943 lines
28 KiB
C
943 lines
28 KiB
C
/*
|
|
** Copyright (c) 1999, 2000 D. Richard Hipp
|
|
**
|
|
** This program is free software; you can redistribute it and/or
|
|
** modify it under the terms of the GNU General Public
|
|
** License as published by the Free Software Foundation; either
|
|
** version 2 of the License, or (at your option) any later version.
|
|
**
|
|
** This program is distributed in the hope that it will be useful,
|
|
** but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
** General Public License for more details.
|
|
**
|
|
** You should have received a copy of the GNU General Public
|
|
** License along with this library; if not, write to the
|
|
** Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
** Boston, MA 02111-1307, USA.
|
|
**
|
|
** Author contact information:
|
|
** drh@hwaci.com
|
|
** http://www.hwaci.com/drh/
|
|
**
|
|
*************************************************************************
|
|
** This file contains C code routines that are called by the parser
|
|
** to handle SELECT statements.
|
|
**
|
|
** $Id: select.c,v 1.18 2000/06/08 00:28:52 drh Exp $
|
|
*/
|
|
#include "sqliteInt.h"
|
|
|
|
/*
|
|
** Allocate a new Select structure and return a pointer to that
|
|
** structure.
|
|
*/
|
|
Select *sqliteSelectNew(
|
|
ExprList *pEList,
|
|
IdList *pSrc,
|
|
Expr *pWhere,
|
|
ExprList *pGroupBy,
|
|
Expr *pHaving,
|
|
ExprList *pOrderBy,
|
|
int isDistinct
|
|
){
|
|
Select *pNew;
|
|
pNew = sqliteMalloc( sizeof(*pNew) );
|
|
if( pNew==0 ) return 0;
|
|
pNew->pEList = pEList;
|
|
pNew->pSrc = pSrc;
|
|
pNew->pWhere = pWhere;
|
|
pNew->pGroupBy = pGroupBy;
|
|
pNew->pHaving = pHaving;
|
|
pNew->pOrderBy = pOrderBy;
|
|
pNew->isDistinct = isDistinct;
|
|
pNew->op = TK_SELECT;
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** Delete the given Select structure and all of its substructures.
|
|
*/
|
|
void sqliteSelectDelete(Select *p){
|
|
if( p==0 ) return;
|
|
sqliteExprListDelete(p->pEList);
|
|
sqliteIdListDelete(p->pSrc);
|
|
sqliteExprDelete(p->pWhere);
|
|
sqliteExprListDelete(p->pGroupBy);
|
|
sqliteExprDelete(p->pHaving);
|
|
sqliteExprListDelete(p->pOrderBy);
|
|
sqliteSelectDelete(p->pPrior);
|
|
sqliteFree(p);
|
|
}
|
|
|
|
/*
|
|
** Delete the aggregate information from the parse structure.
|
|
*/
|
|
void sqliteParseInfoReset(Parse *pParse){
|
|
sqliteFree(pParse->aAgg);
|
|
pParse->aAgg = 0;
|
|
pParse->nAgg = 0;
|
|
pParse->iAggCount = -1;
|
|
pParse->useAgg = 0;
|
|
}
|
|
|
|
/*
|
|
** This routine generates the code for the inside of the inner loop
|
|
** of a SELECT.
|
|
**
|
|
** The pEList is used to determine the values for each column in the
|
|
** result row. Except if pEList==NULL, then we just read nField
|
|
** elements from the srcTab table.
|
|
*/
|
|
static int selectInnerLoop(
|
|
Parse *pParse, /* The parser context */
|
|
ExprList *pEList, /* List of values being extracted */
|
|
int srcTab, /* Pull data from this table */
|
|
int nField, /* Number of fields in the source table */
|
|
ExprList *pOrderBy, /* If not NULL, sort results using this key */
|
|
int distinct, /* If >=0, make sure results are distinct */
|
|
int eDest, /* How to dispose of the results */
|
|
int iParm, /* An argument to the disposal method */
|
|
int iContinue, /* Jump here to continue with next row */
|
|
int iBreak /* Jump here to break out of the inner loop */
|
|
){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int i;
|
|
|
|
/* Pull the requested fields.
|
|
*/
|
|
if( pEList ){
|
|
for(i=0; i<pEList->nExpr; i++){
|
|
sqliteExprCode(pParse, pEList->a[i].pExpr);
|
|
}
|
|
nField = pEList->nExpr;
|
|
}else{
|
|
for(i=0; i<nField; i++){
|
|
sqliteVdbeAddOp(v, OP_Field, srcTab, i, 0, 0);
|
|
}
|
|
}
|
|
|
|
/* If the current result is not distinct, skip the rest
|
|
** of the processing for the current row.
|
|
*/
|
|
if( distinct>=0 ){
|
|
int lbl = sqliteVdbeMakeLabel(v);
|
|
sqliteVdbeAddOp(v, OP_MakeKey, pEList->nExpr, 1, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_Distinct, distinct, lbl, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_Pop, pEList->nExpr+1, 0, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, iContinue, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_String, 0, 0, "", lbl);
|
|
sqliteVdbeAddOp(v, OP_Put, distinct, 0, 0, 0);
|
|
}
|
|
|
|
/* If there is an ORDER BY clause, then store the results
|
|
** in a sorter.
|
|
*/
|
|
if( pOrderBy ){
|
|
char *zSortOrder;
|
|
sqliteVdbeAddOp(v, OP_SortMakeRec, nField, 0, 0, 0);
|
|
zSortOrder = sqliteMalloc( pOrderBy->nExpr + 1 );
|
|
if( zSortOrder==0 ) return 1;
|
|
for(i=0; i<pOrderBy->nExpr; i++){
|
|
zSortOrder[i] = pOrderBy->a[i].sortOrder ? '-' : '+';
|
|
sqliteExprCode(pParse, pOrderBy->a[i].pExpr);
|
|
}
|
|
zSortOrder[pOrderBy->nExpr] = 0;
|
|
sqliteVdbeAddOp(v, OP_SortMakeKey, pOrderBy->nExpr, 0, zSortOrder, 0);
|
|
sqliteVdbeAddOp(v, OP_SortPut, 0, 0, 0, 0);
|
|
}else
|
|
|
|
/* In this mode, write each query result to the key of the temporary
|
|
** table iParm.
|
|
*/
|
|
if( eDest==SRT_Union ){
|
|
sqliteVdbeAddOp(v, OP_MakeRecord, nField, 0, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_String, iParm, 0, "", 0);
|
|
sqliteVdbeAddOp(v, OP_Put, iParm, 0, 0, 0);
|
|
}else
|
|
|
|
/* Store the result as data using a unique key.
|
|
*/
|
|
if( eDest==SRT_Table ){
|
|
sqliteVdbeAddOp(v, OP_MakeRecord, nField, 0, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_New, iParm, 0, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_Pull, 1, 0, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_Put, iParm, 0, 0, 0);
|
|
}else
|
|
|
|
/* Construct a record from the query result, but instead of
|
|
** saving that record, use it as a key to delete elements from
|
|
** the temporary table iParm.
|
|
*/
|
|
if( eDest==SRT_Except ){
|
|
sqliteVdbeAddOp(v, OP_MakeRecord, nField, 0, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_Delete, iParm, 0, 0, 0);
|
|
}else
|
|
|
|
/* If we are creating a set for an "expr IN (SELECT ...)" construct,
|
|
** then there should be a single item on the stack. Write this
|
|
** item into the set table with bogus data.
|
|
*/
|
|
if( eDest==SRT_Set ){
|
|
assert( nField==1 );
|
|
sqliteVdbeAddOp(v, OP_String, 0, 0, "", 0);
|
|
sqliteVdbeAddOp(v, OP_Put, iParm, 0, 0, 0);
|
|
}else
|
|
|
|
|
|
/* If this is a scalar select that is part of an expression, then
|
|
** store the results in the appropriate memory cell and break out
|
|
** of the scan loop.
|
|
*/
|
|
if( eDest==SRT_Mem ){
|
|
assert( nField==1 );
|
|
sqliteVdbeAddOp(v, OP_MemStore, iParm, 0, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, iBreak, 0, 0);
|
|
}else
|
|
|
|
/* If none of the above, send the data to the callback function.
|
|
*/
|
|
{
|
|
sqliteVdbeAddOp(v, OP_Callback, nField, 0, 0, 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** If the inner loop was generated using a non-null pOrderBy argument,
|
|
** then the results were placed in a sorter. After the loop is terminated
|
|
** we need to run the sorter and output the results. The following
|
|
** routine generates the code needed to do that.
|
|
*/
|
|
static void generateSortTail(Vdbe *v, int nField){
|
|
int end = sqliteVdbeMakeLabel(v);
|
|
int addr;
|
|
sqliteVdbeAddOp(v, OP_Sort, 0, 0, 0, 0);
|
|
addr = sqliteVdbeAddOp(v, OP_SortNext, 0, end, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_SortCallback, nField, 0, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, addr, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_SortClose, 0, 0, 0, end);
|
|
}
|
|
|
|
/*
|
|
** Generate code that will tell the VDBE how many columns there
|
|
** are in the result and the name for each column. This information
|
|
** is used to provide "argc" and "azCol[]" values in the callback.
|
|
*/
|
|
static
|
|
void generateColumnNames(Parse *pParse, IdList *pTabList, ExprList *pEList){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int i;
|
|
if( pParse->colNamesSet ) return;
|
|
pParse->colNamesSet = 1;
|
|
sqliteVdbeAddOp(v, OP_ColumnCount, pEList->nExpr, 0, 0, 0);
|
|
for(i=0; i<pEList->nExpr; i++){
|
|
Expr *p;
|
|
if( pEList->a[i].zName ){
|
|
char *zName = pEList->a[i].zName;
|
|
sqliteVdbeAddOp(v, OP_ColumnName, i, 0, zName, 0);
|
|
continue;
|
|
}
|
|
p = pEList->a[i].pExpr;
|
|
if( p->op!=TK_FIELD || pTabList==0 ){
|
|
char zName[30];
|
|
sprintf(zName, "column%d", i+1);
|
|
sqliteVdbeAddOp(v, OP_ColumnName, i, 0, zName, 0);
|
|
}else{
|
|
if( pTabList->nId>1 ){
|
|
char *zName = 0;
|
|
Table *pTab = pTabList->a[p->iTable].pTab;
|
|
char *zTab;
|
|
|
|
zTab = pTabList->a[p->iTable].zAlias;
|
|
if( zTab==0 ) zTab = pTab->zName;
|
|
sqliteSetString(&zName, zTab, ".", pTab->aCol[p->iField].zName, 0);
|
|
sqliteVdbeAddOp(v, OP_ColumnName, i, 0, zName, 0);
|
|
sqliteFree(zName);
|
|
}else{
|
|
Table *pTab = pTabList->a[0].pTab;
|
|
char *zName = pTab->aCol[p->iField].zName;
|
|
sqliteVdbeAddOp(v, OP_ColumnName, i, 0, zName, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Name of the connection operator, used for error messages.
|
|
*/
|
|
static const char *selectOpName(int id){
|
|
char *z;
|
|
switch( id ){
|
|
case TK_ALL: z = "UNION ALL"; break;
|
|
case TK_INTERSECT: z = "INTERSECT"; break;
|
|
case TK_EXCEPT: z = "EXCEPT"; break;
|
|
default: z = "UNION"; break;
|
|
}
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
** For the given SELECT statement, do two things.
|
|
**
|
|
** (1) Fill in the pTab fields of the IdList that defines the set
|
|
** of tables we are scanning.
|
|
**
|
|
** (2) If the columns to be extracted variable (pEList) is NULL
|
|
** (meaning that a "*" was used in the SQL statement) then
|
|
** create a fake pEList containing the names of all columns
|
|
** of all tables.
|
|
**
|
|
** Return 0 on success. If there are problems, leave an error message
|
|
** in pParse and return non-zero.
|
|
*/
|
|
static int fillInColumnList(Parse *pParse, Select *p){
|
|
int i, j;
|
|
IdList *pTabList = p->pSrc;
|
|
ExprList *pEList = p->pEList;
|
|
|
|
/* Look up every table in the table list.
|
|
*/
|
|
for(i=0; i<pTabList->nId; i++){
|
|
if( pTabList->a[i].pTab ){
|
|
/* This routine has run before! No need to continue */
|
|
return 0;
|
|
}
|
|
pTabList->a[i].pTab = sqliteFindTable(pParse->db, pTabList->a[i].zName);
|
|
if( pTabList->a[i].pTab==0 ){
|
|
sqliteSetString(&pParse->zErrMsg, "no such table: ",
|
|
pTabList->a[i].zName, 0);
|
|
pParse->nErr++;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* If the list of columns to retrieve is "*" then replace it with
|
|
** a list of all columns from all tables.
|
|
*/
|
|
if( pEList==0 ){
|
|
for(i=0; i<pTabList->nId; i++){
|
|
Table *pTab = pTabList->a[i].pTab;
|
|
for(j=0; j<pTab->nCol; j++){
|
|
Expr *pExpr = sqliteExpr(TK_DOT, 0, 0, 0);
|
|
pExpr->pLeft = sqliteExpr(TK_ID, 0, 0, 0);
|
|
pExpr->pLeft->token.z = pTab->zName;
|
|
pExpr->pLeft->token.n = strlen(pTab->zName);
|
|
pExpr->pRight = sqliteExpr(TK_ID, 0, 0, 0);
|
|
pExpr->pRight->token.z = pTab->aCol[j].zName;
|
|
pExpr->pRight->token.n = strlen(pTab->aCol[j].zName);
|
|
pEList = sqliteExprListAppend(pEList, pExpr, 0);
|
|
}
|
|
}
|
|
p->pEList = pEList;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** This routine associates entries in an ORDER BY expression list with
|
|
** columns in a result. For each ORDER BY expression, the opcode of
|
|
** the top-level node is changed to TK_FIELD and the iField value of
|
|
** the top-level node is filled in with column number and the iTable
|
|
** value of the top-level node is filled with iTable parameter.
|
|
**
|
|
** If there are prior SELECT clauses, they are processed first. A match
|
|
** in an earlier SELECT takes precedence over a later SELECT.
|
|
**
|
|
** Any entry that does not match is flagged as an error. The number
|
|
** of errors is returned.
|
|
*/
|
|
static int matchOrderbyToColumn(
|
|
Parse *pParse, /* A place to leave error messages */
|
|
Select *pSelect, /* Match to result columns of this SELECT */
|
|
ExprList *pOrderBy, /* The ORDER BY values to match against columns */
|
|
int iTable, /* Insert this this value in iTable */
|
|
int mustComplete /* If TRUE all ORDER BYs must match */
|
|
){
|
|
int nErr = 0;
|
|
int i, j;
|
|
ExprList *pEList;
|
|
|
|
assert( pSelect && pOrderBy );
|
|
if( mustComplete ){
|
|
for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
|
|
}
|
|
if( fillInColumnList(pParse, pSelect) ){
|
|
return 1;
|
|
}
|
|
if( pSelect->pPrior ){
|
|
matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0);
|
|
}
|
|
pEList = pSelect->pEList;
|
|
for(i=0; i<pOrderBy->nExpr; i++){
|
|
Expr *pE = pOrderBy->a[i].pExpr;
|
|
if( pOrderBy->a[i].done ) continue;
|
|
for(j=0; j<pEList->nExpr; j++){
|
|
int match = 0;
|
|
if( pEList->a[i].zName && (pE->op==TK_ID || pE->op==TK_STRING) ){
|
|
char *zName = pEList->a[i].zName;
|
|
char *zLabel = 0;
|
|
sqliteSetString(&zLabel, pE->token.z, pE->token.n, 0);
|
|
sqliteDequote(zLabel);
|
|
if( sqliteStrICmp(zName, zLabel)==0 ){
|
|
match = 1;
|
|
}
|
|
}
|
|
if( match==0 && sqliteExprCompare(pE, pEList->a[i].pExpr) ){
|
|
match = 1;
|
|
}
|
|
if( match ){
|
|
pE->op = TK_FIELD;
|
|
pE->iField = j;
|
|
pE->iTable = iTable;
|
|
pOrderBy->a[i].done = 1;
|
|
break;
|
|
}
|
|
}
|
|
if( mustComplete ){
|
|
char zBuf[30];
|
|
sprintf(zBuf,"%d",i+1);
|
|
sqliteSetString(&pParse->zErrMsg, "ORDER BY term number ", zBuf,
|
|
" does not match any result column", 0);
|
|
pParse->nErr++;
|
|
nErr++;
|
|
break;
|
|
}
|
|
}
|
|
return nErr;
|
|
}
|
|
|
|
/*
|
|
** Get a VDBE for the given parser context. Create a new one if necessary.
|
|
** If an error occurs, return NULL and leave a message in pParse.
|
|
*/
|
|
Vdbe *sqliteGetVdbe(Parse *pParse){
|
|
Vdbe *v = pParse->pVdbe;
|
|
if( v==0 ){
|
|
v = pParse->pVdbe = sqliteVdbeCreate(pParse->db->pBe);
|
|
}
|
|
if( v==0 ){
|
|
sqliteSetString(&pParse->zErrMsg, "out of memory", 0);
|
|
pParse->nErr++;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
|
|
/*
|
|
** This routine is called to process a query that is really the union
|
|
** or intersection of two or more separate queries.
|
|
*/
|
|
static int multiSelect(Parse *pParse, Select *p, int eDest, int iParm){
|
|
int rc; /* Success code from a subroutine */
|
|
Select *pPrior; /* Another SELECT immediately to our left */
|
|
Vdbe *v; /* Generate code to this VDBE */
|
|
int base; /* Baseline value for pParse->nTab */
|
|
|
|
/* Make sure there is no ORDER BY clause on prior SELECTs. Only the
|
|
** last SELECT in the series may have an ORDER BY.
|
|
*/
|
|
assert( p->pPrior!=0 );
|
|
pPrior = p->pPrior;
|
|
if( pPrior->pOrderBy ){
|
|
sqliteSetString(&pParse->zErrMsg,"ORDER BY clause should come after ",
|
|
selectOpName(p->op), " not before", 0);
|
|
pParse->nErr++;
|
|
return 1;
|
|
}
|
|
|
|
/* Make sure we have a valid query engine. If not, create a new one.
|
|
*/
|
|
v = sqliteGetVdbe(pParse);
|
|
if( v==0 ) return 1;
|
|
|
|
/* Process the UNION or INTERSECTION
|
|
*/
|
|
base = pParse->nTab;
|
|
switch( p->op ){
|
|
case TK_ALL:
|
|
case TK_EXCEPT:
|
|
case TK_UNION: {
|
|
int unionTab; /* Cursor number of the temporary table holding result */
|
|
int op; /* One of the SRT_ operations to apply to self */
|
|
int priorOp; /* The SRT_ operation to apply to prior selects */
|
|
|
|
priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
|
|
if( eDest==priorOp ){
|
|
/* We can reuse a temporary table generated by a SELECT to our
|
|
** right. This also means we are not the right-most select and so
|
|
** we cannot have an ORDER BY clause
|
|
*/
|
|
unionTab = iParm;
|
|
assert( p->pOrderBy==0 );
|
|
}else{
|
|
/* We will need to create our own temporary table to hold the
|
|
** intermediate results.
|
|
*/
|
|
unionTab = pParse->nTab++;
|
|
if( p->pOrderBy
|
|
&& matchOrderbyToColumn(pParse, p, p->pOrderBy, unionTab, 1) ){
|
|
return 1;
|
|
}
|
|
sqliteVdbeAddOp(v, OP_Open, unionTab, 1, 0, 0);
|
|
if( p->op!=TK_ALL ){
|
|
sqliteVdbeAddOp(v, OP_KeyAsData, unionTab, 1, 0, 0);
|
|
}
|
|
}
|
|
|
|
/* Code the SELECT statements to our left
|
|
*/
|
|
rc = sqliteSelect(pParse, pPrior, priorOp, unionTab);
|
|
if( rc ) return rc;
|
|
|
|
/* Code the current SELECT statement
|
|
*/
|
|
switch( p->op ){
|
|
case TK_EXCEPT: op = SRT_Except; break;
|
|
case TK_UNION: op = SRT_Union; break;
|
|
case TK_ALL: op = SRT_Table; break;
|
|
}
|
|
p->pPrior = 0;
|
|
rc = sqliteSelect(pParse, p, op, unionTab);
|
|
p->pPrior = pPrior;
|
|
if( rc ) return rc;
|
|
|
|
/* Convert the data in the temporary table into whatever form
|
|
** it is that we currently need.
|
|
*/
|
|
if( eDest!=priorOp ){
|
|
int iCont, iBreak;
|
|
assert( p->pEList );
|
|
generateColumnNames(pParse, 0, p->pEList);
|
|
if( p->pOrderBy ){
|
|
sqliteVdbeAddOp(v, OP_SortOpen, 0, 0, 0, 0);
|
|
}
|
|
iBreak = sqliteVdbeMakeLabel(v);
|
|
iCont = sqliteVdbeAddOp(v, OP_Next, unionTab, iBreak, 0, 0);
|
|
rc = selectInnerLoop(pParse, 0, unionTab, p->pEList->nExpr,
|
|
p->pOrderBy, -1, eDest, iParm,
|
|
iCont, iBreak);
|
|
if( rc ) return 1;
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, iCont, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_Close, unionTab, 0, 0, iBreak);
|
|
if( p->pOrderBy ){
|
|
generateSortTail(v, p->pEList->nExpr);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case TK_INTERSECT: {
|
|
int tab1, tab2;
|
|
int iCont, iBreak;
|
|
|
|
/* INTERSECT is different from the others since it requires
|
|
** two temporary tables. Hence it has its own case. Begine
|
|
** by allocating the tables we will need.
|
|
*/
|
|
tab1 = pParse->nTab++;
|
|
tab2 = pParse->nTab++;
|
|
if( p->pOrderBy && matchOrderbyToColumn(pParse,p,p->pOrderBy,tab1,1) ){
|
|
return 1;
|
|
}
|
|
sqliteVdbeAddOp(v, OP_Open, tab1, 1, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_KeyAsData, tab1, 1, 0, 0);
|
|
|
|
/* Code the SELECTs to our left into temporary table "tab1".
|
|
*/
|
|
rc = sqliteSelect(pParse, pPrior, SRT_Union, tab1);
|
|
if( rc ) return rc;
|
|
|
|
/* Code the current SELECT into temporary table "tab2"
|
|
*/
|
|
sqliteVdbeAddOp(v, OP_Open, tab2, 1, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_KeyAsData, tab2, 1, 0, 0);
|
|
p->pPrior = 0;
|
|
rc = sqliteSelect(pParse, p, SRT_Union, tab2);
|
|
p->pPrior = pPrior;
|
|
if( rc ) return rc;
|
|
|
|
/* Generate code to take the intersection of the two temporary
|
|
** tables.
|
|
*/
|
|
assert( p->pEList );
|
|
generateColumnNames(pParse, 0, p->pEList);
|
|
if( p->pOrderBy ){
|
|
sqliteVdbeAddOp(v, OP_SortOpen, 0, 0, 0, 0);
|
|
}
|
|
iBreak = sqliteVdbeMakeLabel(v);
|
|
iCont = sqliteVdbeAddOp(v, OP_Next, tab1, iBreak, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_Key, tab1, 0, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_NotFound, tab2, iCont, 0, 0);
|
|
rc = selectInnerLoop(pParse, 0, tab1, p->pEList->nExpr,
|
|
p->pOrderBy, -1, eDest, iParm,
|
|
iCont, iBreak);
|
|
if( rc ) return 1;
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, iCont, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_Close, tab2, 0, 0, iBreak);
|
|
sqliteVdbeAddOp(v, OP_Close, tab1, 0, 0, 0);
|
|
if( p->pOrderBy ){
|
|
generateSortTail(v, p->pEList->nExpr);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
assert( p->pEList && pPrior->pEList );
|
|
if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
|
|
sqliteSetString(&pParse->zErrMsg, "SELECTs to the left and right of ",
|
|
selectOpName(p->op), " do not have the same number of result columns", 0);
|
|
pParse->nErr++;
|
|
return 1;
|
|
}
|
|
pParse->nTab = base;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Generate code for the given SELECT statement.
|
|
**
|
|
** The results are distributed in various ways depending on the
|
|
** value of eDest and iParm.
|
|
**
|
|
** eDest Value Result
|
|
** ------------ -------------------------------------------
|
|
** SRT_Callback Invoke the callback for each row of the result.
|
|
**
|
|
** SRT_Mem Store first result in memory cell iParm
|
|
**
|
|
** SRT_Set Store results as keys of a table with cursor iParm
|
|
**
|
|
** SRT_Union Store results as a key in a temporary table iParm
|
|
**
|
|
** SRT_Except Remove results form the temporary talbe iParm.
|
|
**
|
|
** This routine returns the number of errors. If any errors are
|
|
** encountered, then an appropriate error message is left in
|
|
** pParse->zErrMsg.
|
|
**
|
|
** This routine does NOT free the Select structure passed in. The
|
|
** calling function needs to do that.
|
|
*/
|
|
int sqliteSelect(
|
|
Parse *pParse, /* The parser context */
|
|
Select *p, /* The SELECT statement being coded. */
|
|
int eDest, /* One of: SRT_Callback Mem Set Union Except */
|
|
int iParm /* Save result in this memory location, if >=0 */
|
|
){
|
|
int i;
|
|
WhereInfo *pWInfo;
|
|
Vdbe *v;
|
|
int isAgg = 0; /* True for select lists like "count(*)" */
|
|
ExprList *pEList; /* List of fields to extract. NULL means "*" */
|
|
IdList *pTabList; /* List of tables to select from */
|
|
Expr *pWhere; /* The WHERE clause. May be NULL */
|
|
ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */
|
|
ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
|
|
Expr *pHaving; /* The HAVING clause. May be NULL */
|
|
int isDistinct; /* True if the DISTINCT keyword is present */
|
|
int distinct; /* Table to use for the distinct set */
|
|
int base; /* First cursor available for use */
|
|
|
|
/* If there is are a sequence of queries, do the earlier ones first.
|
|
*/
|
|
if( p->pPrior ){
|
|
return multiSelect(pParse, p, eDest, iParm);
|
|
}
|
|
|
|
/* Make local copies of the parameters for this query.
|
|
*/
|
|
pTabList = p->pSrc;
|
|
pWhere = p->pWhere;
|
|
pOrderBy = p->pOrderBy;
|
|
pGroupBy = p->pGroupBy;
|
|
pHaving = p->pHaving;
|
|
isDistinct = p->isDistinct;
|
|
|
|
/* Save the current value of pParse->nTab. Restore this value before
|
|
** we exit.
|
|
*/
|
|
base = pParse->nTab;
|
|
|
|
/*
|
|
** Do not even attempt to generate any code if we have already seen
|
|
** errors before this routine starts.
|
|
*/
|
|
if( pParse->nErr>0 ) return 1;
|
|
sqliteParseInfoReset(pParse);
|
|
|
|
/* Look up every table in the table list and create an appropriate
|
|
** columnlist in pEList if there isn't one already. (The parser leaves
|
|
** a NULL in the pEList field if the SQL said "SELECT * FROM ...")
|
|
*/
|
|
if( fillInColumnList(pParse, p) ){
|
|
return 1;
|
|
}
|
|
pEList = p->pEList;
|
|
|
|
/* Allocate a temporary table to use for the DISTINCT set, if
|
|
** necessary. This must be done early to allocate the cursor before
|
|
** any calls to sqliteExprResolveIds().
|
|
*/
|
|
if( isDistinct ){
|
|
distinct = pParse->nTab++;
|
|
}else{
|
|
distinct = -1;
|
|
}
|
|
|
|
/* If writing to memory or generating a set
|
|
** only a single column may be output.
|
|
*/
|
|
if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){
|
|
sqliteSetString(&pParse->zErrMsg, "only a single result allowed for "
|
|
"a SELECT that is part of an expression", 0);
|
|
pParse->nErr++;
|
|
return 1;
|
|
}
|
|
|
|
/* ORDER BY is ignored if we are not sending the result to a callback.
|
|
*/
|
|
if( eDest!=SRT_Callback ){
|
|
pOrderBy = 0;
|
|
}
|
|
|
|
/* Allocate cursors for "expr IN (SELECT ...)" constructs.
|
|
*/
|
|
for(i=0; i<pEList->nExpr; i++){
|
|
sqliteExprResolveInSelect(pParse, pEList->a[i].pExpr);
|
|
}
|
|
if( pWhere ) sqliteExprResolveInSelect(pParse, pWhere);
|
|
if( pOrderBy ){
|
|
for(i=0; i<pOrderBy->nExpr; i++){
|
|
sqliteExprResolveInSelect(pParse, pOrderBy->a[i].pExpr);
|
|
}
|
|
}
|
|
if( pGroupBy ){
|
|
for(i=0; i<pGroupBy->nExpr; i++){
|
|
sqliteExprResolveInSelect(pParse, pGroupBy->a[i].pExpr);
|
|
}
|
|
}
|
|
if( pHaving ) sqliteExprResolveInSelect(pParse, pHaving);
|
|
|
|
/* At this point, we should have allocated all the cursors that we
|
|
** need to handle subquerys and temporary tables. From here on we
|
|
** are committed to keeping the same value for pParse->nTab.
|
|
**
|
|
** Resolve the field names and do a semantics check on all the expressions.
|
|
*/
|
|
for(i=0; i<pEList->nExpr; i++){
|
|
if( sqliteExprResolveIds(pParse, pTabList, pEList->a[i].pExpr) ){
|
|
return 1;
|
|
}
|
|
if( sqliteExprCheck(pParse, pEList->a[i].pExpr, 1, &isAgg) ){
|
|
return 1;
|
|
}
|
|
}
|
|
if( pWhere ){
|
|
if( sqliteExprResolveIds(pParse, pTabList, pWhere) ){
|
|
return 1;
|
|
}
|
|
if( sqliteExprCheck(pParse, pWhere, 0, 0) ){
|
|
return 1;
|
|
}
|
|
}
|
|
if( pOrderBy ){
|
|
for(i=0; i<pOrderBy->nExpr; i++){
|
|
Expr *pE = pOrderBy->a[i].pExpr;
|
|
if( sqliteExprResolveIds(pParse, pTabList, pE) ){
|
|
return 1;
|
|
}
|
|
if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
if( pGroupBy ){
|
|
for(i=0; i<pGroupBy->nExpr; i++){
|
|
Expr *pE = pGroupBy->a[i].pExpr;
|
|
if( sqliteExprResolveIds(pParse, pTabList, pE) ){
|
|
return 1;
|
|
}
|
|
if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
if( pHaving ){
|
|
if( pGroupBy==0 ){
|
|
sqliteSetString(&pParse->zErrMsg, "a GROUP BY clause is required "
|
|
"before HAVING", 0);
|
|
pParse->nErr++;
|
|
return 1;
|
|
}
|
|
if( sqliteExprResolveIds(pParse, pTabList, pHaving) ){
|
|
return 1;
|
|
}
|
|
if( sqliteExprCheck(pParse, pHaving, isAgg, 0) ){
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* Do an analysis of aggregate expressions.
|
|
*/
|
|
if( isAgg ){
|
|
for(i=0; i<pEList->nExpr; i++){
|
|
if( sqliteExprAnalyzeAggregates(pParse, pEList->a[i].pExpr) ){
|
|
return 1;
|
|
}
|
|
}
|
|
if( pGroupBy ){
|
|
for(i=0; i<pGroupBy->nExpr; i++){
|
|
if( sqliteExprAnalyzeAggregates(pParse, pGroupBy->a[i].pExpr) ){
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
if( pHaving && sqliteExprAnalyzeAggregates(pParse, pHaving) ){
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* Begin generating code.
|
|
*/
|
|
v = pParse->pVdbe;
|
|
if( v==0 ){
|
|
v = pParse->pVdbe = sqliteVdbeCreate(pParse->db->pBe);
|
|
}
|
|
if( v==0 ){
|
|
sqliteSetString(&pParse->zErrMsg, "out of memory", 0);
|
|
pParse->nErr++;
|
|
return 1;
|
|
}
|
|
if( pOrderBy ){
|
|
sqliteVdbeAddOp(v, OP_SortOpen, 0, 0, 0, 0);
|
|
}
|
|
|
|
/* Identify column names if we will be using in the callback. This
|
|
** step is skipped if the output is going to a table or a memory cell.
|
|
*/
|
|
if( eDest==SRT_Callback ){
|
|
generateColumnNames(pParse, pTabList, pEList);
|
|
}
|
|
|
|
/* Reset the aggregator
|
|
*/
|
|
if( isAgg ){
|
|
sqliteVdbeAddOp(v, OP_AggReset, 0, pParse->nAgg, 0, 0);
|
|
}
|
|
|
|
/* Initialize the memory cell to NULL
|
|
*/
|
|
if( eDest==SRT_Mem ){
|
|
sqliteVdbeAddOp(v, OP_Null, 0, 0, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_MemStore, iParm, 0, 0, 0);
|
|
}
|
|
|
|
/* Begin the database scan
|
|
*/
|
|
if( isDistinct ){
|
|
sqliteVdbeAddOp(v, OP_Open, distinct, 1, 0, 0);
|
|
}
|
|
pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 0);
|
|
if( pWInfo==0 ) return 1;
|
|
|
|
/* Use the standard inner loop if we are not dealing with
|
|
** aggregates
|
|
*/
|
|
if( !isAgg ){
|
|
if( selectInnerLoop(pParse, pEList, 0, 0, pOrderBy, distinct, eDest, iParm,
|
|
pWInfo->iContinue, pWInfo->iBreak) ){
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* If we are dealing with aggregates, then to the special aggregate
|
|
** processing.
|
|
*/
|
|
else{
|
|
int doFocus;
|
|
if( pGroupBy ){
|
|
for(i=0; i<pGroupBy->nExpr; i++){
|
|
sqliteExprCode(pParse, pGroupBy->a[i].pExpr);
|
|
}
|
|
sqliteVdbeAddOp(v, OP_MakeKey, pGroupBy->nExpr, 0, 0, 0);
|
|
doFocus = 1;
|
|
}else{
|
|
doFocus = 0;
|
|
for(i=0; i<pParse->nAgg; i++){
|
|
if( !pParse->aAgg[i].isAgg ){
|
|
doFocus = 1;
|
|
break;
|
|
}
|
|
}
|
|
if( doFocus ){
|
|
sqliteVdbeAddOp(v, OP_String, 0, 0, "", 0);
|
|
}
|
|
}
|
|
if( doFocus ){
|
|
int lbl1 = sqliteVdbeMakeLabel(v);
|
|
sqliteVdbeAddOp(v, OP_AggFocus, 0, lbl1, 0, 0);
|
|
for(i=0; i<pParse->nAgg; i++){
|
|
if( pParse->aAgg[i].isAgg ) continue;
|
|
sqliteExprCode(pParse, pParse->aAgg[i].pExpr);
|
|
sqliteVdbeAddOp(v, OP_AggSet, 0, i, 0, 0);
|
|
}
|
|
sqliteVdbeResolveLabel(v, lbl1);
|
|
}
|
|
for(i=0; i<pParse->nAgg; i++){
|
|
Expr *pE;
|
|
int op;
|
|
if( !pParse->aAgg[i].isAgg ) continue;
|
|
pE = pParse->aAgg[i].pExpr;
|
|
if( pE==0 ){
|
|
sqliteVdbeAddOp(v, OP_AggIncr, 1, i, 0, 0);
|
|
continue;
|
|
}
|
|
assert( pE->op==TK_AGG_FUNCTION );
|
|
assert( pE->pList!=0 && pE->pList->nExpr==1 );
|
|
sqliteExprCode(pParse, pE->pList->a[0].pExpr);
|
|
sqliteVdbeAddOp(v, OP_AggGet, 0, i, 0, 0);
|
|
switch( pE->iField ){
|
|
case FN_Min: op = OP_Min; break;
|
|
case FN_Max: op = OP_Max; break;
|
|
case FN_Avg: op = OP_Add; break;
|
|
case FN_Sum: op = OP_Add; break;
|
|
}
|
|
sqliteVdbeAddOp(v, op, 0, 0, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_AggSet, 0, i, 0, 0);
|
|
}
|
|
}
|
|
|
|
|
|
/* End the database scan loop.
|
|
*/
|
|
sqliteWhereEnd(pWInfo);
|
|
|
|
/* If we are processing aggregates, we need to set up a second loop
|
|
** over all of the aggregate values and process them.
|
|
*/
|
|
if( isAgg ){
|
|
int endagg = sqliteVdbeMakeLabel(v);
|
|
int startagg;
|
|
startagg = sqliteVdbeAddOp(v, OP_AggNext, 0, endagg, 0, 0);
|
|
pParse->useAgg = 1;
|
|
if( pHaving ){
|
|
sqliteExprIfFalse(pParse, pHaving, startagg);
|
|
}
|
|
if( selectInnerLoop(pParse, pEList, 0, 0, pOrderBy, distinct, eDest, iParm,
|
|
startagg, endagg) ){
|
|
return 1;
|
|
}
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, startagg, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_Noop, 0, 0, 0, endagg);
|
|
pParse->useAgg = 0;
|
|
}
|
|
|
|
/* If there is an ORDER BY clause, then we need to sort the results
|
|
** and send them to the callback one by one.
|
|
*/
|
|
if( pOrderBy ){
|
|
generateSortTail(v, pEList->nExpr);
|
|
}
|
|
pParse->nTab = base;
|
|
return 0;
|
|
}
|