873a84054c
FossilOrigin-Name: d31c019fd6849e4c3f8452e75c6cfefd613ade5355e896be368bd16fef28c627
1065 lines
36 KiB
C
1065 lines
36 KiB
C
/*
|
|
** 2005 May 25
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains the implementation of the sqlite3_prepare()
|
|
** interface, and routines that contribute to loading the database schema
|
|
** from disk.
|
|
*/
|
|
#include "sqliteInt.h"
|
|
|
|
/*
|
|
** Fill the InitData structure with an error message that indicates
|
|
** that the database is corrupt.
|
|
*/
|
|
static void corruptSchema(
|
|
InitData *pData, /* Initialization context */
|
|
char **azObj, /* Type and name of object being parsed */
|
|
const char *zExtra /* Error information */
|
|
){
|
|
sqlite3 *db = pData->db;
|
|
if( db->mallocFailed ){
|
|
pData->rc = SQLITE_NOMEM_BKPT;
|
|
}else if( pData->pzErrMsg[0]!=0 ){
|
|
/* A error message has already been generated. Do not overwrite it */
|
|
}else if( pData->mInitFlags & (INITFLAG_AlterMask) ){
|
|
static const char *azAlterType[] = {
|
|
"rename",
|
|
"drop column",
|
|
"add column"
|
|
};
|
|
*pData->pzErrMsg = sqlite3MPrintf(db,
|
|
"error in %s %s after %s: %s", azObj[0], azObj[1],
|
|
azAlterType[(pData->mInitFlags&INITFLAG_AlterMask)-1],
|
|
zExtra
|
|
);
|
|
pData->rc = SQLITE_ERROR;
|
|
}else if( db->flags & SQLITE_WriteSchema ){
|
|
pData->rc = SQLITE_CORRUPT_BKPT;
|
|
}else{
|
|
char *z;
|
|
const char *zObj = azObj[1] ? azObj[1] : "?";
|
|
z = sqlite3MPrintf(db, "malformed database schema (%s)", zObj);
|
|
if( zExtra && zExtra[0] ) z = sqlite3MPrintf(db, "%z - %s", z, zExtra);
|
|
*pData->pzErrMsg = z;
|
|
pData->rc = SQLITE_CORRUPT_BKPT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Check to see if any sibling index (another index on the same table)
|
|
** of pIndex has the same root page number, and if it does, return true.
|
|
** This would indicate a corrupt schema.
|
|
*/
|
|
int sqlite3IndexHasDuplicateRootPage(Index *pIndex){
|
|
Index *p;
|
|
for(p=pIndex->pTable->pIndex; p; p=p->pNext){
|
|
if( p->tnum==pIndex->tnum && p!=pIndex ) return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* forward declaration */
|
|
static int sqlite3Prepare(
|
|
sqlite3 *db, /* Database handle. */
|
|
const char *zSql, /* UTF-8 encoded SQL statement. */
|
|
int nBytes, /* Length of zSql in bytes. */
|
|
u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */
|
|
Vdbe *pReprepare, /* VM being reprepared */
|
|
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
|
const char **pzTail /* OUT: End of parsed string */
|
|
);
|
|
|
|
|
|
/*
|
|
** This is the callback routine for the code that initializes the
|
|
** database. See sqlite3Init() below for additional information.
|
|
** This routine is also called from the OP_ParseSchema opcode of the VDBE.
|
|
**
|
|
** Each callback contains the following information:
|
|
**
|
|
** argv[0] = type of object: "table", "index", "trigger", or "view".
|
|
** argv[1] = name of thing being created
|
|
** argv[2] = associated table if an index or trigger
|
|
** argv[3] = root page number for table or index. 0 for trigger or view.
|
|
** argv[4] = SQL text for the CREATE statement.
|
|
**
|
|
*/
|
|
int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){
|
|
InitData *pData = (InitData*)pInit;
|
|
sqlite3 *db = pData->db;
|
|
int iDb = pData->iDb;
|
|
|
|
assert( argc==5 );
|
|
UNUSED_PARAMETER2(NotUsed, argc);
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
db->mDbFlags |= DBFLAG_EncodingFixed;
|
|
if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */
|
|
pData->nInitRow++;
|
|
if( db->mallocFailed ){
|
|
corruptSchema(pData, argv, 0);
|
|
return 1;
|
|
}
|
|
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
if( argv[3]==0 ){
|
|
corruptSchema(pData, argv, 0);
|
|
}else if( argv[4]
|
|
&& 'c'==sqlite3UpperToLower[(unsigned char)argv[4][0]]
|
|
&& 'r'==sqlite3UpperToLower[(unsigned char)argv[4][1]] ){
|
|
/* Call the parser to process a CREATE TABLE, INDEX or VIEW.
|
|
** But because db->init.busy is set to 1, no VDBE code is generated
|
|
** or executed. All the parser does is build the internal data
|
|
** structures that describe the table, index, or view.
|
|
**
|
|
** No other valid SQL statement, other than the variable CREATE statements,
|
|
** can begin with the letters "C" and "R". Thus, it is not possible run
|
|
** any other kind of statement while parsing the schema, even a corrupt
|
|
** schema.
|
|
*/
|
|
int rc;
|
|
u8 saved_iDb = db->init.iDb;
|
|
sqlite3_stmt *pStmt;
|
|
TESTONLY(int rcp); /* Return code from sqlite3_prepare() */
|
|
|
|
assert( db->init.busy );
|
|
db->init.iDb = iDb;
|
|
if( sqlite3GetUInt32(argv[3], &db->init.newTnum)==0
|
|
|| (db->init.newTnum>pData->mxPage && pData->mxPage>0)
|
|
){
|
|
if( sqlite3Config.bExtraSchemaChecks ){
|
|
corruptSchema(pData, argv, "invalid rootpage");
|
|
}
|
|
}
|
|
db->init.orphanTrigger = 0;
|
|
db->init.azInit = (const char**)argv;
|
|
pStmt = 0;
|
|
TESTONLY(rcp = ) sqlite3Prepare(db, argv[4], -1, 0, 0, &pStmt, 0);
|
|
rc = db->errCode;
|
|
assert( (rc&0xFF)==(rcp&0xFF) );
|
|
db->init.iDb = saved_iDb;
|
|
/* assert( saved_iDb==0 || (db->mDbFlags & DBFLAG_Vacuum)!=0 ); */
|
|
if( SQLITE_OK!=rc ){
|
|
if( db->init.orphanTrigger ){
|
|
assert( iDb==1 );
|
|
}else{
|
|
if( rc > pData->rc ) pData->rc = rc;
|
|
if( rc==SQLITE_NOMEM ){
|
|
sqlite3OomFault(db);
|
|
}else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){
|
|
corruptSchema(pData, argv, sqlite3_errmsg(db));
|
|
}
|
|
}
|
|
}
|
|
db->init.azInit = sqlite3StdType; /* Any array of string ptrs will do */
|
|
sqlite3_finalize(pStmt);
|
|
}else if( argv[1]==0 || (argv[4]!=0 && argv[4][0]!=0) ){
|
|
corruptSchema(pData, argv, 0);
|
|
}else{
|
|
/* If the SQL column is blank it means this is an index that
|
|
** was created to be the PRIMARY KEY or to fulfill a UNIQUE
|
|
** constraint for a CREATE TABLE. The index should have already
|
|
** been created when we processed the CREATE TABLE. All we have
|
|
** to do here is record the root page number for that index.
|
|
*/
|
|
Index *pIndex;
|
|
pIndex = sqlite3FindIndex(db, argv[1], db->aDb[iDb].zDbSName);
|
|
if( pIndex==0 ){
|
|
corruptSchema(pData, argv, "orphan index");
|
|
}else
|
|
if( sqlite3GetUInt32(argv[3],&pIndex->tnum)==0
|
|
|| pIndex->tnum<2
|
|
|| pIndex->tnum>pData->mxPage
|
|
|| sqlite3IndexHasDuplicateRootPage(pIndex)
|
|
){
|
|
if( sqlite3Config.bExtraSchemaChecks ){
|
|
corruptSchema(pData, argv, "invalid rootpage");
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Attempt to read the database schema and initialize internal
|
|
** data structures for a single database file. The index of the
|
|
** database file is given by iDb. iDb==0 is used for the main
|
|
** database. iDb==1 should never be used. iDb>=2 is used for
|
|
** auxiliary databases. Return one of the SQLITE_ error codes to
|
|
** indicate success or failure.
|
|
*/
|
|
int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg, u32 mFlags){
|
|
int rc;
|
|
int i;
|
|
#ifndef SQLITE_OMIT_DEPRECATED
|
|
int size;
|
|
#endif
|
|
Db *pDb;
|
|
char const *azArg[6];
|
|
int meta[5];
|
|
InitData initData;
|
|
const char *zSchemaTabName;
|
|
int openedTransaction = 0;
|
|
int mask = ((db->mDbFlags & DBFLAG_EncodingFixed) | ~DBFLAG_EncodingFixed);
|
|
|
|
assert( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 );
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
assert( db->aDb[iDb].pSchema );
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
|
|
|
|
db->init.busy = 1;
|
|
|
|
/* Construct the in-memory representation schema tables (sqlite_schema or
|
|
** sqlite_temp_schema) by invoking the parser directly. The appropriate
|
|
** table name will be inserted automatically by the parser so we can just
|
|
** use the abbreviation "x" here. The parser will also automatically tag
|
|
** the schema table as read-only. */
|
|
azArg[0] = "table";
|
|
azArg[1] = zSchemaTabName = SCHEMA_TABLE(iDb);
|
|
azArg[2] = azArg[1];
|
|
azArg[3] = "1";
|
|
azArg[4] = "CREATE TABLE x(type text,name text,tbl_name text,"
|
|
"rootpage int,sql text)";
|
|
azArg[5] = 0;
|
|
initData.db = db;
|
|
initData.iDb = iDb;
|
|
initData.rc = SQLITE_OK;
|
|
initData.pzErrMsg = pzErrMsg;
|
|
initData.mInitFlags = mFlags;
|
|
initData.nInitRow = 0;
|
|
initData.mxPage = 0;
|
|
sqlite3InitCallback(&initData, 5, (char **)azArg, 0);
|
|
db->mDbFlags &= mask;
|
|
if( initData.rc ){
|
|
rc = initData.rc;
|
|
goto error_out;
|
|
}
|
|
|
|
/* Create a cursor to hold the database open
|
|
*/
|
|
pDb = &db->aDb[iDb];
|
|
if( pDb->pBt==0 ){
|
|
assert( iDb==1 );
|
|
DbSetProperty(db, 1, DB_SchemaLoaded);
|
|
rc = SQLITE_OK;
|
|
goto error_out;
|
|
}
|
|
|
|
/* If there is not already a read-only (or read-write) transaction opened
|
|
** on the b-tree database, open one now. If a transaction is opened, it
|
|
** will be closed before this function returns. */
|
|
sqlite3BtreeEnter(pDb->pBt);
|
|
if( sqlite3BtreeTxnState(pDb->pBt)==SQLITE_TXN_NONE ){
|
|
rc = sqlite3BtreeBeginTrans(pDb->pBt, 0, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3SetString(pzErrMsg, db, sqlite3ErrStr(rc));
|
|
goto initone_error_out;
|
|
}
|
|
openedTransaction = 1;
|
|
}
|
|
|
|
/* Get the database meta information.
|
|
**
|
|
** Meta values are as follows:
|
|
** meta[0] Schema cookie. Changes with each schema change.
|
|
** meta[1] File format of schema layer.
|
|
** meta[2] Size of the page cache.
|
|
** meta[3] Largest rootpage (auto/incr_vacuum mode)
|
|
** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE
|
|
** meta[5] User version
|
|
** meta[6] Incremental vacuum mode
|
|
** meta[7] unused
|
|
** meta[8] unused
|
|
** meta[9] unused
|
|
**
|
|
** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
|
|
** the possible values of meta[4].
|
|
*/
|
|
for(i=0; i<ArraySize(meta); i++){
|
|
sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
|
|
}
|
|
if( (db->flags & SQLITE_ResetDatabase)!=0 ){
|
|
memset(meta, 0, sizeof(meta));
|
|
}
|
|
pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1];
|
|
|
|
/* If opening a non-empty database, check the text encoding. For the
|
|
** main database, set sqlite3.enc to the encoding of the main database.
|
|
** For an attached db, it is an error if the encoding is not the same
|
|
** as sqlite3.enc.
|
|
*/
|
|
if( meta[BTREE_TEXT_ENCODING-1] ){ /* text encoding */
|
|
if( iDb==0 && (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){
|
|
u8 encoding;
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
/* If opening the main database, set ENC(db). */
|
|
encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3;
|
|
if( encoding==0 ) encoding = SQLITE_UTF8;
|
|
#else
|
|
encoding = SQLITE_UTF8;
|
|
#endif
|
|
sqlite3SetTextEncoding(db, encoding);
|
|
}else{
|
|
/* If opening an attached database, the encoding much match ENC(db) */
|
|
if( (meta[BTREE_TEXT_ENCODING-1] & 3)!=ENC(db) ){
|
|
sqlite3SetString(pzErrMsg, db, "attached databases must use the same"
|
|
" text encoding as main database");
|
|
rc = SQLITE_ERROR;
|
|
goto initone_error_out;
|
|
}
|
|
}
|
|
}
|
|
pDb->pSchema->enc = ENC(db);
|
|
|
|
if( pDb->pSchema->cache_size==0 ){
|
|
#ifndef SQLITE_OMIT_DEPRECATED
|
|
size = sqlite3AbsInt32(meta[BTREE_DEFAULT_CACHE_SIZE-1]);
|
|
if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; }
|
|
pDb->pSchema->cache_size = size;
|
|
#else
|
|
pDb->pSchema->cache_size = SQLITE_DEFAULT_CACHE_SIZE;
|
|
#endif
|
|
sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
|
|
}
|
|
|
|
/*
|
|
** file_format==1 Version 3.0.0.
|
|
** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN
|
|
** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults
|
|
** file_format==4 Version 3.3.0. // DESC indices. Boolean constants
|
|
*/
|
|
pDb->pSchema->file_format = (u8)meta[BTREE_FILE_FORMAT-1];
|
|
if( pDb->pSchema->file_format==0 ){
|
|
pDb->pSchema->file_format = 1;
|
|
}
|
|
if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){
|
|
sqlite3SetString(pzErrMsg, db, "unsupported file format");
|
|
rc = SQLITE_ERROR;
|
|
goto initone_error_out;
|
|
}
|
|
|
|
/* Ticket #2804: When we open a database in the newer file format,
|
|
** clear the legacy_file_format pragma flag so that a VACUUM will
|
|
** not downgrade the database and thus invalidate any descending
|
|
** indices that the user might have created.
|
|
*/
|
|
if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){
|
|
db->flags &= ~(u64)SQLITE_LegacyFileFmt;
|
|
}
|
|
|
|
/* Read the schema information out of the schema tables
|
|
*/
|
|
assert( db->init.busy );
|
|
initData.mxPage = sqlite3BtreeLastPage(pDb->pBt);
|
|
{
|
|
char *zSql;
|
|
zSql = sqlite3MPrintf(db,
|
|
"SELECT*FROM\"%w\".%s ORDER BY rowid",
|
|
db->aDb[iDb].zDbSName, zSchemaTabName);
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
{
|
|
sqlite3_xauth xAuth;
|
|
xAuth = db->xAuth;
|
|
db->xAuth = 0;
|
|
#endif
|
|
rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
db->xAuth = xAuth;
|
|
}
|
|
#endif
|
|
if( rc==SQLITE_OK ) rc = initData.rc;
|
|
sqlite3DbFree(db, zSql);
|
|
#ifndef SQLITE_OMIT_ANALYZE
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3AnalysisLoad(db, iDb);
|
|
}
|
|
#endif
|
|
}
|
|
assert( pDb == &(db->aDb[iDb]) );
|
|
if( db->mallocFailed ){
|
|
rc = SQLITE_NOMEM_BKPT;
|
|
sqlite3ResetAllSchemasOfConnection(db);
|
|
pDb = &db->aDb[iDb];
|
|
}else
|
|
if( rc==SQLITE_OK || ((db->flags&SQLITE_NoSchemaError) && rc!=SQLITE_NOMEM)){
|
|
/* Hack: If the SQLITE_NoSchemaError flag is set, then consider
|
|
** the schema loaded, even if errors (other than OOM) occurred. In
|
|
** this situation the current sqlite3_prepare() operation will fail,
|
|
** but the following one will attempt to compile the supplied statement
|
|
** against whatever subset of the schema was loaded before the error
|
|
** occurred.
|
|
**
|
|
** The primary purpose of this is to allow access to the sqlite_schema
|
|
** table even when its contents have been corrupted.
|
|
*/
|
|
DbSetProperty(db, iDb, DB_SchemaLoaded);
|
|
rc = SQLITE_OK;
|
|
}
|
|
|
|
/* Jump here for an error that occurs after successfully allocating
|
|
** curMain and calling sqlite3BtreeEnter(). For an error that occurs
|
|
** before that point, jump to error_out.
|
|
*/
|
|
initone_error_out:
|
|
if( openedTransaction ){
|
|
sqlite3BtreeCommit(pDb->pBt);
|
|
}
|
|
sqlite3BtreeLeave(pDb->pBt);
|
|
|
|
error_out:
|
|
if( rc ){
|
|
if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
|
|
sqlite3OomFault(db);
|
|
}
|
|
sqlite3ResetOneSchema(db, iDb);
|
|
}
|
|
db->init.busy = 0;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Initialize all database files - the main database file, the file
|
|
** used to store temporary tables, and any additional database files
|
|
** created using ATTACH statements. Return a success code. If an
|
|
** error occurs, write an error message into *pzErrMsg.
|
|
**
|
|
** After a database is initialized, the DB_SchemaLoaded bit is set
|
|
** bit is set in the flags field of the Db structure.
|
|
*/
|
|
int sqlite3Init(sqlite3 *db, char **pzErrMsg){
|
|
int i, rc;
|
|
int commit_internal = !(db->mDbFlags&DBFLAG_SchemaChange);
|
|
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
assert( sqlite3BtreeHoldsMutex(db->aDb[0].pBt) );
|
|
assert( db->init.busy==0 );
|
|
ENC(db) = SCHEMA_ENC(db);
|
|
assert( db->nDb>0 );
|
|
/* Do the main schema first */
|
|
if( !DbHasProperty(db, 0, DB_SchemaLoaded) ){
|
|
rc = sqlite3InitOne(db, 0, pzErrMsg, 0);
|
|
if( rc ) return rc;
|
|
}
|
|
/* All other schemas after the main schema. The "temp" schema must be last */
|
|
for(i=db->nDb-1; i>0; i--){
|
|
assert( i==1 || sqlite3BtreeHoldsMutex(db->aDb[i].pBt) );
|
|
if( !DbHasProperty(db, i, DB_SchemaLoaded) ){
|
|
rc = sqlite3InitOne(db, i, pzErrMsg, 0);
|
|
if( rc ) return rc;
|
|
}
|
|
}
|
|
if( commit_internal ){
|
|
sqlite3CommitInternalChanges(db);
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** This routine is a no-op if the database schema is already initialized.
|
|
** Otherwise, the schema is loaded. An error code is returned.
|
|
*/
|
|
int sqlite3ReadSchema(Parse *pParse){
|
|
int rc = SQLITE_OK;
|
|
sqlite3 *db = pParse->db;
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
if( !db->init.busy ){
|
|
rc = sqlite3Init(db, &pParse->zErrMsg);
|
|
if( rc!=SQLITE_OK ){
|
|
pParse->rc = rc;
|
|
pParse->nErr++;
|
|
}else if( db->noSharedCache ){
|
|
db->mDbFlags |= DBFLAG_SchemaKnownOk;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Check schema cookies in all databases. If any cookie is out
|
|
** of date set pParse->rc to SQLITE_SCHEMA. If all schema cookies
|
|
** make no changes to pParse->rc.
|
|
*/
|
|
static void schemaIsValid(Parse *pParse){
|
|
sqlite3 *db = pParse->db;
|
|
int iDb;
|
|
int rc;
|
|
int cookie;
|
|
|
|
assert( pParse->checkSchema );
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
for(iDb=0; iDb<db->nDb; iDb++){
|
|
int openedTransaction = 0; /* True if a transaction is opened */
|
|
Btree *pBt = db->aDb[iDb].pBt; /* Btree database to read cookie from */
|
|
if( pBt==0 ) continue;
|
|
|
|
/* If there is not already a read-only (or read-write) transaction opened
|
|
** on the b-tree database, open one now. If a transaction is opened, it
|
|
** will be closed immediately after reading the meta-value. */
|
|
if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_NONE ){
|
|
rc = sqlite3BtreeBeginTrans(pBt, 0, 0);
|
|
if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
|
|
sqlite3OomFault(db);
|
|
pParse->rc = SQLITE_NOMEM;
|
|
}
|
|
if( rc!=SQLITE_OK ) return;
|
|
openedTransaction = 1;
|
|
}
|
|
|
|
/* Read the schema cookie from the database. If it does not match the
|
|
** value stored as part of the in-memory schema representation,
|
|
** set Parse.rc to SQLITE_SCHEMA. */
|
|
sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie);
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
|
if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){
|
|
if( DbHasProperty(db, iDb, DB_SchemaLoaded) ) pParse->rc = SQLITE_SCHEMA;
|
|
sqlite3ResetOneSchema(db, iDb);
|
|
}
|
|
|
|
/* Close the transaction, if one was opened. */
|
|
if( openedTransaction ){
|
|
sqlite3BtreeCommit(pBt);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Convert a schema pointer into the iDb index that indicates
|
|
** which database file in db->aDb[] the schema refers to.
|
|
**
|
|
** If the same database is attached more than once, the first
|
|
** attached database is returned.
|
|
*/
|
|
int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){
|
|
int i = -32768;
|
|
|
|
/* If pSchema is NULL, then return -32768. This happens when code in
|
|
** expr.c is trying to resolve a reference to a transient table (i.e. one
|
|
** created by a sub-select). In this case the return value of this
|
|
** function should never be used.
|
|
**
|
|
** We return -32768 instead of the more usual -1 simply because using
|
|
** -32768 as the incorrect index into db->aDb[] is much
|
|
** more likely to cause a segfault than -1 (of course there are assert()
|
|
** statements too, but it never hurts to play the odds) and
|
|
** -32768 will still fit into a 16-bit signed integer.
|
|
*/
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
if( pSchema ){
|
|
for(i=0; 1; i++){
|
|
assert( i<db->nDb );
|
|
if( db->aDb[i].pSchema==pSchema ){
|
|
break;
|
|
}
|
|
}
|
|
assert( i>=0 && i<db->nDb );
|
|
}
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
** Free all memory allocations in the pParse object
|
|
*/
|
|
void sqlite3ParseObjectReset(Parse *pParse){
|
|
sqlite3 *db = pParse->db;
|
|
assert( db!=0 );
|
|
assert( db->pParse==pParse );
|
|
assert( pParse->nested==0 );
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
if( pParse->aTableLock ) sqlite3DbNNFreeNN(db, pParse->aTableLock);
|
|
#endif
|
|
while( pParse->pCleanup ){
|
|
ParseCleanup *pCleanup = pParse->pCleanup;
|
|
pParse->pCleanup = pCleanup->pNext;
|
|
pCleanup->xCleanup(db, pCleanup->pPtr);
|
|
sqlite3DbNNFreeNN(db, pCleanup);
|
|
}
|
|
if( pParse->aLabel ) sqlite3DbNNFreeNN(db, pParse->aLabel);
|
|
if( pParse->pConstExpr ){
|
|
sqlite3ExprListDelete(db, pParse->pConstExpr);
|
|
}
|
|
assert( db->lookaside.bDisable >= pParse->disableLookaside );
|
|
db->lookaside.bDisable -= pParse->disableLookaside;
|
|
db->lookaside.sz = db->lookaside.bDisable ? 0 : db->lookaside.szTrue;
|
|
assert( pParse->db->pParse==pParse );
|
|
db->pParse = pParse->pOuterParse;
|
|
pParse->db = 0;
|
|
pParse->disableLookaside = 0;
|
|
}
|
|
|
|
/*
|
|
** Add a new cleanup operation to a Parser. The cleanup should happen when
|
|
** the parser object is destroyed. But, beware: the cleanup might happen
|
|
** immediately.
|
|
**
|
|
** Use this mechanism for uncommon cleanups. There is a higher setup
|
|
** cost for this mechansim (an extra malloc), so it should not be used
|
|
** for common cleanups that happen on most calls. But for less
|
|
** common cleanups, we save a single NULL-pointer comparison in
|
|
** sqlite3ParseObjectReset(), which reduces the total CPU cycle count.
|
|
**
|
|
** If a memory allocation error occurs, then the cleanup happens immediately.
|
|
** When either SQLITE_DEBUG or SQLITE_COVERAGE_TEST are defined, the
|
|
** pParse->earlyCleanup flag is set in that case. Calling code show verify
|
|
** that test cases exist for which this happens, to guard against possible
|
|
** use-after-free errors following an OOM. The preferred way to do this is
|
|
** to immediately follow the call to this routine with:
|
|
**
|
|
** testcase( pParse->earlyCleanup );
|
|
**
|
|
** This routine returns a copy of its pPtr input (the third parameter)
|
|
** except if an early cleanup occurs, in which case it returns NULL. So
|
|
** another way to check for early cleanup is to check the return value.
|
|
** Or, stop using the pPtr parameter with this call and use only its
|
|
** return value thereafter. Something like this:
|
|
**
|
|
** pObj = sqlite3ParserAddCleanup(pParse, destructor, pObj);
|
|
*/
|
|
void *sqlite3ParserAddCleanup(
|
|
Parse *pParse, /* Destroy when this Parser finishes */
|
|
void (*xCleanup)(sqlite3*,void*), /* The cleanup routine */
|
|
void *pPtr /* Pointer to object to be cleaned up */
|
|
){
|
|
ParseCleanup *pCleanup = sqlite3DbMallocRaw(pParse->db, sizeof(*pCleanup));
|
|
if( pCleanup ){
|
|
pCleanup->pNext = pParse->pCleanup;
|
|
pParse->pCleanup = pCleanup;
|
|
pCleanup->pPtr = pPtr;
|
|
pCleanup->xCleanup = xCleanup;
|
|
}else{
|
|
xCleanup(pParse->db, pPtr);
|
|
pPtr = 0;
|
|
#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
|
|
pParse->earlyCleanup = 1;
|
|
#endif
|
|
}
|
|
return pPtr;
|
|
}
|
|
|
|
/*
|
|
** Turn bulk memory into a valid Parse object and link that Parse object
|
|
** into database connection db.
|
|
**
|
|
** Call sqlite3ParseObjectReset() to undo this operation.
|
|
**
|
|
** Caution: Do not confuse this routine with sqlite3ParseObjectInit() which
|
|
** is generated by Lemon.
|
|
*/
|
|
void sqlite3ParseObjectInit(Parse *pParse, sqlite3 *db){
|
|
memset(PARSE_HDR(pParse), 0, PARSE_HDR_SZ);
|
|
memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
|
|
assert( db->pParse!=pParse );
|
|
pParse->pOuterParse = db->pParse;
|
|
db->pParse = pParse;
|
|
pParse->db = db;
|
|
if( db->mallocFailed ) sqlite3ErrorMsg(pParse, "out of memory");
|
|
}
|
|
|
|
/*
|
|
** Maximum number of times that we will try again to prepare a statement
|
|
** that returns SQLITE_ERROR_RETRY.
|
|
*/
|
|
#ifndef SQLITE_MAX_PREPARE_RETRY
|
|
# define SQLITE_MAX_PREPARE_RETRY 25
|
|
#endif
|
|
|
|
/*
|
|
** Compile the UTF-8 encoded SQL statement zSql into a statement handle.
|
|
*/
|
|
static int sqlite3Prepare(
|
|
sqlite3 *db, /* Database handle. */
|
|
const char *zSql, /* UTF-8 encoded SQL statement. */
|
|
int nBytes, /* Length of zSql in bytes. */
|
|
u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */
|
|
Vdbe *pReprepare, /* VM being reprepared */
|
|
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
|
const char **pzTail /* OUT: End of parsed string */
|
|
){
|
|
int rc = SQLITE_OK; /* Result code */
|
|
int i; /* Loop counter */
|
|
Parse sParse; /* Parsing context */
|
|
|
|
/* sqlite3ParseObjectInit(&sParse, db); // inlined for performance */
|
|
memset(PARSE_HDR(&sParse), 0, PARSE_HDR_SZ);
|
|
memset(PARSE_TAIL(&sParse), 0, PARSE_TAIL_SZ);
|
|
sParse.pOuterParse = db->pParse;
|
|
db->pParse = &sParse;
|
|
sParse.db = db;
|
|
sParse.pReprepare = pReprepare;
|
|
assert( ppStmt && *ppStmt==0 );
|
|
if( db->mallocFailed ) sqlite3ErrorMsg(&sParse, "out of memory");
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
|
|
/* For a long-term use prepared statement avoid the use of
|
|
** lookaside memory.
|
|
*/
|
|
if( prepFlags & SQLITE_PREPARE_PERSISTENT ){
|
|
sParse.disableLookaside++;
|
|
DisableLookaside;
|
|
}
|
|
sParse.prepFlags = prepFlags & 0xff;
|
|
|
|
/* Check to verify that it is possible to get a read lock on all
|
|
** database schemas. The inability to get a read lock indicates that
|
|
** some other database connection is holding a write-lock, which in
|
|
** turn means that the other connection has made uncommitted changes
|
|
** to the schema.
|
|
**
|
|
** Were we to proceed and prepare the statement against the uncommitted
|
|
** schema changes and if those schema changes are subsequently rolled
|
|
** back and different changes are made in their place, then when this
|
|
** prepared statement goes to run the schema cookie would fail to detect
|
|
** the schema change. Disaster would follow.
|
|
**
|
|
** This thread is currently holding mutexes on all Btrees (because
|
|
** of the sqlite3BtreeEnterAll() in sqlite3LockAndPrepare()) so it
|
|
** is not possible for another thread to start a new schema change
|
|
** while this routine is running. Hence, we do not need to hold
|
|
** locks on the schema, we just need to make sure nobody else is
|
|
** holding them.
|
|
**
|
|
** Note that setting READ_UNCOMMITTED overrides most lock detection,
|
|
** but it does *not* override schema lock detection, so this all still
|
|
** works even if READ_UNCOMMITTED is set.
|
|
*/
|
|
if( !db->noSharedCache ){
|
|
for(i=0; i<db->nDb; i++) {
|
|
Btree *pBt = db->aDb[i].pBt;
|
|
if( pBt ){
|
|
assert( sqlite3BtreeHoldsMutex(pBt) );
|
|
rc = sqlite3BtreeSchemaLocked(pBt);
|
|
if( rc ){
|
|
const char *zDb = db->aDb[i].zDbSName;
|
|
sqlite3ErrorWithMsg(db, rc, "database schema is locked: %s", zDb);
|
|
testcase( db->flags & SQLITE_ReadUncommit );
|
|
goto end_prepare;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( db->pDisconnect ) sqlite3VtabUnlockList(db);
|
|
#endif
|
|
|
|
if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){
|
|
char *zSqlCopy;
|
|
int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
|
|
testcase( nBytes==mxLen );
|
|
testcase( nBytes==mxLen+1 );
|
|
if( nBytes>mxLen ){
|
|
sqlite3ErrorWithMsg(db, SQLITE_TOOBIG, "statement too long");
|
|
rc = sqlite3ApiExit(db, SQLITE_TOOBIG);
|
|
goto end_prepare;
|
|
}
|
|
zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes);
|
|
if( zSqlCopy ){
|
|
sqlite3RunParser(&sParse, zSqlCopy);
|
|
sParse.zTail = &zSql[sParse.zTail-zSqlCopy];
|
|
sqlite3DbFree(db, zSqlCopy);
|
|
}else{
|
|
sParse.zTail = &zSql[nBytes];
|
|
}
|
|
}else{
|
|
sqlite3RunParser(&sParse, zSql);
|
|
}
|
|
assert( 0==sParse.nQueryLoop );
|
|
|
|
if( pzTail ){
|
|
*pzTail = sParse.zTail;
|
|
}
|
|
|
|
if( db->init.busy==0 ){
|
|
sqlite3VdbeSetSql(sParse.pVdbe, zSql, (int)(sParse.zTail-zSql), prepFlags);
|
|
}
|
|
if( db->mallocFailed ){
|
|
sParse.rc = SQLITE_NOMEM_BKPT;
|
|
sParse.checkSchema = 0;
|
|
}
|
|
if( sParse.rc!=SQLITE_OK && sParse.rc!=SQLITE_DONE ){
|
|
if( sParse.checkSchema && db->init.busy==0 ){
|
|
schemaIsValid(&sParse);
|
|
}
|
|
if( sParse.pVdbe ){
|
|
sqlite3VdbeFinalize(sParse.pVdbe);
|
|
}
|
|
assert( 0==(*ppStmt) );
|
|
rc = sParse.rc;
|
|
if( sParse.zErrMsg ){
|
|
sqlite3ErrorWithMsg(db, rc, "%s", sParse.zErrMsg);
|
|
sqlite3DbFree(db, sParse.zErrMsg);
|
|
}else{
|
|
sqlite3Error(db, rc);
|
|
}
|
|
}else{
|
|
assert( sParse.zErrMsg==0 );
|
|
*ppStmt = (sqlite3_stmt*)sParse.pVdbe;
|
|
rc = SQLITE_OK;
|
|
sqlite3ErrorClear(db);
|
|
}
|
|
|
|
|
|
/* Delete any TriggerPrg structures allocated while parsing this statement. */
|
|
while( sParse.pTriggerPrg ){
|
|
TriggerPrg *pT = sParse.pTriggerPrg;
|
|
sParse.pTriggerPrg = pT->pNext;
|
|
sqlite3DbFree(db, pT);
|
|
}
|
|
|
|
end_prepare:
|
|
|
|
sqlite3ParseObjectReset(&sParse);
|
|
return rc;
|
|
}
|
|
static int sqlite3LockAndPrepare(
|
|
sqlite3 *db, /* Database handle. */
|
|
const char *zSql, /* UTF-8 encoded SQL statement. */
|
|
int nBytes, /* Length of zSql in bytes. */
|
|
u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */
|
|
Vdbe *pOld, /* VM being reprepared */
|
|
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
|
const char **pzTail /* OUT: End of parsed string */
|
|
){
|
|
int rc;
|
|
int cnt = 0;
|
|
|
|
#ifdef SQLITE_ENABLE_API_ARMOR
|
|
if( ppStmt==0 ) return SQLITE_MISUSE_BKPT;
|
|
#endif
|
|
*ppStmt = 0;
|
|
if( !sqlite3SafetyCheckOk(db)||zSql==0 ){
|
|
return SQLITE_MISUSE_BKPT;
|
|
}
|
|
sqlite3_mutex_enter(db->mutex);
|
|
sqlite3BtreeEnterAll(db);
|
|
do{
|
|
/* Make multiple attempts to compile the SQL, until it either succeeds
|
|
** or encounters a permanent error. A schema problem after one schema
|
|
** reset is considered a permanent error. */
|
|
rc = sqlite3Prepare(db, zSql, nBytes, prepFlags, pOld, ppStmt, pzTail);
|
|
assert( rc==SQLITE_OK || *ppStmt==0 );
|
|
if( rc==SQLITE_OK || db->mallocFailed ) break;
|
|
}while( (rc==SQLITE_ERROR_RETRY && (cnt++)<SQLITE_MAX_PREPARE_RETRY)
|
|
|| (rc==SQLITE_SCHEMA && (sqlite3ResetOneSchema(db,-1), cnt++)==0) );
|
|
sqlite3BtreeLeaveAll(db);
|
|
rc = sqlite3ApiExit(db, rc);
|
|
assert( (rc&db->errMask)==rc );
|
|
db->busyHandler.nBusy = 0;
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Rerun the compilation of a statement after a schema change.
|
|
**
|
|
** If the statement is successfully recompiled, return SQLITE_OK. Otherwise,
|
|
** if the statement cannot be recompiled because another connection has
|
|
** locked the sqlite3_schema table, return SQLITE_LOCKED. If any other error
|
|
** occurs, return SQLITE_SCHEMA.
|
|
*/
|
|
int sqlite3Reprepare(Vdbe *p){
|
|
int rc;
|
|
sqlite3_stmt *pNew;
|
|
const char *zSql;
|
|
sqlite3 *db;
|
|
u8 prepFlags;
|
|
|
|
assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) );
|
|
zSql = sqlite3_sql((sqlite3_stmt *)p);
|
|
assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */
|
|
db = sqlite3VdbeDb(p);
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
prepFlags = sqlite3VdbePrepareFlags(p);
|
|
rc = sqlite3LockAndPrepare(db, zSql, -1, prepFlags, p, &pNew, 0);
|
|
if( rc ){
|
|
if( rc==SQLITE_NOMEM ){
|
|
sqlite3OomFault(db);
|
|
}
|
|
assert( pNew==0 );
|
|
return rc;
|
|
}else{
|
|
assert( pNew!=0 );
|
|
}
|
|
sqlite3VdbeSwap((Vdbe*)pNew, p);
|
|
sqlite3TransferBindings(pNew, (sqlite3_stmt*)p);
|
|
sqlite3VdbeResetStepResult((Vdbe*)pNew);
|
|
sqlite3VdbeFinalize((Vdbe*)pNew);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
/*
|
|
** Two versions of the official API. Legacy and new use. In the legacy
|
|
** version, the original SQL text is not saved in the prepared statement
|
|
** and so if a schema change occurs, SQLITE_SCHEMA is returned by
|
|
** sqlite3_step(). In the new version, the original SQL text is retained
|
|
** and the statement is automatically recompiled if an schema change
|
|
** occurs.
|
|
*/
|
|
int sqlite3_prepare(
|
|
sqlite3 *db, /* Database handle. */
|
|
const char *zSql, /* UTF-8 encoded SQL statement. */
|
|
int nBytes, /* Length of zSql in bytes. */
|
|
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
|
const char **pzTail /* OUT: End of parsed string */
|
|
){
|
|
int rc;
|
|
rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail);
|
|
assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
|
|
return rc;
|
|
}
|
|
int sqlite3_prepare_v2(
|
|
sqlite3 *db, /* Database handle. */
|
|
const char *zSql, /* UTF-8 encoded SQL statement. */
|
|
int nBytes, /* Length of zSql in bytes. */
|
|
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
|
const char **pzTail /* OUT: End of parsed string */
|
|
){
|
|
int rc;
|
|
/* EVIDENCE-OF: R-37923-12173 The sqlite3_prepare_v2() interface works
|
|
** exactly the same as sqlite3_prepare_v3() with a zero prepFlags
|
|
** parameter.
|
|
**
|
|
** Proof in that the 5th parameter to sqlite3LockAndPrepare is 0 */
|
|
rc = sqlite3LockAndPrepare(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,0,
|
|
ppStmt,pzTail);
|
|
assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );
|
|
return rc;
|
|
}
|
|
int sqlite3_prepare_v3(
|
|
sqlite3 *db, /* Database handle. */
|
|
const char *zSql, /* UTF-8 encoded SQL statement. */
|
|
int nBytes, /* Length of zSql in bytes. */
|
|
unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */
|
|
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
|
const char **pzTail /* OUT: End of parsed string */
|
|
){
|
|
int rc;
|
|
/* EVIDENCE-OF: R-56861-42673 sqlite3_prepare_v3() differs from
|
|
** sqlite3_prepare_v2() only in having the extra prepFlags parameter,
|
|
** which is a bit array consisting of zero or more of the
|
|
** SQLITE_PREPARE_* flags.
|
|
**
|
|
** Proof by comparison to the implementation of sqlite3_prepare_v2()
|
|
** directly above. */
|
|
rc = sqlite3LockAndPrepare(db,zSql,nBytes,
|
|
SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK),
|
|
0,ppStmt,pzTail);
|
|
assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );
|
|
return rc;
|
|
}
|
|
|
|
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
/*
|
|
** Compile the UTF-16 encoded SQL statement zSql into a statement handle.
|
|
*/
|
|
static int sqlite3Prepare16(
|
|
sqlite3 *db, /* Database handle. */
|
|
const void *zSql, /* UTF-16 encoded SQL statement. */
|
|
int nBytes, /* Length of zSql in bytes. */
|
|
u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */
|
|
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
|
const void **pzTail /* OUT: End of parsed string */
|
|
){
|
|
/* This function currently works by first transforming the UTF-16
|
|
** encoded string to UTF-8, then invoking sqlite3_prepare(). The
|
|
** tricky bit is figuring out the pointer to return in *pzTail.
|
|
*/
|
|
char *zSql8;
|
|
const char *zTail8 = 0;
|
|
int rc = SQLITE_OK;
|
|
|
|
#ifdef SQLITE_ENABLE_API_ARMOR
|
|
if( ppStmt==0 ) return SQLITE_MISUSE_BKPT;
|
|
#endif
|
|
*ppStmt = 0;
|
|
if( !sqlite3SafetyCheckOk(db)||zSql==0 ){
|
|
return SQLITE_MISUSE_BKPT;
|
|
}
|
|
if( nBytes>=0 ){
|
|
int sz;
|
|
const char *z = (const char*)zSql;
|
|
for(sz=0; sz<nBytes && (z[sz]!=0 || z[sz+1]!=0); sz += 2){}
|
|
nBytes = sz;
|
|
}
|
|
sqlite3_mutex_enter(db->mutex);
|
|
zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE);
|
|
if( zSql8 ){
|
|
rc = sqlite3LockAndPrepare(db, zSql8, -1, prepFlags, 0, ppStmt, &zTail8);
|
|
}
|
|
|
|
if( zTail8 && pzTail ){
|
|
/* If sqlite3_prepare returns a tail pointer, we calculate the
|
|
** equivalent pointer into the UTF-16 string by counting the unicode
|
|
** characters between zSql8 and zTail8, and then returning a pointer
|
|
** the same number of characters into the UTF-16 string.
|
|
*/
|
|
int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8));
|
|
*pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed);
|
|
}
|
|
sqlite3DbFree(db, zSql8);
|
|
rc = sqlite3ApiExit(db, rc);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Two versions of the official API. Legacy and new use. In the legacy
|
|
** version, the original SQL text is not saved in the prepared statement
|
|
** and so if a schema change occurs, SQLITE_SCHEMA is returned by
|
|
** sqlite3_step(). In the new version, the original SQL text is retained
|
|
** and the statement is automatically recompiled if an schema change
|
|
** occurs.
|
|
*/
|
|
int sqlite3_prepare16(
|
|
sqlite3 *db, /* Database handle. */
|
|
const void *zSql, /* UTF-16 encoded SQL statement. */
|
|
int nBytes, /* Length of zSql in bytes. */
|
|
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
|
const void **pzTail /* OUT: End of parsed string */
|
|
){
|
|
int rc;
|
|
rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail);
|
|
assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
|
|
return rc;
|
|
}
|
|
int sqlite3_prepare16_v2(
|
|
sqlite3 *db, /* Database handle. */
|
|
const void *zSql, /* UTF-16 encoded SQL statement. */
|
|
int nBytes, /* Length of zSql in bytes. */
|
|
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
|
const void **pzTail /* OUT: End of parsed string */
|
|
){
|
|
int rc;
|
|
rc = sqlite3Prepare16(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,ppStmt,pzTail);
|
|
assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
|
|
return rc;
|
|
}
|
|
int sqlite3_prepare16_v3(
|
|
sqlite3 *db, /* Database handle. */
|
|
const void *zSql, /* UTF-16 encoded SQL statement. */
|
|
int nBytes, /* Length of zSql in bytes. */
|
|
unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */
|
|
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
|
const void **pzTail /* OUT: End of parsed string */
|
|
){
|
|
int rc;
|
|
rc = sqlite3Prepare16(db,zSql,nBytes,
|
|
SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK),
|
|
ppStmt,pzTail);
|
|
assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
|
|
return rc;
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_UTF16 */
|