028acd974f
FossilOrigin-Name: 5413b02bb629b9cbb76f7e688e94ebcf24276c01436d3feb73ff57c036e1d2aa
1899 lines
50 KiB
C
1899 lines
50 KiB
C
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** Utility functions used throughout sqlite.
|
|
**
|
|
** This file contains functions for allocating memory, comparing
|
|
** strings, and stuff like that.
|
|
**
|
|
*/
|
|
#include "sqliteInt.h"
|
|
#include <stdarg.h>
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
#include <math.h>
|
|
#endif
|
|
|
|
/*
|
|
** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
|
|
** or to bypass normal error detection during testing in order to let
|
|
** execute proceed further downstream.
|
|
**
|
|
** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The
|
|
** sqlite3FaultSim() function only returns non-zero during testing.
|
|
**
|
|
** During testing, if the test harness has set a fault-sim callback using
|
|
** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
|
|
** each call to sqlite3FaultSim() is relayed to that application-supplied
|
|
** callback and the integer return value form the application-supplied
|
|
** callback is returned by sqlite3FaultSim().
|
|
**
|
|
** The integer argument to sqlite3FaultSim() is a code to identify which
|
|
** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
|
|
** should have a unique code. To prevent legacy testing applications from
|
|
** breaking, the codes should not be changed or reused.
|
|
*/
|
|
#ifndef SQLITE_UNTESTABLE
|
|
int sqlite3FaultSim(int iTest){
|
|
int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
|
|
return xCallback ? xCallback(iTest) : SQLITE_OK;
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
/*
|
|
** Return true if the floating point value is Not a Number (NaN).
|
|
**
|
|
** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
|
|
** Otherwise, we have our own implementation that works on most systems.
|
|
*/
|
|
int sqlite3IsNaN(double x){
|
|
int rc; /* The value return */
|
|
#if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
|
|
u64 y;
|
|
memcpy(&y,&x,sizeof(y));
|
|
rc = IsNaN(y);
|
|
#else
|
|
rc = isnan(x);
|
|
#endif /* HAVE_ISNAN */
|
|
testcase( rc );
|
|
return rc;
|
|
}
|
|
#endif /* SQLITE_OMIT_FLOATING_POINT */
|
|
|
|
/*
|
|
** Compute a string length that is limited to what can be stored in
|
|
** lower 30 bits of a 32-bit signed integer.
|
|
**
|
|
** The value returned will never be negative. Nor will it ever be greater
|
|
** than the actual length of the string. For very long strings (greater
|
|
** than 1GiB) the value returned might be less than the true string length.
|
|
*/
|
|
int sqlite3Strlen30(const char *z){
|
|
if( z==0 ) return 0;
|
|
return 0x3fffffff & (int)strlen(z);
|
|
}
|
|
|
|
/*
|
|
** Return the declared type of a column. Or return zDflt if the column
|
|
** has no declared type.
|
|
**
|
|
** The column type is an extra string stored after the zero-terminator on
|
|
** the column name if and only if the COLFLAG_HASTYPE flag is set.
|
|
*/
|
|
char *sqlite3ColumnType(Column *pCol, char *zDflt){
|
|
if( pCol->colFlags & COLFLAG_HASTYPE ){
|
|
return pCol->zCnName + strlen(pCol->zCnName) + 1;
|
|
}else if( pCol->eCType ){
|
|
assert( pCol->eCType<=SQLITE_N_STDTYPE );
|
|
return (char*)sqlite3StdType[pCol->eCType-1];
|
|
}else{
|
|
return zDflt;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Helper function for sqlite3Error() - called rarely. Broken out into
|
|
** a separate routine to avoid unnecessary register saves on entry to
|
|
** sqlite3Error().
|
|
*/
|
|
static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){
|
|
if( db->pErr ) sqlite3ValueSetNull(db->pErr);
|
|
sqlite3SystemError(db, err_code);
|
|
}
|
|
|
|
/*
|
|
** Set the current error code to err_code and clear any prior error message.
|
|
** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
|
|
** that would be appropriate.
|
|
*/
|
|
void sqlite3Error(sqlite3 *db, int err_code){
|
|
assert( db!=0 );
|
|
db->errCode = err_code;
|
|
if( err_code || db->pErr ){
|
|
sqlite3ErrorFinish(db, err_code);
|
|
}else{
|
|
db->errByteOffset = -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state
|
|
** and error message.
|
|
*/
|
|
void sqlite3ErrorClear(sqlite3 *db){
|
|
assert( db!=0 );
|
|
db->errCode = SQLITE_OK;
|
|
db->errByteOffset = -1;
|
|
if( db->pErr ) sqlite3ValueSetNull(db->pErr);
|
|
}
|
|
|
|
/*
|
|
** Load the sqlite3.iSysErrno field if that is an appropriate thing
|
|
** to do based on the SQLite error code in rc.
|
|
*/
|
|
void sqlite3SystemError(sqlite3 *db, int rc){
|
|
if( rc==SQLITE_IOERR_NOMEM ) return;
|
|
rc &= 0xff;
|
|
if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
|
|
db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Set the most recent error code and error string for the sqlite
|
|
** handle "db". The error code is set to "err_code".
|
|
**
|
|
** If it is not NULL, string zFormat specifies the format of the
|
|
** error string. zFormat and any string tokens that follow it are
|
|
** assumed to be encoded in UTF-8.
|
|
**
|
|
** To clear the most recent error for sqlite handle "db", sqlite3Error
|
|
** should be called with err_code set to SQLITE_OK and zFormat set
|
|
** to NULL.
|
|
*/
|
|
void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
|
|
assert( db!=0 );
|
|
db->errCode = err_code;
|
|
sqlite3SystemError(db, err_code);
|
|
if( zFormat==0 ){
|
|
sqlite3Error(db, err_code);
|
|
}else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
|
|
char *z;
|
|
va_list ap;
|
|
va_start(ap, zFormat);
|
|
z = sqlite3VMPrintf(db, zFormat, ap);
|
|
va_end(ap);
|
|
sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Check for interrupts and invoke progress callback.
|
|
*/
|
|
void sqlite3ProgressCheck(Parse *p){
|
|
sqlite3 *db = p->db;
|
|
if( AtomicLoad(&db->u1.isInterrupted) ){
|
|
p->nErr++;
|
|
p->rc = SQLITE_INTERRUPT;
|
|
}
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
if( db->xProgress && (++p->nProgressSteps)>=db->nProgressOps ){
|
|
if( db->xProgress(db->pProgressArg) ){
|
|
p->nErr++;
|
|
p->rc = SQLITE_INTERRUPT;
|
|
}
|
|
p->nProgressSteps = 0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Add an error message to pParse->zErrMsg and increment pParse->nErr.
|
|
**
|
|
** This function should be used to report any error that occurs while
|
|
** compiling an SQL statement (i.e. within sqlite3_prepare()). The
|
|
** last thing the sqlite3_prepare() function does is copy the error
|
|
** stored by this function into the database handle using sqlite3Error().
|
|
** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
|
|
** during statement execution (sqlite3_step() etc.).
|
|
*/
|
|
void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
|
|
char *zMsg;
|
|
va_list ap;
|
|
sqlite3 *db = pParse->db;
|
|
assert( db!=0 );
|
|
assert( db->pParse==pParse || db->pParse->pToplevel==pParse );
|
|
db->errByteOffset = -2;
|
|
va_start(ap, zFormat);
|
|
zMsg = sqlite3VMPrintf(db, zFormat, ap);
|
|
va_end(ap);
|
|
if( db->errByteOffset<-1 ) db->errByteOffset = -1;
|
|
if( db->suppressErr ){
|
|
sqlite3DbFree(db, zMsg);
|
|
if( db->mallocFailed ){
|
|
pParse->nErr++;
|
|
pParse->rc = SQLITE_NOMEM;
|
|
}
|
|
}else{
|
|
pParse->nErr++;
|
|
sqlite3DbFree(db, pParse->zErrMsg);
|
|
pParse->zErrMsg = zMsg;
|
|
pParse->rc = SQLITE_ERROR;
|
|
pParse->pWith = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** If database connection db is currently parsing SQL, then transfer
|
|
** error code errCode to that parser if the parser has not already
|
|
** encountered some other kind of error.
|
|
*/
|
|
int sqlite3ErrorToParser(sqlite3 *db, int errCode){
|
|
Parse *pParse;
|
|
if( db==0 || (pParse = db->pParse)==0 ) return errCode;
|
|
pParse->rc = errCode;
|
|
pParse->nErr++;
|
|
return errCode;
|
|
}
|
|
|
|
/*
|
|
** Convert an SQL-style quoted string into a normal string by removing
|
|
** the quote characters. The conversion is done in-place. If the
|
|
** input does not begin with a quote character, then this routine
|
|
** is a no-op.
|
|
**
|
|
** The input string must be zero-terminated. A new zero-terminator
|
|
** is added to the dequoted string.
|
|
**
|
|
** The return value is -1 if no dequoting occurs or the length of the
|
|
** dequoted string, exclusive of the zero terminator, if dequoting does
|
|
** occur.
|
|
**
|
|
** 2002-02-14: This routine is extended to remove MS-Access style
|
|
** brackets from around identifiers. For example: "[a-b-c]" becomes
|
|
** "a-b-c".
|
|
*/
|
|
void sqlite3Dequote(char *z){
|
|
char quote;
|
|
int i, j;
|
|
if( z==0 ) return;
|
|
quote = z[0];
|
|
if( !sqlite3Isquote(quote) ) return;
|
|
if( quote=='[' ) quote = ']';
|
|
for(i=1, j=0;; i++){
|
|
assert( z[i] );
|
|
if( z[i]==quote ){
|
|
if( z[i+1]==quote ){
|
|
z[j++] = quote;
|
|
i++;
|
|
}else{
|
|
break;
|
|
}
|
|
}else{
|
|
z[j++] = z[i];
|
|
}
|
|
}
|
|
z[j] = 0;
|
|
}
|
|
void sqlite3DequoteExpr(Expr *p){
|
|
assert( !ExprHasProperty(p, EP_IntValue) );
|
|
assert( sqlite3Isquote(p->u.zToken[0]) );
|
|
p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
|
|
sqlite3Dequote(p->u.zToken);
|
|
}
|
|
|
|
/*
|
|
** If the input token p is quoted, try to adjust the token to remove
|
|
** the quotes. This is not always possible:
|
|
**
|
|
** "abc" -> abc
|
|
** "ab""cd" -> (not possible because of the interior "")
|
|
**
|
|
** Remove the quotes if possible. This is a optimization. The overall
|
|
** system should still return the correct answer even if this routine
|
|
** is always a no-op.
|
|
*/
|
|
void sqlite3DequoteToken(Token *p){
|
|
unsigned int i;
|
|
if( p->n<2 ) return;
|
|
if( !sqlite3Isquote(p->z[0]) ) return;
|
|
for(i=1; i<p->n-1; i++){
|
|
if( sqlite3Isquote(p->z[i]) ) return;
|
|
}
|
|
p->n -= 2;
|
|
p->z++;
|
|
}
|
|
|
|
/*
|
|
** Generate a Token object from a string
|
|
*/
|
|
void sqlite3TokenInit(Token *p, char *z){
|
|
p->z = z;
|
|
p->n = sqlite3Strlen30(z);
|
|
}
|
|
|
|
/* Convenient short-hand */
|
|
#define UpperToLower sqlite3UpperToLower
|
|
|
|
/*
|
|
** Some systems have stricmp(). Others have strcasecmp(). Because
|
|
** there is no consistency, we will define our own.
|
|
**
|
|
** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
|
|
** sqlite3_strnicmp() APIs allow applications and extensions to compare
|
|
** the contents of two buffers containing UTF-8 strings in a
|
|
** case-independent fashion, using the same definition of "case
|
|
** independence" that SQLite uses internally when comparing identifiers.
|
|
*/
|
|
int sqlite3_stricmp(const char *zLeft, const char *zRight){
|
|
if( zLeft==0 ){
|
|
return zRight ? -1 : 0;
|
|
}else if( zRight==0 ){
|
|
return 1;
|
|
}
|
|
return sqlite3StrICmp(zLeft, zRight);
|
|
}
|
|
int sqlite3StrICmp(const char *zLeft, const char *zRight){
|
|
unsigned char *a, *b;
|
|
int c, x;
|
|
a = (unsigned char *)zLeft;
|
|
b = (unsigned char *)zRight;
|
|
for(;;){
|
|
c = *a;
|
|
x = *b;
|
|
if( c==x ){
|
|
if( c==0 ) break;
|
|
}else{
|
|
c = (int)UpperToLower[c] - (int)UpperToLower[x];
|
|
if( c ) break;
|
|
}
|
|
a++;
|
|
b++;
|
|
}
|
|
return c;
|
|
}
|
|
int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
|
|
register unsigned char *a, *b;
|
|
if( zLeft==0 ){
|
|
return zRight ? -1 : 0;
|
|
}else if( zRight==0 ){
|
|
return 1;
|
|
}
|
|
a = (unsigned char *)zLeft;
|
|
b = (unsigned char *)zRight;
|
|
while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
|
|
return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
|
|
}
|
|
|
|
/*
|
|
** Compute an 8-bit hash on a string that is insensitive to case differences
|
|
*/
|
|
u8 sqlite3StrIHash(const char *z){
|
|
u8 h = 0;
|
|
if( z==0 ) return 0;
|
|
while( z[0] ){
|
|
h += UpperToLower[(unsigned char)z[0]];
|
|
z++;
|
|
}
|
|
return h;
|
|
}
|
|
|
|
/* Double-Double multiplication. (x[0],x[1]) *= (y,yy)
|
|
**
|
|
** Reference:
|
|
** T. J. Dekker, "A Floating-Point Technique for Extending the
|
|
** Available Precision". 1971-07-26.
|
|
*/
|
|
static void dekkerMul2(volatile double *x, double y, double yy){
|
|
/*
|
|
** The "volatile" keywords on parameter x[] and on local variables
|
|
** below are needed force intermediate results to be truncated to
|
|
** binary64 rather than be carried around in an extended-precision
|
|
** format. The truncation is necessary for the Dekker algorithm to
|
|
** work. Intel x86 floating point might omit the truncation without
|
|
** the use of volatile.
|
|
*/
|
|
volatile double tx, ty, p, q, c, cc;
|
|
double hx, hy;
|
|
u64 m;
|
|
memcpy(&m, (void*)&x[0], 8);
|
|
m &= 0xfffffffffc000000LL;
|
|
memcpy(&hx, &m, 8);
|
|
tx = x[0] - hx;
|
|
memcpy(&m, &y, 8);
|
|
m &= 0xfffffffffc000000LL;
|
|
memcpy(&hy, &m, 8);
|
|
ty = y - hy;
|
|
p = hx*hy;
|
|
q = hx*ty + tx*hy;
|
|
c = p+q;
|
|
cc = p - c + q + tx*ty;
|
|
cc = x[0]*yy + x[1]*y + cc;
|
|
x[0] = c + cc;
|
|
x[1] = c - x[0];
|
|
x[1] += cc;
|
|
}
|
|
|
|
/*
|
|
** The string z[] is an text representation of a real number.
|
|
** Convert this string to a double and write it into *pResult.
|
|
**
|
|
** The string z[] is length bytes in length (bytes, not characters) and
|
|
** uses the encoding enc. The string is not necessarily zero-terminated.
|
|
**
|
|
** Return TRUE if the result is a valid real number (or integer) and FALSE
|
|
** if the string is empty or contains extraneous text. More specifically
|
|
** return
|
|
** 1 => The input string is a pure integer
|
|
** 2 or more => The input has a decimal point or eNNN clause
|
|
** 0 or less => The input string is not a valid number
|
|
** -1 => Not a valid number, but has a valid prefix which
|
|
** includes a decimal point and/or an eNNN clause
|
|
**
|
|
** Valid numbers are in one of these formats:
|
|
**
|
|
** [+-]digits[E[+-]digits]
|
|
** [+-]digits.[digits][E[+-]digits]
|
|
** [+-].digits[E[+-]digits]
|
|
**
|
|
** Leading and trailing whitespace is ignored for the purpose of determining
|
|
** validity.
|
|
**
|
|
** If some prefix of the input string is a valid number, this routine
|
|
** returns FALSE but it still converts the prefix and writes the result
|
|
** into *pResult.
|
|
*/
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable : 4756)
|
|
#endif
|
|
int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
int incr;
|
|
const char *zEnd;
|
|
/* sign * significand * (10 ^ (esign * exponent)) */
|
|
int sign = 1; /* sign of significand */
|
|
u64 s = 0; /* significand */
|
|
int d = 0; /* adjust exponent for shifting decimal point */
|
|
int esign = 1; /* sign of exponent */
|
|
int e = 0; /* exponent */
|
|
int eValid = 1; /* True exponent is either not used or is well-formed */
|
|
int nDigit = 0; /* Number of digits processed */
|
|
int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */
|
|
|
|
assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
|
|
*pResult = 0.0; /* Default return value, in case of an error */
|
|
if( length==0 ) return 0;
|
|
|
|
if( enc==SQLITE_UTF8 ){
|
|
incr = 1;
|
|
zEnd = z + length;
|
|
}else{
|
|
int i;
|
|
incr = 2;
|
|
length &= ~1;
|
|
assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
|
|
testcase( enc==SQLITE_UTF16LE );
|
|
testcase( enc==SQLITE_UTF16BE );
|
|
for(i=3-enc; i<length && z[i]==0; i+=2){}
|
|
if( i<length ) eType = -100;
|
|
zEnd = &z[i^1];
|
|
z += (enc&1);
|
|
}
|
|
|
|
/* skip leading spaces */
|
|
while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
|
|
if( z>=zEnd ) return 0;
|
|
|
|
/* get sign of significand */
|
|
if( *z=='-' ){
|
|
sign = -1;
|
|
z+=incr;
|
|
}else if( *z=='+' ){
|
|
z+=incr;
|
|
}
|
|
|
|
/* copy max significant digits to significand */
|
|
while( z<zEnd && sqlite3Isdigit(*z) ){
|
|
s = s*10 + (*z - '0');
|
|
z+=incr; nDigit++;
|
|
if( s>=((LARGEST_UINT64-9)/10) ){
|
|
/* skip non-significant significand digits
|
|
** (increase exponent by d to shift decimal left) */
|
|
while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
|
|
}
|
|
}
|
|
if( z>=zEnd ) goto do_atof_calc;
|
|
|
|
/* if decimal point is present */
|
|
if( *z=='.' ){
|
|
z+=incr;
|
|
eType++;
|
|
/* copy digits from after decimal to significand
|
|
** (decrease exponent by d to shift decimal right) */
|
|
while( z<zEnd && sqlite3Isdigit(*z) ){
|
|
if( s<((LARGEST_UINT64-9)/10) ){
|
|
s = s*10 + (*z - '0');
|
|
d--;
|
|
nDigit++;
|
|
}
|
|
z+=incr;
|
|
}
|
|
}
|
|
if( z>=zEnd ) goto do_atof_calc;
|
|
|
|
/* if exponent is present */
|
|
if( *z=='e' || *z=='E' ){
|
|
z+=incr;
|
|
eValid = 0;
|
|
eType++;
|
|
|
|
/* This branch is needed to avoid a (harmless) buffer overread. The
|
|
** special comment alerts the mutation tester that the correct answer
|
|
** is obtained even if the branch is omitted */
|
|
if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/
|
|
|
|
/* get sign of exponent */
|
|
if( *z=='-' ){
|
|
esign = -1;
|
|
z+=incr;
|
|
}else if( *z=='+' ){
|
|
z+=incr;
|
|
}
|
|
/* copy digits to exponent */
|
|
while( z<zEnd && sqlite3Isdigit(*z) ){
|
|
e = e<10000 ? (e*10 + (*z - '0')) : 10000;
|
|
z+=incr;
|
|
eValid = 1;
|
|
}
|
|
}
|
|
|
|
/* skip trailing spaces */
|
|
while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
|
|
|
|
do_atof_calc:
|
|
/* Zero is a special case */
|
|
if( s==0 ){
|
|
*pResult = sign<0 ? -0.0 : +0.0;
|
|
goto atof_return;
|
|
}
|
|
|
|
/* adjust exponent by d, and update sign */
|
|
e = (e*esign) + d;
|
|
|
|
/* Try to adjust the exponent to make it smaller */
|
|
while( e>0 && s<(LARGEST_UINT64/10) ){
|
|
s *= 10;
|
|
e--;
|
|
}
|
|
while( e<0 && (s%10)==0 ){
|
|
s /= 10;
|
|
e++;
|
|
}
|
|
|
|
if( e==0 ){
|
|
*pResult = s;
|
|
}else if( sqlite3Config.bUseLongDouble ){
|
|
LONGDOUBLE_TYPE r = (LONGDOUBLE_TYPE)s;
|
|
if( e>0 ){
|
|
while( e>=100 ){ e-=100; r *= 1.0e+100L; }
|
|
while( e>=10 ){ e-=10; r *= 1.0e+10L; }
|
|
while( e>=1 ){ e-=1; r *= 1.0e+01L; }
|
|
}else{
|
|
while( e<=-100 ){ e+=100; r *= 1.0e-100L; }
|
|
while( e<=-10 ){ e+=10; r *= 1.0e-10L; }
|
|
while( e<=-1 ){ e+=1; r *= 1.0e-01L; }
|
|
}
|
|
*pResult = r;
|
|
}else{
|
|
double rr[2];
|
|
u64 s2;
|
|
rr[0] = (double)s;
|
|
s2 = (u64)rr[0];
|
|
rr[1] = s>=s2 ? (double)(s - s2) : -(double)(s2 - s);
|
|
if( e>0 ){
|
|
while( e>=100 ){
|
|
e -= 100;
|
|
dekkerMul2(rr, 1.0e+100, -1.5902891109759918046e+83);
|
|
}
|
|
while( e>=10 ){
|
|
e -= 10;
|
|
dekkerMul2(rr, 1.0e+10, 0.0);
|
|
}
|
|
while( e>=1 ){
|
|
e -= 1;
|
|
dekkerMul2(rr, 1.0e+01, 0.0);
|
|
}
|
|
}else{
|
|
while( e<=-100 ){
|
|
e += 100;
|
|
dekkerMul2(rr, 1.0e-100, -1.99918998026028836196e-117);
|
|
}
|
|
while( e<=-10 ){
|
|
e += 10;
|
|
dekkerMul2(rr, 1.0e-10, -3.6432197315497741579e-27);
|
|
}
|
|
while( e<=-1 ){
|
|
e += 1;
|
|
dekkerMul2(rr, 1.0e-01, -5.5511151231257827021e-18);
|
|
}
|
|
}
|
|
*pResult = rr[0]+rr[1];
|
|
if( sqlite3IsNaN(*pResult) ) *pResult = 1e300*1e300;
|
|
}
|
|
if( sign<0 ) *pResult = -*pResult;
|
|
assert( !sqlite3IsNaN(*pResult) );
|
|
|
|
atof_return:
|
|
/* return true if number and no extra non-whitespace characters after */
|
|
if( z==zEnd && nDigit>0 && eValid && eType>0 ){
|
|
return eType;
|
|
}else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
|
|
return -1;
|
|
}else{
|
|
return 0;
|
|
}
|
|
#else
|
|
return !sqlite3Atoi64(z, pResult, length, enc);
|
|
#endif /* SQLITE_OMIT_FLOATING_POINT */
|
|
}
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(default : 4756)
|
|
#endif
|
|
|
|
/*
|
|
** Render an signed 64-bit integer as text. Store the result in zOut[] and
|
|
** return the length of the string that was stored, in bytes. The value
|
|
** returned does not include the zero terminator at the end of the output
|
|
** string.
|
|
**
|
|
** The caller must ensure that zOut[] is at least 21 bytes in size.
|
|
*/
|
|
int sqlite3Int64ToText(i64 v, char *zOut){
|
|
int i;
|
|
u64 x;
|
|
char zTemp[22];
|
|
if( v<0 ){
|
|
x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v;
|
|
}else{
|
|
x = v;
|
|
}
|
|
i = sizeof(zTemp)-2;
|
|
zTemp[sizeof(zTemp)-1] = 0;
|
|
while( 1 /*exit-by-break*/ ){
|
|
zTemp[i] = (x%10) + '0';
|
|
x = x/10;
|
|
if( x==0 ) break;
|
|
i--;
|
|
};
|
|
if( v<0 ) zTemp[--i] = '-';
|
|
memcpy(zOut, &zTemp[i], sizeof(zTemp)-i);
|
|
return sizeof(zTemp)-1-i;
|
|
}
|
|
|
|
/*
|
|
** Compare the 19-character string zNum against the text representation
|
|
** value 2^63: 9223372036854775808. Return negative, zero, or positive
|
|
** if zNum is less than, equal to, or greater than the string.
|
|
** Note that zNum must contain exactly 19 characters.
|
|
**
|
|
** Unlike memcmp() this routine is guaranteed to return the difference
|
|
** in the values of the last digit if the only difference is in the
|
|
** last digit. So, for example,
|
|
**
|
|
** compare2pow63("9223372036854775800", 1)
|
|
**
|
|
** will return -8.
|
|
*/
|
|
static int compare2pow63(const char *zNum, int incr){
|
|
int c = 0;
|
|
int i;
|
|
/* 012345678901234567 */
|
|
const char *pow63 = "922337203685477580";
|
|
for(i=0; c==0 && i<18; i++){
|
|
c = (zNum[i*incr]-pow63[i])*10;
|
|
}
|
|
if( c==0 ){
|
|
c = zNum[18*incr] - '8';
|
|
testcase( c==(-1) );
|
|
testcase( c==0 );
|
|
testcase( c==(+1) );
|
|
}
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
|
|
** routine does *not* accept hexadecimal notation.
|
|
**
|
|
** Returns:
|
|
**
|
|
** -1 Not even a prefix of the input text looks like an integer
|
|
** 0 Successful transformation. Fits in a 64-bit signed integer.
|
|
** 1 Excess non-space text after the integer value
|
|
** 2 Integer too large for a 64-bit signed integer or is malformed
|
|
** 3 Special case of 9223372036854775808
|
|
**
|
|
** length is the number of bytes in the string (bytes, not characters).
|
|
** The string is not necessarily zero-terminated. The encoding is
|
|
** given by enc.
|
|
*/
|
|
int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
|
|
int incr;
|
|
u64 u = 0;
|
|
int neg = 0; /* assume positive */
|
|
int i;
|
|
int c = 0;
|
|
int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
|
|
int rc; /* Baseline return code */
|
|
const char *zStart;
|
|
const char *zEnd = zNum + length;
|
|
assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
|
|
if( enc==SQLITE_UTF8 ){
|
|
incr = 1;
|
|
}else{
|
|
incr = 2;
|
|
length &= ~1;
|
|
assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
|
|
for(i=3-enc; i<length && zNum[i]==0; i+=2){}
|
|
nonNum = i<length;
|
|
zEnd = &zNum[i^1];
|
|
zNum += (enc&1);
|
|
}
|
|
while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
|
|
if( zNum<zEnd ){
|
|
if( *zNum=='-' ){
|
|
neg = 1;
|
|
zNum+=incr;
|
|
}else if( *zNum=='+' ){
|
|
zNum+=incr;
|
|
}
|
|
}
|
|
zStart = zNum;
|
|
while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
|
|
for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
|
|
u = u*10 + c - '0';
|
|
}
|
|
testcase( i==18*incr );
|
|
testcase( i==19*incr );
|
|
testcase( i==20*incr );
|
|
if( u>LARGEST_INT64 ){
|
|
/* This test and assignment is needed only to suppress UB warnings
|
|
** from clang and -fsanitize=undefined. This test and assignment make
|
|
** the code a little larger and slower, and no harm comes from omitting
|
|
** them, but we must appease the undefined-behavior pharisees. */
|
|
*pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
|
|
}else if( neg ){
|
|
*pNum = -(i64)u;
|
|
}else{
|
|
*pNum = (i64)u;
|
|
}
|
|
rc = 0;
|
|
if( i==0 && zStart==zNum ){ /* No digits */
|
|
rc = -1;
|
|
}else if( nonNum ){ /* UTF16 with high-order bytes non-zero */
|
|
rc = 1;
|
|
}else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */
|
|
int jj = i;
|
|
do{
|
|
if( !sqlite3Isspace(zNum[jj]) ){
|
|
rc = 1; /* Extra non-space text after the integer */
|
|
break;
|
|
}
|
|
jj += incr;
|
|
}while( &zNum[jj]<zEnd );
|
|
}
|
|
if( i<19*incr ){
|
|
/* Less than 19 digits, so we know that it fits in 64 bits */
|
|
assert( u<=LARGEST_INT64 );
|
|
return rc;
|
|
}else{
|
|
/* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
|
|
c = i>19*incr ? 1 : compare2pow63(zNum, incr);
|
|
if( c<0 ){
|
|
/* zNum is less than 9223372036854775808 so it fits */
|
|
assert( u<=LARGEST_INT64 );
|
|
return rc;
|
|
}else{
|
|
*pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
|
|
if( c>0 ){
|
|
/* zNum is greater than 9223372036854775808 so it overflows */
|
|
return 2;
|
|
}else{
|
|
/* zNum is exactly 9223372036854775808. Fits if negative. The
|
|
** special case 2 overflow if positive */
|
|
assert( u-1==LARGEST_INT64 );
|
|
return neg ? rc : 3;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
|
|
** into a 64-bit signed integer. This routine accepts hexadecimal literals,
|
|
** whereas sqlite3Atoi64() does not.
|
|
**
|
|
** Returns:
|
|
**
|
|
** 0 Successful transformation. Fits in a 64-bit signed integer.
|
|
** 1 Excess text after the integer value
|
|
** 2 Integer too large for a 64-bit signed integer or is malformed
|
|
** 3 Special case of 9223372036854775808
|
|
*/
|
|
int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
|
|
#ifndef SQLITE_OMIT_HEX_INTEGER
|
|
if( z[0]=='0'
|
|
&& (z[1]=='x' || z[1]=='X')
|
|
){
|
|
u64 u = 0;
|
|
int i, k;
|
|
for(i=2; z[i]=='0'; i++){}
|
|
for(k=i; sqlite3Isxdigit(z[k]); k++){
|
|
u = u*16 + sqlite3HexToInt(z[k]);
|
|
}
|
|
memcpy(pOut, &u, 8);
|
|
if( k-i>16 ) return 2;
|
|
if( z[k]!=0 ) return 1;
|
|
return 0;
|
|
}else
|
|
#endif /* SQLITE_OMIT_HEX_INTEGER */
|
|
{
|
|
int n = (int)(0x3fffffff&strspn(z,"+- \n\t0123456789"));
|
|
if( z[n] ) n++;
|
|
return sqlite3Atoi64(z, pOut, n, SQLITE_UTF8);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** If zNum represents an integer that will fit in 32-bits, then set
|
|
** *pValue to that integer and return true. Otherwise return false.
|
|
**
|
|
** This routine accepts both decimal and hexadecimal notation for integers.
|
|
**
|
|
** Any non-numeric characters that following zNum are ignored.
|
|
** This is different from sqlite3Atoi64() which requires the
|
|
** input number to be zero-terminated.
|
|
*/
|
|
int sqlite3GetInt32(const char *zNum, int *pValue){
|
|
sqlite_int64 v = 0;
|
|
int i, c;
|
|
int neg = 0;
|
|
if( zNum[0]=='-' ){
|
|
neg = 1;
|
|
zNum++;
|
|
}else if( zNum[0]=='+' ){
|
|
zNum++;
|
|
}
|
|
#ifndef SQLITE_OMIT_HEX_INTEGER
|
|
else if( zNum[0]=='0'
|
|
&& (zNum[1]=='x' || zNum[1]=='X')
|
|
&& sqlite3Isxdigit(zNum[2])
|
|
){
|
|
u32 u = 0;
|
|
zNum += 2;
|
|
while( zNum[0]=='0' ) zNum++;
|
|
for(i=0; i<8 && sqlite3Isxdigit(zNum[i]); i++){
|
|
u = u*16 + sqlite3HexToInt(zNum[i]);
|
|
}
|
|
if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
|
|
memcpy(pValue, &u, 4);
|
|
return 1;
|
|
}else{
|
|
return 0;
|
|
}
|
|
}
|
|
#endif
|
|
if( !sqlite3Isdigit(zNum[0]) ) return 0;
|
|
while( zNum[0]=='0' ) zNum++;
|
|
for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
|
|
v = v*10 + c;
|
|
}
|
|
|
|
/* The longest decimal representation of a 32 bit integer is 10 digits:
|
|
**
|
|
** 1234567890
|
|
** 2^31 -> 2147483648
|
|
*/
|
|
testcase( i==10 );
|
|
if( i>10 ){
|
|
return 0;
|
|
}
|
|
testcase( v-neg==2147483647 );
|
|
if( v-neg>2147483647 ){
|
|
return 0;
|
|
}
|
|
if( neg ){
|
|
v = -v;
|
|
}
|
|
*pValue = (int)v;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Return a 32-bit integer value extracted from a string. If the
|
|
** string is not an integer, just return 0.
|
|
*/
|
|
int sqlite3Atoi(const char *z){
|
|
int x = 0;
|
|
sqlite3GetInt32(z, &x);
|
|
return x;
|
|
}
|
|
|
|
/*
|
|
** Decode a floating-point value into an approximate decimal
|
|
** representation.
|
|
**
|
|
** Round the decimal representation to n significant digits if
|
|
** n is positive. Or round to -n signficant digits after the
|
|
** decimal point if n is negative. No rounding is performed if
|
|
** n is zero.
|
|
**
|
|
** The significant digits of the decimal representation are
|
|
** stored in p->z[] which is a often (but not always) a pointer
|
|
** into the middle of p->zBuf[]. There are p->n significant digits.
|
|
** The p->z[] array is *not* zero-terminated.
|
|
*/
|
|
void sqlite3FpDecode(FpDecode *p, double r, int iRound, int mxRound){
|
|
int i;
|
|
u64 v;
|
|
int e, exp = 0;
|
|
p->isSpecial = 0;
|
|
p->z = p->zBuf;
|
|
|
|
/* Convert negative numbers to positive. Deal with Infinity, 0.0, and
|
|
** NaN. */
|
|
if( r<0.0 ){
|
|
p->sign = '-';
|
|
r = -r;
|
|
}else if( r==0.0 ){
|
|
p->sign = '+';
|
|
p->n = 1;
|
|
p->iDP = 1;
|
|
p->z = "0";
|
|
return;
|
|
}else{
|
|
p->sign = '+';
|
|
}
|
|
memcpy(&v,&r,8);
|
|
e = v>>52;
|
|
if( (e&0x7ff)==0x7ff ){
|
|
p->isSpecial = 1 + (v!=0x7ff0000000000000LL);
|
|
p->n = 0;
|
|
p->iDP = 0;
|
|
return;
|
|
}
|
|
|
|
/* Multiply r by powers of ten until it lands somewhere in between
|
|
** 1.0e+19 and 1.0e+17.
|
|
*/
|
|
if( sqlite3Config.bUseLongDouble ){
|
|
LONGDOUBLE_TYPE rr = r;
|
|
if( rr>=1.0e+19 ){
|
|
while( rr>=1.0e+119L ){ exp+=100; rr *= 1.0e-100L; }
|
|
while( rr>=1.0e+29L ){ exp+=10; rr *= 1.0e-10L; }
|
|
while( rr>=1.0e+19L ){ exp++; rr *= 1.0e-1L; }
|
|
}else{
|
|
while( rr<1.0e-97L ){ exp-=100; rr *= 1.0e+100L; }
|
|
while( rr<1.0e+07L ){ exp-=10; rr *= 1.0e+10L; }
|
|
while( rr<1.0e+17L ){ exp--; rr *= 1.0e+1L; }
|
|
}
|
|
v = (u64)rr;
|
|
}else{
|
|
/* If high-precision floating point is not available using "long double",
|
|
** then use Dekker-style double-double computation to increase the
|
|
** precision.
|
|
**
|
|
** The error terms on constants like 1.0e+100 computed using the
|
|
** decimal extension, for example as follows:
|
|
**
|
|
** SELECT decimal_sci(decimal_sub('1.0e+100',decimal(1.0e+100)));
|
|
*/
|
|
double rr[2];
|
|
rr[0] = r;
|
|
rr[1] = 0.0;
|
|
if( rr[0]>1.84e+19 ){
|
|
while( rr[0]>1.84e+119 ){
|
|
exp += 100;
|
|
dekkerMul2(rr, 1.0e-100, -1.99918998026028836196e-117);
|
|
}
|
|
while( rr[0]>1.84e+29 ){
|
|
exp += 10;
|
|
dekkerMul2(rr, 1.0e-10, -3.6432197315497741579e-27);
|
|
}
|
|
while( rr[0]>1.84e+19 ){
|
|
exp += 1;
|
|
dekkerMul2(rr, 1.0e-01, -5.5511151231257827021e-18);
|
|
}
|
|
}else{
|
|
while( rr[0]<1.84e-82 ){
|
|
exp -= 100;
|
|
dekkerMul2(rr, 1.0e+100, -1.5902891109759918046e+83);
|
|
}
|
|
while( rr[0]<1.84e+08 ){
|
|
exp -= 10;
|
|
dekkerMul2(rr, 1.0e+10, 0.0);
|
|
}
|
|
while( rr[0]<1.84e+18 ){
|
|
exp -= 1;
|
|
dekkerMul2(rr, 1.0e+01, 0.0);
|
|
}
|
|
}
|
|
v = rr[1]<0.0 ? (u64)rr[0]-(u64)(-rr[1]) : (u64)rr[0]+(u64)rr[1];
|
|
}
|
|
|
|
|
|
/* Extract significant digits. */
|
|
i = sizeof(p->zBuf)-1;
|
|
assert( v>0 );
|
|
while( v ){ p->zBuf[i--] = (v%10) + '0'; v /= 10; }
|
|
assert( i>=0 && i<sizeof(p->zBuf)-1 );
|
|
p->n = sizeof(p->zBuf) - 1 - i;
|
|
assert( p->n>0 );
|
|
assert( p->n<sizeof(p->zBuf) );
|
|
p->iDP = p->n + exp;
|
|
if( iRound<0 ){
|
|
iRound = p->iDP - iRound;
|
|
if( iRound==0 && p->zBuf[i+1]>='5' ){
|
|
iRound = 1;
|
|
p->zBuf[i--] = '0';
|
|
p->n++;
|
|
p->iDP++;
|
|
}
|
|
}
|
|
if( iRound>0 && (iRound<p->n || p->n>mxRound) ){
|
|
char *z = &p->zBuf[i+1];
|
|
if( iRound>mxRound ) iRound = mxRound;
|
|
p->n = iRound;
|
|
if( z[iRound]>='5' ){
|
|
int j = iRound-1;
|
|
while( 1 /*exit-by-break*/ ){
|
|
z[j]++;
|
|
if( z[j]<='9' ) break;
|
|
z[j] = '0';
|
|
if( j==0 ){
|
|
p->z[i--] = '1';
|
|
p->n++;
|
|
p->iDP++;
|
|
break;
|
|
}else{
|
|
j--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
p->z = &p->zBuf[i+1];
|
|
assert( i+p->n < sizeof(p->zBuf) );
|
|
while( ALWAYS(p->n>0) && p->z[p->n-1]=='0' ){ p->n--; }
|
|
}
|
|
|
|
/*
|
|
** Try to convert z into an unsigned 32-bit integer. Return true on
|
|
** success and false if there is an error.
|
|
**
|
|
** Only decimal notation is accepted.
|
|
*/
|
|
int sqlite3GetUInt32(const char *z, u32 *pI){
|
|
u64 v = 0;
|
|
int i;
|
|
for(i=0; sqlite3Isdigit(z[i]); i++){
|
|
v = v*10 + z[i] - '0';
|
|
if( v>4294967296LL ){ *pI = 0; return 0; }
|
|
}
|
|
if( i==0 || z[i]!=0 ){ *pI = 0; return 0; }
|
|
*pI = (u32)v;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** The variable-length integer encoding is as follows:
|
|
**
|
|
** KEY:
|
|
** A = 0xxxxxxx 7 bits of data and one flag bit
|
|
** B = 1xxxxxxx 7 bits of data and one flag bit
|
|
** C = xxxxxxxx 8 bits of data
|
|
**
|
|
** 7 bits - A
|
|
** 14 bits - BA
|
|
** 21 bits - BBA
|
|
** 28 bits - BBBA
|
|
** 35 bits - BBBBA
|
|
** 42 bits - BBBBBA
|
|
** 49 bits - BBBBBBA
|
|
** 56 bits - BBBBBBBA
|
|
** 64 bits - BBBBBBBBC
|
|
*/
|
|
|
|
/*
|
|
** Write a 64-bit variable-length integer to memory starting at p[0].
|
|
** The length of data write will be between 1 and 9 bytes. The number
|
|
** of bytes written is returned.
|
|
**
|
|
** A variable-length integer consists of the lower 7 bits of each byte
|
|
** for all bytes that have the 8th bit set and one byte with the 8th
|
|
** bit clear. Except, if we get to the 9th byte, it stores the full
|
|
** 8 bits and is the last byte.
|
|
*/
|
|
static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
|
|
int i, j, n;
|
|
u8 buf[10];
|
|
if( v & (((u64)0xff000000)<<32) ){
|
|
p[8] = (u8)v;
|
|
v >>= 8;
|
|
for(i=7; i>=0; i--){
|
|
p[i] = (u8)((v & 0x7f) | 0x80);
|
|
v >>= 7;
|
|
}
|
|
return 9;
|
|
}
|
|
n = 0;
|
|
do{
|
|
buf[n++] = (u8)((v & 0x7f) | 0x80);
|
|
v >>= 7;
|
|
}while( v!=0 );
|
|
buf[0] &= 0x7f;
|
|
assert( n<=9 );
|
|
for(i=0, j=n-1; j>=0; j--, i++){
|
|
p[i] = buf[j];
|
|
}
|
|
return n;
|
|
}
|
|
int sqlite3PutVarint(unsigned char *p, u64 v){
|
|
if( v<=0x7f ){
|
|
p[0] = v&0x7f;
|
|
return 1;
|
|
}
|
|
if( v<=0x3fff ){
|
|
p[0] = ((v>>7)&0x7f)|0x80;
|
|
p[1] = v&0x7f;
|
|
return 2;
|
|
}
|
|
return putVarint64(p,v);
|
|
}
|
|
|
|
/*
|
|
** Bitmasks used by sqlite3GetVarint(). These precomputed constants
|
|
** are defined here rather than simply putting the constant expressions
|
|
** inline in order to work around bugs in the RVT compiler.
|
|
**
|
|
** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
|
|
**
|
|
** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
|
|
*/
|
|
#define SLOT_2_0 0x001fc07f
|
|
#define SLOT_4_2_0 0xf01fc07f
|
|
|
|
|
|
/*
|
|
** Read a 64-bit variable-length integer from memory starting at p[0].
|
|
** Return the number of bytes read. The value is stored in *v.
|
|
*/
|
|
u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
|
|
u32 a,b,s;
|
|
|
|
if( ((signed char*)p)[0]>=0 ){
|
|
*v = *p;
|
|
return 1;
|
|
}
|
|
if( ((signed char*)p)[1]>=0 ){
|
|
*v = ((u32)(p[0]&0x7f)<<7) | p[1];
|
|
return 2;
|
|
}
|
|
|
|
/* Verify that constants are precomputed correctly */
|
|
assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
|
|
assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
|
|
|
|
a = ((u32)p[0])<<14;
|
|
b = p[1];
|
|
p += 2;
|
|
a |= *p;
|
|
/* a: p0<<14 | p2 (unmasked) */
|
|
if (!(a&0x80))
|
|
{
|
|
a &= SLOT_2_0;
|
|
b &= 0x7f;
|
|
b = b<<7;
|
|
a |= b;
|
|
*v = a;
|
|
return 3;
|
|
}
|
|
|
|
/* CSE1 from below */
|
|
a &= SLOT_2_0;
|
|
p++;
|
|
b = b<<14;
|
|
b |= *p;
|
|
/* b: p1<<14 | p3 (unmasked) */
|
|
if (!(b&0x80))
|
|
{
|
|
b &= SLOT_2_0;
|
|
/* moved CSE1 up */
|
|
/* a &= (0x7f<<14)|(0x7f); */
|
|
a = a<<7;
|
|
a |= b;
|
|
*v = a;
|
|
return 4;
|
|
}
|
|
|
|
/* a: p0<<14 | p2 (masked) */
|
|
/* b: p1<<14 | p3 (unmasked) */
|
|
/* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
|
|
/* moved CSE1 up */
|
|
/* a &= (0x7f<<14)|(0x7f); */
|
|
b &= SLOT_2_0;
|
|
s = a;
|
|
/* s: p0<<14 | p2 (masked) */
|
|
|
|
p++;
|
|
a = a<<14;
|
|
a |= *p;
|
|
/* a: p0<<28 | p2<<14 | p4 (unmasked) */
|
|
if (!(a&0x80))
|
|
{
|
|
/* we can skip these cause they were (effectively) done above
|
|
** while calculating s */
|
|
/* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
|
|
/* b &= (0x7f<<14)|(0x7f); */
|
|
b = b<<7;
|
|
a |= b;
|
|
s = s>>18;
|
|
*v = ((u64)s)<<32 | a;
|
|
return 5;
|
|
}
|
|
|
|
/* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
|
|
s = s<<7;
|
|
s |= b;
|
|
/* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
|
|
|
|
p++;
|
|
b = b<<14;
|
|
b |= *p;
|
|
/* b: p1<<28 | p3<<14 | p5 (unmasked) */
|
|
if (!(b&0x80))
|
|
{
|
|
/* we can skip this cause it was (effectively) done above in calc'ing s */
|
|
/* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
|
|
a &= SLOT_2_0;
|
|
a = a<<7;
|
|
a |= b;
|
|
s = s>>18;
|
|
*v = ((u64)s)<<32 | a;
|
|
return 6;
|
|
}
|
|
|
|
p++;
|
|
a = a<<14;
|
|
a |= *p;
|
|
/* a: p2<<28 | p4<<14 | p6 (unmasked) */
|
|
if (!(a&0x80))
|
|
{
|
|
a &= SLOT_4_2_0;
|
|
b &= SLOT_2_0;
|
|
b = b<<7;
|
|
a |= b;
|
|
s = s>>11;
|
|
*v = ((u64)s)<<32 | a;
|
|
return 7;
|
|
}
|
|
|
|
/* CSE2 from below */
|
|
a &= SLOT_2_0;
|
|
p++;
|
|
b = b<<14;
|
|
b |= *p;
|
|
/* b: p3<<28 | p5<<14 | p7 (unmasked) */
|
|
if (!(b&0x80))
|
|
{
|
|
b &= SLOT_4_2_0;
|
|
/* moved CSE2 up */
|
|
/* a &= (0x7f<<14)|(0x7f); */
|
|
a = a<<7;
|
|
a |= b;
|
|
s = s>>4;
|
|
*v = ((u64)s)<<32 | a;
|
|
return 8;
|
|
}
|
|
|
|
p++;
|
|
a = a<<15;
|
|
a |= *p;
|
|
/* a: p4<<29 | p6<<15 | p8 (unmasked) */
|
|
|
|
/* moved CSE2 up */
|
|
/* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
|
|
b &= SLOT_2_0;
|
|
b = b<<8;
|
|
a |= b;
|
|
|
|
s = s<<4;
|
|
b = p[-4];
|
|
b &= 0x7f;
|
|
b = b>>3;
|
|
s |= b;
|
|
|
|
*v = ((u64)s)<<32 | a;
|
|
|
|
return 9;
|
|
}
|
|
|
|
/*
|
|
** Read a 32-bit variable-length integer from memory starting at p[0].
|
|
** Return the number of bytes read. The value is stored in *v.
|
|
**
|
|
** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
|
|
** integer, then set *v to 0xffffffff.
|
|
**
|
|
** A MACRO version, getVarint32, is provided which inlines the
|
|
** single-byte case. All code should use the MACRO version as
|
|
** this function assumes the single-byte case has already been handled.
|
|
*/
|
|
u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
|
|
u32 a,b;
|
|
|
|
/* The 1-byte case. Overwhelmingly the most common. Handled inline
|
|
** by the getVarin32() macro */
|
|
a = *p;
|
|
/* a: p0 (unmasked) */
|
|
#ifndef getVarint32
|
|
if (!(a&0x80))
|
|
{
|
|
/* Values between 0 and 127 */
|
|
*v = a;
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/* The 2-byte case */
|
|
p++;
|
|
b = *p;
|
|
/* b: p1 (unmasked) */
|
|
if (!(b&0x80))
|
|
{
|
|
/* Values between 128 and 16383 */
|
|
a &= 0x7f;
|
|
a = a<<7;
|
|
*v = a | b;
|
|
return 2;
|
|
}
|
|
|
|
/* The 3-byte case */
|
|
p++;
|
|
a = a<<14;
|
|
a |= *p;
|
|
/* a: p0<<14 | p2 (unmasked) */
|
|
if (!(a&0x80))
|
|
{
|
|
/* Values between 16384 and 2097151 */
|
|
a &= (0x7f<<14)|(0x7f);
|
|
b &= 0x7f;
|
|
b = b<<7;
|
|
*v = a | b;
|
|
return 3;
|
|
}
|
|
|
|
/* A 32-bit varint is used to store size information in btrees.
|
|
** Objects are rarely larger than 2MiB limit of a 3-byte varint.
|
|
** A 3-byte varint is sufficient, for example, to record the size
|
|
** of a 1048569-byte BLOB or string.
|
|
**
|
|
** We only unroll the first 1-, 2-, and 3- byte cases. The very
|
|
** rare larger cases can be handled by the slower 64-bit varint
|
|
** routine.
|
|
*/
|
|
#if 1
|
|
{
|
|
u64 v64;
|
|
u8 n;
|
|
|
|
n = sqlite3GetVarint(p-2, &v64);
|
|
assert( n>3 && n<=9 );
|
|
if( (v64 & SQLITE_MAX_U32)!=v64 ){
|
|
*v = 0xffffffff;
|
|
}else{
|
|
*v = (u32)v64;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
#else
|
|
/* For following code (kept for historical record only) shows an
|
|
** unrolling for the 3- and 4-byte varint cases. This code is
|
|
** slightly faster, but it is also larger and much harder to test.
|
|
*/
|
|
p++;
|
|
b = b<<14;
|
|
b |= *p;
|
|
/* b: p1<<14 | p3 (unmasked) */
|
|
if (!(b&0x80))
|
|
{
|
|
/* Values between 2097152 and 268435455 */
|
|
b &= (0x7f<<14)|(0x7f);
|
|
a &= (0x7f<<14)|(0x7f);
|
|
a = a<<7;
|
|
*v = a | b;
|
|
return 4;
|
|
}
|
|
|
|
p++;
|
|
a = a<<14;
|
|
a |= *p;
|
|
/* a: p0<<28 | p2<<14 | p4 (unmasked) */
|
|
if (!(a&0x80))
|
|
{
|
|
/* Values between 268435456 and 34359738367 */
|
|
a &= SLOT_4_2_0;
|
|
b &= SLOT_4_2_0;
|
|
b = b<<7;
|
|
*v = a | b;
|
|
return 5;
|
|
}
|
|
|
|
/* We can only reach this point when reading a corrupt database
|
|
** file. In that case we are not in any hurry. Use the (relatively
|
|
** slow) general-purpose sqlite3GetVarint() routine to extract the
|
|
** value. */
|
|
{
|
|
u64 v64;
|
|
u8 n;
|
|
|
|
p -= 4;
|
|
n = sqlite3GetVarint(p, &v64);
|
|
assert( n>5 && n<=9 );
|
|
*v = (u32)v64;
|
|
return n;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Return the number of bytes that will be needed to store the given
|
|
** 64-bit integer.
|
|
*/
|
|
int sqlite3VarintLen(u64 v){
|
|
int i;
|
|
for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
|
|
return i;
|
|
}
|
|
|
|
|
|
/*
|
|
** Read or write a four-byte big-endian integer value.
|
|
*/
|
|
u32 sqlite3Get4byte(const u8 *p){
|
|
#if SQLITE_BYTEORDER==4321
|
|
u32 x;
|
|
memcpy(&x,p,4);
|
|
return x;
|
|
#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
|
|
u32 x;
|
|
memcpy(&x,p,4);
|
|
return __builtin_bswap32(x);
|
|
#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
|
|
u32 x;
|
|
memcpy(&x,p,4);
|
|
return _byteswap_ulong(x);
|
|
#else
|
|
testcase( p[0]&0x80 );
|
|
return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
|
|
#endif
|
|
}
|
|
void sqlite3Put4byte(unsigned char *p, u32 v){
|
|
#if SQLITE_BYTEORDER==4321
|
|
memcpy(p,&v,4);
|
|
#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
|
|
u32 x = __builtin_bswap32(v);
|
|
memcpy(p,&x,4);
|
|
#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
|
|
u32 x = _byteswap_ulong(v);
|
|
memcpy(p,&x,4);
|
|
#else
|
|
p[0] = (u8)(v>>24);
|
|
p[1] = (u8)(v>>16);
|
|
p[2] = (u8)(v>>8);
|
|
p[3] = (u8)v;
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
** Translate a single byte of Hex into an integer.
|
|
** This routine only works if h really is a valid hexadecimal
|
|
** character: 0..9a..fA..F
|
|
*/
|
|
u8 sqlite3HexToInt(int h){
|
|
assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
|
|
#ifdef SQLITE_ASCII
|
|
h += 9*(1&(h>>6));
|
|
#endif
|
|
#ifdef SQLITE_EBCDIC
|
|
h += 9*(1&~(h>>4));
|
|
#endif
|
|
return (u8)(h & 0xf);
|
|
}
|
|
|
|
#if !defined(SQLITE_OMIT_BLOB_LITERAL)
|
|
/*
|
|
** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
|
|
** value. Return a pointer to its binary value. Space to hold the
|
|
** binary value has been obtained from malloc and must be freed by
|
|
** the calling routine.
|
|
*/
|
|
void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
|
|
char *zBlob;
|
|
int i;
|
|
|
|
zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
|
|
n--;
|
|
if( zBlob ){
|
|
for(i=0; i<n; i+=2){
|
|
zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
|
|
}
|
|
zBlob[i/2] = 0;
|
|
}
|
|
return zBlob;
|
|
}
|
|
#endif /* !SQLITE_OMIT_BLOB_LITERAL */
|
|
|
|
/*
|
|
** Log an error that is an API call on a connection pointer that should
|
|
** not have been used. The "type" of connection pointer is given as the
|
|
** argument. The zType is a word like "NULL" or "closed" or "invalid".
|
|
*/
|
|
static void logBadConnection(const char *zType){
|
|
sqlite3_log(SQLITE_MISUSE,
|
|
"API call with %s database connection pointer",
|
|
zType
|
|
);
|
|
}
|
|
|
|
/*
|
|
** Check to make sure we have a valid db pointer. This test is not
|
|
** foolproof but it does provide some measure of protection against
|
|
** misuse of the interface such as passing in db pointers that are
|
|
** NULL or which have been previously closed. If this routine returns
|
|
** 1 it means that the db pointer is valid and 0 if it should not be
|
|
** dereferenced for any reason. The calling function should invoke
|
|
** SQLITE_MISUSE immediately.
|
|
**
|
|
** sqlite3SafetyCheckOk() requires that the db pointer be valid for
|
|
** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
|
|
** open properly and is not fit for general use but which can be
|
|
** used as an argument to sqlite3_errmsg() or sqlite3_close().
|
|
*/
|
|
int sqlite3SafetyCheckOk(sqlite3 *db){
|
|
u8 eOpenState;
|
|
if( db==0 ){
|
|
logBadConnection("NULL");
|
|
return 0;
|
|
}
|
|
eOpenState = db->eOpenState;
|
|
if( eOpenState!=SQLITE_STATE_OPEN ){
|
|
if( sqlite3SafetyCheckSickOrOk(db) ){
|
|
testcase( sqlite3GlobalConfig.xLog!=0 );
|
|
logBadConnection("unopened");
|
|
}
|
|
return 0;
|
|
}else{
|
|
return 1;
|
|
}
|
|
}
|
|
int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
|
|
u8 eOpenState;
|
|
eOpenState = db->eOpenState;
|
|
if( eOpenState!=SQLITE_STATE_SICK &&
|
|
eOpenState!=SQLITE_STATE_OPEN &&
|
|
eOpenState!=SQLITE_STATE_BUSY ){
|
|
testcase( sqlite3GlobalConfig.xLog!=0 );
|
|
logBadConnection("invalid");
|
|
return 0;
|
|
}else{
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Attempt to add, subtract, or multiply the 64-bit signed value iB against
|
|
** the other 64-bit signed integer at *pA and store the result in *pA.
|
|
** Return 0 on success. Or if the operation would have resulted in an
|
|
** overflow, leave *pA unchanged and return 1.
|
|
*/
|
|
int sqlite3AddInt64(i64 *pA, i64 iB){
|
|
#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
|
|
return __builtin_add_overflow(*pA, iB, pA);
|
|
#else
|
|
i64 iA = *pA;
|
|
testcase( iA==0 ); testcase( iA==1 );
|
|
testcase( iB==-1 ); testcase( iB==0 );
|
|
if( iB>=0 ){
|
|
testcase( iA>0 && LARGEST_INT64 - iA == iB );
|
|
testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
|
|
if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
|
|
}else{
|
|
testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
|
|
testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
|
|
if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
|
|
}
|
|
*pA += iB;
|
|
return 0;
|
|
#endif
|
|
}
|
|
int sqlite3SubInt64(i64 *pA, i64 iB){
|
|
#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
|
|
return __builtin_sub_overflow(*pA, iB, pA);
|
|
#else
|
|
testcase( iB==SMALLEST_INT64+1 );
|
|
if( iB==SMALLEST_INT64 ){
|
|
testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
|
|
if( (*pA)>=0 ) return 1;
|
|
*pA -= iB;
|
|
return 0;
|
|
}else{
|
|
return sqlite3AddInt64(pA, -iB);
|
|
}
|
|
#endif
|
|
}
|
|
int sqlite3MulInt64(i64 *pA, i64 iB){
|
|
#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
|
|
return __builtin_mul_overflow(*pA, iB, pA);
|
|
#else
|
|
i64 iA = *pA;
|
|
if( iB>0 ){
|
|
if( iA>LARGEST_INT64/iB ) return 1;
|
|
if( iA<SMALLEST_INT64/iB ) return 1;
|
|
}else if( iB<0 ){
|
|
if( iA>0 ){
|
|
if( iB<SMALLEST_INT64/iA ) return 1;
|
|
}else if( iA<0 ){
|
|
if( iB==SMALLEST_INT64 ) return 1;
|
|
if( iA==SMALLEST_INT64 ) return 1;
|
|
if( -iA>LARGEST_INT64/-iB ) return 1;
|
|
}
|
|
}
|
|
*pA = iA*iB;
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Compute the absolute value of a 32-bit signed integer, of possible. Or
|
|
** if the integer has a value of -2147483648, return +2147483647
|
|
*/
|
|
int sqlite3AbsInt32(int x){
|
|
if( x>=0 ) return x;
|
|
if( x==(int)0x80000000 ) return 0x7fffffff;
|
|
return -x;
|
|
}
|
|
|
|
#ifdef SQLITE_ENABLE_8_3_NAMES
|
|
/*
|
|
** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
|
|
** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
|
|
** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
|
|
** three characters, then shorten the suffix on z[] to be the last three
|
|
** characters of the original suffix.
|
|
**
|
|
** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
|
|
** do the suffix shortening regardless of URI parameter.
|
|
**
|
|
** Examples:
|
|
**
|
|
** test.db-journal => test.nal
|
|
** test.db-wal => test.wal
|
|
** test.db-shm => test.shm
|
|
** test.db-mj7f3319fa => test.9fa
|
|
*/
|
|
void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
|
|
#if SQLITE_ENABLE_8_3_NAMES<2
|
|
if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
|
|
#endif
|
|
{
|
|
int i, sz;
|
|
sz = sqlite3Strlen30(z);
|
|
for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
|
|
if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Find (an approximate) sum of two LogEst values. This computation is
|
|
** not a simple "+" operator because LogEst is stored as a logarithmic
|
|
** value.
|
|
**
|
|
*/
|
|
LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
|
|
static const unsigned char x[] = {
|
|
10, 10, /* 0,1 */
|
|
9, 9, /* 2,3 */
|
|
8, 8, /* 4,5 */
|
|
7, 7, 7, /* 6,7,8 */
|
|
6, 6, 6, /* 9,10,11 */
|
|
5, 5, 5, /* 12-14 */
|
|
4, 4, 4, 4, /* 15-18 */
|
|
3, 3, 3, 3, 3, 3, /* 19-24 */
|
|
2, 2, 2, 2, 2, 2, 2, /* 25-31 */
|
|
};
|
|
if( a>=b ){
|
|
if( a>b+49 ) return a;
|
|
if( a>b+31 ) return a+1;
|
|
return a+x[a-b];
|
|
}else{
|
|
if( b>a+49 ) return b;
|
|
if( b>a+31 ) return b+1;
|
|
return b+x[b-a];
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Convert an integer into a LogEst. In other words, compute an
|
|
** approximation for 10*log2(x).
|
|
*/
|
|
LogEst sqlite3LogEst(u64 x){
|
|
static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
|
|
LogEst y = 40;
|
|
if( x<8 ){
|
|
if( x<2 ) return 0;
|
|
while( x<8 ){ y -= 10; x <<= 1; }
|
|
}else{
|
|
#if GCC_VERSION>=5004000
|
|
int i = 60 - __builtin_clzll(x);
|
|
y += i*10;
|
|
x >>= i;
|
|
#else
|
|
while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/
|
|
while( x>15 ){ y += 10; x >>= 1; }
|
|
#endif
|
|
}
|
|
return a[x&7] + y - 10;
|
|
}
|
|
|
|
/*
|
|
** Convert a double into a LogEst
|
|
** In other words, compute an approximation for 10*log2(x).
|
|
*/
|
|
LogEst sqlite3LogEstFromDouble(double x){
|
|
u64 a;
|
|
LogEst e;
|
|
assert( sizeof(x)==8 && sizeof(a)==8 );
|
|
if( x<=1 ) return 0;
|
|
if( x<=2000000000 ) return sqlite3LogEst((u64)x);
|
|
memcpy(&a, &x, 8);
|
|
e = (a>>52) - 1022;
|
|
return e*10;
|
|
}
|
|
|
|
/*
|
|
** Convert a LogEst into an integer.
|
|
*/
|
|
u64 sqlite3LogEstToInt(LogEst x){
|
|
u64 n;
|
|
n = x%10;
|
|
x /= 10;
|
|
if( n>=5 ) n -= 2;
|
|
else if( n>=1 ) n -= 1;
|
|
if( x>60 ) return (u64)LARGEST_INT64;
|
|
return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
|
|
}
|
|
|
|
/*
|
|
** Add a new name/number pair to a VList. This might require that the
|
|
** VList object be reallocated, so return the new VList. If an OOM
|
|
** error occurs, the original VList returned and the
|
|
** db->mallocFailed flag is set.
|
|
**
|
|
** A VList is really just an array of integers. To destroy a VList,
|
|
** simply pass it to sqlite3DbFree().
|
|
**
|
|
** The first integer is the number of integers allocated for the whole
|
|
** VList. The second integer is the number of integers actually used.
|
|
** Each name/number pair is encoded by subsequent groups of 3 or more
|
|
** integers.
|
|
**
|
|
** Each name/number pair starts with two integers which are the numeric
|
|
** value for the pair and the size of the name/number pair, respectively.
|
|
** The text name overlays one or more following integers. The text name
|
|
** is always zero-terminated.
|
|
**
|
|
** Conceptually:
|
|
**
|
|
** struct VList {
|
|
** int nAlloc; // Number of allocated slots
|
|
** int nUsed; // Number of used slots
|
|
** struct VListEntry {
|
|
** int iValue; // Value for this entry
|
|
** int nSlot; // Slots used by this entry
|
|
** // ... variable name goes here
|
|
** } a[0];
|
|
** }
|
|
**
|
|
** During code generation, pointers to the variable names within the
|
|
** VList are taken. When that happens, nAlloc is set to zero as an
|
|
** indication that the VList may never again be enlarged, since the
|
|
** accompanying realloc() would invalidate the pointers.
|
|
*/
|
|
VList *sqlite3VListAdd(
|
|
sqlite3 *db, /* The database connection used for malloc() */
|
|
VList *pIn, /* The input VList. Might be NULL */
|
|
const char *zName, /* Name of symbol to add */
|
|
int nName, /* Bytes of text in zName */
|
|
int iVal /* Value to associate with zName */
|
|
){
|
|
int nInt; /* number of sizeof(int) objects needed for zName */
|
|
char *z; /* Pointer to where zName will be stored */
|
|
int i; /* Index in pIn[] where zName is stored */
|
|
|
|
nInt = nName/4 + 3;
|
|
assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */
|
|
if( pIn==0 || pIn[1]+nInt > pIn[0] ){
|
|
/* Enlarge the allocation */
|
|
sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
|
|
VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
|
|
if( pOut==0 ) return pIn;
|
|
if( pIn==0 ) pOut[1] = 2;
|
|
pIn = pOut;
|
|
pIn[0] = nAlloc;
|
|
}
|
|
i = pIn[1];
|
|
pIn[i] = iVal;
|
|
pIn[i+1] = nInt;
|
|
z = (char*)&pIn[i+2];
|
|
pIn[1] = i+nInt;
|
|
assert( pIn[1]<=pIn[0] );
|
|
memcpy(z, zName, nName);
|
|
z[nName] = 0;
|
|
return pIn;
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to the name of a variable in the given VList that
|
|
** has the value iVal. Or return a NULL if there is no such variable in
|
|
** the list
|
|
*/
|
|
const char *sqlite3VListNumToName(VList *pIn, int iVal){
|
|
int i, mx;
|
|
if( pIn==0 ) return 0;
|
|
mx = pIn[1];
|
|
i = 2;
|
|
do{
|
|
if( pIn[i]==iVal ) return (char*)&pIn[i+2];
|
|
i += pIn[i+1];
|
|
}while( i<mx );
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Return the number of the variable named zName, if it is in VList.
|
|
** or return 0 if there is no such variable.
|
|
*/
|
|
int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
|
|
int i, mx;
|
|
if( pIn==0 ) return 0;
|
|
mx = pIn[1];
|
|
i = 2;
|
|
do{
|
|
const char *z = (const char*)&pIn[i+2];
|
|
if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
|
|
i += pIn[i+1];
|
|
}while( i<mx );
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** High-resolution hardware timer used for debugging and testing only.
|
|
*/
|
|
#if defined(VDBE_PROFILE) \
|
|
|| defined(SQLITE_PERFORMANCE_TRACE) \
|
|
|| defined(SQLITE_ENABLE_STMT_SCANSTATUS)
|
|
# include "hwtime.h"
|
|
#endif
|