55be21647e
FossilOrigin-Name: 8c291d99946eb32b20b743921202f9c7cfb716268ff526817b27adbb7942e40b
2908 lines
100 KiB
C
2908 lines
100 KiB
C
/*
|
|
** 2003 April 6
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains code used to implement the PRAGMA command.
|
|
*/
|
|
#include "sqliteInt.h"
|
|
|
|
#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
|
|
# if defined(__APPLE__)
|
|
# define SQLITE_ENABLE_LOCKING_STYLE 1
|
|
# else
|
|
# define SQLITE_ENABLE_LOCKING_STYLE 0
|
|
# endif
|
|
#endif
|
|
|
|
/***************************************************************************
|
|
** The "pragma.h" include file is an automatically generated file that
|
|
** that includes the PragType_XXXX macro definitions and the aPragmaName[]
|
|
** object. This ensures that the aPragmaName[] table is arranged in
|
|
** lexicographical order to facility a binary search of the pragma name.
|
|
** Do not edit pragma.h directly. Edit and rerun the script in at
|
|
** ../tool/mkpragmatab.tcl. */
|
|
#include "pragma.h"
|
|
|
|
/*
|
|
** Interpret the given string as a safety level. Return 0 for OFF,
|
|
** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA. Return 1 for an empty or
|
|
** unrecognized string argument. The FULL and EXTRA option is disallowed
|
|
** if the omitFull parameter it 1.
|
|
**
|
|
** Note that the values returned are one less that the values that
|
|
** should be passed into sqlite3BtreeSetSafetyLevel(). The is done
|
|
** to support legacy SQL code. The safety level used to be boolean
|
|
** and older scripts may have used numbers 0 for OFF and 1 for ON.
|
|
*/
|
|
static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){
|
|
/* 123456789 123456789 123 */
|
|
static const char zText[] = "onoffalseyestruextrafull";
|
|
static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 15, 20};
|
|
static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 5, 4};
|
|
static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 3, 2};
|
|
/* on no off false yes true extra full */
|
|
int i, n;
|
|
if( sqlite3Isdigit(*z) ){
|
|
return (u8)sqlite3Atoi(z);
|
|
}
|
|
n = sqlite3Strlen30(z);
|
|
for(i=0; i<ArraySize(iLength); i++){
|
|
if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0
|
|
&& (!omitFull || iValue[i]<=1)
|
|
){
|
|
return iValue[i];
|
|
}
|
|
}
|
|
return dflt;
|
|
}
|
|
|
|
/*
|
|
** Interpret the given string as a boolean value.
|
|
*/
|
|
u8 sqlite3GetBoolean(const char *z, u8 dflt){
|
|
return getSafetyLevel(z,1,dflt)!=0;
|
|
}
|
|
|
|
/* The sqlite3GetBoolean() function is used by other modules but the
|
|
** remainder of this file is specific to PRAGMA processing. So omit
|
|
** the rest of the file if PRAGMAs are omitted from the build.
|
|
*/
|
|
#if !defined(SQLITE_OMIT_PRAGMA)
|
|
|
|
/*
|
|
** Interpret the given string as a locking mode value.
|
|
*/
|
|
static int getLockingMode(const char *z){
|
|
if( z ){
|
|
if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
|
|
if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL;
|
|
}
|
|
return PAGER_LOCKINGMODE_QUERY;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
/*
|
|
** Interpret the given string as an auto-vacuum mode value.
|
|
**
|
|
** The following strings, "none", "full" and "incremental" are
|
|
** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
|
|
*/
|
|
static int getAutoVacuum(const char *z){
|
|
int i;
|
|
if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE;
|
|
if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL;
|
|
if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR;
|
|
i = sqlite3Atoi(z);
|
|
return (u8)((i>=0&&i<=2)?i:0);
|
|
}
|
|
#endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
|
|
|
|
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
/*
|
|
** Interpret the given string as a temp db location. Return 1 for file
|
|
** backed temporary databases, 2 for the Red-Black tree in memory database
|
|
** and 0 to use the compile-time default.
|
|
*/
|
|
static int getTempStore(const char *z){
|
|
if( z[0]>='0' && z[0]<='2' ){
|
|
return z[0] - '0';
|
|
}else if( sqlite3StrICmp(z, "file")==0 ){
|
|
return 1;
|
|
}else if( sqlite3StrICmp(z, "memory")==0 ){
|
|
return 2;
|
|
}else{
|
|
return 0;
|
|
}
|
|
}
|
|
#endif /* SQLITE_PAGER_PRAGMAS */
|
|
|
|
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
/*
|
|
** Invalidate temp storage, either when the temp storage is changed
|
|
** from default, or when 'file' and the temp_store_directory has changed
|
|
*/
|
|
static int invalidateTempStorage(Parse *pParse){
|
|
sqlite3 *db = pParse->db;
|
|
if( db->aDb[1].pBt!=0 ){
|
|
if( !db->autoCommit
|
|
|| sqlite3BtreeTxnState(db->aDb[1].pBt)!=SQLITE_TXN_NONE
|
|
){
|
|
sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
|
|
"from within a transaction");
|
|
return SQLITE_ERROR;
|
|
}
|
|
sqlite3BtreeClose(db->aDb[1].pBt);
|
|
db->aDb[1].pBt = 0;
|
|
sqlite3ResetAllSchemasOfConnection(db);
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
#endif /* SQLITE_PAGER_PRAGMAS */
|
|
|
|
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
/*
|
|
** If the TEMP database is open, close it and mark the database schema
|
|
** as needing reloading. This must be done when using the SQLITE_TEMP_STORE
|
|
** or DEFAULT_TEMP_STORE pragmas.
|
|
*/
|
|
static int changeTempStorage(Parse *pParse, const char *zStorageType){
|
|
int ts = getTempStore(zStorageType);
|
|
sqlite3 *db = pParse->db;
|
|
if( db->temp_store==ts ) return SQLITE_OK;
|
|
if( invalidateTempStorage( pParse ) != SQLITE_OK ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
db->temp_store = (u8)ts;
|
|
return SQLITE_OK;
|
|
}
|
|
#endif /* SQLITE_PAGER_PRAGMAS */
|
|
|
|
/*
|
|
** Set result column names for a pragma.
|
|
*/
|
|
static void setPragmaResultColumnNames(
|
|
Vdbe *v, /* The query under construction */
|
|
const PragmaName *pPragma /* The pragma */
|
|
){
|
|
u8 n = pPragma->nPragCName;
|
|
sqlite3VdbeSetNumCols(v, n==0 ? 1 : n);
|
|
if( n==0 ){
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC);
|
|
}else{
|
|
int i, j;
|
|
for(i=0, j=pPragma->iPragCName; i<n; i++, j++){
|
|
sqlite3VdbeSetColName(v, i, COLNAME_NAME, pragCName[j], SQLITE_STATIC);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code to return a single integer value.
|
|
*/
|
|
static void returnSingleInt(Vdbe *v, i64 value){
|
|
sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, 1, 0, (const u8*)&value, P4_INT64);
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
|
|
}
|
|
|
|
/*
|
|
** Generate code to return a single text value.
|
|
*/
|
|
static void returnSingleText(
|
|
Vdbe *v, /* Prepared statement under construction */
|
|
const char *zValue /* Value to be returned */
|
|
){
|
|
if( zValue ){
|
|
sqlite3VdbeLoadString(v, 1, (const char*)zValue);
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Set the safety_level and pager flags for pager iDb. Or if iDb<0
|
|
** set these values for all pagers.
|
|
*/
|
|
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
static void setAllPagerFlags(sqlite3 *db){
|
|
if( db->autoCommit ){
|
|
Db *pDb = db->aDb;
|
|
int n = db->nDb;
|
|
assert( SQLITE_FullFSync==PAGER_FULLFSYNC );
|
|
assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC );
|
|
assert( SQLITE_CacheSpill==PAGER_CACHESPILL );
|
|
assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL)
|
|
== PAGER_FLAGS_MASK );
|
|
assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level );
|
|
while( (n--) > 0 ){
|
|
if( pDb->pBt ){
|
|
sqlite3BtreeSetPagerFlags(pDb->pBt,
|
|
pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) );
|
|
}
|
|
pDb++;
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
# define setAllPagerFlags(X) /* no-op */
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Return a human-readable name for a constraint resolution action.
|
|
*/
|
|
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
static const char *actionName(u8 action){
|
|
const char *zName;
|
|
switch( action ){
|
|
case OE_SetNull: zName = "SET NULL"; break;
|
|
case OE_SetDflt: zName = "SET DEFAULT"; break;
|
|
case OE_Cascade: zName = "CASCADE"; break;
|
|
case OE_Restrict: zName = "RESTRICT"; break;
|
|
default: zName = "NO ACTION";
|
|
assert( action==OE_None ); break;
|
|
}
|
|
return zName;
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants
|
|
** defined in pager.h. This function returns the associated lowercase
|
|
** journal-mode name.
|
|
*/
|
|
const char *sqlite3JournalModename(int eMode){
|
|
static char * const azModeName[] = {
|
|
"delete", "persist", "off", "truncate", "memory"
|
|
#ifndef SQLITE_OMIT_WAL
|
|
, "wal"
|
|
#endif
|
|
};
|
|
assert( PAGER_JOURNALMODE_DELETE==0 );
|
|
assert( PAGER_JOURNALMODE_PERSIST==1 );
|
|
assert( PAGER_JOURNALMODE_OFF==2 );
|
|
assert( PAGER_JOURNALMODE_TRUNCATE==3 );
|
|
assert( PAGER_JOURNALMODE_MEMORY==4 );
|
|
assert( PAGER_JOURNALMODE_WAL==5 );
|
|
assert( eMode>=0 && eMode<=ArraySize(azModeName) );
|
|
|
|
if( eMode==ArraySize(azModeName) ) return 0;
|
|
return azModeName[eMode];
|
|
}
|
|
|
|
/*
|
|
** Locate a pragma in the aPragmaName[] array.
|
|
*/
|
|
static const PragmaName *pragmaLocate(const char *zName){
|
|
int upr, lwr, mid = 0, rc;
|
|
lwr = 0;
|
|
upr = ArraySize(aPragmaName)-1;
|
|
while( lwr<=upr ){
|
|
mid = (lwr+upr)/2;
|
|
rc = sqlite3_stricmp(zName, aPragmaName[mid].zName);
|
|
if( rc==0 ) break;
|
|
if( rc<0 ){
|
|
upr = mid - 1;
|
|
}else{
|
|
lwr = mid + 1;
|
|
}
|
|
}
|
|
return lwr>upr ? 0 : &aPragmaName[mid];
|
|
}
|
|
|
|
/*
|
|
** Create zero or more entries in the output for the SQL functions
|
|
** defined by FuncDef p.
|
|
*/
|
|
static void pragmaFunclistLine(
|
|
Vdbe *v, /* The prepared statement being created */
|
|
FuncDef *p, /* A particular function definition */
|
|
int isBuiltin, /* True if this is a built-in function */
|
|
int showInternFuncs /* True if showing internal functions */
|
|
){
|
|
u32 mask =
|
|
SQLITE_DETERMINISTIC |
|
|
SQLITE_DIRECTONLY |
|
|
SQLITE_SUBTYPE |
|
|
SQLITE_INNOCUOUS |
|
|
SQLITE_FUNC_INTERNAL
|
|
;
|
|
if( showInternFuncs ) mask = 0xffffffff;
|
|
for(; p; p=p->pNext){
|
|
const char *zType;
|
|
static const char *azEnc[] = { 0, "utf8", "utf16le", "utf16be" };
|
|
|
|
assert( SQLITE_FUNC_ENCMASK==0x3 );
|
|
assert( strcmp(azEnc[SQLITE_UTF8],"utf8")==0 );
|
|
assert( strcmp(azEnc[SQLITE_UTF16LE],"utf16le")==0 );
|
|
assert( strcmp(azEnc[SQLITE_UTF16BE],"utf16be")==0 );
|
|
|
|
if( p->xSFunc==0 ) continue;
|
|
if( (p->funcFlags & SQLITE_FUNC_INTERNAL)!=0
|
|
&& showInternFuncs==0
|
|
){
|
|
continue;
|
|
}
|
|
if( p->xValue!=0 ){
|
|
zType = "w";
|
|
}else if( p->xFinalize!=0 ){
|
|
zType = "a";
|
|
}else{
|
|
zType = "s";
|
|
}
|
|
sqlite3VdbeMultiLoad(v, 1, "sissii",
|
|
p->zName, isBuiltin,
|
|
zType, azEnc[p->funcFlags&SQLITE_FUNC_ENCMASK],
|
|
p->nArg,
|
|
(p->funcFlags & mask) ^ SQLITE_INNOCUOUS
|
|
);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Helper subroutine for PRAGMA integrity_check:
|
|
**
|
|
** Generate code to output a single-column result row with a value of the
|
|
** string held in register 3. Decrement the result count in register 1
|
|
** and halt if the maximum number of result rows have been issued.
|
|
*/
|
|
static int integrityCheckResultRow(Vdbe *v){
|
|
int addr;
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1);
|
|
addr = sqlite3VdbeAddOp3(v, OP_IfPos, 1, sqlite3VdbeCurrentAddr(v)+2, 1);
|
|
VdbeCoverage(v);
|
|
sqlite3VdbeAddOp0(v, OP_Halt);
|
|
return addr;
|
|
}
|
|
|
|
/*
|
|
** Process a pragma statement.
|
|
**
|
|
** Pragmas are of this form:
|
|
**
|
|
** PRAGMA [schema.]id [= value]
|
|
**
|
|
** The identifier might also be a string. The value is a string, and
|
|
** identifier, or a number. If minusFlag is true, then the value is
|
|
** a number that was preceded by a minus sign.
|
|
**
|
|
** If the left side is "database.id" then pId1 is the database name
|
|
** and pId2 is the id. If the left side is just "id" then pId1 is the
|
|
** id and pId2 is any empty string.
|
|
*/
|
|
void sqlite3Pragma(
|
|
Parse *pParse,
|
|
Token *pId1, /* First part of [schema.]id field */
|
|
Token *pId2, /* Second part of [schema.]id field, or NULL */
|
|
Token *pValue, /* Token for <value>, or NULL */
|
|
int minusFlag /* True if a '-' sign preceded <value> */
|
|
){
|
|
char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */
|
|
char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */
|
|
const char *zDb = 0; /* The database name */
|
|
Token *pId; /* Pointer to <id> token */
|
|
char *aFcntl[4]; /* Argument to SQLITE_FCNTL_PRAGMA */
|
|
int iDb; /* Database index for <database> */
|
|
int rc; /* return value form SQLITE_FCNTL_PRAGMA */
|
|
sqlite3 *db = pParse->db; /* The database connection */
|
|
Db *pDb; /* The specific database being pragmaed */
|
|
Vdbe *v = sqlite3GetVdbe(pParse); /* Prepared statement */
|
|
const PragmaName *pPragma; /* The pragma */
|
|
|
|
if( v==0 ) return;
|
|
sqlite3VdbeRunOnlyOnce(v);
|
|
pParse->nMem = 2;
|
|
|
|
/* Interpret the [schema.] part of the pragma statement. iDb is the
|
|
** index of the database this pragma is being applied to in db.aDb[]. */
|
|
iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
|
|
if( iDb<0 ) return;
|
|
pDb = &db->aDb[iDb];
|
|
|
|
/* If the temp database has been explicitly named as part of the
|
|
** pragma, make sure it is open.
|
|
*/
|
|
if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
|
|
return;
|
|
}
|
|
|
|
zLeft = sqlite3NameFromToken(db, pId);
|
|
if( !zLeft ) return;
|
|
if( minusFlag ){
|
|
zRight = sqlite3MPrintf(db, "-%T", pValue);
|
|
}else{
|
|
zRight = sqlite3NameFromToken(db, pValue);
|
|
}
|
|
|
|
assert( pId2 );
|
|
zDb = pId2->n>0 ? pDb->zDbSName : 0;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
|
|
goto pragma_out;
|
|
}
|
|
|
|
/* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS
|
|
** connection. If it returns SQLITE_OK, then assume that the VFS
|
|
** handled the pragma and generate a no-op prepared statement.
|
|
**
|
|
** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed,
|
|
** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file
|
|
** object corresponding to the database file to which the pragma
|
|
** statement refers.
|
|
**
|
|
** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA
|
|
** file control is an array of pointers to strings (char**) in which the
|
|
** second element of the array is the name of the pragma and the third
|
|
** element is the argument to the pragma or NULL if the pragma has no
|
|
** argument.
|
|
*/
|
|
aFcntl[0] = 0;
|
|
aFcntl[1] = zLeft;
|
|
aFcntl[2] = zRight;
|
|
aFcntl[3] = 0;
|
|
db->busyHandler.nBusy = 0;
|
|
rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3VdbeSetNumCols(v, 1);
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT);
|
|
returnSingleText(v, aFcntl[0]);
|
|
sqlite3_free(aFcntl[0]);
|
|
goto pragma_out;
|
|
}
|
|
if( rc!=SQLITE_NOTFOUND ){
|
|
if( aFcntl[0] ){
|
|
sqlite3ErrorMsg(pParse, "%s", aFcntl[0]);
|
|
sqlite3_free(aFcntl[0]);
|
|
}
|
|
pParse->nErr++;
|
|
pParse->rc = rc;
|
|
goto pragma_out;
|
|
}
|
|
|
|
/* Locate the pragma in the lookup table */
|
|
pPragma = pragmaLocate(zLeft);
|
|
if( pPragma==0 ){
|
|
/* IMP: R-43042-22504 No error messages are generated if an
|
|
** unknown pragma is issued. */
|
|
goto pragma_out;
|
|
}
|
|
|
|
/* Make sure the database schema is loaded if the pragma requires that */
|
|
if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){
|
|
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
|
}
|
|
|
|
/* Register the result column names for pragmas that return results */
|
|
if( (pPragma->mPragFlg & PragFlg_NoColumns)==0
|
|
&& ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0)
|
|
){
|
|
setPragmaResultColumnNames(v, pPragma);
|
|
}
|
|
|
|
/* Jump to the appropriate pragma handler */
|
|
switch( pPragma->ePragTyp ){
|
|
|
|
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
|
|
/*
|
|
** PRAGMA [schema.]default_cache_size
|
|
** PRAGMA [schema.]default_cache_size=N
|
|
**
|
|
** The first form reports the current persistent setting for the
|
|
** page cache size. The value returned is the maximum number of
|
|
** pages in the page cache. The second form sets both the current
|
|
** page cache size value and the persistent page cache size value
|
|
** stored in the database file.
|
|
**
|
|
** Older versions of SQLite would set the default cache size to a
|
|
** negative number to indicate synchronous=OFF. These days, synchronous
|
|
** is always on by default regardless of the sign of the default cache
|
|
** size. But continue to take the absolute value of the default cache
|
|
** size of historical compatibility.
|
|
*/
|
|
case PragTyp_DEFAULT_CACHE_SIZE: {
|
|
static const int iLn = VDBE_OFFSET_LINENO(2);
|
|
static const VdbeOpList getCacheSize[] = {
|
|
{ OP_Transaction, 0, 0, 0}, /* 0 */
|
|
{ OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */
|
|
{ OP_IfPos, 1, 8, 0},
|
|
{ OP_Integer, 0, 2, 0},
|
|
{ OP_Subtract, 1, 2, 1},
|
|
{ OP_IfPos, 1, 8, 0},
|
|
{ OP_Integer, 0, 1, 0}, /* 6 */
|
|
{ OP_Noop, 0, 0, 0},
|
|
{ OP_ResultRow, 1, 1, 0},
|
|
};
|
|
VdbeOp *aOp;
|
|
sqlite3VdbeUsesBtree(v, iDb);
|
|
if( !zRight ){
|
|
pParse->nMem += 2;
|
|
sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize));
|
|
aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn);
|
|
if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
|
|
aOp[0].p1 = iDb;
|
|
aOp[1].p1 = iDb;
|
|
aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE;
|
|
}else{
|
|
int size = sqlite3AbsInt32(sqlite3Atoi(zRight));
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size);
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
|
pDb->pSchema->cache_size = size;
|
|
sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
|
|
}
|
|
break;
|
|
}
|
|
#endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */
|
|
|
|
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
|
|
/*
|
|
** PRAGMA [schema.]page_size
|
|
** PRAGMA [schema.]page_size=N
|
|
**
|
|
** The first form reports the current setting for the
|
|
** database page size in bytes. The second form sets the
|
|
** database page size value. The value can only be set if
|
|
** the database has not yet been created.
|
|
*/
|
|
case PragTyp_PAGE_SIZE: {
|
|
Btree *pBt = pDb->pBt;
|
|
assert( pBt!=0 );
|
|
if( !zRight ){
|
|
int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0;
|
|
returnSingleInt(v, size);
|
|
}else{
|
|
/* Malloc may fail when setting the page-size, as there is an internal
|
|
** buffer that the pager module resizes using sqlite3_realloc().
|
|
*/
|
|
db->nextPagesize = sqlite3Atoi(zRight);
|
|
if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,0,0) ){
|
|
sqlite3OomFault(db);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** PRAGMA [schema.]secure_delete
|
|
** PRAGMA [schema.]secure_delete=ON/OFF/FAST
|
|
**
|
|
** The first form reports the current setting for the
|
|
** secure_delete flag. The second form changes the secure_delete
|
|
** flag setting and reports the new value.
|
|
*/
|
|
case PragTyp_SECURE_DELETE: {
|
|
Btree *pBt = pDb->pBt;
|
|
int b = -1;
|
|
assert( pBt!=0 );
|
|
if( zRight ){
|
|
if( sqlite3_stricmp(zRight, "fast")==0 ){
|
|
b = 2;
|
|
}else{
|
|
b = sqlite3GetBoolean(zRight, 0);
|
|
}
|
|
}
|
|
if( pId2->n==0 && b>=0 ){
|
|
int ii;
|
|
for(ii=0; ii<db->nDb; ii++){
|
|
sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b);
|
|
}
|
|
}
|
|
b = sqlite3BtreeSecureDelete(pBt, b);
|
|
returnSingleInt(v, b);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** PRAGMA [schema.]max_page_count
|
|
** PRAGMA [schema.]max_page_count=N
|
|
**
|
|
** The first form reports the current setting for the
|
|
** maximum number of pages in the database file. The
|
|
** second form attempts to change this setting. Both
|
|
** forms return the current setting.
|
|
**
|
|
** The absolute value of N is used. This is undocumented and might
|
|
** change. The only purpose is to provide an easy way to test
|
|
** the sqlite3AbsInt32() function.
|
|
**
|
|
** PRAGMA [schema.]page_count
|
|
**
|
|
** Return the number of pages in the specified database.
|
|
*/
|
|
case PragTyp_PAGE_COUNT: {
|
|
int iReg;
|
|
i64 x = 0;
|
|
sqlite3CodeVerifySchema(pParse, iDb);
|
|
iReg = ++pParse->nMem;
|
|
if( sqlite3Tolower(zLeft[0])=='p' ){
|
|
sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
|
|
}else{
|
|
if( zRight && sqlite3DecOrHexToI64(zRight,&x)==0 ){
|
|
if( x<0 ) x = 0;
|
|
else if( x>0xfffffffe ) x = 0xfffffffe;
|
|
}else{
|
|
x = 0;
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, (int)x);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** PRAGMA [schema.]locking_mode
|
|
** PRAGMA [schema.]locking_mode = (normal|exclusive)
|
|
*/
|
|
case PragTyp_LOCKING_MODE: {
|
|
const char *zRet = "normal";
|
|
int eMode = getLockingMode(zRight);
|
|
|
|
if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
|
|
/* Simple "PRAGMA locking_mode;" statement. This is a query for
|
|
** the current default locking mode (which may be different to
|
|
** the locking-mode of the main database).
|
|
*/
|
|
eMode = db->dfltLockMode;
|
|
}else{
|
|
Pager *pPager;
|
|
if( pId2->n==0 ){
|
|
/* This indicates that no database name was specified as part
|
|
** of the PRAGMA command. In this case the locking-mode must be
|
|
** set on all attached databases, as well as the main db file.
|
|
**
|
|
** Also, the sqlite3.dfltLockMode variable is set so that
|
|
** any subsequently attached databases also use the specified
|
|
** locking mode.
|
|
*/
|
|
int ii;
|
|
assert(pDb==&db->aDb[0]);
|
|
for(ii=2; ii<db->nDb; ii++){
|
|
pPager = sqlite3BtreePager(db->aDb[ii].pBt);
|
|
sqlite3PagerLockingMode(pPager, eMode);
|
|
}
|
|
db->dfltLockMode = (u8)eMode;
|
|
}
|
|
pPager = sqlite3BtreePager(pDb->pBt);
|
|
eMode = sqlite3PagerLockingMode(pPager, eMode);
|
|
}
|
|
|
|
assert( eMode==PAGER_LOCKINGMODE_NORMAL
|
|
|| eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
|
|
if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
|
|
zRet = "exclusive";
|
|
}
|
|
returnSingleText(v, zRet);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** PRAGMA [schema.]journal_mode
|
|
** PRAGMA [schema.]journal_mode =
|
|
** (delete|persist|off|truncate|memory|wal|off)
|
|
*/
|
|
case PragTyp_JOURNAL_MODE: {
|
|
int eMode; /* One of the PAGER_JOURNALMODE_XXX symbols */
|
|
int ii; /* Loop counter */
|
|
|
|
if( zRight==0 ){
|
|
/* If there is no "=MODE" part of the pragma, do a query for the
|
|
** current mode */
|
|
eMode = PAGER_JOURNALMODE_QUERY;
|
|
}else{
|
|
const char *zMode;
|
|
int n = sqlite3Strlen30(zRight);
|
|
for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){
|
|
if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break;
|
|
}
|
|
if( !zMode ){
|
|
/* If the "=MODE" part does not match any known journal mode,
|
|
** then do a query */
|
|
eMode = PAGER_JOURNALMODE_QUERY;
|
|
}
|
|
if( eMode==PAGER_JOURNALMODE_OFF && (db->flags & SQLITE_Defensive)!=0 ){
|
|
/* Do not allow journal-mode "OFF" in defensive since the database
|
|
** can become corrupted using ordinary SQL when the journal is off */
|
|
eMode = PAGER_JOURNALMODE_QUERY;
|
|
}
|
|
}
|
|
if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){
|
|
/* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */
|
|
iDb = 0;
|
|
pId2->n = 1;
|
|
}
|
|
for(ii=db->nDb-1; ii>=0; ii--){
|
|
if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
|
|
sqlite3VdbeUsesBtree(v, ii);
|
|
sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode);
|
|
}
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** PRAGMA [schema.]journal_size_limit
|
|
** PRAGMA [schema.]journal_size_limit=N
|
|
**
|
|
** Get or set the size limit on rollback journal files.
|
|
*/
|
|
case PragTyp_JOURNAL_SIZE_LIMIT: {
|
|
Pager *pPager = sqlite3BtreePager(pDb->pBt);
|
|
i64 iLimit = -2;
|
|
if( zRight ){
|
|
sqlite3DecOrHexToI64(zRight, &iLimit);
|
|
if( iLimit<-1 ) iLimit = -1;
|
|
}
|
|
iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
|
|
returnSingleInt(v, iLimit);
|
|
break;
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
|
|
|
|
/*
|
|
** PRAGMA [schema.]auto_vacuum
|
|
** PRAGMA [schema.]auto_vacuum=N
|
|
**
|
|
** Get or set the value of the database 'auto-vacuum' parameter.
|
|
** The value is one of: 0 NONE 1 FULL 2 INCREMENTAL
|
|
*/
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
case PragTyp_AUTO_VACUUM: {
|
|
Btree *pBt = pDb->pBt;
|
|
assert( pBt!=0 );
|
|
if( !zRight ){
|
|
returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt));
|
|
}else{
|
|
int eAuto = getAutoVacuum(zRight);
|
|
assert( eAuto>=0 && eAuto<=2 );
|
|
db->nextAutovac = (u8)eAuto;
|
|
/* Call SetAutoVacuum() to set initialize the internal auto and
|
|
** incr-vacuum flags. This is required in case this connection
|
|
** creates the database file. It is important that it is created
|
|
** as an auto-vacuum capable db.
|
|
*/
|
|
rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
|
|
if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
|
|
/* When setting the auto_vacuum mode to either "full" or
|
|
** "incremental", write the value of meta[6] in the database
|
|
** file. Before writing to meta[6], check that meta[3] indicates
|
|
** that this really is an auto-vacuum capable database.
|
|
*/
|
|
static const int iLn = VDBE_OFFSET_LINENO(2);
|
|
static const VdbeOpList setMeta6[] = {
|
|
{ OP_Transaction, 0, 1, 0}, /* 0 */
|
|
{ OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE},
|
|
{ OP_If, 1, 0, 0}, /* 2 */
|
|
{ OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */
|
|
{ OP_SetCookie, 0, BTREE_INCR_VACUUM, 0}, /* 4 */
|
|
};
|
|
VdbeOp *aOp;
|
|
int iAddr = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6));
|
|
aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn);
|
|
if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
|
|
aOp[0].p1 = iDb;
|
|
aOp[1].p1 = iDb;
|
|
aOp[2].p2 = iAddr+4;
|
|
aOp[4].p1 = iDb;
|
|
aOp[4].p3 = eAuto - 1;
|
|
sqlite3VdbeUsesBtree(v, iDb);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** PRAGMA [schema.]incremental_vacuum(N)
|
|
**
|
|
** Do N steps of incremental vacuuming on a database.
|
|
*/
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
case PragTyp_INCREMENTAL_VACUUM: {
|
|
int iLimit = 0, addr;
|
|
if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
|
|
iLimit = 0x7fffffff;
|
|
}
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
|
|
addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v);
|
|
sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
|
|
sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v);
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
/*
|
|
** PRAGMA [schema.]cache_size
|
|
** PRAGMA [schema.]cache_size=N
|
|
**
|
|
** The first form reports the current local setting for the
|
|
** page cache size. The second form sets the local
|
|
** page cache size value. If N is positive then that is the
|
|
** number of pages in the cache. If N is negative, then the
|
|
** number of pages is adjusted so that the cache uses -N kibibytes
|
|
** of memory.
|
|
*/
|
|
case PragTyp_CACHE_SIZE: {
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
|
if( !zRight ){
|
|
returnSingleInt(v, pDb->pSchema->cache_size);
|
|
}else{
|
|
int size = sqlite3Atoi(zRight);
|
|
pDb->pSchema->cache_size = size;
|
|
sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** PRAGMA [schema.]cache_spill
|
|
** PRAGMA cache_spill=BOOLEAN
|
|
** PRAGMA [schema.]cache_spill=N
|
|
**
|
|
** The first form reports the current local setting for the
|
|
** page cache spill size. The second form turns cache spill on
|
|
** or off. When turning cache spill on, the size is set to the
|
|
** current cache_size. The third form sets a spill size that
|
|
** may be different form the cache size.
|
|
** If N is positive then that is the
|
|
** number of pages in the cache. If N is negative, then the
|
|
** number of pages is adjusted so that the cache uses -N kibibytes
|
|
** of memory.
|
|
**
|
|
** If the number of cache_spill pages is less then the number of
|
|
** cache_size pages, no spilling occurs until the page count exceeds
|
|
** the number of cache_size pages.
|
|
**
|
|
** The cache_spill=BOOLEAN setting applies to all attached schemas,
|
|
** not just the schema specified.
|
|
*/
|
|
case PragTyp_CACHE_SPILL: {
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
|
if( !zRight ){
|
|
returnSingleInt(v,
|
|
(db->flags & SQLITE_CacheSpill)==0 ? 0 :
|
|
sqlite3BtreeSetSpillSize(pDb->pBt,0));
|
|
}else{
|
|
int size = 1;
|
|
if( sqlite3GetInt32(zRight, &size) ){
|
|
sqlite3BtreeSetSpillSize(pDb->pBt, size);
|
|
}
|
|
if( sqlite3GetBoolean(zRight, size!=0) ){
|
|
db->flags |= SQLITE_CacheSpill;
|
|
}else{
|
|
db->flags &= ~(u64)SQLITE_CacheSpill;
|
|
}
|
|
setAllPagerFlags(db);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** PRAGMA [schema.]mmap_size(N)
|
|
**
|
|
** Used to set mapping size limit. The mapping size limit is
|
|
** used to limit the aggregate size of all memory mapped regions of the
|
|
** database file. If this parameter is set to zero, then memory mapping
|
|
** is not used at all. If N is negative, then the default memory map
|
|
** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set.
|
|
** The parameter N is measured in bytes.
|
|
**
|
|
** This value is advisory. The underlying VFS is free to memory map
|
|
** as little or as much as it wants. Except, if N is set to 0 then the
|
|
** upper layers will never invoke the xFetch interfaces to the VFS.
|
|
*/
|
|
case PragTyp_MMAP_SIZE: {
|
|
sqlite3_int64 sz;
|
|
#if SQLITE_MAX_MMAP_SIZE>0
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
|
if( zRight ){
|
|
int ii;
|
|
sqlite3DecOrHexToI64(zRight, &sz);
|
|
if( sz<0 ) sz = sqlite3GlobalConfig.szMmap;
|
|
if( pId2->n==0 ) db->szMmap = sz;
|
|
for(ii=db->nDb-1; ii>=0; ii--){
|
|
if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
|
|
sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz);
|
|
}
|
|
}
|
|
}
|
|
sz = -1;
|
|
rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz);
|
|
#else
|
|
sz = 0;
|
|
rc = SQLITE_OK;
|
|
#endif
|
|
if( rc==SQLITE_OK ){
|
|
returnSingleInt(v, sz);
|
|
}else if( rc!=SQLITE_NOTFOUND ){
|
|
pParse->nErr++;
|
|
pParse->rc = rc;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** PRAGMA temp_store
|
|
** PRAGMA temp_store = "default"|"memory"|"file"
|
|
**
|
|
** Return or set the local value of the temp_store flag. Changing
|
|
** the local value does not make changes to the disk file and the default
|
|
** value will be restored the next time the database is opened.
|
|
**
|
|
** Note that it is possible for the library compile-time options to
|
|
** override this setting
|
|
*/
|
|
case PragTyp_TEMP_STORE: {
|
|
if( !zRight ){
|
|
returnSingleInt(v, db->temp_store);
|
|
}else{
|
|
changeTempStorage(pParse, zRight);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** PRAGMA temp_store_directory
|
|
** PRAGMA temp_store_directory = ""|"directory_name"
|
|
**
|
|
** Return or set the local value of the temp_store_directory flag. Changing
|
|
** the value sets a specific directory to be used for temporary files.
|
|
** Setting to a null string reverts to the default temporary directory search.
|
|
** If temporary directory is changed, then invalidateTempStorage.
|
|
**
|
|
*/
|
|
case PragTyp_TEMP_STORE_DIRECTORY: {
|
|
sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
|
|
if( !zRight ){
|
|
returnSingleText(v, sqlite3_temp_directory);
|
|
}else{
|
|
#ifndef SQLITE_OMIT_WSD
|
|
if( zRight[0] ){
|
|
int res;
|
|
rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
|
|
if( rc!=SQLITE_OK || res==0 ){
|
|
sqlite3ErrorMsg(pParse, "not a writable directory");
|
|
sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
|
|
goto pragma_out;
|
|
}
|
|
}
|
|
if( SQLITE_TEMP_STORE==0
|
|
|| (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
|
|
|| (SQLITE_TEMP_STORE==2 && db->temp_store==1)
|
|
){
|
|
invalidateTempStorage(pParse);
|
|
}
|
|
sqlite3_free(sqlite3_temp_directory);
|
|
if( zRight[0] ){
|
|
sqlite3_temp_directory = sqlite3_mprintf("%s", zRight);
|
|
}else{
|
|
sqlite3_temp_directory = 0;
|
|
}
|
|
#endif /* SQLITE_OMIT_WSD */
|
|
}
|
|
sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
|
|
break;
|
|
}
|
|
|
|
#if SQLITE_OS_WIN
|
|
/*
|
|
** PRAGMA data_store_directory
|
|
** PRAGMA data_store_directory = ""|"directory_name"
|
|
**
|
|
** Return or set the local value of the data_store_directory flag. Changing
|
|
** the value sets a specific directory to be used for database files that
|
|
** were specified with a relative pathname. Setting to a null string reverts
|
|
** to the default database directory, which for database files specified with
|
|
** a relative path will probably be based on the current directory for the
|
|
** process. Database file specified with an absolute path are not impacted
|
|
** by this setting, regardless of its value.
|
|
**
|
|
*/
|
|
case PragTyp_DATA_STORE_DIRECTORY: {
|
|
sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
|
|
if( !zRight ){
|
|
returnSingleText(v, sqlite3_data_directory);
|
|
}else{
|
|
#ifndef SQLITE_OMIT_WSD
|
|
if( zRight[0] ){
|
|
int res;
|
|
rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
|
|
if( rc!=SQLITE_OK || res==0 ){
|
|
sqlite3ErrorMsg(pParse, "not a writable directory");
|
|
sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
|
|
goto pragma_out;
|
|
}
|
|
}
|
|
sqlite3_free(sqlite3_data_directory);
|
|
if( zRight[0] ){
|
|
sqlite3_data_directory = sqlite3_mprintf("%s", zRight);
|
|
}else{
|
|
sqlite3_data_directory = 0;
|
|
}
|
|
#endif /* SQLITE_OMIT_WSD */
|
|
}
|
|
sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#if SQLITE_ENABLE_LOCKING_STYLE
|
|
/*
|
|
** PRAGMA [schema.]lock_proxy_file
|
|
** PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path"
|
|
**
|
|
** Return or set the value of the lock_proxy_file flag. Changing
|
|
** the value sets a specific file to be used for database access locks.
|
|
**
|
|
*/
|
|
case PragTyp_LOCK_PROXY_FILE: {
|
|
if( !zRight ){
|
|
Pager *pPager = sqlite3BtreePager(pDb->pBt);
|
|
char *proxy_file_path = NULL;
|
|
sqlite3_file *pFile = sqlite3PagerFile(pPager);
|
|
sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE,
|
|
&proxy_file_path);
|
|
returnSingleText(v, proxy_file_path);
|
|
}else{
|
|
Pager *pPager = sqlite3BtreePager(pDb->pBt);
|
|
sqlite3_file *pFile = sqlite3PagerFile(pPager);
|
|
int res;
|
|
if( zRight[0] ){
|
|
res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
|
|
zRight);
|
|
} else {
|
|
res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
|
|
NULL);
|
|
}
|
|
if( res!=SQLITE_OK ){
|
|
sqlite3ErrorMsg(pParse, "failed to set lock proxy file");
|
|
goto pragma_out;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
|
|
|
|
/*
|
|
** PRAGMA [schema.]synchronous
|
|
** PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA
|
|
**
|
|
** Return or set the local value of the synchronous flag. Changing
|
|
** the local value does not make changes to the disk file and the
|
|
** default value will be restored the next time the database is
|
|
** opened.
|
|
*/
|
|
case PragTyp_SYNCHRONOUS: {
|
|
if( !zRight ){
|
|
returnSingleInt(v, pDb->safety_level-1);
|
|
}else{
|
|
if( !db->autoCommit ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"Safety level may not be changed inside a transaction");
|
|
}else if( iDb!=1 ){
|
|
int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK;
|
|
if( iLevel==0 ) iLevel = 1;
|
|
pDb->safety_level = iLevel;
|
|
pDb->bSyncSet = 1;
|
|
setAllPagerFlags(db);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
|
|
|
|
#ifndef SQLITE_OMIT_FLAG_PRAGMAS
|
|
case PragTyp_FLAG: {
|
|
if( zRight==0 ){
|
|
setPragmaResultColumnNames(v, pPragma);
|
|
returnSingleInt(v, (db->flags & pPragma->iArg)!=0 );
|
|
}else{
|
|
u64 mask = pPragma->iArg; /* Mask of bits to set or clear. */
|
|
if( db->autoCommit==0 ){
|
|
/* Foreign key support may not be enabled or disabled while not
|
|
** in auto-commit mode. */
|
|
mask &= ~(SQLITE_ForeignKeys);
|
|
}
|
|
#if SQLITE_USER_AUTHENTICATION
|
|
if( db->auth.authLevel==UAUTH_User ){
|
|
/* Do not allow non-admin users to modify the schema arbitrarily */
|
|
mask &= ~(SQLITE_WriteSchema);
|
|
}
|
|
#endif
|
|
|
|
if( sqlite3GetBoolean(zRight, 0) ){
|
|
db->flags |= mask;
|
|
}else{
|
|
db->flags &= ~mask;
|
|
if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0;
|
|
if( (mask & SQLITE_WriteSchema)!=0
|
|
&& sqlite3_stricmp(zRight, "reset")==0
|
|
){
|
|
/* IMP: R-60817-01178 If the argument is "RESET" then schema
|
|
** writing is disabled (as with "PRAGMA writable_schema=OFF") and,
|
|
** in addition, the schema is reloaded. */
|
|
sqlite3ResetAllSchemasOfConnection(db);
|
|
}
|
|
}
|
|
|
|
/* Many of the flag-pragmas modify the code generated by the SQL
|
|
** compiler (eg. count_changes). So add an opcode to expire all
|
|
** compiled SQL statements after modifying a pragma value.
|
|
*/
|
|
sqlite3VdbeAddOp0(v, OP_Expire);
|
|
setAllPagerFlags(db);
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_FLAG_PRAGMAS */
|
|
|
|
#ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
|
|
/*
|
|
** PRAGMA table_info(<table>)
|
|
**
|
|
** Return a single row for each column of the named table. The columns of
|
|
** the returned data set are:
|
|
**
|
|
** cid: Column id (numbered from left to right, starting at 0)
|
|
** name: Column name
|
|
** type: Column declaration type.
|
|
** notnull: True if 'NOT NULL' is part of column declaration
|
|
** dflt_value: The default value for the column, if any.
|
|
** pk: Non-zero for PK fields.
|
|
*/
|
|
case PragTyp_TABLE_INFO: if( zRight ){
|
|
Table *pTab;
|
|
sqlite3CodeVerifyNamedSchema(pParse, zDb);
|
|
pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
|
|
if( pTab ){
|
|
int i, k;
|
|
int nHidden = 0;
|
|
Column *pCol;
|
|
Index *pPk = sqlite3PrimaryKeyIndex(pTab);
|
|
pParse->nMem = 7;
|
|
sqlite3ViewGetColumnNames(pParse, pTab);
|
|
for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
|
|
int isHidden = 0;
|
|
const Expr *pColExpr;
|
|
if( pCol->colFlags & COLFLAG_NOINSERT ){
|
|
if( pPragma->iArg==0 ){
|
|
nHidden++;
|
|
continue;
|
|
}
|
|
if( pCol->colFlags & COLFLAG_VIRTUAL ){
|
|
isHidden = 2; /* GENERATED ALWAYS AS ... VIRTUAL */
|
|
}else if( pCol->colFlags & COLFLAG_STORED ){
|
|
isHidden = 3; /* GENERATED ALWAYS AS ... STORED */
|
|
}else{ assert( pCol->colFlags & COLFLAG_HIDDEN );
|
|
isHidden = 1; /* HIDDEN */
|
|
}
|
|
}
|
|
if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){
|
|
k = 0;
|
|
}else if( pPk==0 ){
|
|
k = 1;
|
|
}else{
|
|
for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){}
|
|
}
|
|
pColExpr = sqlite3ColumnExpr(pTab,pCol);
|
|
assert( pColExpr==0 || pColExpr->op==TK_SPAN || isHidden>=2 );
|
|
assert( pColExpr==0 || !ExprHasProperty(pColExpr, EP_IntValue)
|
|
|| isHidden>=2 );
|
|
sqlite3VdbeMultiLoad(v, 1, pPragma->iArg ? "issisii" : "issisi",
|
|
i-nHidden,
|
|
pCol->zCnName,
|
|
sqlite3ColumnType(pCol,""),
|
|
pCol->notNull ? 1 : 0,
|
|
(isHidden>=2 || pColExpr==0) ? 0 : pColExpr->u.zToken,
|
|
k,
|
|
isHidden);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
/*
|
|
** PRAGMA table_list
|
|
**
|
|
** Return a single row for each table, virtual table, or view in the
|
|
** entire schema.
|
|
**
|
|
** schema: Name of attached database hold this table
|
|
** name: Name of the table itself
|
|
** type: "table", "view", "virtual", "shadow"
|
|
** ncol: Number of columns
|
|
** wr: True for a WITHOUT ROWID table
|
|
** strict: True for a STRICT table
|
|
*/
|
|
case PragTyp_TABLE_LIST: {
|
|
int ii;
|
|
pParse->nMem = 6;
|
|
sqlite3CodeVerifyNamedSchema(pParse, zDb);
|
|
for(ii=0; ii<db->nDb; ii++){
|
|
HashElem *k;
|
|
Hash *pHash;
|
|
int initNCol;
|
|
if( zDb && sqlite3_stricmp(zDb, db->aDb[ii].zDbSName)!=0 ) continue;
|
|
|
|
/* Ensure that the Table.nCol field is initialized for all views
|
|
** and virtual tables. Each time we initialize a Table.nCol value
|
|
** for a table, that can potentially disrupt the hash table, so restart
|
|
** the initialization scan.
|
|
*/
|
|
pHash = &db->aDb[ii].pSchema->tblHash;
|
|
initNCol = sqliteHashCount(pHash);
|
|
while( initNCol-- ){
|
|
for(k=sqliteHashFirst(pHash); 1; k=sqliteHashNext(k) ){
|
|
Table *pTab;
|
|
if( k==0 ){ initNCol = 0; break; }
|
|
pTab = sqliteHashData(k);
|
|
if( pTab->nCol==0 ){
|
|
char *zSql = sqlite3MPrintf(db, "SELECT*FROM\"%w\"", pTab->zName);
|
|
if( zSql ){
|
|
sqlite3_stmt *pDummy = 0;
|
|
(void)sqlite3_prepare(db, zSql, -1, &pDummy, 0);
|
|
(void)sqlite3_finalize(pDummy);
|
|
sqlite3DbFree(db, zSql);
|
|
}
|
|
if( db->mallocFailed ){
|
|
sqlite3ErrorMsg(db->pParse, "out of memory");
|
|
db->pParse->rc = SQLITE_NOMEM_BKPT;
|
|
}
|
|
pHash = &db->aDb[ii].pSchema->tblHash;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
for(k=sqliteHashFirst(pHash); k; k=sqliteHashNext(k) ){
|
|
Table *pTab = sqliteHashData(k);
|
|
const char *zType;
|
|
if( zRight && sqlite3_stricmp(zRight, pTab->zName)!=0 ) continue;
|
|
if( IsView(pTab) ){
|
|
zType = "view";
|
|
}else if( IsVirtual(pTab) ){
|
|
zType = "virtual";
|
|
}else if( pTab->tabFlags & TF_Shadow ){
|
|
zType = "shadow";
|
|
}else{
|
|
zType = "table";
|
|
}
|
|
sqlite3VdbeMultiLoad(v, 1, "sssiii",
|
|
db->aDb[ii].zDbSName,
|
|
sqlite3PreferredTableName(pTab->zName),
|
|
zType,
|
|
pTab->nCol,
|
|
(pTab->tabFlags & TF_WithoutRowid)!=0,
|
|
(pTab->tabFlags & TF_Strict)!=0
|
|
);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
case PragTyp_STATS: {
|
|
Index *pIdx;
|
|
HashElem *i;
|
|
pParse->nMem = 5;
|
|
sqlite3CodeVerifySchema(pParse, iDb);
|
|
for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){
|
|
Table *pTab = sqliteHashData(i);
|
|
sqlite3VdbeMultiLoad(v, 1, "ssiii",
|
|
sqlite3PreferredTableName(pTab->zName),
|
|
0,
|
|
pTab->szTabRow,
|
|
pTab->nRowLogEst,
|
|
pTab->tabFlags);
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
sqlite3VdbeMultiLoad(v, 2, "siiiX",
|
|
pIdx->zName,
|
|
pIdx->szIdxRow,
|
|
pIdx->aiRowLogEst[0],
|
|
pIdx->hasStat1);
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
case PragTyp_INDEX_INFO: if( zRight ){
|
|
Index *pIdx;
|
|
Table *pTab;
|
|
pIdx = sqlite3FindIndex(db, zRight, zDb);
|
|
if( pIdx==0 ){
|
|
/* If there is no index named zRight, check to see if there is a
|
|
** WITHOUT ROWID table named zRight, and if there is, show the
|
|
** structure of the PRIMARY KEY index for that table. */
|
|
pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
|
|
if( pTab && !HasRowid(pTab) ){
|
|
pIdx = sqlite3PrimaryKeyIndex(pTab);
|
|
}
|
|
}
|
|
if( pIdx ){
|
|
int iIdxDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
|
|
int i;
|
|
int mx;
|
|
if( pPragma->iArg ){
|
|
/* PRAGMA index_xinfo (newer version with more rows and columns) */
|
|
mx = pIdx->nColumn;
|
|
pParse->nMem = 6;
|
|
}else{
|
|
/* PRAGMA index_info (legacy version) */
|
|
mx = pIdx->nKeyCol;
|
|
pParse->nMem = 3;
|
|
}
|
|
pTab = pIdx->pTable;
|
|
sqlite3CodeVerifySchema(pParse, iIdxDb);
|
|
assert( pParse->nMem<=pPragma->nPragCName );
|
|
for(i=0; i<mx; i++){
|
|
i16 cnum = pIdx->aiColumn[i];
|
|
sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum,
|
|
cnum<0 ? 0 : pTab->aCol[cnum].zCnName);
|
|
if( pPragma->iArg ){
|
|
sqlite3VdbeMultiLoad(v, 4, "isiX",
|
|
pIdx->aSortOrder[i],
|
|
pIdx->azColl[i],
|
|
i<pIdx->nKeyCol);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case PragTyp_INDEX_LIST: if( zRight ){
|
|
Index *pIdx;
|
|
Table *pTab;
|
|
int i;
|
|
pTab = sqlite3FindTable(db, zRight, zDb);
|
|
if( pTab ){
|
|
int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
pParse->nMem = 5;
|
|
sqlite3CodeVerifySchema(pParse, iTabDb);
|
|
for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){
|
|
const char *azOrigin[] = { "c", "u", "pk" };
|
|
sqlite3VdbeMultiLoad(v, 1, "isisi",
|
|
i,
|
|
pIdx->zName,
|
|
IsUniqueIndex(pIdx),
|
|
azOrigin[pIdx->idxType],
|
|
pIdx->pPartIdxWhere!=0);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case PragTyp_DATABASE_LIST: {
|
|
int i;
|
|
pParse->nMem = 3;
|
|
for(i=0; i<db->nDb; i++){
|
|
if( db->aDb[i].pBt==0 ) continue;
|
|
assert( db->aDb[i].zDbSName!=0 );
|
|
sqlite3VdbeMultiLoad(v, 1, "iss",
|
|
i,
|
|
db->aDb[i].zDbSName,
|
|
sqlite3BtreeGetFilename(db->aDb[i].pBt));
|
|
}
|
|
}
|
|
break;
|
|
|
|
case PragTyp_COLLATION_LIST: {
|
|
int i = 0;
|
|
HashElem *p;
|
|
pParse->nMem = 2;
|
|
for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
|
|
CollSeq *pColl = (CollSeq *)sqliteHashData(p);
|
|
sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName);
|
|
}
|
|
}
|
|
break;
|
|
|
|
#ifndef SQLITE_OMIT_INTROSPECTION_PRAGMAS
|
|
case PragTyp_FUNCTION_LIST: {
|
|
int i;
|
|
HashElem *j;
|
|
FuncDef *p;
|
|
int showInternFunc = (db->mDbFlags & DBFLAG_InternalFunc)!=0;
|
|
pParse->nMem = 6;
|
|
for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
|
|
for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash ){
|
|
assert( p->funcFlags & SQLITE_FUNC_BUILTIN );
|
|
pragmaFunclistLine(v, p, 1, showInternFunc);
|
|
}
|
|
}
|
|
for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){
|
|
p = (FuncDef*)sqliteHashData(j);
|
|
assert( (p->funcFlags & SQLITE_FUNC_BUILTIN)==0 );
|
|
pragmaFunclistLine(v, p, 0, showInternFunc);
|
|
}
|
|
}
|
|
break;
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
case PragTyp_MODULE_LIST: {
|
|
HashElem *j;
|
|
pParse->nMem = 1;
|
|
for(j=sqliteHashFirst(&db->aModule); j; j=sqliteHashNext(j)){
|
|
Module *pMod = (Module*)sqliteHashData(j);
|
|
sqlite3VdbeMultiLoad(v, 1, "s", pMod->zName);
|
|
}
|
|
}
|
|
break;
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
case PragTyp_PRAGMA_LIST: {
|
|
int i;
|
|
for(i=0; i<ArraySize(aPragmaName); i++){
|
|
sqlite3VdbeMultiLoad(v, 1, "s", aPragmaName[i].zName);
|
|
}
|
|
}
|
|
break;
|
|
#endif /* SQLITE_INTROSPECTION_PRAGMAS */
|
|
|
|
#endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
|
|
|
|
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
case PragTyp_FOREIGN_KEY_LIST: if( zRight ){
|
|
FKey *pFK;
|
|
Table *pTab;
|
|
pTab = sqlite3FindTable(db, zRight, zDb);
|
|
if( pTab && IsOrdinaryTable(pTab) ){
|
|
pFK = pTab->u.tab.pFKey;
|
|
if( pFK ){
|
|
int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
int i = 0;
|
|
pParse->nMem = 8;
|
|
sqlite3CodeVerifySchema(pParse, iTabDb);
|
|
while(pFK){
|
|
int j;
|
|
for(j=0; j<pFK->nCol; j++){
|
|
sqlite3VdbeMultiLoad(v, 1, "iissssss",
|
|
i,
|
|
j,
|
|
pFK->zTo,
|
|
pTab->aCol[pFK->aCol[j].iFrom].zCnName,
|
|
pFK->aCol[j].zCol,
|
|
actionName(pFK->aAction[1]), /* ON UPDATE */
|
|
actionName(pFK->aAction[0]), /* ON DELETE */
|
|
"NONE");
|
|
}
|
|
++i;
|
|
pFK = pFK->pNextFrom;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
|
|
|
|
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
case PragTyp_FOREIGN_KEY_CHECK: {
|
|
FKey *pFK; /* A foreign key constraint */
|
|
Table *pTab; /* Child table contain "REFERENCES" keyword */
|
|
Table *pParent; /* Parent table that child points to */
|
|
Index *pIdx; /* Index in the parent table */
|
|
int i; /* Loop counter: Foreign key number for pTab */
|
|
int j; /* Loop counter: Field of the foreign key */
|
|
HashElem *k; /* Loop counter: Next table in schema */
|
|
int x; /* result variable */
|
|
int regResult; /* 3 registers to hold a result row */
|
|
int regRow; /* Registers to hold a row from pTab */
|
|
int addrTop; /* Top of a loop checking foreign keys */
|
|
int addrOk; /* Jump here if the key is OK */
|
|
int *aiCols; /* child to parent column mapping */
|
|
|
|
regResult = pParse->nMem+1;
|
|
pParse->nMem += 4;
|
|
regRow = ++pParse->nMem;
|
|
k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash);
|
|
while( k ){
|
|
if( zRight ){
|
|
pTab = sqlite3LocateTable(pParse, 0, zRight, zDb);
|
|
k = 0;
|
|
}else{
|
|
pTab = (Table*)sqliteHashData(k);
|
|
k = sqliteHashNext(k);
|
|
}
|
|
if( pTab==0 || !IsOrdinaryTable(pTab) || pTab->u.tab.pFKey==0 ) continue;
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
zDb = db->aDb[iDb].zDbSName;
|
|
sqlite3CodeVerifySchema(pParse, iDb);
|
|
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
|
|
sqlite3TouchRegister(pParse, pTab->nCol+regRow);
|
|
sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead);
|
|
sqlite3VdbeLoadString(v, regResult, pTab->zName);
|
|
assert( IsOrdinaryTable(pTab) );
|
|
for(i=1, pFK=pTab->u.tab.pFKey; pFK; i++, pFK=pFK->pNextFrom){
|
|
pParent = sqlite3FindTable(db, pFK->zTo, zDb);
|
|
if( pParent==0 ) continue;
|
|
pIdx = 0;
|
|
sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName);
|
|
x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0);
|
|
if( x==0 ){
|
|
if( pIdx==0 ){
|
|
sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead);
|
|
}else{
|
|
sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb);
|
|
sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
|
|
}
|
|
}else{
|
|
k = 0;
|
|
break;
|
|
}
|
|
}
|
|
assert( pParse->nErr>0 || pFK==0 );
|
|
if( pFK ) break;
|
|
if( pParse->nTab<i ) pParse->nTab = i;
|
|
addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v);
|
|
assert( IsOrdinaryTable(pTab) );
|
|
for(i=1, pFK=pTab->u.tab.pFKey; pFK; i++, pFK=pFK->pNextFrom){
|
|
pParent = sqlite3FindTable(db, pFK->zTo, zDb);
|
|
pIdx = 0;
|
|
aiCols = 0;
|
|
if( pParent ){
|
|
x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
|
|
assert( x==0 || db->mallocFailed );
|
|
}
|
|
addrOk = sqlite3VdbeMakeLabel(pParse);
|
|
|
|
/* Generate code to read the child key values into registers
|
|
** regRow..regRow+n. If any of the child key values are NULL, this
|
|
** row cannot cause an FK violation. Jump directly to addrOk in
|
|
** this case. */
|
|
sqlite3TouchRegister(pParse, regRow + pFK->nCol);
|
|
for(j=0; j<pFK->nCol; j++){
|
|
int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom;
|
|
sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j);
|
|
sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v);
|
|
}
|
|
|
|
/* Generate code to query the parent index for a matching parent
|
|
** key. If a match is found, jump to addrOk. */
|
|
if( pIdx ){
|
|
sqlite3VdbeAddOp4(v, OP_Affinity, regRow, pFK->nCol, 0,
|
|
sqlite3IndexAffinityStr(db,pIdx), pFK->nCol);
|
|
sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regRow, pFK->nCol);
|
|
VdbeCoverage(v);
|
|
}else if( pParent ){
|
|
int jmp = sqlite3VdbeCurrentAddr(v)+2;
|
|
sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v);
|
|
sqlite3VdbeGoto(v, addrOk);
|
|
assert( pFK->nCol==1 || db->mallocFailed );
|
|
}
|
|
|
|
/* Generate code to report an FK violation to the caller. */
|
|
if( HasRowid(pTab) ){
|
|
sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1);
|
|
}
|
|
sqlite3VdbeMultiLoad(v, regResult+2, "siX", pFK->zTo, i-1);
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
|
|
sqlite3VdbeResolveLabel(v, addrOk);
|
|
sqlite3DbFree(db, aiCols);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v);
|
|
sqlite3VdbeJumpHere(v, addrTop);
|
|
}
|
|
}
|
|
break;
|
|
#endif /* !defined(SQLITE_OMIT_TRIGGER) */
|
|
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
|
|
|
|
#ifndef SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA
|
|
/* Reinstall the LIKE and GLOB functions. The variant of LIKE
|
|
** used will be case sensitive or not depending on the RHS.
|
|
*/
|
|
case PragTyp_CASE_SENSITIVE_LIKE: {
|
|
if( zRight ){
|
|
sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0));
|
|
}
|
|
}
|
|
break;
|
|
#endif /* SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA */
|
|
|
|
#ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
|
|
# define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
|
|
/* PRAGMA integrity_check
|
|
** PRAGMA integrity_check(N)
|
|
** PRAGMA quick_check
|
|
** PRAGMA quick_check(N)
|
|
**
|
|
** Verify the integrity of the database.
|
|
**
|
|
** The "quick_check" is reduced version of
|
|
** integrity_check designed to detect most database corruption
|
|
** without the overhead of cross-checking indexes. Quick_check
|
|
** is linear time whereas integrity_check is O(NlogN).
|
|
**
|
|
** The maximum number of errors is 100 by default. A different default
|
|
** can be specified using a numeric parameter N.
|
|
**
|
|
** Or, the parameter N can be the name of a table. In that case, only
|
|
** the one table named is verified. The freelist is only verified if
|
|
** the named table is "sqlite_schema" (or one of its aliases).
|
|
**
|
|
** All schemas are checked by default. To check just a single
|
|
** schema, use the form:
|
|
**
|
|
** PRAGMA schema.integrity_check;
|
|
*/
|
|
case PragTyp_INTEGRITY_CHECK: {
|
|
int i, j, addr, mxErr;
|
|
Table *pObjTab = 0; /* Check only this one table, if not NULL */
|
|
|
|
int isQuick = (sqlite3Tolower(zLeft[0])=='q');
|
|
|
|
/* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check",
|
|
** then iDb is set to the index of the database identified by <db>.
|
|
** In this case, the integrity of database iDb only is verified by
|
|
** the VDBE created below.
|
|
**
|
|
** Otherwise, if the command was simply "PRAGMA integrity_check" (or
|
|
** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb
|
|
** to -1 here, to indicate that the VDBE should verify the integrity
|
|
** of all attached databases. */
|
|
assert( iDb>=0 );
|
|
assert( iDb==0 || pId2->z );
|
|
if( pId2->z==0 ) iDb = -1;
|
|
|
|
/* Initialize the VDBE program */
|
|
pParse->nMem = 6;
|
|
|
|
/* Set the maximum error count */
|
|
mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
|
|
if( zRight ){
|
|
if( sqlite3GetInt32(zRight, &mxErr) ){
|
|
if( mxErr<=0 ){
|
|
mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
|
|
}
|
|
}else{
|
|
pObjTab = sqlite3LocateTable(pParse, 0, zRight,
|
|
iDb>=0 ? db->aDb[iDb].zDbSName : 0);
|
|
}
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Integer, mxErr-1, 1); /* reg[1] holds errors left */
|
|
|
|
/* Do an integrity check on each database file */
|
|
for(i=0; i<db->nDb; i++){
|
|
HashElem *x; /* For looping over tables in the schema */
|
|
Hash *pTbls; /* Set of all tables in the schema */
|
|
int *aRoot; /* Array of root page numbers of all btrees */
|
|
int cnt = 0; /* Number of entries in aRoot[] */
|
|
int mxIdx = 0; /* Maximum number of indexes for any table */
|
|
|
|
if( OMIT_TEMPDB && i==1 ) continue;
|
|
if( iDb>=0 && i!=iDb ) continue;
|
|
|
|
sqlite3CodeVerifySchema(pParse, i);
|
|
pParse->okConstFactor = 0; /* tag-20230327-1 */
|
|
|
|
/* Do an integrity check of the B-Tree
|
|
**
|
|
** Begin by finding the root pages numbers
|
|
** for all tables and indices in the database.
|
|
*/
|
|
assert( sqlite3SchemaMutexHeld(db, i, 0) );
|
|
pTbls = &db->aDb[i].pSchema->tblHash;
|
|
for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
|
|
Table *pTab = sqliteHashData(x); /* Current table */
|
|
Index *pIdx; /* An index on pTab */
|
|
int nIdx; /* Number of indexes on pTab */
|
|
if( pObjTab && pObjTab!=pTab ) continue;
|
|
if( HasRowid(pTab) ) cnt++;
|
|
for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; }
|
|
if( nIdx>mxIdx ) mxIdx = nIdx;
|
|
}
|
|
if( cnt==0 ) continue;
|
|
if( pObjTab ) cnt++;
|
|
aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1));
|
|
if( aRoot==0 ) break;
|
|
cnt = 0;
|
|
if( pObjTab ) aRoot[++cnt] = 0;
|
|
for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
|
|
Table *pTab = sqliteHashData(x);
|
|
Index *pIdx;
|
|
if( pObjTab && pObjTab!=pTab ) continue;
|
|
if( HasRowid(pTab) ) aRoot[++cnt] = pTab->tnum;
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
aRoot[++cnt] = pIdx->tnum;
|
|
}
|
|
}
|
|
aRoot[0] = cnt;
|
|
|
|
/* Make sure sufficient number of registers have been allocated */
|
|
sqlite3TouchRegister(pParse, 8+mxIdx);
|
|
sqlite3ClearTempRegCache(pParse);
|
|
|
|
/* Do the b-tree integrity checks */
|
|
sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY);
|
|
sqlite3VdbeChangeP5(v, (u8)i);
|
|
addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
|
|
sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName),
|
|
P4_DYNAMIC);
|
|
sqlite3VdbeAddOp3(v, OP_Concat, 2, 3, 3);
|
|
integrityCheckResultRow(v);
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
|
|
/* Make sure all the indices are constructed correctly.
|
|
*/
|
|
for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
|
|
Table *pTab = sqliteHashData(x);
|
|
Index *pIdx, *pPk;
|
|
Index *pPrior = 0; /* Previous index */
|
|
int loopTop;
|
|
int iDataCur, iIdxCur;
|
|
int r1 = -1;
|
|
int bStrict; /* True for a STRICT table */
|
|
int r2; /* Previous key for WITHOUT ROWID tables */
|
|
int mxCol; /* Maximum non-virtual column number */
|
|
|
|
if( !IsOrdinaryTable(pTab) ) continue;
|
|
if( pObjTab && pObjTab!=pTab ) continue;
|
|
if( isQuick || HasRowid(pTab) ){
|
|
pPk = 0;
|
|
r2 = 0;
|
|
}else{
|
|
pPk = sqlite3PrimaryKeyIndex(pTab);
|
|
r2 = sqlite3GetTempRange(pParse, pPk->nKeyCol);
|
|
sqlite3VdbeAddOp3(v, OP_Null, 1, r2, r2+pPk->nKeyCol-1);
|
|
}
|
|
sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0,
|
|
1, 0, &iDataCur, &iIdxCur);
|
|
/* reg[7] counts the number of entries in the table.
|
|
** reg[8+i] counts the number of entries in the i-th index
|
|
*/
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, 7);
|
|
for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */
|
|
}
|
|
assert( pParse->nMem>=8+j );
|
|
assert( sqlite3NoTempsInRange(pParse,1,7+j) );
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v);
|
|
loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1);
|
|
|
|
/* Fetch the right-most column from the table. This will cause
|
|
** the entire record header to be parsed and sanity checked. It
|
|
** will also prepopulate the cursor column cache that is used
|
|
** by the OP_IsType code, so it is a required step.
|
|
*/
|
|
assert( !IsVirtual(pTab) );
|
|
if( HasRowid(pTab) ){
|
|
mxCol = -1;
|
|
for(j=0; j<pTab->nCol; j++){
|
|
if( (pTab->aCol[j].colFlags & COLFLAG_VIRTUAL)==0 ) mxCol++;
|
|
}
|
|
if( mxCol==pTab->iPKey ) mxCol--;
|
|
}else{
|
|
/* COLFLAG_VIRTUAL columns are not included in the WITHOUT ROWID
|
|
** PK index column-count, so there is no need to account for them
|
|
** in this case. */
|
|
mxCol = sqlite3PrimaryKeyIndex(pTab)->nColumn-1;
|
|
}
|
|
if( mxCol>=0 ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, iDataCur, mxCol, 3);
|
|
sqlite3VdbeTypeofColumn(v, 3);
|
|
}
|
|
|
|
if( !isQuick ){
|
|
if( pPk ){
|
|
/* Verify WITHOUT ROWID keys are in ascending order */
|
|
int a1;
|
|
char *zErr;
|
|
a1 = sqlite3VdbeAddOp4Int(v, OP_IdxGT, iDataCur, 0,r2,pPk->nKeyCol);
|
|
VdbeCoverage(v);
|
|
sqlite3VdbeAddOp1(v, OP_IsNull, r2); VdbeCoverage(v);
|
|
zErr = sqlite3MPrintf(db,
|
|
"row not in PRIMARY KEY order for %s",
|
|
pTab->zName);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
|
|
integrityCheckResultRow(v);
|
|
sqlite3VdbeJumpHere(v, a1);
|
|
sqlite3VdbeJumpHere(v, a1+1);
|
|
for(j=0; j<pPk->nKeyCol; j++){
|
|
sqlite3ExprCodeLoadIndexColumn(pParse, pPk, iDataCur, j, r2+j);
|
|
}
|
|
}
|
|
}
|
|
/* Verify datatypes for all columns:
|
|
**
|
|
** (1) NOT NULL columns may not contain a NULL
|
|
** (2) Datatype must be exact for non-ANY columns in STRICT tables
|
|
** (3) Datatype for TEXT columns in non-STRICT tables must be
|
|
** NULL, TEXT, or BLOB.
|
|
** (4) Datatype for numeric columns in non-STRICT tables must not
|
|
** be a TEXT value that can be losslessly converted to numeric.
|
|
*/
|
|
bStrict = (pTab->tabFlags & TF_Strict)!=0;
|
|
for(j=0; j<pTab->nCol; j++){
|
|
char *zErr;
|
|
Column *pCol = pTab->aCol + j; /* The column to be checked */
|
|
int labelError; /* Jump here to report an error */
|
|
int labelOk; /* Jump here if all looks ok */
|
|
int p1, p3, p4; /* Operands to the OP_IsType opcode */
|
|
int doTypeCheck; /* Check datatypes (besides NOT NULL) */
|
|
|
|
if( j==pTab->iPKey ) continue;
|
|
if( bStrict ){
|
|
doTypeCheck = pCol->eCType>COLTYPE_ANY;
|
|
}else{
|
|
doTypeCheck = pCol->affinity>SQLITE_AFF_BLOB;
|
|
}
|
|
if( pCol->notNull==0 && !doTypeCheck ) continue;
|
|
|
|
/* Compute the operands that will be needed for OP_IsType */
|
|
p4 = SQLITE_NULL;
|
|
if( pCol->colFlags & COLFLAG_VIRTUAL ){
|
|
sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3);
|
|
p1 = -1;
|
|
p3 = 3;
|
|
}else{
|
|
if( pCol->iDflt ){
|
|
sqlite3_value *pDfltValue = 0;
|
|
sqlite3ValueFromExpr(db, sqlite3ColumnExpr(pTab,pCol), ENC(db),
|
|
pCol->affinity, &pDfltValue);
|
|
if( pDfltValue ){
|
|
p4 = sqlite3_value_type(pDfltValue);
|
|
sqlite3ValueFree(pDfltValue);
|
|
}
|
|
}
|
|
p1 = iDataCur;
|
|
if( !HasRowid(pTab) ){
|
|
testcase( j!=sqlite3TableColumnToStorage(pTab, j) );
|
|
p3 = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), j);
|
|
}else{
|
|
p3 = sqlite3TableColumnToStorage(pTab,j);
|
|
testcase( p3!=j);
|
|
}
|
|
}
|
|
|
|
labelError = sqlite3VdbeMakeLabel(pParse);
|
|
labelOk = sqlite3VdbeMakeLabel(pParse);
|
|
if( pCol->notNull ){
|
|
/* (1) NOT NULL columns may not contain a NULL */
|
|
int jmp3;
|
|
int jmp2 = sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4);
|
|
VdbeCoverage(v);
|
|
if( p1<0 ){
|
|
sqlite3VdbeChangeP5(v, 0x0f); /* INT, REAL, TEXT, or BLOB */
|
|
jmp3 = jmp2;
|
|
}else{
|
|
sqlite3VdbeChangeP5(v, 0x0d); /* INT, TEXT, or BLOB */
|
|
/* OP_IsType does not detect NaN values in the database file
|
|
** which should be treated as a NULL. So if the header type
|
|
** is REAL, we have to load the actual data using OP_Column
|
|
** to reliably determine if the value is a NULL. */
|
|
sqlite3VdbeAddOp3(v, OP_Column, p1, p3, 3);
|
|
jmp3 = sqlite3VdbeAddOp2(v, OP_NotNull, 3, labelOk);
|
|
VdbeCoverage(v);
|
|
}
|
|
zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName,
|
|
pCol->zCnName);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
|
|
if( doTypeCheck ){
|
|
sqlite3VdbeGoto(v, labelError);
|
|
sqlite3VdbeJumpHere(v, jmp2);
|
|
sqlite3VdbeJumpHere(v, jmp3);
|
|
}else{
|
|
/* VDBE byte code will fall thru */
|
|
}
|
|
}
|
|
if( bStrict && doTypeCheck ){
|
|
/* (2) Datatype must be exact for non-ANY columns in STRICT tables*/
|
|
static unsigned char aStdTypeMask[] = {
|
|
0x1f, /* ANY */
|
|
0x18, /* BLOB */
|
|
0x11, /* INT */
|
|
0x11, /* INTEGER */
|
|
0x13, /* REAL */
|
|
0x14 /* TEXT */
|
|
};
|
|
sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4);
|
|
assert( pCol->eCType>=1 && pCol->eCType<=sizeof(aStdTypeMask) );
|
|
sqlite3VdbeChangeP5(v, aStdTypeMask[pCol->eCType-1]);
|
|
VdbeCoverage(v);
|
|
zErr = sqlite3MPrintf(db, "non-%s value in %s.%s",
|
|
sqlite3StdType[pCol->eCType-1],
|
|
pTab->zName, pTab->aCol[j].zCnName);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
|
|
}else if( !bStrict && pCol->affinity==SQLITE_AFF_TEXT ){
|
|
/* (3) Datatype for TEXT columns in non-STRICT tables must be
|
|
** NULL, TEXT, or BLOB. */
|
|
sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4);
|
|
sqlite3VdbeChangeP5(v, 0x1c); /* NULL, TEXT, or BLOB */
|
|
VdbeCoverage(v);
|
|
zErr = sqlite3MPrintf(db, "NUMERIC value in %s.%s",
|
|
pTab->zName, pTab->aCol[j].zCnName);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
|
|
}else if( !bStrict && pCol->affinity>=SQLITE_AFF_NUMERIC ){
|
|
/* (4) Datatype for numeric columns in non-STRICT tables must not
|
|
** be a TEXT value that can be converted to numeric. */
|
|
sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4);
|
|
sqlite3VdbeChangeP5(v, 0x1b); /* NULL, INT, FLOAT, or BLOB */
|
|
VdbeCoverage(v);
|
|
if( p1>=0 ){
|
|
sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3);
|
|
}
|
|
sqlite3VdbeAddOp4(v, OP_Affinity, 3, 1, 0, "C", P4_STATIC);
|
|
sqlite3VdbeAddOp4Int(v, OP_IsType, -1, labelOk, 3, p4);
|
|
sqlite3VdbeChangeP5(v, 0x1c); /* NULL, TEXT, or BLOB */
|
|
VdbeCoverage(v);
|
|
zErr = sqlite3MPrintf(db, "TEXT value in %s.%s",
|
|
pTab->zName, pTab->aCol[j].zCnName);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
|
|
}
|
|
sqlite3VdbeResolveLabel(v, labelError);
|
|
integrityCheckResultRow(v);
|
|
sqlite3VdbeResolveLabel(v, labelOk);
|
|
}
|
|
/* Verify CHECK constraints */
|
|
if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
|
|
ExprList *pCheck = sqlite3ExprListDup(db, pTab->pCheck, 0);
|
|
if( db->mallocFailed==0 ){
|
|
int addrCkFault = sqlite3VdbeMakeLabel(pParse);
|
|
int addrCkOk = sqlite3VdbeMakeLabel(pParse);
|
|
char *zErr;
|
|
int k;
|
|
pParse->iSelfTab = iDataCur + 1;
|
|
for(k=pCheck->nExpr-1; k>0; k--){
|
|
sqlite3ExprIfFalse(pParse, pCheck->a[k].pExpr, addrCkFault, 0);
|
|
}
|
|
sqlite3ExprIfTrue(pParse, pCheck->a[0].pExpr, addrCkOk,
|
|
SQLITE_JUMPIFNULL);
|
|
sqlite3VdbeResolveLabel(v, addrCkFault);
|
|
pParse->iSelfTab = 0;
|
|
zErr = sqlite3MPrintf(db, "CHECK constraint failed in %s",
|
|
pTab->zName);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
|
|
integrityCheckResultRow(v);
|
|
sqlite3VdbeResolveLabel(v, addrCkOk);
|
|
}
|
|
sqlite3ExprListDelete(db, pCheck);
|
|
}
|
|
if( !isQuick ){ /* Omit the remaining tests for quick_check */
|
|
/* Validate index entries for the current row */
|
|
for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
|
|
int jmp2, jmp3, jmp4, jmp5, label6;
|
|
int kk;
|
|
int ckUniq = sqlite3VdbeMakeLabel(pParse);
|
|
if( pPk==pIdx ) continue;
|
|
r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3,
|
|
pPrior, r1);
|
|
pPrior = pIdx;
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);/* increment entry count */
|
|
/* Verify that an index entry exists for the current table row */
|
|
jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1,
|
|
pIdx->nColumn); VdbeCoverage(v);
|
|
sqlite3VdbeLoadString(v, 3, "row ");
|
|
sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
|
|
sqlite3VdbeLoadString(v, 4, " missing from index ");
|
|
sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
|
|
jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName);
|
|
sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
|
|
jmp4 = integrityCheckResultRow(v);
|
|
sqlite3VdbeJumpHere(v, jmp2);
|
|
|
|
/* The OP_IdxRowid opcode is an optimized version of OP_Column
|
|
** that extracts the rowid off the end of the index record.
|
|
** But it only works correctly if index record does not have
|
|
** any extra bytes at the end. Verify that this is the case. */
|
|
if( HasRowid(pTab) ){
|
|
int jmp7;
|
|
sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur+j, 3);
|
|
jmp7 = sqlite3VdbeAddOp3(v, OP_Eq, 3, 0, r1+pIdx->nColumn-1);
|
|
VdbeCoverageNeverNull(v);
|
|
sqlite3VdbeLoadString(v, 3,
|
|
"rowid not at end-of-record for row ");
|
|
sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
|
|
sqlite3VdbeLoadString(v, 4, " of index ");
|
|
sqlite3VdbeGoto(v, jmp5-1);
|
|
sqlite3VdbeJumpHere(v, jmp7);
|
|
}
|
|
|
|
/* Any indexed columns with non-BINARY collations must still hold
|
|
** the exact same text value as the table. */
|
|
label6 = 0;
|
|
for(kk=0; kk<pIdx->nKeyCol; kk++){
|
|
if( pIdx->azColl[kk]==sqlite3StrBINARY ) continue;
|
|
if( label6==0 ) label6 = sqlite3VdbeMakeLabel(pParse);
|
|
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur+j, kk, 3);
|
|
sqlite3VdbeAddOp3(v, OP_Ne, 3, label6, r1+kk); VdbeCoverage(v);
|
|
}
|
|
if( label6 ){
|
|
int jmp6 = sqlite3VdbeAddOp0(v, OP_Goto);
|
|
sqlite3VdbeResolveLabel(v, label6);
|
|
sqlite3VdbeLoadString(v, 3, "row ");
|
|
sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
|
|
sqlite3VdbeLoadString(v, 4, " values differ from index ");
|
|
sqlite3VdbeGoto(v, jmp5-1);
|
|
sqlite3VdbeJumpHere(v, jmp6);
|
|
}
|
|
|
|
/* For UNIQUE indexes, verify that only one entry exists with the
|
|
** current key. The entry is unique if (1) any column is NULL
|
|
** or (2) the next entry has a different key */
|
|
if( IsUniqueIndex(pIdx) ){
|
|
int uniqOk = sqlite3VdbeMakeLabel(pParse);
|
|
int jmp6;
|
|
for(kk=0; kk<pIdx->nKeyCol; kk++){
|
|
int iCol = pIdx->aiColumn[kk];
|
|
assert( iCol!=XN_ROWID && iCol<pTab->nCol );
|
|
if( iCol>=0 && pTab->aCol[iCol].notNull ) continue;
|
|
sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk);
|
|
VdbeCoverage(v);
|
|
}
|
|
jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v);
|
|
sqlite3VdbeGoto(v, uniqOk);
|
|
sqlite3VdbeJumpHere(v, jmp6);
|
|
sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1,
|
|
pIdx->nKeyCol); VdbeCoverage(v);
|
|
sqlite3VdbeLoadString(v, 3, "non-unique entry in index ");
|
|
sqlite3VdbeGoto(v, jmp5);
|
|
sqlite3VdbeResolveLabel(v, uniqOk);
|
|
}
|
|
sqlite3VdbeJumpHere(v, jmp4);
|
|
sqlite3ResolvePartIdxLabel(pParse, jmp3);
|
|
}
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v);
|
|
sqlite3VdbeJumpHere(v, loopTop-1);
|
|
if( !isQuick ){
|
|
sqlite3VdbeLoadString(v, 2, "wrong # of entries in index ");
|
|
for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
|
|
if( pPk==pIdx ) continue;
|
|
sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3);
|
|
addr = sqlite3VdbeAddOp3(v, OP_Eq, 8+j, 0, 3); VdbeCoverage(v);
|
|
sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
|
|
sqlite3VdbeLoadString(v, 4, pIdx->zName);
|
|
sqlite3VdbeAddOp3(v, OP_Concat, 4, 2, 3);
|
|
integrityCheckResultRow(v);
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
}
|
|
if( pPk ){
|
|
sqlite3ReleaseTempRange(pParse, r2, pPk->nKeyCol);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
{
|
|
static const int iLn = VDBE_OFFSET_LINENO(2);
|
|
static const VdbeOpList endCode[] = {
|
|
{ OP_AddImm, 1, 0, 0}, /* 0 */
|
|
{ OP_IfNotZero, 1, 4, 0}, /* 1 */
|
|
{ OP_String8, 0, 3, 0}, /* 2 */
|
|
{ OP_ResultRow, 3, 1, 0}, /* 3 */
|
|
{ OP_Halt, 0, 0, 0}, /* 4 */
|
|
{ OP_String8, 0, 3, 0}, /* 5 */
|
|
{ OP_Goto, 0, 3, 0}, /* 6 */
|
|
};
|
|
VdbeOp *aOp;
|
|
|
|
aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn);
|
|
if( aOp ){
|
|
aOp[0].p2 = 1-mxErr;
|
|
aOp[2].p4type = P4_STATIC;
|
|
aOp[2].p4.z = "ok";
|
|
aOp[5].p4type = P4_STATIC;
|
|
aOp[5].p4.z = (char*)sqlite3ErrStr(SQLITE_CORRUPT);
|
|
}
|
|
sqlite3VdbeChangeP3(v, 0, sqlite3VdbeCurrentAddr(v)-2);
|
|
}
|
|
}
|
|
break;
|
|
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
|
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
/*
|
|
** PRAGMA encoding
|
|
** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
|
|
**
|
|
** In its first form, this pragma returns the encoding of the main
|
|
** database. If the database is not initialized, it is initialized now.
|
|
**
|
|
** The second form of this pragma is a no-op if the main database file
|
|
** has not already been initialized. In this case it sets the default
|
|
** encoding that will be used for the main database file if a new file
|
|
** is created. If an existing main database file is opened, then the
|
|
** default text encoding for the existing database is used.
|
|
**
|
|
** In all cases new databases created using the ATTACH command are
|
|
** created to use the same default text encoding as the main database. If
|
|
** the main database has not been initialized and/or created when ATTACH
|
|
** is executed, this is done before the ATTACH operation.
|
|
**
|
|
** In the second form this pragma sets the text encoding to be used in
|
|
** new database files created using this database handle. It is only
|
|
** useful if invoked immediately after the main database i
|
|
*/
|
|
case PragTyp_ENCODING: {
|
|
static const struct EncName {
|
|
char *zName;
|
|
u8 enc;
|
|
} encnames[] = {
|
|
{ "UTF8", SQLITE_UTF8 },
|
|
{ "UTF-8", SQLITE_UTF8 }, /* Must be element [1] */
|
|
{ "UTF-16le", SQLITE_UTF16LE }, /* Must be element [2] */
|
|
{ "UTF-16be", SQLITE_UTF16BE }, /* Must be element [3] */
|
|
{ "UTF16le", SQLITE_UTF16LE },
|
|
{ "UTF16be", SQLITE_UTF16BE },
|
|
{ "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */
|
|
{ "UTF16", 0 }, /* SQLITE_UTF16NATIVE */
|
|
{ 0, 0 }
|
|
};
|
|
const struct EncName *pEnc;
|
|
if( !zRight ){ /* "PRAGMA encoding" */
|
|
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
|
assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 );
|
|
assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE );
|
|
assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE );
|
|
returnSingleText(v, encnames[ENC(pParse->db)].zName);
|
|
}else{ /* "PRAGMA encoding = XXX" */
|
|
/* Only change the value of sqlite.enc if the database handle is not
|
|
** initialized. If the main database exists, the new sqlite.enc value
|
|
** will be overwritten when the schema is next loaded. If it does not
|
|
** already exists, it will be created to use the new encoding value.
|
|
*/
|
|
if( (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){
|
|
for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
|
|
if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
|
|
u8 enc = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
|
|
SCHEMA_ENC(db) = enc;
|
|
sqlite3SetTextEncoding(db, enc);
|
|
break;
|
|
}
|
|
}
|
|
if( !pEnc->zName ){
|
|
sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
|
|
#ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
|
|
/*
|
|
** PRAGMA [schema.]schema_version
|
|
** PRAGMA [schema.]schema_version = <integer>
|
|
**
|
|
** PRAGMA [schema.]user_version
|
|
** PRAGMA [schema.]user_version = <integer>
|
|
**
|
|
** PRAGMA [schema.]freelist_count
|
|
**
|
|
** PRAGMA [schema.]data_version
|
|
**
|
|
** PRAGMA [schema.]application_id
|
|
** PRAGMA [schema.]application_id = <integer>
|
|
**
|
|
** The pragma's schema_version and user_version are used to set or get
|
|
** the value of the schema-version and user-version, respectively. Both
|
|
** the schema-version and the user-version are 32-bit signed integers
|
|
** stored in the database header.
|
|
**
|
|
** The schema-cookie is usually only manipulated internally by SQLite. It
|
|
** is incremented by SQLite whenever the database schema is modified (by
|
|
** creating or dropping a table or index). The schema version is used by
|
|
** SQLite each time a query is executed to ensure that the internal cache
|
|
** of the schema used when compiling the SQL query matches the schema of
|
|
** the database against which the compiled query is actually executed.
|
|
** Subverting this mechanism by using "PRAGMA schema_version" to modify
|
|
** the schema-version is potentially dangerous and may lead to program
|
|
** crashes or database corruption. Use with caution!
|
|
**
|
|
** The user-version is not used internally by SQLite. It may be used by
|
|
** applications for any purpose.
|
|
*/
|
|
case PragTyp_HEADER_VALUE: {
|
|
int iCookie = pPragma->iArg; /* Which cookie to read or write */
|
|
sqlite3VdbeUsesBtree(v, iDb);
|
|
if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){
|
|
/* Write the specified cookie value */
|
|
static const VdbeOpList setCookie[] = {
|
|
{ OP_Transaction, 0, 1, 0}, /* 0 */
|
|
{ OP_SetCookie, 0, 0, 0}, /* 1 */
|
|
};
|
|
VdbeOp *aOp;
|
|
sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie));
|
|
aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);
|
|
if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
|
|
aOp[0].p1 = iDb;
|
|
aOp[1].p1 = iDb;
|
|
aOp[1].p2 = iCookie;
|
|
aOp[1].p3 = sqlite3Atoi(zRight);
|
|
aOp[1].p5 = 1;
|
|
if( iCookie==BTREE_SCHEMA_VERSION && (db->flags & SQLITE_Defensive)!=0 ){
|
|
/* Do not allow the use of PRAGMA schema_version=VALUE in defensive
|
|
** mode. Change the OP_SetCookie opcode into a no-op. */
|
|
aOp[1].opcode = OP_Noop;
|
|
}
|
|
}else{
|
|
/* Read the specified cookie value */
|
|
static const VdbeOpList readCookie[] = {
|
|
{ OP_Transaction, 0, 0, 0}, /* 0 */
|
|
{ OP_ReadCookie, 0, 1, 0}, /* 1 */
|
|
{ OP_ResultRow, 1, 1, 0}
|
|
};
|
|
VdbeOp *aOp;
|
|
sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie));
|
|
aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0);
|
|
if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
|
|
aOp[0].p1 = iDb;
|
|
aOp[1].p1 = iDb;
|
|
aOp[1].p3 = iCookie;
|
|
sqlite3VdbeReusable(v);
|
|
}
|
|
}
|
|
break;
|
|
#endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
|
|
|
|
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
|
|
/*
|
|
** PRAGMA compile_options
|
|
**
|
|
** Return the names of all compile-time options used in this build,
|
|
** one option per row.
|
|
*/
|
|
case PragTyp_COMPILE_OPTIONS: {
|
|
int i = 0;
|
|
const char *zOpt;
|
|
pParse->nMem = 1;
|
|
while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){
|
|
sqlite3VdbeLoadString(v, 1, zOpt);
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
|
|
}
|
|
sqlite3VdbeReusable(v);
|
|
}
|
|
break;
|
|
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
|
|
|
|
#ifndef SQLITE_OMIT_WAL
|
|
/*
|
|
** PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate
|
|
**
|
|
** Checkpoint the database.
|
|
*/
|
|
case PragTyp_WAL_CHECKPOINT: {
|
|
int iBt = (pId2->z?iDb:SQLITE_MAX_DB);
|
|
int eMode = SQLITE_CHECKPOINT_PASSIVE;
|
|
if( zRight ){
|
|
if( sqlite3StrICmp(zRight, "full")==0 ){
|
|
eMode = SQLITE_CHECKPOINT_FULL;
|
|
}else if( sqlite3StrICmp(zRight, "restart")==0 ){
|
|
eMode = SQLITE_CHECKPOINT_RESTART;
|
|
}else if( sqlite3StrICmp(zRight, "truncate")==0 ){
|
|
eMode = SQLITE_CHECKPOINT_TRUNCATE;
|
|
}
|
|
}
|
|
pParse->nMem = 3;
|
|
sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1);
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
|
|
}
|
|
break;
|
|
|
|
/*
|
|
** PRAGMA wal_autocheckpoint
|
|
** PRAGMA wal_autocheckpoint = N
|
|
**
|
|
** Configure a database connection to automatically checkpoint a database
|
|
** after accumulating N frames in the log. Or query for the current value
|
|
** of N.
|
|
*/
|
|
case PragTyp_WAL_AUTOCHECKPOINT: {
|
|
if( zRight ){
|
|
sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight));
|
|
}
|
|
returnSingleInt(v,
|
|
db->xWalCallback==sqlite3WalDefaultHook ?
|
|
SQLITE_PTR_TO_INT(db->pWalArg) : 0);
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
/*
|
|
** PRAGMA shrink_memory
|
|
**
|
|
** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database
|
|
** connection on which it is invoked to free up as much memory as it
|
|
** can, by calling sqlite3_db_release_memory().
|
|
*/
|
|
case PragTyp_SHRINK_MEMORY: {
|
|
sqlite3_db_release_memory(db);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** PRAGMA optimize
|
|
** PRAGMA optimize(MASK)
|
|
** PRAGMA schema.optimize
|
|
** PRAGMA schema.optimize(MASK)
|
|
**
|
|
** Attempt to optimize the database. All schemas are optimized in the first
|
|
** two forms, and only the specified schema is optimized in the latter two.
|
|
**
|
|
** The details of optimizations performed by this pragma are expected
|
|
** to change and improve over time. Applications should anticipate that
|
|
** this pragma will perform new optimizations in future releases.
|
|
**
|
|
** The optional argument is a bitmask of optimizations to perform:
|
|
**
|
|
** 0x0001 Debugging mode. Do not actually perform any optimizations
|
|
** but instead return one line of text for each optimization
|
|
** that would have been done. Off by default.
|
|
**
|
|
** 0x0002 Run ANALYZE on tables that might benefit. On by default.
|
|
** See below for additional information.
|
|
**
|
|
** 0x0004 (Not yet implemented) Record usage and performance
|
|
** information from the current session in the
|
|
** database file so that it will be available to "optimize"
|
|
** pragmas run by future database connections.
|
|
**
|
|
** 0x0008 (Not yet implemented) Create indexes that might have
|
|
** been helpful to recent queries
|
|
**
|
|
** The default MASK is and always shall be 0xfffe. 0xfffe means perform all
|
|
** of the optimizations listed above except Debug Mode, including new
|
|
** optimizations that have not yet been invented. If new optimizations are
|
|
** ever added that should be off by default, those off-by-default
|
|
** optimizations will have bitmasks of 0x10000 or larger.
|
|
**
|
|
** DETERMINATION OF WHEN TO RUN ANALYZE
|
|
**
|
|
** In the current implementation, a table is analyzed if only if all of
|
|
** the following are true:
|
|
**
|
|
** (1) MASK bit 0x02 is set.
|
|
**
|
|
** (2) The query planner used sqlite_stat1-style statistics for one or
|
|
** more indexes of the table at some point during the lifetime of
|
|
** the current connection.
|
|
**
|
|
** (3) One or more indexes of the table are currently unanalyzed OR
|
|
** the number of rows in the table has increased by 25 times or more
|
|
** since the last time ANALYZE was run.
|
|
**
|
|
** The rules for when tables are analyzed are likely to change in
|
|
** future releases.
|
|
*/
|
|
case PragTyp_OPTIMIZE: {
|
|
int iDbLast; /* Loop termination point for the schema loop */
|
|
int iTabCur; /* Cursor for a table whose size needs checking */
|
|
HashElem *k; /* Loop over tables of a schema */
|
|
Schema *pSchema; /* The current schema */
|
|
Table *pTab; /* A table in the schema */
|
|
Index *pIdx; /* An index of the table */
|
|
LogEst szThreshold; /* Size threshold above which reanalysis needed */
|
|
char *zSubSql; /* SQL statement for the OP_SqlExec opcode */
|
|
u32 opMask; /* Mask of operations to perform */
|
|
|
|
if( zRight ){
|
|
opMask = (u32)sqlite3Atoi(zRight);
|
|
if( (opMask & 0x02)==0 ) break;
|
|
}else{
|
|
opMask = 0xfffe;
|
|
}
|
|
iTabCur = pParse->nTab++;
|
|
for(iDbLast = zDb?iDb:db->nDb-1; iDb<=iDbLast; iDb++){
|
|
if( iDb==1 ) continue;
|
|
sqlite3CodeVerifySchema(pParse, iDb);
|
|
pSchema = db->aDb[iDb].pSchema;
|
|
for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
|
|
pTab = (Table*)sqliteHashData(k);
|
|
|
|
/* If table pTab has not been used in a way that would benefit from
|
|
** having analysis statistics during the current session, then skip it.
|
|
** This also has the effect of skipping virtual tables and views */
|
|
if( (pTab->tabFlags & TF_StatsUsed)==0 ) continue;
|
|
|
|
/* Reanalyze if the table is 25 times larger than the last analysis */
|
|
szThreshold = pTab->nRowLogEst + 46; assert( sqlite3LogEst(25)==46 );
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
if( !pIdx->hasStat1 ){
|
|
szThreshold = 0; /* Always analyze if any index lacks statistics */
|
|
break;
|
|
}
|
|
}
|
|
if( szThreshold ){
|
|
sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
|
|
sqlite3VdbeAddOp3(v, OP_IfSmaller, iTabCur,
|
|
sqlite3VdbeCurrentAddr(v)+2+(opMask&1), szThreshold);
|
|
VdbeCoverage(v);
|
|
}
|
|
zSubSql = sqlite3MPrintf(db, "ANALYZE \"%w\".\"%w\"",
|
|
db->aDb[iDb].zDbSName, pTab->zName);
|
|
if( opMask & 0x01 ){
|
|
int r1 = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, r1, 0, zSubSql, P4_DYNAMIC);
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, r1, 1);
|
|
}else{
|
|
sqlite3VdbeAddOp4(v, OP_SqlExec, 0, 0, 0, zSubSql, P4_DYNAMIC);
|
|
}
|
|
}
|
|
}
|
|
sqlite3VdbeAddOp0(v, OP_Expire);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** PRAGMA busy_timeout
|
|
** PRAGMA busy_timeout = N
|
|
**
|
|
** Call sqlite3_busy_timeout(db, N). Return the current timeout value
|
|
** if one is set. If no busy handler or a different busy handler is set
|
|
** then 0 is returned. Setting the busy_timeout to 0 or negative
|
|
** disables the timeout.
|
|
*/
|
|
/*case PragTyp_BUSY_TIMEOUT*/ default: {
|
|
assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT );
|
|
if( zRight ){
|
|
sqlite3_busy_timeout(db, sqlite3Atoi(zRight));
|
|
}
|
|
returnSingleInt(v, db->busyTimeout);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** PRAGMA soft_heap_limit
|
|
** PRAGMA soft_heap_limit = N
|
|
**
|
|
** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the
|
|
** sqlite3_soft_heap_limit64() interface with the argument N, if N is
|
|
** specified and is a non-negative integer.
|
|
** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always
|
|
** returns the same integer that would be returned by the
|
|
** sqlite3_soft_heap_limit64(-1) C-language function.
|
|
*/
|
|
case PragTyp_SOFT_HEAP_LIMIT: {
|
|
sqlite3_int64 N;
|
|
if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
|
|
sqlite3_soft_heap_limit64(N);
|
|
}
|
|
returnSingleInt(v, sqlite3_soft_heap_limit64(-1));
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** PRAGMA hard_heap_limit
|
|
** PRAGMA hard_heap_limit = N
|
|
**
|
|
** Invoke sqlite3_hard_heap_limit64() to query or set the hard heap
|
|
** limit. The hard heap limit can be activated or lowered by this
|
|
** pragma, but not raised or deactivated. Only the
|
|
** sqlite3_hard_heap_limit64() C-language API can raise or deactivate
|
|
** the hard heap limit. This allows an application to set a heap limit
|
|
** constraint that cannot be relaxed by an untrusted SQL script.
|
|
*/
|
|
case PragTyp_HARD_HEAP_LIMIT: {
|
|
sqlite3_int64 N;
|
|
if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
|
|
sqlite3_int64 iPrior = sqlite3_hard_heap_limit64(-1);
|
|
if( N>0 && (iPrior==0 || iPrior>N) ) sqlite3_hard_heap_limit64(N);
|
|
}
|
|
returnSingleInt(v, sqlite3_hard_heap_limit64(-1));
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** PRAGMA threads
|
|
** PRAGMA threads = N
|
|
**
|
|
** Configure the maximum number of worker threads. Return the new
|
|
** maximum, which might be less than requested.
|
|
*/
|
|
case PragTyp_THREADS: {
|
|
sqlite3_int64 N;
|
|
if( zRight
|
|
&& sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK
|
|
&& N>=0
|
|
){
|
|
sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff));
|
|
}
|
|
returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1));
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** PRAGMA analysis_limit
|
|
** PRAGMA analysis_limit = N
|
|
**
|
|
** Configure the maximum number of rows that ANALYZE will examine
|
|
** in each index that it looks at. Return the new limit.
|
|
*/
|
|
case PragTyp_ANALYSIS_LIMIT: {
|
|
sqlite3_int64 N;
|
|
if( zRight
|
|
&& sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK /* IMP: R-40975-20399 */
|
|
&& N>=0
|
|
){
|
|
db->nAnalysisLimit = (int)(N&0x7fffffff);
|
|
}
|
|
returnSingleInt(v, db->nAnalysisLimit); /* IMP: R-57594-65522 */
|
|
break;
|
|
}
|
|
|
|
#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
|
|
/*
|
|
** Report the current state of file logs for all databases
|
|
*/
|
|
case PragTyp_LOCK_STATUS: {
|
|
static const char *const azLockName[] = {
|
|
"unlocked", "shared", "reserved", "pending", "exclusive"
|
|
};
|
|
int i;
|
|
pParse->nMem = 2;
|
|
for(i=0; i<db->nDb; i++){
|
|
Btree *pBt;
|
|
const char *zState = "unknown";
|
|
int j;
|
|
if( db->aDb[i].zDbSName==0 ) continue;
|
|
pBt = db->aDb[i].pBt;
|
|
if( pBt==0 || sqlite3BtreePager(pBt)==0 ){
|
|
zState = "closed";
|
|
}else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0,
|
|
SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
|
|
zState = azLockName[j];
|
|
}
|
|
sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState);
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#if defined(SQLITE_ENABLE_CEROD)
|
|
case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){
|
|
if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
|
|
sqlite3_activate_cerod(&zRight[6]);
|
|
}
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
} /* End of the PRAGMA switch */
|
|
|
|
/* The following block is a no-op unless SQLITE_DEBUG is defined. Its only
|
|
** purpose is to execute assert() statements to verify that if the
|
|
** PragFlg_NoColumns1 flag is set and the caller specified an argument
|
|
** to the PRAGMA, the implementation has not added any OP_ResultRow
|
|
** instructions to the VM. */
|
|
if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){
|
|
sqlite3VdbeVerifyNoResultRow(v);
|
|
}
|
|
|
|
pragma_out:
|
|
sqlite3DbFree(db, zLeft);
|
|
sqlite3DbFree(db, zRight);
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/*****************************************************************************
|
|
** Implementation of an eponymous virtual table that runs a pragma.
|
|
**
|
|
*/
|
|
typedef struct PragmaVtab PragmaVtab;
|
|
typedef struct PragmaVtabCursor PragmaVtabCursor;
|
|
struct PragmaVtab {
|
|
sqlite3_vtab base; /* Base class. Must be first */
|
|
sqlite3 *db; /* The database connection to which it belongs */
|
|
const PragmaName *pName; /* Name of the pragma */
|
|
u8 nHidden; /* Number of hidden columns */
|
|
u8 iHidden; /* Index of the first hidden column */
|
|
};
|
|
struct PragmaVtabCursor {
|
|
sqlite3_vtab_cursor base; /* Base class. Must be first */
|
|
sqlite3_stmt *pPragma; /* The pragma statement to run */
|
|
sqlite_int64 iRowid; /* Current rowid */
|
|
char *azArg[2]; /* Value of the argument and schema */
|
|
};
|
|
|
|
/*
|
|
** Pragma virtual table module xConnect method.
|
|
*/
|
|
static int pragmaVtabConnect(
|
|
sqlite3 *db,
|
|
void *pAux,
|
|
int argc, const char *const*argv,
|
|
sqlite3_vtab **ppVtab,
|
|
char **pzErr
|
|
){
|
|
const PragmaName *pPragma = (const PragmaName*)pAux;
|
|
PragmaVtab *pTab = 0;
|
|
int rc;
|
|
int i, j;
|
|
char cSep = '(';
|
|
StrAccum acc;
|
|
char zBuf[200];
|
|
|
|
UNUSED_PARAMETER(argc);
|
|
UNUSED_PARAMETER(argv);
|
|
sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
|
|
sqlite3_str_appendall(&acc, "CREATE TABLE x");
|
|
for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){
|
|
sqlite3_str_appendf(&acc, "%c\"%s\"", cSep, pragCName[j]);
|
|
cSep = ',';
|
|
}
|
|
if( i==0 ){
|
|
sqlite3_str_appendf(&acc, "(\"%s\"", pPragma->zName);
|
|
i++;
|
|
}
|
|
j = 0;
|
|
if( pPragma->mPragFlg & PragFlg_Result1 ){
|
|
sqlite3_str_appendall(&acc, ",arg HIDDEN");
|
|
j++;
|
|
}
|
|
if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){
|
|
sqlite3_str_appendall(&acc, ",schema HIDDEN");
|
|
j++;
|
|
}
|
|
sqlite3_str_append(&acc, ")", 1);
|
|
sqlite3StrAccumFinish(&acc);
|
|
assert( strlen(zBuf) < sizeof(zBuf)-1 );
|
|
rc = sqlite3_declare_vtab(db, zBuf);
|
|
if( rc==SQLITE_OK ){
|
|
pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab));
|
|
if( pTab==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
memset(pTab, 0, sizeof(PragmaVtab));
|
|
pTab->pName = pPragma;
|
|
pTab->db = db;
|
|
pTab->iHidden = i;
|
|
pTab->nHidden = j;
|
|
}
|
|
}else{
|
|
*pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
|
|
}
|
|
|
|
*ppVtab = (sqlite3_vtab*)pTab;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Pragma virtual table module xDisconnect method.
|
|
*/
|
|
static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){
|
|
PragmaVtab *pTab = (PragmaVtab*)pVtab;
|
|
sqlite3_free(pTab);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Figure out the best index to use to search a pragma virtual table.
|
|
**
|
|
** There are not really any index choices. But we want to encourage the
|
|
** query planner to give == constraints on as many hidden parameters as
|
|
** possible, and especially on the first hidden parameter. So return a
|
|
** high cost if hidden parameters are unconstrained.
|
|
*/
|
|
static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
|
|
PragmaVtab *pTab = (PragmaVtab*)tab;
|
|
const struct sqlite3_index_constraint *pConstraint;
|
|
int i, j;
|
|
int seen[2];
|
|
|
|
pIdxInfo->estimatedCost = (double)1;
|
|
if( pTab->nHidden==0 ){ return SQLITE_OK; }
|
|
pConstraint = pIdxInfo->aConstraint;
|
|
seen[0] = 0;
|
|
seen[1] = 0;
|
|
for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
|
|
if( pConstraint->usable==0 ) continue;
|
|
if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
|
|
if( pConstraint->iColumn < pTab->iHidden ) continue;
|
|
j = pConstraint->iColumn - pTab->iHidden;
|
|
assert( j < 2 );
|
|
seen[j] = i+1;
|
|
}
|
|
if( seen[0]==0 ){
|
|
pIdxInfo->estimatedCost = (double)2147483647;
|
|
pIdxInfo->estimatedRows = 2147483647;
|
|
return SQLITE_OK;
|
|
}
|
|
j = seen[0]-1;
|
|
pIdxInfo->aConstraintUsage[j].argvIndex = 1;
|
|
pIdxInfo->aConstraintUsage[j].omit = 1;
|
|
if( seen[1]==0 ) return SQLITE_OK;
|
|
pIdxInfo->estimatedCost = (double)20;
|
|
pIdxInfo->estimatedRows = 20;
|
|
j = seen[1]-1;
|
|
pIdxInfo->aConstraintUsage[j].argvIndex = 2;
|
|
pIdxInfo->aConstraintUsage[j].omit = 1;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Create a new cursor for the pragma virtual table */
|
|
static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){
|
|
PragmaVtabCursor *pCsr;
|
|
pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr));
|
|
if( pCsr==0 ) return SQLITE_NOMEM;
|
|
memset(pCsr, 0, sizeof(PragmaVtabCursor));
|
|
pCsr->base.pVtab = pVtab;
|
|
*ppCursor = &pCsr->base;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Clear all content from pragma virtual table cursor. */
|
|
static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){
|
|
int i;
|
|
sqlite3_finalize(pCsr->pPragma);
|
|
pCsr->pPragma = 0;
|
|
for(i=0; i<ArraySize(pCsr->azArg); i++){
|
|
sqlite3_free(pCsr->azArg[i]);
|
|
pCsr->azArg[i] = 0;
|
|
}
|
|
}
|
|
|
|
/* Close a pragma virtual table cursor */
|
|
static int pragmaVtabClose(sqlite3_vtab_cursor *cur){
|
|
PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur;
|
|
pragmaVtabCursorClear(pCsr);
|
|
sqlite3_free(pCsr);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Advance the pragma virtual table cursor to the next row */
|
|
static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){
|
|
PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
|
|
int rc = SQLITE_OK;
|
|
|
|
/* Increment the xRowid value */
|
|
pCsr->iRowid++;
|
|
assert( pCsr->pPragma );
|
|
if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){
|
|
rc = sqlite3_finalize(pCsr->pPragma);
|
|
pCsr->pPragma = 0;
|
|
pragmaVtabCursorClear(pCsr);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Pragma virtual table module xFilter method.
|
|
*/
|
|
static int pragmaVtabFilter(
|
|
sqlite3_vtab_cursor *pVtabCursor,
|
|
int idxNum, const char *idxStr,
|
|
int argc, sqlite3_value **argv
|
|
){
|
|
PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
|
|
PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
|
|
int rc;
|
|
int i, j;
|
|
StrAccum acc;
|
|
char *zSql;
|
|
|
|
UNUSED_PARAMETER(idxNum);
|
|
UNUSED_PARAMETER(idxStr);
|
|
pragmaVtabCursorClear(pCsr);
|
|
j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1;
|
|
for(i=0; i<argc; i++, j++){
|
|
const char *zText = (const char*)sqlite3_value_text(argv[i]);
|
|
assert( j<ArraySize(pCsr->azArg) );
|
|
assert( pCsr->azArg[j]==0 );
|
|
if( zText ){
|
|
pCsr->azArg[j] = sqlite3_mprintf("%s", zText);
|
|
if( pCsr->azArg[j]==0 ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
}
|
|
}
|
|
sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]);
|
|
sqlite3_str_appendall(&acc, "PRAGMA ");
|
|
if( pCsr->azArg[1] ){
|
|
sqlite3_str_appendf(&acc, "%Q.", pCsr->azArg[1]);
|
|
}
|
|
sqlite3_str_appendall(&acc, pTab->pName->zName);
|
|
if( pCsr->azArg[0] ){
|
|
sqlite3_str_appendf(&acc, "=%Q", pCsr->azArg[0]);
|
|
}
|
|
zSql = sqlite3StrAccumFinish(&acc);
|
|
if( zSql==0 ) return SQLITE_NOMEM;
|
|
rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0);
|
|
sqlite3_free(zSql);
|
|
if( rc!=SQLITE_OK ){
|
|
pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db));
|
|
return rc;
|
|
}
|
|
return pragmaVtabNext(pVtabCursor);
|
|
}
|
|
|
|
/*
|
|
** Pragma virtual table module xEof method.
|
|
*/
|
|
static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){
|
|
PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
|
|
return (pCsr->pPragma==0);
|
|
}
|
|
|
|
/* The xColumn method simply returns the corresponding column from
|
|
** the PRAGMA.
|
|
*/
|
|
static int pragmaVtabColumn(
|
|
sqlite3_vtab_cursor *pVtabCursor,
|
|
sqlite3_context *ctx,
|
|
int i
|
|
){
|
|
PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
|
|
PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
|
|
if( i<pTab->iHidden ){
|
|
sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i));
|
|
}else{
|
|
sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT);
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Pragma virtual table module xRowid method.
|
|
*/
|
|
static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){
|
|
PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
|
|
*p = pCsr->iRowid;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* The pragma virtual table object */
|
|
static const sqlite3_module pragmaVtabModule = {
|
|
0, /* iVersion */
|
|
0, /* xCreate - create a table */
|
|
pragmaVtabConnect, /* xConnect - connect to an existing table */
|
|
pragmaVtabBestIndex, /* xBestIndex - Determine search strategy */
|
|
pragmaVtabDisconnect, /* xDisconnect - Disconnect from a table */
|
|
0, /* xDestroy - Drop a table */
|
|
pragmaVtabOpen, /* xOpen - open a cursor */
|
|
pragmaVtabClose, /* xClose - close a cursor */
|
|
pragmaVtabFilter, /* xFilter - configure scan constraints */
|
|
pragmaVtabNext, /* xNext - advance a cursor */
|
|
pragmaVtabEof, /* xEof */
|
|
pragmaVtabColumn, /* xColumn - read data */
|
|
pragmaVtabRowid, /* xRowid - read data */
|
|
0, /* xUpdate - write data */
|
|
0, /* xBegin - begin transaction */
|
|
0, /* xSync - sync transaction */
|
|
0, /* xCommit - commit transaction */
|
|
0, /* xRollback - rollback transaction */
|
|
0, /* xFindFunction - function overloading */
|
|
0, /* xRename - rename the table */
|
|
0, /* xSavepoint */
|
|
0, /* xRelease */
|
|
0, /* xRollbackTo */
|
|
0 /* xShadowName */
|
|
};
|
|
|
|
/*
|
|
** Check to see if zTabName is really the name of a pragma. If it is,
|
|
** then register an eponymous virtual table for that pragma and return
|
|
** a pointer to the Module object for the new virtual table.
|
|
*/
|
|
Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){
|
|
const PragmaName *pName;
|
|
assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 );
|
|
pName = pragmaLocate(zName+7);
|
|
if( pName==0 ) return 0;
|
|
if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0;
|
|
assert( sqlite3HashFind(&db->aModule, zName)==0 );
|
|
return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0);
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#endif /* SQLITE_OMIT_PRAGMA */
|