sqlite/test/crash.test
danielk1977 8191bff0c2 Fix some problems with multi-file transaction rollback. (CVS 1751)
FossilOrigin-Name: 06e8e30b249c10512a225d6c7a5fcb5c666595e6
2004-06-28 04:52:30 +00:00

327 lines
9.8 KiB
Plaintext

# 2001 September 15
#
# The author disclaims copyright to this source code. In place of
# a legal notice, here is a blessing:
#
# May you do good and not evil.
# May you find forgiveness for yourself and forgive others.
# May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#
# The focus of this file is testing the ability of the database to
# uses its rollback journal to recover intact (no database corruption)
# from a power failure during the middle of a COMMIT. The special test
# module "crashtest" compiled with the special "os_test.c" backend is used.
# The os_test.c simulates the kind of file corruption that can occur
# when writes are happening at the moment of power loss.
#
# The special crash-test module with its os_test.c backend only works
# on Unix.
#
# $Id: crash.test,v 1.7 2004/06/28 04:52:31 danielk1977 Exp $
set testdir [file dirname $argv0]
source $testdir/tester.tcl
# set repeats 100
set repeats 10
# This proc execs a seperate process that crashes midway through executing
# the SQL script $sql on database test.db.
#
# The crash occurs during a sync() of file $crashfile. When the crash
# occurs a random subset of all unsynced writes made by the process are
# written into the files on disk. Argument $crashdelay indicates the
# number of file syncs to wait before crashing.
#
# The return value is a list of two elements. The first element is a
# boolean, indicating whether or not the process actually crashed or
# reported some other error. The second element in the returned list is the
# error message. This is "child process exited abnormally" if the crash
# occured.
proc crashsql {crashdelay crashfile sql} {
set cfile [file join [pwd] $crashfile]
set f [open crash.tcl w]
puts $f "sqlite3_crashparams $crashdelay $cfile"
puts $f "sqlite3 db test.db"
puts $f "db eval {pragma cache_size = 10}"
puts $f "db eval {"
puts $f "$sql"
puts $f "}"
close $f
set r [catch {
exec [file join . crashtest] crash.tcl >@stdout
} msg]
lappend r $msg
}
# The following procedure computes a "signature" for table "abc". If
# abc changes in any way, the signature should change.
proc signature {} {
return [db eval {SELECT count(*), md5sum(a), md5sum(b), md5sum(c) FROM abc}]
}
proc signature2 {} {
return [db eval {SELECT count(*), md5sum(a), md5sum(b), md5sum(c) FROM abc2}]
}
#--------------------------------------------------------------------------
# Simple crash test:
#
# crash-1.1: Create a database with a table with two rows.
# crash-1.2: Run a 'DELETE FROM abc WHERE a = 1' that crashes during
# the first journal-sync.
# crash-1.3: Ensure the database is in the same state as after crash-1.1.
# crash-1.4: Run a 'DELETE FROM abc WHERE a = 1' that crashes during
# the first database-sync.
# crash-1.5: Ensure the database is in the same state as after crash-1.1.
# crash-1.6: Run a 'DELETE FROM abc WHERE a = 1' that crashes during
# the second journal-sync.
# crash-1.7: Ensure the database is in the same state as after crash-1.1.
#
# Tests 1.8 through 1.11 test for crashes on the third journal sync and
# second database sync. Neither of these is required in such a small test
# case, so these tests are just to verify that the test infrastructure
# operates as expected.
#
do_test crash-1.1 {
execsql {
CREATE TABLE abc(a, b, c);
INSERT INTO abc VALUES(1, 2, 3);
INSERT INTO abc VALUES(4, 5, 6);
}
set ::sig [signature]
expr 0
} {0}
do_test crash-1.2 {
crashsql 1 test.db-journal {
DELETE FROM abc WHERE a = 1;
}
} {1 {child process exited abnormally}}
do_test crash-1.3 {
signature
} $::sig
do_test crash-1.4 {
crashsql 1 test.db {
DELETE FROM abc WHERE a = 1;
}
} {1 {child process exited abnormally}}
do_test crash-1.5 {
signature
} $::sig
do_test crash-1.6 {
crashsql 2 test.db-journal {
DELETE FROM abc WHERE a = 1;
}
} {1 {child process exited abnormally}}
do_test crash-1.7 {
catchsql {
SELECT * FROM abc;
}
} {0 {1 2 3 4 5 6}}
do_test crash-1.8 {
crashsql 3 test.db-journal {
DELETE FROM abc WHERE a = 1;
}
} {0 {}}
do_test crash-1.9 {
catchsql {
SELECT * FROM abc;
}
} {0 {4 5 6}}
do_test crash-1.10 {
crashsql 2 test.db {
DELETE FROM abc WHERE a = 4;
}
} {0 {}}
do_test crash-1.11 {
catchsql {
SELECT * FROM abc;
}
} {0 {}}
#--------------------------------------------------------------------------
# The following tests test recovery when both the database file and the the
# journal file contain corrupt data. This can happen after pages are
# written to the database file before a transaction is committed due to
# cache-pressure.
#
# crash-2.1: Insert 18 pages of data into the database.
# crash-2.2: Check the database file size looks ok.
# crash-2.3: Delete 15 or so pages (with a 10 page page-cache), then crash.
# crash-2.4: Ensure the database is in the same state as after crash-2.1.
#
# Test cases crash-2.5 and crash-2.6 check that the database is OK if the
# crash occurs during the main database file sync. But this isn't really
# different from the crash-1.* cases.
#
do_test crash-2.1 {
execsql { BEGIN }
for {set n 0} {$n < 1000} {incr n} {
execsql "INSERT INTO abc VALUES($n, [expr 2*$n], [expr 3*$n])"
}
execsql { COMMIT }
set ::sig [signature]
execsql { SELECT sum(a), sum(b), sum(c) from abc }
} {499500 999000 1498500}
do_test crash-2.2 {
expr [file size test.db] / 1024
} {19}
do_test crash-2.3 {
crashsql 2 test.db-journal {
DELETE FROM abc WHERE a < 800;
}
} {1 {child process exited abnormally}}
do_test crash-2.4 {
signature
} $sig
do_test crash-2.5 {
crashsql 1 test.db {
DELETE FROM abc WHERE a<800;
}
} {1 {child process exited abnormally}}
do_test crash-2.6 {
signature
} $sig
#--------------------------------------------------------------------------
# The crash-3.* test cases are essentially the same test as test case
# crash-2.*, but with a more complicated data set.
#
# The test is repeated a few times with different seeds for the random
# number generator in the crashing executable. Because there is no way to
# seed the random number generator directly, some SQL is added to the test
# case to 'use up' a different quantity random numbers before the test SQL
# is executed.
#
# Make sure the file is much bigger than the pager-cache (10 pages). This
# ensures that cache-spills happen regularly.
do_test crash-3.0 {
execsql {
INSERT INTO abc SELECT * FROM abc;
INSERT INTO abc SELECT * FROM abc;
INSERT INTO abc SELECT * FROM abc;
INSERT INTO abc SELECT * FROM abc;
INSERT INTO abc SELECT * FROM abc;
}
expr [file size test.db] / 1024
} {554}
for {set i 1} {$i < $repeats} {incr i} {
set sig [signature]
do_test crash-3.$i.1 {
crashsql [expr $i%5 + 1] test.db-journal "
BEGIN;
SELECT random() FROM abc LIMIT $i;
INSERT INTO abc VALUES(randstr(10,10), 0, 0);
DELETE FROM abc WHERE random()%10!=0;
COMMIT;
"
} {1 {child process exited abnormally}}
do_test crash-3.$i.2 {
signature
} $sig
}
#--------------------------------------------------------------------------
# The following test cases - crash-4.* - test the correct recovery of the
# database when a crash occurs during a multi-file transaction.
#
# crash-4.1.*: Test recovery when crash occurs during sync() of the
# main database journal file.
# crash-4.2.*: Test recovery when crash occurs during sync() of an
# attached database journal file.
# crash-4.3.*: Test recovery when crash occurs during sync() of the master
# journal file.
#
do_test crash-4.0 {
file delete -force test2.db
file delete -force test2.db-journal
execsql {
ATTACH 'test2.db' AS aux;
PRAGMA aux.default_cache_size = 10;
CREATE TABLE aux.abc2 AS SELECT 2*a as a, 2*b as b, 2*c as c FROM abc;
}
expr [file size test2.db] / 1024
} {559}
for {set i 1} {$i<$repeats} {incr i} {
set sig [signature]
set sig2 [signature2]
do_test crash-4.1.$i.1 {
set c [crashsql $i test.db-journal "
ATTACH 'test2.db' AS aux;
BEGIN;
SELECT random() FROM abc LIMIT $i;
INSERT INTO abc VALUES(randstr(10,10), 0, 0);
DELETE FROM abc WHERE random()%10!=0;
INSERT INTO abc2 VALUES(randstr(10,10), 0, 0);
DELETE FROM abc2 WHERE random()%10!=0;
COMMIT;
"]
set c
} {1 {child process exited abnormally}}
do_test crash-4.1.$i.2 {
signature
} $sig
do_test crash-4.1.$i.3 {
signature2
} $sig2
}
set i 0
while {[incr i]} {
set sig [signature]
set sig2 [signature2]
set ::fin 0
do_test crash-4.2.$i.1 {
set c [crashsql $i test2.db-journal "
ATTACH 'test2.db' AS aux;
BEGIN;
SELECT random() FROM abc LIMIT $i;
INSERT INTO abc VALUES(randstr(10,10), 0, 0);
DELETE FROM abc WHERE random()%10!=0;
INSERT INTO abc2 VALUES(randstr(10,10), 0, 0);
DELETE FROM abc2 WHERE random()%10!=0;
COMMIT;
"]
if { $c == {0 {}} } {
set ::fin 1
set c {1 {child process exited abnormally}}
}
set c
} {1 {child process exited abnormally}}
if { $::fin } break
do_test crash-4.2.$i.2 {
signature
} $sig
do_test crash-4.2.$i.3 {
signature2
} $sig2
}
for {set i 1} {$i < 5} {incr i} {
set sig [signature]
set sig2 [signature2]
do_test crash-4.3.$i.1 {
crashsql 1 test.db-mj* "
ATTACH 'test2.db' AS aux;
BEGIN;
SELECT random() FROM abc LIMIT $i;
INSERT INTO abc VALUES(randstr(10,10), 0, 0);
DELETE FROM abc WHERE random()%10!=0;
INSERT INTO abc2 VALUES(randstr(10,10), 0, 0);
DELETE FROM abc2 WHERE random()%10!=0;
COMMIT;
"
} {1 {child process exited abnormally}}
do_test crash-4.3.$i.2 {
signature
} $sig
do_test crash-4.3.$i.3 {
signature2
} $sig2
}