, int flags){
|
|
#if !defined(NDEBUG) || !defined(SQLITE_NO_SYNC) || defined(SQLITE_DEBUG)
|
|
winFile *pFile = (winFile*)id;
|
|
BOOL rc;
|
|
#else
|
|
UNUSED_PARAMETER(id);
|
|
#endif
|
|
|
|
assert( pFile );
|
|
/* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
|
|
assert((flags&0x0F)==SQLITE_SYNC_NORMAL
|
|
|| (flags&0x0F)==SQLITE_SYNC_FULL
|
|
);
|
|
|
|
OSTRACE(("SYNC %d lock=%d\n", pFile->h, pFile->locktype));
|
|
|
|
/* Unix cannot, but some systems may return SQLITE_FULL from here. This
|
|
** line is to test that doing so does not cause any problems.
|
|
*/
|
|
SimulateDiskfullError( return SQLITE_FULL );
|
|
|
|
#ifndef SQLITE_TEST
|
|
UNUSED_PARAMETER(flags);
|
|
#else
|
|
if( (flags&0x0F)==SQLITE_SYNC_FULL ){
|
|
sqlite3_fullsync_count++;
|
|
}
|
|
sqlite3_sync_count++;
|
|
#endif
|
|
|
|
/* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
|
|
** no-op
|
|
*/
|
|
#ifdef SQLITE_NO_SYNC
|
|
return SQLITE_OK;
|
|
#else
|
|
rc = FlushFileBuffers(pFile->h);
|
|
SimulateIOError( rc=FALSE );
|
|
if( rc ){
|
|
return SQLITE_OK;
|
|
}else{
|
|
pFile->lastErrno = GetLastError();
|
|
return winLogError(SQLITE_IOERR_FSYNC, "winSync", pFile->zPath);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Determine the current size of a file in bytes
|
|
*/
|
|
static int winFileSize(sqlite3_file *id, sqlite3_int64 *pSize){
|
|
DWORD upperBits;
|
|
DWORD lowerBits;
|
|
winFile *pFile = (winFile*)id;
|
|
DWORD error;
|
|
|
|
assert( id!=0 );
|
|
SimulateIOError(return SQLITE_IOERR_FSTAT);
|
|
lowerBits = GetFileSize(pFile->h, &upperBits);
|
|
if( (lowerBits == INVALID_FILE_SIZE)
|
|
&& ((error = GetLastError()) != NO_ERROR) )
|
|
{
|
|
pFile->lastErrno = error;
|
|
return winLogError(SQLITE_IOERR_FSTAT, "winFileSize", pFile->zPath);
|
|
}
|
|
*pSize = (((sqlite3_int64)upperBits)<<32) + lowerBits;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** LOCKFILE_FAIL_IMMEDIATELY is undefined on some Windows systems.
|
|
*/
|
|
#ifndef LOCKFILE_FAIL_IMMEDIATELY
|
|
# define LOCKFILE_FAIL_IMMEDIATELY 1
|
|
#endif
|
|
|
|
/*
|
|
** Acquire a reader lock.
|
|
** Different API routines are called depending on whether or not this
|
|
** is Win95 or WinNT.
|
|
*/
|
|
static int getReadLock(winFile *pFile){
|
|
int res;
|
|
if( isNT() ){
|
|
OVERLAPPED ovlp;
|
|
ovlp.Offset = SHARED_FIRST;
|
|
ovlp.OffsetHigh = 0;
|
|
ovlp.hEvent = 0;
|
|
res = LockFileEx(pFile->h, LOCKFILE_FAIL_IMMEDIATELY,
|
|
0, SHARED_SIZE, 0, &ovlp);
|
|
/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
|
|
*/
|
|
#if SQLITE_OS_WINCE==0
|
|
}else{
|
|
int lk;
|
|
sqlite3_randomness(sizeof(lk), &lk);
|
|
pFile->sharedLockByte = (short)((lk & 0x7fffffff)%(SHARED_SIZE - 1));
|
|
res = LockFile(pFile->h, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0);
|
|
#endif
|
|
}
|
|
if( res == 0 ){
|
|
pFile->lastErrno = GetLastError();
|
|
/* No need to log a failure to lock */
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
** Undo a readlock
|
|
*/
|
|
static int unlockReadLock(winFile *pFile){
|
|
int res;
|
|
if( isNT() ){
|
|
res = UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
|
|
/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
|
|
*/
|
|
#if SQLITE_OS_WINCE==0
|
|
}else{
|
|
res = UnlockFile(pFile->h, SHARED_FIRST + pFile->sharedLockByte, 0, 1, 0);
|
|
#endif
|
|
}
|
|
if( res==0 && GetLastError()!=ERROR_NOT_LOCKED ){
|
|
pFile->lastErrno = GetLastError();
|
|
winLogError(SQLITE_IOERR_UNLOCK, "unlockReadLock", pFile->zPath);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
** Lock the file with the lock specified by parameter locktype - one
|
|
** of the following:
|
|
**
|
|
** (1) SHARED_LOCK
|
|
** (2) RESERVED_LOCK
|
|
** (3) PENDING_LOCK
|
|
** (4) EXCLUSIVE_LOCK
|
|
**
|
|
** Sometimes when requesting one lock state, additional lock states
|
|
** are inserted in between. The locking might fail on one of the later
|
|
** transitions leaving the lock state different from what it started but
|
|
** still short of its goal. The following chart shows the allowed
|
|
** transitions and the inserted intermediate states:
|
|
**
|
|
** UNLOCKED -> SHARED
|
|
** SHARED -> RESERVED
|
|
** SHARED -> (PENDING) -> EXCLUSIVE
|
|
** RESERVED -> (PENDING) -> EXCLUSIVE
|
|
** PENDING -> EXCLUSIVE
|
|
**
|
|
** This routine will only increase a lock. The winUnlock() routine
|
|
** erases all locks at once and returns us immediately to locking level 0.
|
|
** It is not possible to lower the locking level one step at a time. You
|
|
** must go straight to locking level 0.
|
|
*/
|
|
static int winLock(sqlite3_file *id, int locktype){
|
|
int rc = SQLITE_OK; /* Return code from subroutines */
|
|
int res = 1; /* Result of a windows lock call */
|
|
int newLocktype; /* Set pFile->locktype to this value before exiting */
|
|
int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */
|
|
winFile *pFile = (winFile*)id;
|
|
DWORD error = NO_ERROR;
|
|
|
|
assert( id!=0 );
|
|
OSTRACE(("LOCK %d %d was %d(%d)\n",
|
|
pFile->h, locktype, pFile->locktype, pFile->sharedLockByte));
|
|
|
|
/* If there is already a lock of this type or more restrictive on the
|
|
** OsFile, do nothing. Don't use the end_lock: exit path, as
|
|
** sqlite3OsEnterMutex() hasn't been called yet.
|
|
*/
|
|
if( pFile->locktype>=locktype ){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Make sure the locking sequence is correct
|
|
*/
|
|
assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
|
|
assert( locktype!=PENDING_LOCK );
|
|
assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
|
|
|
|
/* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or
|
|
** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of
|
|
** the PENDING_LOCK byte is temporary.
|
|
*/
|
|
newLocktype = pFile->locktype;
|
|
if( (pFile->locktype==NO_LOCK)
|
|
|| ( (locktype==EXCLUSIVE_LOCK)
|
|
&& (pFile->locktype==RESERVED_LOCK))
|
|
){
|
|
int cnt = 3;
|
|
while( cnt-->0 && (res = LockFile(pFile->h, PENDING_BYTE, 0, 1, 0))==0 ){
|
|
/* Try 3 times to get the pending lock. The pending lock might be
|
|
** held by another reader process who will release it momentarily.
|
|
*/
|
|
OSTRACE(("could not get a PENDING lock. cnt=%d\n", cnt));
|
|
Sleep(1);
|
|
}
|
|
gotPendingLock = res;
|
|
if( !res ){
|
|
error = GetLastError();
|
|
}
|
|
}
|
|
|
|
/* Acquire a shared lock
|
|
*/
|
|
if( locktype==SHARED_LOCK && res ){
|
|
assert( pFile->locktype==NO_LOCK );
|
|
res = getReadLock(pFile);
|
|
if( res ){
|
|
newLocktype = SHARED_LOCK;
|
|
}else{
|
|
error = GetLastError();
|
|
}
|
|
}
|
|
|
|
/* Acquire a RESERVED lock
|
|
*/
|
|
if( locktype==RESERVED_LOCK && res ){
|
|
assert( pFile->locktype==SHARED_LOCK );
|
|
res = LockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
|
|
if( res ){
|
|
newLocktype = RESERVED_LOCK;
|
|
}else{
|
|
error = GetLastError();
|
|
}
|
|
}
|
|
|
|
/* Acquire a PENDING lock
|
|
*/
|
|
if( locktype==EXCLUSIVE_LOCK && res ){
|
|
newLocktype = PENDING_LOCK;
|
|
gotPendingLock = 0;
|
|
}
|
|
|
|
/* Acquire an EXCLUSIVE lock
|
|
*/
|
|
if( locktype==EXCLUSIVE_LOCK && res ){
|
|
assert( pFile->locktype>=SHARED_LOCK );
|
|
res = unlockReadLock(pFile);
|
|
OSTRACE(("unreadlock = %d\n", res));
|
|
res = LockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
|
|
if( res ){
|
|
newLocktype = EXCLUSIVE_LOCK;
|
|
}else{
|
|
error = GetLastError();
|
|
OSTRACE(("error-code = %d\n", error));
|
|
getReadLock(pFile);
|
|
}
|
|
}
|
|
|
|
/* If we are holding a PENDING lock that ought to be released, then
|
|
** release it now.
|
|
*/
|
|
if( gotPendingLock && locktype==SHARED_LOCK ){
|
|
UnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0);
|
|
}
|
|
|
|
/* Update the state of the lock has held in the file descriptor then
|
|
** return the appropriate result code.
|
|
*/
|
|
if( res ){
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
OSTRACE(("LOCK FAILED %d trying for %d but got %d\n", pFile->h,
|
|
locktype, newLocktype));
|
|
pFile->lastErrno = error;
|
|
rc = SQLITE_BUSY;
|
|
}
|
|
pFile->locktype = (u8)newLocktype;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This routine checks if there is a RESERVED lock held on the specified
|
|
** file by this or any other process. If such a lock is held, return
|
|
** non-zero, otherwise zero.
|
|
*/
|
|
static int winCheckReservedLock(sqlite3_file *id, int *pResOut){
|
|
int rc;
|
|
winFile *pFile = (winFile*)id;
|
|
|
|
SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
|
|
|
|
assert( id!=0 );
|
|
if( pFile->locktype>=RESERVED_LOCK ){
|
|
rc = 1;
|
|
OSTRACE(("TEST WR-LOCK %d %d (local)\n", pFile->h, rc));
|
|
}else{
|
|
rc = LockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
|
|
if( rc ){
|
|
UnlockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
|
|
}
|
|
rc = !rc;
|
|
OSTRACE(("TEST WR-LOCK %d %d (remote)\n", pFile->h, rc));
|
|
}
|
|
*pResOut = rc;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Lower the locking level on file descriptor id to locktype. locktype
|
|
** must be either NO_LOCK or SHARED_LOCK.
|
|
**
|
|
** If the locking level of the file descriptor is already at or below
|
|
** the requested locking level, this routine is a no-op.
|
|
**
|
|
** It is not possible for this routine to fail if the second argument
|
|
** is NO_LOCK. If the second argument is SHARED_LOCK then this routine
|
|
** might return SQLITE_IOERR;
|
|
*/
|
|
static int winUnlock(sqlite3_file *id, int locktype){
|
|
int type;
|
|
winFile *pFile = (winFile*)id;
|
|
int rc = SQLITE_OK;
|
|
assert( pFile!=0 );
|
|
assert( locktype<=SHARED_LOCK );
|
|
OSTRACE(("UNLOCK %d to %d was %d(%d)\n", pFile->h, locktype,
|
|
pFile->locktype, pFile->sharedLockByte));
|
|
type = pFile->locktype;
|
|
if( type>=EXCLUSIVE_LOCK ){
|
|
UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
|
|
if( locktype==SHARED_LOCK && !getReadLock(pFile) ){
|
|
/* This should never happen. We should always be able to
|
|
** reacquire the read lock */
|
|
rc = winLogError(SQLITE_IOERR_UNLOCK, "winUnlock", pFile->zPath);
|
|
}
|
|
}
|
|
if( type>=RESERVED_LOCK ){
|
|
UnlockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
|
|
}
|
|
if( locktype==NO_LOCK && type>=SHARED_LOCK ){
|
|
unlockReadLock(pFile);
|
|
}
|
|
if( type>=PENDING_LOCK ){
|
|
UnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0);
|
|
}
|
|
pFile->locktype = (u8)locktype;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Control and query of the open file handle.
|
|
*/
|
|
static int winFileControl(sqlite3_file *id, int op, void *pArg){
|
|
winFile *pFile = (winFile*)id;
|
|
switch( op ){
|
|
case SQLITE_FCNTL_LOCKSTATE: {
|
|
*(int*)pArg = pFile->locktype;
|
|
return SQLITE_OK;
|
|
}
|
|
case SQLITE_LAST_ERRNO: {
|
|
*(int*)pArg = (int)pFile->lastErrno;
|
|
return SQLITE_OK;
|
|
}
|
|
case SQLITE_FCNTL_CHUNK_SIZE: {
|
|
pFile->szChunk = *(int *)pArg;
|
|
return SQLITE_OK;
|
|
}
|
|
case SQLITE_FCNTL_SIZE_HINT: {
|
|
if( pFile->szChunk>0 ){
|
|
sqlite3_int64 oldSz;
|
|
int rc = winFileSize(id, &oldSz);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_int64 newSz = *(sqlite3_int64*)pArg;
|
|
if( newSz>oldSz ){
|
|
SimulateIOErrorBenign(1);
|
|
rc = winTruncate(id, newSz);
|
|
SimulateIOErrorBenign(0);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
case SQLITE_FCNTL_PERSIST_WAL: {
|
|
int bPersist = *(int*)pArg;
|
|
if( bPersist<0 ){
|
|
*(int*)pArg = pFile->bPersistWal;
|
|
}else{
|
|
pFile->bPersistWal = bPersist!=0;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
case SQLITE_FCNTL_SYNC_OMITTED: {
|
|
return SQLITE_OK;
|
|
}
|
|
case SQLITE_FCNTL_WIN32_AV_RETRY: {
|
|
int *a = (int*)pArg;
|
|
if( a[0]>0 ){
|
|
win32IoerrRetry = a[0];
|
|
}else{
|
|
a[0] = win32IoerrRetry;
|
|
}
|
|
if( a[1]>0 ){
|
|
win32IoerrRetryDelay = a[1];
|
|
}else{
|
|
a[1] = win32IoerrRetryDelay;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
return SQLITE_NOTFOUND;
|
|
}
|
|
|
|
/*
|
|
** Return the sector size in bytes of the underlying block device for
|
|
** the specified file. This is almost always 512 bytes, but may be
|
|
** larger for some devices.
|
|
**
|
|
** SQLite code assumes this function cannot fail. It also assumes that
|
|
** if two files are created in the same file-system directory (i.e.
|
|
** a database and its journal file) that the sector size will be the
|
|
** same for both.
|
|
*/
|
|
static int winSectorSize(sqlite3_file *id){
|
|
assert( id!=0 );
|
|
return (int)(((winFile*)id)->sectorSize);
|
|
}
|
|
|
|
/*
|
|
** Return a vector of device characteristics.
|
|
*/
|
|
static int winDeviceCharacteristics(sqlite3_file *id){
|
|
UNUSED_PARAMETER(id);
|
|
return SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_WAL
|
|
|
|
/*
|
|
** Windows will only let you create file view mappings
|
|
** on allocation size granularity boundaries.
|
|
** During sqlite3_os_init() we do a GetSystemInfo()
|
|
** to get the granularity size.
|
|
*/
|
|
SYSTEM_INFO winSysInfo;
|
|
|
|
/*
|
|
** Helper functions to obtain and relinquish the global mutex. The
|
|
** global mutex is used to protect the winLockInfo objects used by
|
|
** this file, all of which may be shared by multiple threads.
|
|
**
|
|
** Function winShmMutexHeld() is used to assert() that the global mutex
|
|
** is held when required. This function is only used as part of assert()
|
|
** statements. e.g.
|
|
**
|
|
** winShmEnterMutex()
|
|
** assert( winShmMutexHeld() );
|
|
** winShmLeaveMutex()
|
|
*/
|
|
static void winShmEnterMutex(void){
|
|
sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
|
|
}
|
|
static void winShmLeaveMutex(void){
|
|
sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
|
|
}
|
|
#ifdef SQLITE_DEBUG
|
|
static int winShmMutexHeld(void) {
|
|
return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Object used to represent a single file opened and mmapped to provide
|
|
** shared memory. When multiple threads all reference the same
|
|
** log-summary, each thread has its own winFile object, but they all
|
|
** point to a single instance of this object. In other words, each
|
|
** log-summary is opened only once per process.
|
|
**
|
|
** winShmMutexHeld() must be true when creating or destroying
|
|
** this object or while reading or writing the following fields:
|
|
**
|
|
** nRef
|
|
** pNext
|
|
**
|
|
** The following fields are read-only after the object is created:
|
|
**
|
|
** fid
|
|
** zFilename
|
|
**
|
|
** Either winShmNode.mutex must be held or winShmNode.nRef==0 and
|
|
** winShmMutexHeld() is true when reading or writing any other field
|
|
** in this structure.
|
|
**
|
|
*/
|
|
struct winShmNode {
|
|
sqlite3_mutex *mutex; /* Mutex to access this object */
|
|
char *zFilename; /* Name of the file */
|
|
winFile hFile; /* File handle from winOpen */
|
|
|
|
int szRegion; /* Size of shared-memory regions */
|
|
int nRegion; /* Size of array apRegion */
|
|
struct ShmRegion {
|
|
HANDLE hMap; /* File handle from CreateFileMapping */
|
|
void *pMap;
|
|
} *aRegion;
|
|
DWORD lastErrno; /* The Windows errno from the last I/O error */
|
|
|
|
int nRef; /* Number of winShm objects pointing to this */
|
|
winShm *pFirst; /* All winShm objects pointing to this */
|
|
winShmNode *pNext; /* Next in list of all winShmNode objects */
|
|
#ifdef SQLITE_DEBUG
|
|
u8 nextShmId; /* Next available winShm.id value */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
** A global array of all winShmNode objects.
|
|
**
|
|
** The winShmMutexHeld() must be true while reading or writing this list.
|
|
*/
|
|
static winShmNode *winShmNodeList = 0;
|
|
|
|
/*
|
|
** Structure used internally by this VFS to record the state of an
|
|
** open shared memory connection.
|
|
**
|
|
** The following fields are initialized when this object is created and
|
|
** are read-only thereafter:
|
|
**
|
|
** winShm.pShmNode
|
|
** winShm.id
|
|
**
|
|
** All other fields are read/write. The winShm.pShmNode->mutex must be held
|
|
** while accessing any read/write fields.
|
|
*/
|
|
struct winShm {
|
|
winShmNode *pShmNode; /* The underlying winShmNode object */
|
|
winShm *pNext; /* Next winShm with the same winShmNode */
|
|
u8 hasMutex; /* True if holding the winShmNode mutex */
|
|
u16 sharedMask; /* Mask of shared locks held */
|
|
u16 exclMask; /* Mask of exclusive locks held */
|
|
#ifdef SQLITE_DEBUG
|
|
u8 id; /* Id of this connection with its winShmNode */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
** Constants used for locking
|
|
*/
|
|
#define WIN_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */
|
|
#define WIN_SHM_DMS (WIN_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */
|
|
|
|
/*
|
|
** Apply advisory locks for all n bytes beginning at ofst.
|
|
*/
|
|
#define _SHM_UNLCK 1
|
|
#define _SHM_RDLCK 2
|
|
#define _SHM_WRLCK 3
|
|
static int winShmSystemLock(
|
|
winShmNode *pFile, /* Apply locks to this open shared-memory segment */
|
|
int lockType, /* _SHM_UNLCK, _SHM_RDLCK, or _SHM_WRLCK */
|
|
int ofst, /* Offset to first byte to be locked/unlocked */
|
|
int nByte /* Number of bytes to lock or unlock */
|
|
){
|
|
OVERLAPPED ovlp;
|
|
DWORD dwFlags;
|
|
int rc = 0; /* Result code form Lock/UnlockFileEx() */
|
|
|
|
/* Access to the winShmNode object is serialized by the caller */
|
|
assert( sqlite3_mutex_held(pFile->mutex) || pFile->nRef==0 );
|
|
|
|
/* Initialize the locking parameters */
|
|
dwFlags = LOCKFILE_FAIL_IMMEDIATELY;
|
|
if( lockType == _SHM_WRLCK ) dwFlags |= LOCKFILE_EXCLUSIVE_LOCK;
|
|
|
|
memset(&ovlp, 0, sizeof(OVERLAPPED));
|
|
ovlp.Offset = ofst;
|
|
|
|
/* Release/Acquire the system-level lock */
|
|
if( lockType==_SHM_UNLCK ){
|
|
rc = UnlockFileEx(pFile->hFile.h, 0, nByte, 0, &ovlp);
|
|
}else{
|
|
rc = LockFileEx(pFile->hFile.h, dwFlags, 0, nByte, 0, &ovlp);
|
|
}
|
|
|
|
if( rc!= 0 ){
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
pFile->lastErrno = GetLastError();
|
|
rc = SQLITE_BUSY;
|
|
}
|
|
|
|
OSTRACE(("SHM-LOCK %d %s %s 0x%08lx\n",
|
|
pFile->hFile.h,
|
|
rc==SQLITE_OK ? "ok" : "failed",
|
|
lockType==_SHM_UNLCK ? "UnlockFileEx" : "LockFileEx",
|
|
pFile->lastErrno));
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Forward references to VFS methods */
|
|
static int winOpen(sqlite3_vfs*,const char*,sqlite3_file*,int,int*);
|
|
static int winDelete(sqlite3_vfs *,const char*,int);
|
|
|
|
/*
|
|
** Purge the winShmNodeList list of all entries with winShmNode.nRef==0.
|
|
**
|
|
** This is not a VFS shared-memory method; it is a utility function called
|
|
** by VFS shared-memory methods.
|
|
*/
|
|
static void winShmPurge(sqlite3_vfs *pVfs, int deleteFlag){
|
|
winShmNode **pp;
|
|
winShmNode *p;
|
|
BOOL bRc;
|
|
assert( winShmMutexHeld() );
|
|
pp = &winShmNodeList;
|
|
while( (p = *pp)!=0 ){
|
|
if( p->nRef==0 ){
|
|
int i;
|
|
if( p->mutex ) sqlite3_mutex_free(p->mutex);
|
|
for(i=0; i<p->nRegion; i++){
|
|
bRc = UnmapViewOfFile(p->aRegion[i].pMap);
|
|
OSTRACE(("SHM-PURGE pid-%d unmap region=%d %s\n",
|
|
(int)GetCurrentProcessId(), i,
|
|
bRc ? "ok" : "failed"));
|
|
bRc = CloseHandle(p->aRegion[i].hMap);
|
|
OSTRACE(("SHM-PURGE pid-%d close region=%d %s\n",
|
|
(int)GetCurrentProcessId(), i,
|
|
bRc ? "ok" : "failed"));
|
|
}
|
|
if( p->hFile.h != INVALID_HANDLE_VALUE ){
|
|
SimulateIOErrorBenign(1);
|
|
winClose((sqlite3_file *)&p->hFile);
|
|
SimulateIOErrorBenign(0);
|
|
}
|
|
if( deleteFlag ){
|
|
SimulateIOErrorBenign(1);
|
|
winDelete(pVfs, p->zFilename, 0);
|
|
SimulateIOErrorBenign(0);
|
|
}
|
|
*pp = p->pNext;
|
|
sqlite3_free(p->aRegion);
|
|
sqlite3_free(p);
|
|
}else{
|
|
pp = &p->pNext;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Open the shared-memory area associated with database file pDbFd.
|
|
**
|
|
** When opening a new shared-memory file, if no other instances of that
|
|
** file are currently open, in this process or in other processes, then
|
|
** the file must be truncated to zero length or have its header cleared.
|
|
*/
|
|
static int winOpenSharedMemory(winFile *pDbFd){
|
|
struct winShm *p; /* The connection to be opened */
|
|
struct winShmNode *pShmNode = 0; /* The underlying mmapped file */
|
|
int rc; /* Result code */
|
|
struct winShmNode *pNew; /* Newly allocated winShmNode */
|
|
int nName; /* Size of zName in bytes */
|
|
|
|
assert( pDbFd->pShm==0 ); /* Not previously opened */
|
|
|
|
/* Allocate space for the new sqlite3_shm object. Also speculatively
|
|
** allocate space for a new winShmNode and filename.
|
|
*/
|
|
p = sqlite3_malloc( sizeof(*p) );
|
|
if( p==0 ) return SQLITE_NOMEM;
|
|
memset(p, 0, sizeof(*p));
|
|
nName = sqlite3Strlen30(pDbFd->zPath);
|
|
pNew = sqlite3_malloc( sizeof(*pShmNode) + nName + 15 );
|
|
if( pNew==0 ){
|
|
sqlite3_free(p);
|
|
return SQLITE_NOMEM;
|
|
}
|
|
memset(pNew, 0, sizeof(*pNew));
|
|
pNew->zFilename = (char*)&pNew[1];
|
|
sqlite3_snprintf(nName+15, pNew->zFilename, "%s-shm", pDbFd->zPath);
|
|
sqlite3FileSuffix3(pDbFd->zPath, pNew->zFilename);
|
|
|
|
/* Look to see if there is an existing winShmNode that can be used.
|
|
** If no matching winShmNode currently exists, create a new one.
|
|
*/
|
|
winShmEnterMutex();
|
|
for(pShmNode = winShmNodeList; pShmNode; pShmNode=pShmNode->pNext){
|
|
/* TBD need to come up with better match here. Perhaps
|
|
** use FILE_ID_BOTH_DIR_INFO Structure.
|
|
*/
|
|
if( sqlite3StrICmp(pShmNode->zFilename, pNew->zFilename)==0 ) break;
|
|
}
|
|
if( pShmNode ){
|
|
sqlite3_free(pNew);
|
|
}else{
|
|
pShmNode = pNew;
|
|
pNew = 0;
|
|
((winFile*)(&pShmNode->hFile))->h = INVALID_HANDLE_VALUE;
|
|
pShmNode->pNext = winShmNodeList;
|
|
winShmNodeList = pShmNode;
|
|
|
|
pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
|
|
if( pShmNode->mutex==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
goto shm_open_err;
|
|
}
|
|
|
|
rc = winOpen(pDbFd->pVfs,
|
|
pShmNode->zFilename, /* Name of the file (UTF-8) */
|
|
(sqlite3_file*)&pShmNode->hFile, /* File handle here */
|
|
SQLITE_OPEN_WAL | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, /* Mode flags */
|
|
0);
|
|
if( SQLITE_OK!=rc ){
|
|
rc = SQLITE_CANTOPEN_BKPT;
|
|
goto shm_open_err;
|
|
}
|
|
|
|
/* Check to see if another process is holding the dead-man switch.
|
|
** If not, truncate the file to zero length.
|
|
*/
|
|
if( winShmSystemLock(pShmNode, _SHM_WRLCK, WIN_SHM_DMS, 1)==SQLITE_OK ){
|
|
rc = winTruncate((sqlite3_file *)&pShmNode->hFile, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
rc = winLogError(SQLITE_IOERR_SHMOPEN, "winOpenShm", pDbFd->zPath);
|
|
}
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
winShmSystemLock(pShmNode, _SHM_UNLCK, WIN_SHM_DMS, 1);
|
|
rc = winShmSystemLock(pShmNode, _SHM_RDLCK, WIN_SHM_DMS, 1);
|
|
}
|
|
if( rc ) goto shm_open_err;
|
|
}
|
|
|
|
/* Make the new connection a child of the winShmNode */
|
|
p->pShmNode = pShmNode;
|
|
#ifdef SQLITE_DEBUG
|
|
p->id = pShmNode->nextShmId++;
|
|
#endif
|
|
pShmNode->nRef++;
|
|
pDbFd->pShm = p;
|
|
winShmLeaveMutex();
|
|
|
|
/* The reference count on pShmNode has already been incremented under
|
|
** the cover of the winShmEnterMutex() mutex and the pointer from the
|
|
** new (struct winShm) object to the pShmNode has been set. All that is
|
|
** left to do is to link the new object into the linked list starting
|
|
** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex
|
|
** mutex.
|
|
*/
|
|
sqlite3_mutex_enter(pShmNode->mutex);
|
|
p->pNext = pShmNode->pFirst;
|
|
pShmNode->pFirst = p;
|
|
sqlite3_mutex_leave(pShmNode->mutex);
|
|
return SQLITE_OK;
|
|
|
|
/* Jump here on any error */
|
|
shm_open_err:
|
|
winShmSystemLock(pShmNode, _SHM_UNLCK, WIN_SHM_DMS, 1);
|
|
winShmPurge(pDbFd->pVfs, 0); /* This call frees pShmNode if required */
|
|
sqlite3_free(p);
|
|
sqlite3_free(pNew);
|
|
winShmLeaveMutex();
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Close a connection to shared-memory. Delete the underlying
|
|
** storage if deleteFlag is true.
|
|
*/
|
|
static int winShmUnmap(
|
|
sqlite3_file *fd, /* Database holding shared memory */
|
|
int deleteFlag /* Delete after closing if true */
|
|
){
|
|
winFile *pDbFd; /* Database holding shared-memory */
|
|
winShm *p; /* The connection to be closed */
|
|
winShmNode *pShmNode; /* The underlying shared-memory file */
|
|
winShm **pp; /* For looping over sibling connections */
|
|
|
|
pDbFd = (winFile*)fd;
|
|
p = pDbFd->pShm;
|
|
if( p==0 ) return SQLITE_OK;
|
|
pShmNode = p->pShmNode;
|
|
|
|
/* Remove connection p from the set of connections associated
|
|
** with pShmNode */
|
|
sqlite3_mutex_enter(pShmNode->mutex);
|
|
for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
|
|
*pp = p->pNext;
|
|
|
|
/* Free the connection p */
|
|
sqlite3_free(p);
|
|
pDbFd->pShm = 0;
|
|
sqlite3_mutex_leave(pShmNode->mutex);
|
|
|
|
/* If pShmNode->nRef has reached 0, then close the underlying
|
|
** shared-memory file, too */
|
|
winShmEnterMutex();
|
|
assert( pShmNode->nRef>0 );
|
|
pShmNode->nRef--;
|
|
if( pShmNode->nRef==0 ){
|
|
winShmPurge(pDbFd->pVfs, deleteFlag);
|
|
}
|
|
winShmLeaveMutex();
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Change the lock state for a shared-memory segment.
|
|
*/
|
|
static int winShmLock(
|
|
sqlite3_file *fd, /* Database file holding the shared memory */
|
|
int ofst, /* First lock to acquire or release */
|
|
int n, /* Number of locks to acquire or release */
|
|
int flags /* What to do with the lock */
|
|
){
|
|
winFile *pDbFd = (winFile*)fd; /* Connection holding shared memory */
|
|
winShm *p = pDbFd->pShm; /* The shared memory being locked */
|
|
winShm *pX; /* For looping over all siblings */
|
|
winShmNode *pShmNode = p->pShmNode;
|
|
int rc = SQLITE_OK; /* Result code */
|
|
u16 mask; /* Mask of locks to take or release */
|
|
|
|
assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
|
|
assert( n>=1 );
|
|
assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
|
|
|| flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
|
|
|| flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
|
|
|| flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
|
|
assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
|
|
|
|
mask = (u16)((1U<<(ofst+n)) - (1U<<ofst));
|
|
assert( n>1 || mask==(1<<ofst) );
|
|
sqlite3_mutex_enter(pShmNode->mutex);
|
|
if( flags & SQLITE_SHM_UNLOCK ){
|
|
u16 allMask = 0; /* Mask of locks held by siblings */
|
|
|
|
/* See if any siblings hold this same lock */
|
|
for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
|
|
if( pX==p ) continue;
|
|
assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
|
|
allMask |= pX->sharedMask;
|
|
}
|
|
|
|
/* Unlock the system-level locks */
|
|
if( (mask & allMask)==0 ){
|
|
rc = winShmSystemLock(pShmNode, _SHM_UNLCK, ofst+WIN_SHM_BASE, n);
|
|
}else{
|
|
rc = SQLITE_OK;
|
|
}
|
|
|
|
/* Undo the local locks */
|
|
if( rc==SQLITE_OK ){
|
|
p->exclMask &= ~mask;
|
|
p->sharedMask &= ~mask;
|
|
}
|
|
}else if( flags & SQLITE_SHM_SHARED ){
|
|
u16 allShared = 0; /* Union of locks held by connections other than "p" */
|
|
|
|
/* Find out which shared locks are already held by sibling connections.
|
|
** If any sibling already holds an exclusive lock, go ahead and return
|
|
** SQLITE_BUSY.
|
|
*/
|
|
for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
|
|
if( (pX->exclMask & mask)!=0 ){
|
|
rc = SQLITE_BUSY;
|
|
break;
|
|
}
|
|
allShared |= pX->sharedMask;
|
|
}
|
|
|
|
/* Get shared locks at the system level, if necessary */
|
|
if( rc==SQLITE_OK ){
|
|
if( (allShared & mask)==0 ){
|
|
rc = winShmSystemLock(pShmNode, _SHM_RDLCK, ofst+WIN_SHM_BASE, n);
|
|
}else{
|
|
rc = SQLITE_OK;
|
|
}
|
|
}
|
|
|
|
/* Get the local shared locks */
|
|
if( rc==SQLITE_OK ){
|
|
p->sharedMask |= mask;
|
|
}
|
|
}else{
|
|
/* Make sure no sibling connections hold locks that will block this
|
|
** lock. If any do, return SQLITE_BUSY right away.
|
|
*/
|
|
for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
|
|
if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){
|
|
rc = SQLITE_BUSY;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Get the exclusive locks at the system level. Then if successful
|
|
** also mark the local connection as being locked.
|
|
*/
|
|
if( rc==SQLITE_OK ){
|
|
rc = winShmSystemLock(pShmNode, _SHM_WRLCK, ofst+WIN_SHM_BASE, n);
|
|
if( rc==SQLITE_OK ){
|
|
assert( (p->sharedMask & mask)==0 );
|
|
p->exclMask |= mask;
|
|
}
|
|
}
|
|
}
|
|
sqlite3_mutex_leave(pShmNode->mutex);
|
|
OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x %s\n",
|
|
p->id, (int)GetCurrentProcessId(), p->sharedMask, p->exclMask,
|
|
rc ? "failed" : "ok"));
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Implement a memory barrier or memory fence on shared memory.
|
|
**
|
|
** All loads and stores begun before the barrier must complete before
|
|
** any load or store begun after the barrier.
|
|
*/
|
|
static void winShmBarrier(
|
|
sqlite3_file *fd /* Database holding the shared memory */
|
|
){
|
|
UNUSED_PARAMETER(fd);
|
|
/* MemoryBarrier(); // does not work -- do not know why not */
|
|
winShmEnterMutex();
|
|
winShmLeaveMutex();
|
|
}
|
|
|
|
/*
|
|
** This function is called to obtain a pointer to region iRegion of the
|
|
** shared-memory associated with the database file fd. Shared-memory regions
|
|
** are numbered starting from zero. Each shared-memory region is szRegion
|
|
** bytes in size.
|
|
**
|
|
** If an error occurs, an error code is returned and *pp is set to NULL.
|
|
**
|
|
** Otherwise, if the isWrite parameter is 0 and the requested shared-memory
|
|
** region has not been allocated (by any client, including one running in a
|
|
** separate process), then *pp is set to NULL and SQLITE_OK returned. If
|
|
** isWrite is non-zero and the requested shared-memory region has not yet
|
|
** been allocated, it is allocated by this function.
|
|
**
|
|
** If the shared-memory region has already been allocated or is allocated by
|
|
** this call as described above, then it is mapped into this processes
|
|
** address space (if it is not already), *pp is set to point to the mapped
|
|
** memory and SQLITE_OK returned.
|
|
*/
|
|
static int winShmMap(
|
|
sqlite3_file *fd, /* Handle open on database file */
|
|
int iRegion, /* Region to retrieve */
|
|
int szRegion, /* Size of regions */
|
|
int isWrite, /* True to extend file if necessary */
|
|
void volatile **pp /* OUT: Mapped memory */
|
|
){
|
|
winFile *pDbFd = (winFile*)fd;
|
|
winShm *p = pDbFd->pShm;
|
|
winShmNode *pShmNode;
|
|
int rc = SQLITE_OK;
|
|
|
|
if( !p ){
|
|
rc = winOpenSharedMemory(pDbFd);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
p = pDbFd->pShm;
|
|
}
|
|
pShmNode = p->pShmNode;
|
|
|
|
sqlite3_mutex_enter(pShmNode->mutex);
|
|
assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
|
|
|
|
if( pShmNode->nRegion<=iRegion ){
|
|
struct ShmRegion *apNew; /* New aRegion[] array */
|
|
int nByte = (iRegion+1)*szRegion; /* Minimum required file size */
|
|
sqlite3_int64 sz; /* Current size of wal-index file */
|
|
|
|
pShmNode->szRegion = szRegion;
|
|
|
|
/* The requested region is not mapped into this processes address space.
|
|
** Check to see if it has been allocated (i.e. if the wal-index file is
|
|
** large enough to contain the requested region).
|
|
*/
|
|
rc = winFileSize((sqlite3_file *)&pShmNode->hFile, &sz);
|
|
if( rc!=SQLITE_OK ){
|
|
rc = winLogError(SQLITE_IOERR_SHMSIZE, "winShmMap1", pDbFd->zPath);
|
|
goto shmpage_out;
|
|
}
|
|
|
|
if( sz<nByte ){
|
|
/* The requested memory region does not exist. If isWrite is set to
|
|
** zero, exit early. *pp will be set to NULL and SQLITE_OK returned.
|
|
**
|
|
** Alternatively, if isWrite is non-zero, use ftruncate() to allocate
|
|
** the requested memory region.
|
|
*/
|
|
if( !isWrite ) goto shmpage_out;
|
|
rc = winTruncate((sqlite3_file *)&pShmNode->hFile, nByte);
|
|
if( rc!=SQLITE_OK ){
|
|
rc = winLogError(SQLITE_IOERR_SHMSIZE, "winShmMap2", pDbFd->zPath);
|
|
goto shmpage_out;
|
|
}
|
|
}
|
|
|
|
/* Map the requested memory region into this processes address space. */
|
|
apNew = (struct ShmRegion *)sqlite3_realloc(
|
|
pShmNode->aRegion, (iRegion+1)*sizeof(apNew[0])
|
|
);
|
|
if( !apNew ){
|
|
rc = SQLITE_IOERR_NOMEM;
|
|
goto shmpage_out;
|
|
}
|
|
pShmNode->aRegion = apNew;
|
|
|
|
while( pShmNode->nRegion<=iRegion ){
|
|
HANDLE hMap; /* file-mapping handle */
|
|
void *pMap = 0; /* Mapped memory region */
|
|
|
|
hMap = CreateFileMapping(pShmNode->hFile.h,
|
|
NULL, PAGE_READWRITE, 0, nByte, NULL
|
|
);
|
|
OSTRACE(("SHM-MAP pid-%d create region=%d nbyte=%d %s\n",
|
|
(int)GetCurrentProcessId(), pShmNode->nRegion, nByte,
|
|
hMap ? "ok" : "failed"));
|
|
if( hMap ){
|
|
int iOffset = pShmNode->nRegion*szRegion;
|
|
int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity;
|
|
pMap = MapViewOfFile(hMap, FILE_MAP_WRITE | FILE_MAP_READ,
|
|
0, iOffset - iOffsetShift, szRegion + iOffsetShift
|
|
);
|
|
OSTRACE(("SHM-MAP pid-%d map region=%d offset=%d size=%d %s\n",
|
|
(int)GetCurrentProcessId(), pShmNode->nRegion, iOffset, szRegion,
|
|
pMap ? "ok" : "failed"));
|
|
}
|
|
if( !pMap ){
|
|
pShmNode->lastErrno = GetLastError();
|
|
rc = winLogError(SQLITE_IOERR_SHMMAP, "winShmMap3", pDbFd->zPath);
|
|
if( hMap ) CloseHandle(hMap);
|
|
goto shmpage_out;
|
|
}
|
|
|
|
pShmNode->aRegion[pShmNode->nRegion].pMap = pMap;
|
|
pShmNode->aRegion[pShmNode->nRegion].hMap = hMap;
|
|
pShmNode->nRegion++;
|
|
}
|
|
}
|
|
|
|
shmpage_out:
|
|
if( pShmNode->nRegion>iRegion ){
|
|
int iOffset = iRegion*szRegion;
|
|
int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity;
|
|
char *p = (char *)pShmNode->aRegion[iRegion].pMap;
|
|
*pp = (void *)&p[iOffsetShift];
|
|
}else{
|
|
*pp = 0;
|
|
}
|
|
sqlite3_mutex_leave(pShmNode->mutex);
|
|
return rc;
|
|
}
|
|
|
|
#else
|
|
# define winShmMap 0
|
|
# define winShmLock 0
|
|
# define winShmBarrier 0
|
|
# define winShmUnmap 0
|
|
#endif /* #ifndef SQLITE_OMIT_WAL */
|
|
|
|
/*
|
|
** Here ends the implementation of all sqlite3_file methods.
|
|
**
|
|
********************** End sqlite3_file Methods *******************************
|
|
******************************************************************************/
|
|
|
|
/*
|
|
** This vector defines all the methods that can operate on an
|
|
** sqlite3_file for win32.
|
|
*/
|
|
static const sqlite3_io_methods winIoMethod = {
|
|
2, /* iVersion */
|
|
winClose, /* xClose */
|
|
winRead, /* xRead */
|
|
winWrite, /* xWrite */
|
|
winTruncate, /* xTruncate */
|
|
winSync, /* xSync */
|
|
winFileSize, /* xFileSize */
|
|
winLock, /* xLock */
|
|
winUnlock, /* xUnlock */
|
|
winCheckReservedLock, /* xCheckReservedLock */
|
|
winFileControl, /* xFileControl */
|
|
winSectorSize, /* xSectorSize */
|
|
winDeviceCharacteristics, /* xDeviceCharacteristics */
|
|
winShmMap, /* xShmMap */
|
|
winShmLock, /* xShmLock */
|
|
winShmBarrier, /* xShmBarrier */
|
|
winShmUnmap /* xShmUnmap */
|
|
};
|
|
|
|
/****************************************************************************
|
|
**************************** sqlite3_vfs methods ****************************
|
|
**
|
|
** This division contains the implementation of methods on the
|
|
** sqlite3_vfs object.
|
|
*/
|
|
|
|
/*
|
|
** Convert a UTF-8 filename into whatever form the underlying
|
|
** operating system wants filenames in. Space to hold the result
|
|
** is obtained from malloc and must be freed by the calling
|
|
** function.
|
|
*/
|
|
static void *convertUtf8Filename(const char *zFilename){
|
|
void *zConverted = 0;
|
|
if( isNT() ){
|
|
zConverted = utf8ToUnicode(zFilename);
|
|
/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
|
|
*/
|
|
#if SQLITE_OS_WINCE==0
|
|
}else{
|
|
zConverted = sqlite3_win32_utf8_to_mbcs(zFilename);
|
|
#endif
|
|
}
|
|
/* caller will handle out of memory */
|
|
return zConverted;
|
|
}
|
|
|
|
/*
|
|
** Create a temporary file name in zBuf. zBuf must be big enough to
|
|
** hold at pVfs->mxPathname characters.
|
|
*/
|
|
static int getTempname(int nBuf, char *zBuf){
|
|
static char zChars[] =
|
|
"abcdefghijklmnopqrstuvwxyz"
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
"0123456789";
|
|
size_t i, j;
|
|
char zTempPath[MAX_PATH+1];
|
|
|
|
/* It's odd to simulate an io-error here, but really this is just
|
|
** using the io-error infrastructure to test that SQLite handles this
|
|
** function failing.
|
|
*/
|
|
SimulateIOError( return SQLITE_IOERR );
|
|
|
|
if( sqlite3_temp_directory ){
|
|
sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", sqlite3_temp_directory);
|
|
}else if( isNT() ){
|
|
char *zMulti;
|
|
WCHAR zWidePath[MAX_PATH];
|
|
GetTempPathW(MAX_PATH-30, zWidePath);
|
|
zMulti = unicodeToUtf8(zWidePath);
|
|
if( zMulti ){
|
|
sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zMulti);
|
|
free(zMulti);
|
|
}else{
|
|
return SQLITE_NOMEM;
|
|
}
|
|
/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
|
|
** Since the ASCII version of these Windows API do not exist for WINCE,
|
|
** it's important to not reference them for WINCE builds.
|
|
*/
|
|
#if SQLITE_OS_WINCE==0
|
|
}else{
|
|
char *zUtf8;
|
|
char zMbcsPath[MAX_PATH];
|
|
GetTempPathA(MAX_PATH-30, zMbcsPath);
|
|
zUtf8 = sqlite3_win32_mbcs_to_utf8(zMbcsPath);
|
|
if( zUtf8 ){
|
|
sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zUtf8);
|
|
free(zUtf8);
|
|
}else{
|
|
return SQLITE_NOMEM;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Check that the output buffer is large enough for the temporary file
|
|
** name. If it is not, return SQLITE_ERROR.
|
|
*/
|
|
if( (sqlite3Strlen30(zTempPath) + sqlite3Strlen30(SQLITE_TEMP_FILE_PREFIX) + 17) >= nBuf ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
for(i=sqlite3Strlen30(zTempPath); i>0 && zTempPath[i-1]=='\\'; i--){}
|
|
zTempPath[i] = 0;
|
|
|
|
sqlite3_snprintf(nBuf-17, zBuf,
|
|
"%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPath);
|
|
j = sqlite3Strlen30(zBuf);
|
|
sqlite3_randomness(15, &zBuf[j]);
|
|
for(i=0; i<15; i++, j++){
|
|
zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
|
|
}
|
|
zBuf[j] = 0;
|
|
|
|
OSTRACE(("TEMP FILENAME: %s\n", zBuf));
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Open a file.
|
|
*/
|
|
static int winOpen(
|
|
sqlite3_vfs *pVfs, /* Not used */
|
|
const char *zName, /* Name of the file (UTF-8) */
|
|
sqlite3_file *id, /* Write the SQLite file handle here */
|
|
int flags, /* Open mode flags */
|
|
int *pOutFlags /* Status return flags */
|
|
){
|
|
HANDLE h;
|
|
DWORD dwDesiredAccess;
|
|
DWORD dwShareMode;
|
|
DWORD dwCreationDisposition;
|
|
DWORD dwFlagsAndAttributes = 0;
|
|
#if SQLITE_OS_WINCE
|
|
int isTemp = 0;
|
|
#endif
|
|
winFile *pFile = (winFile*)id;
|
|
void *zConverted; /* Filename in OS encoding */
|
|
const char *zUtf8Name = zName; /* Filename in UTF-8 encoding */
|
|
int cnt = 0;
|
|
|
|
/* If argument zPath is a NULL pointer, this function is required to open
|
|
** a temporary file. Use this buffer to store the file name in.
|
|
*/
|
|
char zTmpname[MAX_PATH+1]; /* Buffer used to create temp filename */
|
|
|
|
int rc = SQLITE_OK; /* Function Return Code */
|
|
#if !defined(NDEBUG) || SQLITE_OS_WINCE
|
|
int eType = flags&0xFFFFFF00; /* Type of file to open */
|
|
#endif
|
|
|
|
int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
|
|
int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
|
|
int isCreate = (flags & SQLITE_OPEN_CREATE);
|
|
#ifndef NDEBUG
|
|
int isReadonly = (flags & SQLITE_OPEN_READONLY);
|
|
#endif
|
|
int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
|
|
|
|
#ifndef NDEBUG
|
|
int isOpenJournal = (isCreate && (
|
|
eType==SQLITE_OPEN_MASTER_JOURNAL
|
|
|| eType==SQLITE_OPEN_MAIN_JOURNAL
|
|
|| eType==SQLITE_OPEN_WAL
|
|
));
|
|
#endif
|
|
|
|
/* Check the following statements are true:
|
|
**
|
|
** (a) Exactly one of the READWRITE and READONLY flags must be set, and
|
|
** (b) if CREATE is set, then READWRITE must also be set, and
|
|
** (c) if EXCLUSIVE is set, then CREATE must also be set.
|
|
** (d) if DELETEONCLOSE is set, then CREATE must also be set.
|
|
*/
|
|
assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
|
|
assert(isCreate==0 || isReadWrite);
|
|
assert(isExclusive==0 || isCreate);
|
|
assert(isDelete==0 || isCreate);
|
|
|
|
/* The main DB, main journal, WAL file and master journal are never
|
|
** automatically deleted. Nor are they ever temporary files. */
|
|
assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
|
|
assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
|
|
assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL );
|
|
assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
|
|
|
|
/* Assert that the upper layer has set one of the "file-type" flags. */
|
|
assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
|
|
|| eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
|
|
|| eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL
|
|
|| eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
|
|
);
|
|
|
|
assert( id!=0 );
|
|
UNUSED_PARAMETER(pVfs);
|
|
|
|
pFile->h = INVALID_HANDLE_VALUE;
|
|
|
|
/* If the second argument to this function is NULL, generate a
|
|
** temporary file name to use
|
|
*/
|
|
if( !zUtf8Name ){
|
|
assert(isDelete && !isOpenJournal);
|
|
rc = getTempname(MAX_PATH+1, zTmpname);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
zUtf8Name = zTmpname;
|
|
}
|
|
|
|
/* Convert the filename to the system encoding. */
|
|
zConverted = convertUtf8Filename(zUtf8Name);
|
|
if( zConverted==0 ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
|
|
if( isReadWrite ){
|
|
dwDesiredAccess = GENERIC_READ | GENERIC_WRITE;
|
|
}else{
|
|
dwDesiredAccess = GENERIC_READ;
|
|
}
|
|
|
|
/* SQLITE_OPEN_EXCLUSIVE is used to make sure that a new file is
|
|
** created. SQLite doesn't use it to indicate "exclusive access"
|
|
** as it is usually understood.
|
|
*/
|
|
if( isExclusive ){
|
|
/* Creates a new file, only if it does not already exist. */
|
|
/* If the file exists, it fails. */
|
|
dwCreationDisposition = CREATE_NEW;
|
|
}else if( isCreate ){
|
|
/* Open existing file, or create if it doesn't exist */
|
|
dwCreationDisposition = OPEN_ALWAYS;
|
|
}else{
|
|
/* Opens a file, only if it exists. */
|
|
dwCreationDisposition = OPEN_EXISTING;
|
|
}
|
|
|
|
dwShareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
|
|
|
|
if( isDelete ){
|
|
#if SQLITE_OS_WINCE
|
|
dwFlagsAndAttributes = FILE_ATTRIBUTE_HIDDEN;
|
|
isTemp = 1;
|
|
#else
|
|
dwFlagsAndAttributes = FILE_ATTRIBUTE_TEMPORARY
|
|
| FILE_ATTRIBUTE_HIDDEN
|
|
| FILE_FLAG_DELETE_ON_CLOSE;
|
|
#endif
|
|
}else{
|
|
dwFlagsAndAttributes = FILE_ATTRIBUTE_NORMAL;
|
|
}
|
|
/* Reports from the internet are that performance is always
|
|
** better if FILE_FLAG_RANDOM_ACCESS is used. Ticket #2699. */
|
|
#if SQLITE_OS_WINCE
|
|
dwFlagsAndAttributes |= FILE_FLAG_RANDOM_ACCESS;
|
|
#endif
|
|
|
|
if( isNT() ){
|
|
while( (h = CreateFileW((WCHAR*)zConverted,
|
|
dwDesiredAccess,
|
|
dwShareMode, NULL,
|
|
dwCreationDisposition,
|
|
dwFlagsAndAttributes,
|
|
NULL))==INVALID_HANDLE_VALUE &&
|
|
retryIoerr(&cnt) ){}
|
|
/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
|
|
** Since the ASCII version of these Windows API do not exist for WINCE,
|
|
** it's important to not reference them for WINCE builds.
|
|
*/
|
|
#if SQLITE_OS_WINCE==0
|
|
}else{
|
|
while( (h = CreateFileA((char*)zConverted,
|
|
dwDesiredAccess,
|
|
dwShareMode, NULL,
|
|
dwCreationDisposition,
|
|
dwFlagsAndAttributes,
|
|
NULL))==INVALID_HANDLE_VALUE &&
|
|
retryIoerr(&cnt) ){}
|
|
#endif
|
|
}
|
|
|
|
logIoerr(cnt);
|
|
|
|
OSTRACE(("OPEN %d %s 0x%lx %s\n",
|
|
h, zName, dwDesiredAccess,
|
|
h==INVALID_HANDLE_VALUE ? "failed" : "ok"));
|
|
|
|
if( h==INVALID_HANDLE_VALUE ){
|
|
pFile->lastErrno = GetLastError();
|
|
winLogError(SQLITE_CANTOPEN, "winOpen", zUtf8Name);
|
|
free(zConverted);
|
|
if( isReadWrite ){
|
|
return winOpen(pVfs, zName, id,
|
|
((flags|SQLITE_OPEN_READONLY)&~(SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE)), pOutFlags);
|
|
}else{
|
|
return SQLITE_CANTOPEN_BKPT;
|
|
}
|
|
}
|
|
|
|
if( pOutFlags ){
|
|
if( isReadWrite ){
|
|
*pOutFlags = SQLITE_OPEN_READWRITE;
|
|
}else{
|
|
*pOutFlags = SQLITE_OPEN_READONLY;
|
|
}
|
|
}
|
|
|
|
memset(pFile, 0, sizeof(*pFile));
|
|
pFile->pMethod = &winIoMethod;
|
|
pFile->h = h;
|
|
pFile->lastErrno = NO_ERROR;
|
|
pFile->pVfs = pVfs;
|
|
pFile->pShm = 0;
|
|
pFile->zPath = zName;
|
|
pFile->sectorSize = getSectorSize(pVfs, zUtf8Name);
|
|
|
|
#if SQLITE_OS_WINCE
|
|
if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB
|
|
&& !winceCreateLock(zName, pFile)
|
|
){
|
|
CloseHandle(h);
|
|
free(zConverted);
|
|
return SQLITE_CANTOPEN_BKPT;
|
|
}
|
|
if( isTemp ){
|
|
pFile->zDeleteOnClose = zConverted;
|
|
}else
|
|
#endif
|
|
{
|
|
free(zConverted);
|
|
}
|
|
|
|
OpenCounter(+1);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Delete the named file.
|
|
**
|
|
** Note that windows does not allow a file to be deleted if some other
|
|
** process has it open. Sometimes a virus scanner or indexing program
|
|
** will open a journal file shortly after it is created in order to do
|
|
** whatever it does. While this other process is holding the
|
|
** file open, we will be unable to delete it. To work around this
|
|
** problem, we delay 100 milliseconds and try to delete again. Up
|
|
** to MX_DELETION_ATTEMPTs deletion attempts are run before giving
|
|
** up and returning an error.
|
|
*/
|
|
static int winDelete(
|
|
sqlite3_vfs *pVfs, /* Not used on win32 */
|
|
const char *zFilename, /* Name of file to delete */
|
|
int syncDir /* Not used on win32 */
|
|
){
|
|
int cnt = 0;
|
|
int rc;
|
|
void *zConverted;
|
|
UNUSED_PARAMETER(pVfs);
|
|
UNUSED_PARAMETER(syncDir);
|
|
|
|
SimulateIOError(return SQLITE_IOERR_DELETE);
|
|
zConverted = convertUtf8Filename(zFilename);
|
|
if( zConverted==0 ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
if( isNT() ){
|
|
rc = 1;
|
|
while( GetFileAttributesW(zConverted)!=INVALID_FILE_ATTRIBUTES &&
|
|
(rc = DeleteFileW(zConverted))==0 && retryIoerr(&cnt) ){}
|
|
rc = rc ? SQLITE_OK : SQLITE_ERROR;
|
|
/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
|
|
** Since the ASCII version of these Windows API do not exist for WINCE,
|
|
** it's important to not reference them for WINCE builds.
|
|
*/
|
|
#if SQLITE_OS_WINCE==0
|
|
}else{
|
|
rc = 1;
|
|
while( GetFileAttributesA(zConverted)!=INVALID_FILE_ATTRIBUTES &&
|
|
(rc = DeleteFileA(zConverted))==0 && retryIoerr(&cnt) ){}
|
|
rc = rc ? SQLITE_OK : SQLITE_ERROR;
|
|
#endif
|
|
}
|
|
if( rc ){
|
|
rc = winLogError(SQLITE_IOERR_DELETE, "winDelete", zFilename);
|
|
}else{
|
|
logIoerr(cnt);
|
|
}
|
|
free(zConverted);
|
|
OSTRACE(("DELETE \"%s\" %s\n", zFilename, (rc ? "failed" : "ok" )));
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Check the existance and status of a file.
|
|
*/
|
|
static int winAccess(
|
|
sqlite3_vfs *pVfs, /* Not used on win32 */
|
|
const char *zFilename, /* Name of file to check */
|
|
int flags, /* Type of test to make on this file */
|
|
int *pResOut /* OUT: Result */
|
|
){
|
|
DWORD attr;
|
|
int rc = 0;
|
|
void *zConverted;
|
|
UNUSED_PARAMETER(pVfs);
|
|
|
|
SimulateIOError( return SQLITE_IOERR_ACCESS; );
|
|
zConverted = convertUtf8Filename(zFilename);
|
|
if( zConverted==0 ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
if( isNT() ){
|
|
int cnt = 0;
|
|
WIN32_FILE_ATTRIBUTE_DATA sAttrData;
|
|
memset(&sAttrData, 0, sizeof(sAttrData));
|
|
while( !(rc = GetFileAttributesExW((WCHAR*)zConverted,
|
|
GetFileExInfoStandard,
|
|
&sAttrData)) && retryIoerr(&cnt) ){}
|
|
if( rc ){
|
|
/* For an SQLITE_ACCESS_EXISTS query, treat a zero-length file
|
|
** as if it does not exist.
|
|
*/
|
|
if( flags==SQLITE_ACCESS_EXISTS
|
|
&& sAttrData.nFileSizeHigh==0
|
|
&& sAttrData.nFileSizeLow==0 ){
|
|
attr = INVALID_FILE_ATTRIBUTES;
|
|
}else{
|
|
attr = sAttrData.dwFileAttributes;
|
|
}
|
|
}else{
|
|
logIoerr(cnt);
|
|
if( GetLastError()!=ERROR_FILE_NOT_FOUND ){
|
|
winLogError(SQLITE_IOERR_ACCESS, "winAccess", zFilename);
|
|
free(zConverted);
|
|
return SQLITE_IOERR_ACCESS;
|
|
}else{
|
|
attr = INVALID_FILE_ATTRIBUTES;
|
|
}
|
|
}
|
|
/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
|
|
** Since the ASCII version of these Windows API do not exist for WINCE,
|
|
** it's important to not reference them for WINCE builds.
|
|
*/
|
|
#if SQLITE_OS_WINCE==0
|
|
}else{
|
|
attr = GetFileAttributesA((char*)zConverted);
|
|
#endif
|
|
}
|
|
free(zConverted);
|
|
switch( flags ){
|
|
case SQLITE_ACCESS_READ:
|
|
case SQLITE_ACCESS_EXISTS:
|
|
rc = attr!=INVALID_FILE_ATTRIBUTES;
|
|
break;
|
|
case SQLITE_ACCESS_READWRITE:
|
|
rc = attr!=INVALID_FILE_ATTRIBUTES &&
|
|
(attr & FILE_ATTRIBUTE_READONLY)==0;
|
|
break;
|
|
default:
|
|
assert(!"Invalid flags argument");
|
|
}
|
|
*pResOut = rc;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
/*
|
|
** Turn a relative pathname into a full pathname. Write the full
|
|
** pathname into zOut[]. zOut[] will be at least pVfs->mxPathname
|
|
** bytes in size.
|
|
*/
|
|
static int winFullPathname(
|
|
sqlite3_vfs *pVfs, /* Pointer to vfs object */
|
|
const char *zRelative, /* Possibly relative input path */
|
|
int nFull, /* Size of output buffer in bytes */
|
|
char *zFull /* Output buffer */
|
|
){
|
|
|
|
#if defined(__CYGWIN__)
|
|
SimulateIOError( return SQLITE_ERROR );
|
|
UNUSED_PARAMETER(nFull);
|
|
cygwin_conv_to_full_win32_path(zRelative, zFull);
|
|
return SQLITE_OK;
|
|
#endif
|
|
|
|
#if SQLITE_OS_WINCE
|
|
SimulateIOError( return SQLITE_ERROR );
|
|
UNUSED_PARAMETER(nFull);
|
|
/* WinCE has no concept of a relative pathname, or so I am told. */
|
|
sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zRelative);
|
|
return SQLITE_OK;
|
|
#endif
|
|
|
|
#if !SQLITE_OS_WINCE && !defined(__CYGWIN__)
|
|
int nByte;
|
|
void *zConverted;
|
|
char *zOut;
|
|
|
|
/* If this path name begins with "/X:", where "X" is any alphabetic
|
|
** character, discard the initial "/" from the pathname.
|
|
*/
|
|
if( zRelative[0]=='/' && sqlite3Isalpha(zRelative[1]) && zRelative[2]==':' ){
|
|
zRelative++;
|
|
}
|
|
|
|
/* It's odd to simulate an io-error here, but really this is just
|
|
** using the io-error infrastructure to test that SQLite handles this
|
|
** function failing. This function could fail if, for example, the
|
|
** current working directory has been unlinked.
|
|
*/
|
|
SimulateIOError( return SQLITE_ERROR );
|
|
UNUSED_PARAMETER(nFull);
|
|
zConverted = convertUtf8Filename(zRelative);
|
|
if( isNT() ){
|
|
WCHAR *zTemp;
|
|
nByte = GetFullPathNameW((WCHAR*)zConverted, 0, 0, 0) + 3;
|
|
zTemp = malloc( nByte*sizeof(zTemp[0]) );
|
|
if( zTemp==0 ){
|
|
free(zConverted);
|
|
return SQLITE_NOMEM;
|
|
}
|
|
GetFullPathNameW((WCHAR*)zConverted, nByte, zTemp, 0);
|
|
free(zConverted);
|
|
zOut = unicodeToUtf8(zTemp);
|
|
free(zTemp);
|
|
/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
|
|
** Since the ASCII version of these Windows API do not exist for WINCE,
|
|
** it's important to not reference them for WINCE builds.
|
|
*/
|
|
#if SQLITE_OS_WINCE==0
|
|
}else{
|
|
char *zTemp;
|
|
nByte = GetFullPathNameA((char*)zConverted, 0, 0, 0) + 3;
|
|
zTemp = malloc( nByte*sizeof(zTemp[0]) );
|
|
if( zTemp==0 ){
|
|
free(zConverted);
|
|
return SQLITE_NOMEM;
|
|
}
|
|
GetFullPathNameA((char*)zConverted, nByte, zTemp, 0);
|
|
free(zConverted);
|
|
zOut = sqlite3_win32_mbcs_to_utf8(zTemp);
|
|
free(zTemp);
|
|
#endif
|
|
}
|
|
if( zOut ){
|
|
sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zOut);
|
|
free(zOut);
|
|
return SQLITE_OK;
|
|
}else{
|
|
return SQLITE_NOMEM;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Get the sector size of the device used to store
|
|
** file.
|
|
*/
|
|
static int getSectorSize(
|
|
sqlite3_vfs *pVfs,
|
|
const char *zRelative /* UTF-8 file name */
|
|
){
|
|
DWORD bytesPerSector = SQLITE_DEFAULT_SECTOR_SIZE;
|
|
/* GetDiskFreeSpace is not supported under WINCE */
|
|
#if SQLITE_OS_WINCE
|
|
UNUSED_PARAMETER(pVfs);
|
|
UNUSED_PARAMETER(zRelative);
|
|
#else
|
|
char zFullpath[MAX_PATH+1];
|
|
int rc;
|
|
DWORD dwRet = 0;
|
|
DWORD dwDummy;
|
|
|
|
/*
|
|
** We need to get the full path name of the file
|
|
** to get the drive letter to look up the sector
|
|
** size.
|
|
*/
|
|
SimulateIOErrorBenign(1);
|
|
rc = winFullPathname(pVfs, zRelative, MAX_PATH, zFullpath);
|
|
SimulateIOErrorBenign(0);
|
|
if( rc == SQLITE_OK )
|
|
{
|
|
void *zConverted = convertUtf8Filename(zFullpath);
|
|
if( zConverted ){
|
|
if( isNT() ){
|
|
/* trim path to just drive reference */
|
|
WCHAR *p = zConverted;
|
|
for(;*p;p++){
|
|
if( *p == '\\' ){
|
|
*p = '\0';
|
|
break;
|
|
}
|
|
}
|
|
dwRet = GetDiskFreeSpaceW((WCHAR*)zConverted,
|
|
&dwDummy,
|
|
&bytesPerSector,
|
|
&dwDummy,
|
|
&dwDummy);
|
|
}else{
|
|
/* trim path to just drive reference */
|
|
char *p = (char *)zConverted;
|
|
for(;*p;p++){
|
|
if( *p == '\\' ){
|
|
*p = '\0';
|
|
break;
|
|
}
|
|
}
|
|
dwRet = GetDiskFreeSpaceA((char*)zConverted,
|
|
&dwDummy,
|
|
&bytesPerSector,
|
|
&dwDummy,
|
|
&dwDummy);
|
|
}
|
|
free(zConverted);
|
|
}
|
|
if( !dwRet ){
|
|
bytesPerSector = SQLITE_DEFAULT_SECTOR_SIZE;
|
|
}
|
|
}
|
|
#endif
|
|
return (int) bytesPerSector;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
|
/*
|
|
** Interfaces for opening a shared library, finding entry points
|
|
** within the shared library, and closing the shared library.
|
|
*/
|
|
/*
|
|
** Interfaces for opening a shared library, finding entry points
|
|
** within the shared library, and closing the shared library.
|
|
*/
|
|
static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
|
|
HANDLE h;
|
|
void *zConverted = convertUtf8Filename(zFilename);
|
|
UNUSED_PARAMETER(pVfs);
|
|
if( zConverted==0 ){
|
|
return 0;
|
|
}
|
|
if( isNT() ){
|
|
h = LoadLibraryW((WCHAR*)zConverted);
|
|
/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
|
|
** Since the ASCII version of these Windows API do not exist for WINCE,
|
|
** it's important to not reference them for WINCE builds.
|
|
*/
|
|
#if SQLITE_OS_WINCE==0
|
|
}else{
|
|
h = LoadLibraryA((char*)zConverted);
|
|
#endif
|
|
}
|
|
free(zConverted);
|
|
return (void*)h;
|
|
}
|
|
static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
|
|
UNUSED_PARAMETER(pVfs);
|
|
getLastErrorMsg(nBuf, zBufOut);
|
|
}
|
|
void (*winDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol))(void){
|
|
UNUSED_PARAMETER(pVfs);
|
|
#if SQLITE_OS_WINCE
|
|
/* The GetProcAddressA() routine is only available on wince. */
|
|
return (void(*)(void))GetProcAddressA((HANDLE)pHandle, zSymbol);
|
|
#else
|
|
/* All other windows platforms expect GetProcAddress() to take
|
|
** an Ansi string regardless of the _UNICODE setting */
|
|
return (void(*)(void))GetProcAddress((HANDLE)pHandle, zSymbol);
|
|
#endif
|
|
}
|
|
void winDlClose(sqlite3_vfs *pVfs, void *pHandle){
|
|
UNUSED_PARAMETER(pVfs);
|
|
FreeLibrary((HANDLE)pHandle);
|
|
}
|
|
#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
|
|
#define winDlOpen 0
|
|
#define winDlError 0
|
|
#define winDlSym 0
|
|
#define winDlClose 0
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Write up to nBuf bytes of randomness into zBuf.
|
|
*/
|
|
static int winRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
|
|
int n = 0;
|
|
UNUSED_PARAMETER(pVfs);
|
|
#if defined(SQLITE_TEST)
|
|
n = nBuf;
|
|
memset(zBuf, 0, nBuf);
|
|
#else
|
|
if( sizeof(SYSTEMTIME)<=nBuf-n ){
|
|
SYSTEMTIME x;
|
|
GetSystemTime(&x);
|
|
memcpy(&zBuf[n], &x, sizeof(x));
|
|
n += sizeof(x);
|
|
}
|
|
if( sizeof(DWORD)<=nBuf-n ){
|
|
DWORD pid = GetCurrentProcessId();
|
|
memcpy(&zBuf[n], &pid, sizeof(pid));
|
|
n += sizeof(pid);
|
|
}
|
|
if( sizeof(DWORD)<=nBuf-n ){
|
|
DWORD cnt = GetTickCount();
|
|
memcpy(&zBuf[n], &cnt, sizeof(cnt));
|
|
n += sizeof(cnt);
|
|
}
|
|
if( sizeof(LARGE_INTEGER)<=nBuf-n ){
|
|
LARGE_INTEGER i;
|
|
QueryPerformanceCounter(&i);
|
|
memcpy(&zBuf[n], &i, sizeof(i));
|
|
n += sizeof(i);
|
|
}
|
|
#endif
|
|
return n;
|
|
}
|
|
|
|
|
|
/*
|
|
** Sleep for a little while. Return the amount of time slept.
|
|
*/
|
|
static int winSleep(sqlite3_vfs *pVfs, int microsec){
|
|
Sleep((microsec+999)/1000);
|
|
UNUSED_PARAMETER(pVfs);
|
|
return ((microsec+999)/1000)*1000;
|
|
}
|
|
|
|
/*
|
|
** The following variable, if set to a non-zero value, is interpreted as
|
|
** the number of seconds since 1970 and is used to set the result of
|
|
** sqlite3OsCurrentTime() during testing.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */
|
|
#endif
|
|
|
|
/*
|
|
** Find the current time (in Universal Coordinated Time). Write into *piNow
|
|
** the current time and date as a Julian Day number times 86_400_000. In
|
|
** other words, write into *piNow the number of milliseconds since the Julian
|
|
** epoch of noon in Greenwich on November 24, 4714 B.C according to the
|
|
** proleptic Gregorian calendar.
|
|
**
|
|
** On success, return 0. Return 1 if the time and date cannot be found.
|
|
*/
|
|
static int winCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *piNow){
|
|
/* FILETIME structure is a 64-bit value representing the number of
|
|
100-nanosecond intervals since January 1, 1601 (= JD 2305813.5).
|
|
*/
|
|
FILETIME ft;
|
|
static const sqlite3_int64 winFiletimeEpoch = 23058135*(sqlite3_int64)8640000;
|
|
#ifdef SQLITE_TEST
|
|
static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
|
|
#endif
|
|
/* 2^32 - to avoid use of LL and warnings in gcc */
|
|
static const sqlite3_int64 max32BitValue =
|
|
(sqlite3_int64)2000000000 + (sqlite3_int64)2000000000 + (sqlite3_int64)294967296;
|
|
|
|
#if SQLITE_OS_WINCE
|
|
SYSTEMTIME time;
|
|
GetSystemTime(&time);
|
|
/* if SystemTimeToFileTime() fails, it returns zero. */
|
|
if (!SystemTimeToFileTime(&time,&ft)){
|
|
return 1;
|
|
}
|
|
#else
|
|
GetSystemTimeAsFileTime( &ft );
|
|
#endif
|
|
|
|
*piNow = winFiletimeEpoch +
|
|
((((sqlite3_int64)ft.dwHighDateTime)*max32BitValue) +
|
|
(sqlite3_int64)ft.dwLowDateTime)/(sqlite3_int64)10000;
|
|
|
|
#ifdef SQLITE_TEST
|
|
if( sqlite3_current_time ){
|
|
*piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
|
|
}
|
|
#endif
|
|
UNUSED_PARAMETER(pVfs);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Find the current time (in Universal Coordinated Time). Write the
|
|
** current time and date as a Julian Day number into *prNow and
|
|
** return 0. Return 1 if the time and date cannot be found.
|
|
*/
|
|
int winCurrentTime(sqlite3_vfs *pVfs, double *prNow){
|
|
int rc;
|
|
sqlite3_int64 i;
|
|
rc = winCurrentTimeInt64(pVfs, &i);
|
|
if( !rc ){
|
|
*prNow = i/86400000.0;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** The idea is that this function works like a combination of
|
|
** GetLastError() and FormatMessage() on windows (or errno and
|
|
** strerror_r() on unix). After an error is returned by an OS
|
|
** function, SQLite calls this function with zBuf pointing to
|
|
** a buffer of nBuf bytes. The OS layer should populate the
|
|
** buffer with a nul-terminated UTF-8 encoded error message
|
|
** describing the last IO error to have occurred within the calling
|
|
** thread.
|
|
**
|
|
** If the error message is too large for the supplied buffer,
|
|
** it should be truncated. The return value of xGetLastError
|
|
** is zero if the error message fits in the buffer, or non-zero
|
|
** otherwise (if the message was truncated). If non-zero is returned,
|
|
** then it is not necessary to include the nul-terminator character
|
|
** in the output buffer.
|
|
**
|
|
** Not supplying an error message will have no adverse effect
|
|
** on SQLite. It is fine to have an implementation that never
|
|
** returns an error message:
|
|
**
|
|
** int xGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
|
|
** assert(zBuf[0]=='\0');
|
|
** return 0;
|
|
** }
|
|
**
|
|
** However if an error message is supplied, it will be incorporated
|
|
** by sqlite into the error message available to the user using
|
|
** sqlite3_errmsg(), possibly making IO errors easier to debug.
|
|
*/
|
|
static int winGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
|
|
UNUSED_PARAMETER(pVfs);
|
|
return getLastErrorMsg(nBuf, zBuf);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
** Initialize and deinitialize the operating system interface.
|
|
*/
|
|
int sqlite3_os_init(void){
|
|
static sqlite3_vfs winVfs = {
|
|
3, /* iVersion */
|
|
sizeof(winFile), /* szOsFile */
|
|
MAX_PATH, /* mxPathname */
|
|
0, /* pNext */
|
|
"win32", /* zName */
|
|
0, /* pAppData */
|
|
winOpen, /* xOpen */
|
|
winDelete, /* xDelete */
|
|
winAccess, /* xAccess */
|
|
winFullPathname, /* xFullPathname */
|
|
winDlOpen, /* xDlOpen */
|
|
winDlError, /* xDlError */
|
|
winDlSym, /* xDlSym */
|
|
winDlClose, /* xDlClose */
|
|
winRandomness, /* xRandomness */
|
|
winSleep, /* xSleep */
|
|
winCurrentTime, /* xCurrentTime */
|
|
winGetLastError, /* xGetLastError */
|
|
winCurrentTimeInt64, /* xCurrentTimeInt64 */
|
|
0, /* xSetSystemCall */
|
|
0, /* xGetSystemCall */
|
|
0, /* xNextSystemCall */
|
|
};
|
|
|
|
#ifndef SQLITE_OMIT_WAL
|
|
/* get memory map allocation granularity */
|
|
memset(&winSysInfo, 0, sizeof(SYSTEM_INFO));
|
|
GetSystemInfo(&winSysInfo);
|
|
assert(winSysInfo.dwAllocationGranularity > 0);
|
|
#endif
|
|
|
|
sqlite3_vfs_register(&winVfs, 1);
|
|
return SQLITE_OK;
|
|
}
|
|
int sqlite3_os_end(void){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
#endif /* SQLITE_OS_WIN */
|