dbac3ece0f
FossilOrigin-Name: 8e818b8985c0196cd9671a6491796faaeebeb16e
2044 lines
58 KiB
C
2044 lines
58 KiB
C
/*
|
|
** 2014 May 31
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
******************************************************************************
|
|
**
|
|
*/
|
|
|
|
|
|
|
|
#include "fts5Int.h"
|
|
#include "fts5parse.h"
|
|
|
|
/*
|
|
** All token types in the generated fts5parse.h file are greater than 0.
|
|
*/
|
|
#define FTS5_EOF 0
|
|
|
|
typedef struct Fts5ExprTerm Fts5ExprTerm;
|
|
|
|
/*
|
|
** Functions generated by lemon from fts5parse.y.
|
|
*/
|
|
void *sqlite3Fts5ParserAlloc(void *(*mallocProc)(u64));
|
|
void sqlite3Fts5ParserFree(void*, void (*freeProc)(void*));
|
|
void sqlite3Fts5Parser(void*, int, Fts5Token, Fts5Parse*);
|
|
|
|
struct Fts5Expr {
|
|
Fts5Index *pIndex;
|
|
Fts5ExprNode *pRoot;
|
|
int bDesc; /* Iterate in descending docid order */
|
|
int nPhrase; /* Number of phrases in expression */
|
|
Fts5ExprPhrase **apExprPhrase; /* Pointers to phrase objects */
|
|
};
|
|
|
|
/*
|
|
** eType:
|
|
** Expression node type. Always one of:
|
|
**
|
|
** FTS5_AND (nChild, apChild valid)
|
|
** FTS5_OR (nChild, apChild valid)
|
|
** FTS5_NOT (nChild, apChild valid)
|
|
** FTS5_STRING (pNear valid)
|
|
** FTS5_TERM (pNear valid)
|
|
*/
|
|
struct Fts5ExprNode {
|
|
int eType; /* Node type */
|
|
int bEof; /* True at EOF */
|
|
int bNomatch; /* True if entry is not a match */
|
|
|
|
i64 iRowid; /* Current rowid */
|
|
Fts5ExprNearset *pNear; /* For FTS5_STRING - cluster of phrases */
|
|
|
|
/* Child nodes. For a NOT node, this array always contains 2 entries. For
|
|
** AND or OR nodes, it contains 2 or more entries. */
|
|
int nChild; /* Number of child nodes */
|
|
Fts5ExprNode *apChild[1]; /* Array of child nodes */
|
|
};
|
|
|
|
#define Fts5NodeIsString(p) ((p)->eType==FTS5_TERM || (p)->eType==FTS5_STRING)
|
|
|
|
/*
|
|
** An instance of the following structure represents a single search term
|
|
** or term prefix.
|
|
*/
|
|
struct Fts5ExprTerm {
|
|
int bPrefix; /* True for a prefix term */
|
|
char *zTerm; /* nul-terminated term */
|
|
Fts5IndexIter *pIter; /* Iterator for this term */
|
|
};
|
|
|
|
/*
|
|
** A phrase. One or more terms that must appear in a contiguous sequence
|
|
** within a document for it to match.
|
|
*/
|
|
struct Fts5ExprPhrase {
|
|
Fts5ExprNode *pNode; /* FTS5_STRING node this phrase is part of */
|
|
Fts5Buffer poslist; /* Current position list */
|
|
int nTerm; /* Number of entries in aTerm[] */
|
|
Fts5ExprTerm aTerm[1]; /* Terms that make up this phrase */
|
|
};
|
|
|
|
/*
|
|
** If a NEAR() clump may only match a specific set of columns, then
|
|
** Fts5ExprNearset.pColset points to an object of the following type.
|
|
** Each entry in the aiCol[] array
|
|
*/
|
|
struct Fts5ExprColset {
|
|
int nCol;
|
|
int aiCol[1];
|
|
};
|
|
|
|
/*
|
|
** One or more phrases that must appear within a certain token distance of
|
|
** each other within each matching document.
|
|
*/
|
|
struct Fts5ExprNearset {
|
|
int nNear; /* NEAR parameter */
|
|
Fts5ExprColset *pColset; /* Columns to search (NULL -> all columns) */
|
|
int nPhrase; /* Number of entries in aPhrase[] array */
|
|
Fts5ExprPhrase *apPhrase[1]; /* Array of phrase pointers */
|
|
};
|
|
|
|
|
|
/*
|
|
** Parse context.
|
|
*/
|
|
struct Fts5Parse {
|
|
Fts5Config *pConfig;
|
|
char *zErr;
|
|
int rc;
|
|
int nPhrase; /* Size of apPhrase array */
|
|
Fts5ExprPhrase **apPhrase; /* Array of all phrases */
|
|
Fts5ExprNode *pExpr; /* Result of a successful parse */
|
|
};
|
|
|
|
void sqlite3Fts5ParseError(Fts5Parse *pParse, const char *zFmt, ...){
|
|
va_list ap;
|
|
va_start(ap, zFmt);
|
|
if( pParse->rc==SQLITE_OK ){
|
|
pParse->zErr = sqlite3_vmprintf(zFmt, ap);
|
|
pParse->rc = SQLITE_ERROR;
|
|
}
|
|
va_end(ap);
|
|
}
|
|
|
|
static int fts5ExprIsspace(char t){
|
|
return t==' ' || t=='\t' || t=='\n' || t=='\r';
|
|
}
|
|
|
|
/*
|
|
** Read the first token from the nul-terminated string at *pz.
|
|
*/
|
|
static int fts5ExprGetToken(
|
|
Fts5Parse *pParse,
|
|
const char **pz, /* IN/OUT: Pointer into buffer */
|
|
Fts5Token *pToken
|
|
){
|
|
const char *z = *pz;
|
|
int tok;
|
|
|
|
/* Skip past any whitespace */
|
|
while( fts5ExprIsspace(*z) ) z++;
|
|
|
|
pToken->p = z;
|
|
pToken->n = 1;
|
|
switch( *z ){
|
|
case '(': tok = FTS5_LP; break;
|
|
case ')': tok = FTS5_RP; break;
|
|
case '{': tok = FTS5_LCP; break;
|
|
case '}': tok = FTS5_RCP; break;
|
|
case ':': tok = FTS5_COLON; break;
|
|
case ',': tok = FTS5_COMMA; break;
|
|
case '+': tok = FTS5_PLUS; break;
|
|
case '*': tok = FTS5_STAR; break;
|
|
case '\0': tok = FTS5_EOF; break;
|
|
|
|
case '"': {
|
|
const char *z2;
|
|
tok = FTS5_STRING;
|
|
|
|
for(z2=&z[1]; 1; z2++){
|
|
if( z2[0]=='"' ){
|
|
z2++;
|
|
if( z2[0]!='"' ) break;
|
|
}
|
|
if( z2[0]=='\0' ){
|
|
sqlite3Fts5ParseError(pParse, "unterminated string");
|
|
return FTS5_EOF;
|
|
}
|
|
}
|
|
pToken->n = (z2 - z);
|
|
break;
|
|
}
|
|
|
|
default: {
|
|
const char *z2;
|
|
tok = FTS5_STRING;
|
|
for(z2=&z[1]; sqlite3Fts5IsBareword(*z2); z2++);
|
|
pToken->n = (z2 - z);
|
|
if( pToken->n==2 && memcmp(pToken->p, "OR", 2)==0 ) tok = FTS5_OR;
|
|
if( pToken->n==3 && memcmp(pToken->p, "NOT", 3)==0 ) tok = FTS5_NOT;
|
|
if( pToken->n==3 && memcmp(pToken->p, "AND", 3)==0 ) tok = FTS5_AND;
|
|
break;
|
|
}
|
|
}
|
|
|
|
*pz = &pToken->p[pToken->n];
|
|
return tok;
|
|
}
|
|
|
|
static void *fts5ParseAlloc(u64 t){ return sqlite3_malloc((int)t); }
|
|
static void fts5ParseFree(void *p){ sqlite3_free(p); }
|
|
|
|
int sqlite3Fts5ExprNew(
|
|
Fts5Config *pConfig, /* FTS5 Configuration */
|
|
const char *zExpr, /* Expression text */
|
|
Fts5Expr **ppNew,
|
|
char **pzErr
|
|
){
|
|
Fts5Parse sParse;
|
|
Fts5Token token;
|
|
const char *z = zExpr;
|
|
int t; /* Next token type */
|
|
void *pEngine;
|
|
Fts5Expr *pNew;
|
|
|
|
*ppNew = 0;
|
|
*pzErr = 0;
|
|
memset(&sParse, 0, sizeof(sParse));
|
|
pEngine = sqlite3Fts5ParserAlloc(fts5ParseAlloc);
|
|
if( pEngine==0 ){ return SQLITE_NOMEM; }
|
|
sParse.pConfig = pConfig;
|
|
|
|
do {
|
|
t = fts5ExprGetToken(&sParse, &z, &token);
|
|
sqlite3Fts5Parser(pEngine, t, token, &sParse);
|
|
}while( sParse.rc==SQLITE_OK && t!=FTS5_EOF );
|
|
sqlite3Fts5ParserFree(pEngine, fts5ParseFree);
|
|
|
|
assert( sParse.rc!=SQLITE_OK || sParse.zErr==0 );
|
|
if( sParse.rc==SQLITE_OK ){
|
|
*ppNew = pNew = sqlite3_malloc(sizeof(Fts5Expr));
|
|
if( pNew==0 ){
|
|
sParse.rc = SQLITE_NOMEM;
|
|
sqlite3Fts5ParseNodeFree(sParse.pExpr);
|
|
}else{
|
|
pNew->pRoot = sParse.pExpr;
|
|
pNew->pIndex = 0;
|
|
pNew->apExprPhrase = sParse.apPhrase;
|
|
pNew->nPhrase = sParse.nPhrase;
|
|
sParse.apPhrase = 0;
|
|
}
|
|
}
|
|
|
|
sqlite3_free(sParse.apPhrase);
|
|
*pzErr = sParse.zErr;
|
|
return sParse.rc;
|
|
}
|
|
|
|
/*
|
|
** Create a new FTS5 expression by cloning phrase iPhrase of the
|
|
** expression passed as the second argument.
|
|
*/
|
|
int sqlite3Fts5ExprPhraseExpr(
|
|
Fts5Config *pConfig,
|
|
Fts5Expr *pExpr,
|
|
int iPhrase,
|
|
Fts5Expr **ppNew
|
|
){
|
|
int rc = SQLITE_OK; /* Return code */
|
|
Fts5ExprPhrase *pOrig; /* The phrase extracted from pExpr */
|
|
Fts5ExprPhrase *pCopy; /* Copy of pOrig */
|
|
Fts5Expr *pNew = 0; /* Expression to return via *ppNew */
|
|
|
|
pOrig = pExpr->apExprPhrase[iPhrase];
|
|
pCopy = (Fts5ExprPhrase*)sqlite3Fts5MallocZero(&rc,
|
|
sizeof(Fts5ExprPhrase) + sizeof(Fts5ExprTerm) * pOrig->nTerm
|
|
);
|
|
if( pCopy ){
|
|
int i; /* Used to iterate through phrase terms */
|
|
Fts5ExprPhrase **apPhrase;
|
|
Fts5ExprNode *pNode;
|
|
Fts5ExprNearset *pNear;
|
|
|
|
pNew = (Fts5Expr*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Expr));
|
|
apPhrase = (Fts5ExprPhrase**)sqlite3Fts5MallocZero(&rc,
|
|
sizeof(Fts5ExprPhrase*)
|
|
);
|
|
pNode = (Fts5ExprNode*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5ExprNode));
|
|
pNear = (Fts5ExprNearset*)sqlite3Fts5MallocZero(&rc,
|
|
sizeof(Fts5ExprNearset) + sizeof(Fts5ExprPhrase*)
|
|
);
|
|
|
|
for(i=0; i<pOrig->nTerm; i++){
|
|
pCopy->aTerm[i].zTerm = sqlite3Fts5Strndup(&rc, pOrig->aTerm[i].zTerm,-1);
|
|
pCopy->aTerm[i].bPrefix = pOrig->aTerm[i].bPrefix;
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
/* All the allocations succeeded. Put the expression object together. */
|
|
pNew->pIndex = pExpr->pIndex;
|
|
pNew->pRoot = pNode;
|
|
pNew->nPhrase = 1;
|
|
pNew->apExprPhrase = apPhrase;
|
|
pNew->apExprPhrase[0] = pCopy;
|
|
|
|
pNode->eType = (pOrig->nTerm==1 ? FTS5_TERM : FTS5_STRING);
|
|
pNode->pNear = pNear;
|
|
|
|
pNear->nPhrase = 1;
|
|
pNear->apPhrase[0] = pCopy;
|
|
|
|
pCopy->nTerm = pOrig->nTerm;
|
|
pCopy->pNode = pNode;
|
|
}else{
|
|
/* At least one allocation failed. Free them all. */
|
|
for(i=0; i<pOrig->nTerm; i++){
|
|
sqlite3_free(pCopy->aTerm[i].zTerm);
|
|
}
|
|
sqlite3_free(pCopy);
|
|
sqlite3_free(pNear);
|
|
sqlite3_free(pNode);
|
|
sqlite3_free(apPhrase);
|
|
sqlite3_free(pNew);
|
|
pNew = 0;
|
|
}
|
|
}
|
|
|
|
*ppNew = pNew;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Free the expression node object passed as the only argument.
|
|
*/
|
|
void sqlite3Fts5ParseNodeFree(Fts5ExprNode *p){
|
|
if( p ){
|
|
int i;
|
|
for(i=0; i<p->nChild; i++){
|
|
sqlite3Fts5ParseNodeFree(p->apChild[i]);
|
|
}
|
|
sqlite3Fts5ParseNearsetFree(p->pNear);
|
|
sqlite3_free(p);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Free the expression object passed as the only argument.
|
|
*/
|
|
void sqlite3Fts5ExprFree(Fts5Expr *p){
|
|
if( p ){
|
|
sqlite3Fts5ParseNodeFree(p->pRoot);
|
|
sqlite3_free(p->apExprPhrase);
|
|
sqlite3_free(p);
|
|
}
|
|
}
|
|
|
|
static int fts5ExprColsetTest(Fts5ExprColset *pColset, int iCol){
|
|
int i;
|
|
for(i=0; i<pColset->nCol; i++){
|
|
if( pColset->aiCol[i]==iCol ) return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** All individual term iterators in pPhrase are guaranteed to be valid and
|
|
** pointing to the same rowid when this function is called. This function
|
|
** checks if the current rowid really is a match, and if so populates
|
|
** the pPhrase->poslist buffer accordingly. Output parameter *pbMatch
|
|
** is set to true if this is really a match, or false otherwise.
|
|
**
|
|
** SQLITE_OK is returned if an error occurs, or an SQLite error code
|
|
** otherwise. It is not considered an error code if the current rowid is
|
|
** not a match.
|
|
*/
|
|
static int fts5ExprPhraseIsMatch(
|
|
Fts5Expr *pExpr, /* Expression pPhrase belongs to */
|
|
Fts5ExprColset *pColset, /* Restrict matches to these columns */
|
|
Fts5ExprPhrase *pPhrase, /* Phrase object to initialize */
|
|
int *pbMatch /* OUT: Set to true if really a match */
|
|
){
|
|
Fts5PoslistWriter writer = {0};
|
|
Fts5PoslistReader aStatic[4];
|
|
Fts5PoslistReader *aIter = aStatic;
|
|
int i;
|
|
int rc = SQLITE_OK;
|
|
int iCol = -1;
|
|
|
|
if( pColset && pColset->nCol==1 ){
|
|
iCol = pColset->aiCol[0];
|
|
pColset = 0;
|
|
}
|
|
|
|
fts5BufferZero(&pPhrase->poslist);
|
|
|
|
/* If the aStatic[] array is not large enough, allocate a large array
|
|
** using sqlite3_malloc(). This approach could be improved upon. */
|
|
if( pPhrase->nTerm>(sizeof(aStatic) / sizeof(aStatic[0])) ){
|
|
int nByte = sizeof(Fts5PoslistReader) * pPhrase->nTerm;
|
|
aIter = (Fts5PoslistReader*)sqlite3_malloc(nByte);
|
|
if( !aIter ) return SQLITE_NOMEM;
|
|
}
|
|
|
|
/* Initialize a term iterator for each term in the phrase */
|
|
for(i=0; i<pPhrase->nTerm; i++){
|
|
i64 dummy;
|
|
int n;
|
|
const u8 *a;
|
|
rc = sqlite3Fts5IterPoslist(pPhrase->aTerm[i].pIter, &a, &n, &dummy);
|
|
if( rc || sqlite3Fts5PoslistReaderInit(iCol, a, n, &aIter[i]) ){
|
|
goto ismatch_out;
|
|
}
|
|
}
|
|
|
|
while( 1 ){
|
|
int bMatch;
|
|
i64 iPos = aIter[0].iPos;
|
|
do {
|
|
bMatch = 1;
|
|
for(i=0; i<pPhrase->nTerm; i++){
|
|
Fts5PoslistReader *pPos = &aIter[i];
|
|
i64 iAdj = iPos + i;
|
|
if( pPos->iPos!=iAdj ){
|
|
bMatch = 0;
|
|
while( pPos->iPos<iAdj ){
|
|
if( sqlite3Fts5PoslistReaderNext(pPos) ) goto ismatch_out;
|
|
}
|
|
if( pPos->iPos>iAdj ) iPos = pPos->iPos-i;
|
|
}
|
|
}
|
|
}while( bMatch==0 );
|
|
|
|
if( pColset==0 || fts5ExprColsetTest(pColset, FTS5_POS2COLUMN(iPos)) ){
|
|
/* Append position iPos to the output */
|
|
rc = sqlite3Fts5PoslistWriterAppend(&pPhrase->poslist, &writer, iPos);
|
|
if( rc!=SQLITE_OK ) goto ismatch_out;
|
|
}
|
|
|
|
for(i=0; i<pPhrase->nTerm; i++){
|
|
if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) goto ismatch_out;
|
|
}
|
|
}
|
|
|
|
ismatch_out:
|
|
*pbMatch = (pPhrase->poslist.n>0);
|
|
if( aIter!=aStatic ) sqlite3_free(aIter);
|
|
return rc;
|
|
}
|
|
|
|
typedef struct Fts5LookaheadReader Fts5LookaheadReader;
|
|
struct Fts5LookaheadReader {
|
|
const u8 *a; /* Buffer containing position list */
|
|
int n; /* Size of buffer a[] in bytes */
|
|
int i; /* Current offset in position list */
|
|
i64 iPos; /* Current position */
|
|
i64 iLookahead; /* Next position */
|
|
};
|
|
|
|
#define FTS5_LOOKAHEAD_EOF (((i64)1) << 62)
|
|
|
|
static int fts5LookaheadReaderNext(Fts5LookaheadReader *p){
|
|
p->iPos = p->iLookahead;
|
|
if( sqlite3Fts5PoslistNext64(p->a, p->n, &p->i, &p->iLookahead) ){
|
|
p->iLookahead = FTS5_LOOKAHEAD_EOF;
|
|
}
|
|
return (p->iPos==FTS5_LOOKAHEAD_EOF);
|
|
}
|
|
|
|
static int fts5LookaheadReaderInit(
|
|
const u8 *a, int n, /* Buffer to read position list from */
|
|
Fts5LookaheadReader *p /* Iterator object to initialize */
|
|
){
|
|
memset(p, 0, sizeof(Fts5LookaheadReader));
|
|
p->a = a;
|
|
p->n = n;
|
|
fts5LookaheadReaderNext(p);
|
|
return fts5LookaheadReaderNext(p);
|
|
}
|
|
|
|
#if 0
|
|
static int fts5LookaheadReaderEof(Fts5LookaheadReader *p){
|
|
return (p->iPos==FTS5_LOOKAHEAD_EOF);
|
|
}
|
|
#endif
|
|
|
|
typedef struct Fts5NearTrimmer Fts5NearTrimmer;
|
|
struct Fts5NearTrimmer {
|
|
Fts5LookaheadReader reader; /* Input iterator */
|
|
Fts5PoslistWriter writer; /* Writer context */
|
|
Fts5Buffer *pOut; /* Output poslist */
|
|
};
|
|
|
|
/*
|
|
** The near-set object passed as the first argument contains more than
|
|
** one phrase. All phrases currently point to the same row. The
|
|
** Fts5ExprPhrase.poslist buffers are populated accordingly. This function
|
|
** tests if the current row contains instances of each phrase sufficiently
|
|
** close together to meet the NEAR constraint. Non-zero is returned if it
|
|
** does, or zero otherwise.
|
|
**
|
|
** If in/out parameter (*pRc) is set to other than SQLITE_OK when this
|
|
** function is called, it is a no-op. Or, if an error (e.g. SQLITE_NOMEM)
|
|
** occurs within this function (*pRc) is set accordingly before returning.
|
|
** The return value is undefined in both these cases.
|
|
**
|
|
** If no error occurs and non-zero (a match) is returned, the position-list
|
|
** of each phrase object is edited to contain only those entries that
|
|
** meet the constraint before returning.
|
|
*/
|
|
static int fts5ExprNearIsMatch(int *pRc, Fts5ExprNearset *pNear){
|
|
Fts5NearTrimmer aStatic[4];
|
|
Fts5NearTrimmer *a = aStatic;
|
|
Fts5ExprPhrase **apPhrase = pNear->apPhrase;
|
|
|
|
int i;
|
|
int rc = *pRc;
|
|
int bMatch;
|
|
|
|
assert( pNear->nPhrase>1 );
|
|
|
|
/* If the aStatic[] array is not large enough, allocate a large array
|
|
** using sqlite3_malloc(). This approach could be improved upon. */
|
|
if( pNear->nPhrase>(sizeof(aStatic) / sizeof(aStatic[0])) ){
|
|
int nByte = sizeof(Fts5NearTrimmer) * pNear->nPhrase;
|
|
a = (Fts5NearTrimmer*)sqlite3Fts5MallocZero(&rc, nByte);
|
|
}else{
|
|
memset(aStatic, 0, sizeof(aStatic));
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
*pRc = rc;
|
|
return 0;
|
|
}
|
|
|
|
/* Initialize a lookahead iterator for each phrase. After passing the
|
|
** buffer and buffer size to the lookaside-reader init function, zero
|
|
** the phrase poslist buffer. The new poslist for the phrase (containing
|
|
** the same entries as the original with some entries removed on account
|
|
** of the NEAR constraint) is written over the original even as it is
|
|
** being read. This is safe as the entries for the new poslist are a
|
|
** subset of the old, so it is not possible for data yet to be read to
|
|
** be overwritten. */
|
|
for(i=0; i<pNear->nPhrase; i++){
|
|
Fts5Buffer *pPoslist = &apPhrase[i]->poslist;
|
|
fts5LookaheadReaderInit(pPoslist->p, pPoslist->n, &a[i].reader);
|
|
pPoslist->n = 0;
|
|
a[i].pOut = pPoslist;
|
|
}
|
|
|
|
while( 1 ){
|
|
int iAdv;
|
|
i64 iMin;
|
|
i64 iMax;
|
|
|
|
/* This block advances the phrase iterators until they point to a set of
|
|
** entries that together comprise a match. */
|
|
iMax = a[0].reader.iPos;
|
|
do {
|
|
bMatch = 1;
|
|
for(i=0; i<pNear->nPhrase; i++){
|
|
Fts5LookaheadReader *pPos = &a[i].reader;
|
|
iMin = iMax - pNear->apPhrase[i]->nTerm - pNear->nNear;
|
|
if( pPos->iPos<iMin || pPos->iPos>iMax ){
|
|
bMatch = 0;
|
|
while( pPos->iPos<iMin ){
|
|
if( fts5LookaheadReaderNext(pPos) ) goto ismatch_out;
|
|
}
|
|
if( pPos->iPos>iMax ) iMax = pPos->iPos;
|
|
}
|
|
}
|
|
}while( bMatch==0 );
|
|
|
|
/* Add an entry to each output position list */
|
|
for(i=0; i<pNear->nPhrase; i++){
|
|
i64 iPos = a[i].reader.iPos;
|
|
Fts5PoslistWriter *pWriter = &a[i].writer;
|
|
if( a[i].pOut->n==0 || iPos!=pWriter->iPrev ){
|
|
sqlite3Fts5PoslistWriterAppend(a[i].pOut, pWriter, iPos);
|
|
}
|
|
}
|
|
|
|
iAdv = 0;
|
|
iMin = a[0].reader.iLookahead;
|
|
for(i=0; i<pNear->nPhrase; i++){
|
|
if( a[i].reader.iLookahead < iMin ){
|
|
iMin = a[i].reader.iLookahead;
|
|
iAdv = i;
|
|
}
|
|
}
|
|
if( fts5LookaheadReaderNext(&a[iAdv].reader) ) goto ismatch_out;
|
|
}
|
|
|
|
ismatch_out: {
|
|
int bRet = a[0].pOut->n>0;
|
|
*pRc = rc;
|
|
if( a!=aStatic ) sqlite3_free(a);
|
|
return bRet;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Advance the first term iterator in the first phrase of pNear. Set output
|
|
** variable *pbEof to true if it reaches EOF or if an error occurs.
|
|
**
|
|
** Return SQLITE_OK if successful, or an SQLite error code if an error
|
|
** occurs.
|
|
*/
|
|
static int fts5ExprNearAdvanceFirst(
|
|
Fts5Expr *pExpr, /* Expression pPhrase belongs to */
|
|
Fts5ExprNode *pNode, /* FTS5_STRING or FTS5_TERM node */
|
|
int bFromValid,
|
|
i64 iFrom
|
|
){
|
|
Fts5IndexIter *pIter = pNode->pNear->apPhrase[0]->aTerm[0].pIter;
|
|
int rc;
|
|
|
|
assert( Fts5NodeIsString(pNode) );
|
|
if( bFromValid ){
|
|
rc = sqlite3Fts5IterNextFrom(pIter, iFrom);
|
|
}else{
|
|
rc = sqlite3Fts5IterNext(pIter);
|
|
}
|
|
|
|
pNode->bEof = (rc || sqlite3Fts5IterEof(pIter));
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Advance iterator pIter until it points to a value equal to or laster
|
|
** than the initial value of *piLast. If this means the iterator points
|
|
** to a value laster than *piLast, update *piLast to the new lastest value.
|
|
**
|
|
** If the iterator reaches EOF, set *pbEof to true before returning. If
|
|
** an error occurs, set *pRc to an error code. If either *pbEof or *pRc
|
|
** are set, return a non-zero value. Otherwise, return zero.
|
|
*/
|
|
static int fts5ExprAdvanceto(
|
|
Fts5IndexIter *pIter, /* Iterator to advance */
|
|
int bDesc, /* True if iterator is "rowid DESC" */
|
|
i64 *piLast, /* IN/OUT: Lastest rowid seen so far */
|
|
int *pRc, /* OUT: Error code */
|
|
int *pbEof /* OUT: Set to true if EOF */
|
|
){
|
|
i64 iLast = *piLast;
|
|
i64 iRowid;
|
|
|
|
iRowid = sqlite3Fts5IterRowid(pIter);
|
|
if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){
|
|
int rc = sqlite3Fts5IterNextFrom(pIter, iLast);
|
|
if( rc || sqlite3Fts5IterEof(pIter) ){
|
|
*pRc = rc;
|
|
*pbEof = 1;
|
|
return 1;
|
|
}
|
|
iRowid = sqlite3Fts5IterRowid(pIter);
|
|
assert( (bDesc==0 && iRowid>=iLast) || (bDesc==1 && iRowid<=iLast) );
|
|
}
|
|
*piLast = iRowid;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** IN/OUT parameter (*pa) points to a position list n bytes in size. If
|
|
** the position list contains entries for column iCol, then (*pa) is set
|
|
** to point to the sub-position-list for that column and the number of
|
|
** bytes in it returned. Or, if the argument position list does not
|
|
** contain any entries for column iCol, return 0.
|
|
*/
|
|
static int fts5ExprExtractCol(
|
|
const u8 **pa, /* IN/OUT: Pointer to poslist */
|
|
int n, /* IN: Size of poslist in bytes */
|
|
int iCol /* Column to extract from poslist */
|
|
){
|
|
int iCurrent = 0;
|
|
const u8 *p = *pa;
|
|
const u8 *pEnd = &p[n]; /* One byte past end of position list */
|
|
u8 prev = 0;
|
|
|
|
while( iCol!=iCurrent ){
|
|
/* Advance pointer p until it points to pEnd or an 0x01 byte that is
|
|
** not part of a varint */
|
|
while( (prev & 0x80) || *p!=0x01 ){
|
|
prev = *p++;
|
|
if( p==pEnd ) return 0;
|
|
}
|
|
*pa = p++;
|
|
p += fts5GetVarint32(p, iCurrent);
|
|
}
|
|
|
|
/* Advance pointer p until it points to pEnd or an 0x01 byte that is
|
|
** not part of a varint */
|
|
assert( (prev & 0x80)==0 );
|
|
while( p<pEnd && ((prev & 0x80) || *p!=0x01) ){
|
|
prev = *p++;
|
|
}
|
|
return p - (*pa);
|
|
}
|
|
|
|
static int fts5ExprExtractColset (
|
|
Fts5ExprColset *pColset, /* Colset to filter on */
|
|
const u8 *pPos, int nPos, /* Position list */
|
|
Fts5Buffer *pBuf /* Output buffer */
|
|
){
|
|
int rc = SQLITE_OK;
|
|
int i;
|
|
|
|
fts5BufferZero(pBuf);
|
|
for(i=0; i<pColset->nCol; i++){
|
|
const u8 *pSub = pPos;
|
|
int nSub = fts5ExprExtractCol(&pSub, nPos, pColset->aiCol[i]);
|
|
if( nSub ){
|
|
fts5BufferAppendBlob(&rc, pBuf, nSub, pSub);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int fts5ExprNearTest(
|
|
int *pRc,
|
|
Fts5Expr *pExpr, /* Expression that pNear is a part of */
|
|
Fts5ExprNode *pNode /* The "NEAR" node (FTS5_STRING) */
|
|
){
|
|
Fts5ExprNearset *pNear = pNode->pNear;
|
|
int rc = *pRc;
|
|
int i;
|
|
|
|
/* Check that each phrase in the nearset matches the current row.
|
|
** Populate the pPhrase->poslist buffers at the same time. If any
|
|
** phrase is not a match, break out of the loop early. */
|
|
for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){
|
|
Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
|
|
if( pPhrase->nTerm>1 || pNear->pColset ){
|
|
int bMatch = 0;
|
|
rc = fts5ExprPhraseIsMatch(pExpr, pNear->pColset, pPhrase, &bMatch);
|
|
if( bMatch==0 ) break;
|
|
}else{
|
|
rc = sqlite3Fts5IterPoslistBuffer(
|
|
pPhrase->aTerm[0].pIter, &pPhrase->poslist
|
|
);
|
|
}
|
|
}
|
|
|
|
*pRc = rc;
|
|
if( i==pNear->nPhrase && (i==1 || fts5ExprNearIsMatch(pRc, pNear)) ){
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fts5ExprTokenTest(
|
|
Fts5Expr *pExpr, /* Expression that pNear is a part of */
|
|
Fts5ExprNode *pNode /* The "NEAR" node (FTS5_TERM) */
|
|
){
|
|
/* As this "NEAR" object is actually a single phrase that consists
|
|
** of a single term only, grab pointers into the poslist managed by the
|
|
** fts5_index.c iterator object. This is much faster than synthesizing
|
|
** a new poslist the way we have to for more complicated phrase or NEAR
|
|
** expressions. */
|
|
Fts5ExprNearset *pNear = pNode->pNear;
|
|
Fts5ExprPhrase *pPhrase = pNear->apPhrase[0];
|
|
Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter;
|
|
Fts5ExprColset *pColset = pNear->pColset;
|
|
const u8 *pPos;
|
|
int nPos;
|
|
int rc;
|
|
|
|
assert( pNode->eType==FTS5_TERM );
|
|
assert( pNear->nPhrase==1 && pPhrase->nTerm==1 );
|
|
|
|
rc = sqlite3Fts5IterPoslist(pIter, &pPos, &nPos, &pNode->iRowid);
|
|
|
|
/* If the term may match any column, then this must be a match.
|
|
** Return immediately in this case. Otherwise, try to find the
|
|
** part of the poslist that corresponds to the required column.
|
|
** If it can be found, return. If it cannot, the next iteration
|
|
** of the loop will test the next rowid in the database for this
|
|
** term. */
|
|
if( pColset==0 ){
|
|
assert( pPhrase->poslist.nSpace==0 );
|
|
pPhrase->poslist.p = (u8*)pPos;
|
|
pPhrase->poslist.n = nPos;
|
|
}else if( pColset->nCol==1 ){
|
|
assert( pPhrase->poslist.nSpace==0 );
|
|
pPhrase->poslist.n = fts5ExprExtractCol(&pPos, nPos, pColset->aiCol[0]);
|
|
pPhrase->poslist.p = (u8*)pPos;
|
|
}else if( rc==SQLITE_OK ){
|
|
rc = fts5ExprExtractColset(pColset, pPos, nPos, &pPhrase->poslist);
|
|
}
|
|
|
|
pNode->bNomatch = (pPhrase->poslist.n==0);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** All individual term iterators in pNear are guaranteed to be valid when
|
|
** this function is called. This function checks if all term iterators
|
|
** point to the same rowid, and if not, advances them until they do.
|
|
** If an EOF is reached before this happens, *pbEof is set to true before
|
|
** returning.
|
|
**
|
|
** SQLITE_OK is returned if an error occurs, or an SQLite error code
|
|
** otherwise. It is not considered an error code if an iterator reaches
|
|
** EOF.
|
|
*/
|
|
static int fts5ExprNearNextMatch(
|
|
Fts5Expr *pExpr, /* Expression pPhrase belongs to */
|
|
Fts5ExprNode *pNode
|
|
){
|
|
Fts5ExprNearset *pNear = pNode->pNear;
|
|
Fts5ExprPhrase *pLeft = pNear->apPhrase[0];
|
|
int rc = SQLITE_OK;
|
|
i64 iLast; /* Lastest rowid any iterator points to */
|
|
int i, j; /* Phrase and token index, respectively */
|
|
int bMatch; /* True if all terms are at the same rowid */
|
|
|
|
assert( pNear->nPhrase>1 || pNear->apPhrase[0]->nTerm>1 );
|
|
|
|
/* Initialize iLast, the "lastest" rowid any iterator points to. If the
|
|
** iterator skips through rowids in the default ascending order, this means
|
|
** the maximum rowid. Or, if the iterator is "ORDER BY rowid DESC", then it
|
|
** means the minimum rowid. */
|
|
iLast = sqlite3Fts5IterRowid(pLeft->aTerm[0].pIter);
|
|
|
|
do {
|
|
bMatch = 1;
|
|
for(i=0; i<pNear->nPhrase; i++){
|
|
Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
|
|
for(j=0; j<pPhrase->nTerm; j++){
|
|
Fts5IndexIter *pIter = pPhrase->aTerm[j].pIter;
|
|
i64 iRowid = sqlite3Fts5IterRowid(pIter);
|
|
if( iRowid!=iLast ) bMatch = 0;
|
|
if( fts5ExprAdvanceto(pIter, pExpr->bDesc, &iLast,&rc,&pNode->bEof) ){
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
}while( bMatch==0 );
|
|
|
|
pNode->bNomatch = (0==fts5ExprNearTest(&rc, pExpr, pNode));
|
|
pNode->iRowid = iLast;
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Initialize all term iterators in the pNear object. If any term is found
|
|
** to match no documents at all, set *pbEof to true and return immediately,
|
|
** without initializing any further iterators.
|
|
*/
|
|
static int fts5ExprNearInitAll(
|
|
Fts5Expr *pExpr,
|
|
Fts5ExprNode *pNode
|
|
){
|
|
Fts5ExprNearset *pNear = pNode->pNear;
|
|
Fts5ExprTerm *pTerm;
|
|
Fts5ExprPhrase *pPhrase;
|
|
int i, j;
|
|
int rc = SQLITE_OK;
|
|
|
|
for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){
|
|
pPhrase = pNear->apPhrase[i];
|
|
for(j=0; j<pPhrase->nTerm; j++){
|
|
pTerm = &pPhrase->aTerm[j];
|
|
if( pTerm->pIter ){
|
|
sqlite3Fts5IterClose(pTerm->pIter);
|
|
pTerm->pIter = 0;
|
|
}
|
|
rc = sqlite3Fts5IndexQuery(
|
|
pExpr->pIndex, pTerm->zTerm, strlen(pTerm->zTerm),
|
|
(pTerm->bPrefix ? FTS5INDEX_QUERY_PREFIX : 0) |
|
|
(pExpr->bDesc ? FTS5INDEX_QUERY_DESC : 0),
|
|
&pTerm->pIter
|
|
);
|
|
assert( rc==SQLITE_OK || pTerm->pIter==0 );
|
|
if( pTerm->pIter==0 || sqlite3Fts5IterEof(pTerm->pIter) ){
|
|
pNode->bEof = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* fts5ExprNodeNext() calls fts5ExprNodeNextMatch(). And vice-versa. */
|
|
static int fts5ExprNodeNextMatch(Fts5Expr*, Fts5ExprNode*);
|
|
|
|
|
|
/*
|
|
** If pExpr is an ASC iterator, this function returns a value with the
|
|
** same sign as:
|
|
**
|
|
** (iLhs - iRhs)
|
|
**
|
|
** Otherwise, if this is a DESC iterator, the opposite is returned:
|
|
**
|
|
** (iRhs - iLhs)
|
|
*/
|
|
static int fts5RowidCmp(
|
|
Fts5Expr *pExpr,
|
|
i64 iLhs,
|
|
i64 iRhs
|
|
){
|
|
assert( pExpr->bDesc==0 || pExpr->bDesc==1 );
|
|
if( pExpr->bDesc==0 ){
|
|
if( iLhs<iRhs ) return -1;
|
|
return (iLhs > iRhs);
|
|
}else{
|
|
if( iLhs>iRhs ) return -1;
|
|
return (iLhs < iRhs);
|
|
}
|
|
}
|
|
|
|
static void fts5ExprSetEof(Fts5ExprNode *pNode){
|
|
int i;
|
|
pNode->bEof = 1;
|
|
for(i=0; i<pNode->nChild; i++){
|
|
fts5ExprSetEof(pNode->apChild[i]);
|
|
}
|
|
}
|
|
|
|
static void fts5ExprNodeZeroPoslist(Fts5ExprNode *pNode){
|
|
if( pNode->eType==FTS5_STRING || pNode->eType==FTS5_TERM ){
|
|
Fts5ExprNearset *pNear = pNode->pNear;
|
|
int i;
|
|
for(i=0; i<pNear->nPhrase; i++){
|
|
Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
|
|
pPhrase->poslist.n = 0;
|
|
}
|
|
}else{
|
|
int i;
|
|
for(i=0; i<pNode->nChild; i++){
|
|
fts5ExprNodeZeroPoslist(pNode->apChild[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int fts5ExprNodeNext(Fts5Expr*, Fts5ExprNode*, int, i64);
|
|
|
|
/*
|
|
** Argument pNode is an FTS5_AND node.
|
|
*/
|
|
static int fts5ExprAndNextRowid(
|
|
Fts5Expr *pExpr, /* Expression pPhrase belongs to */
|
|
Fts5ExprNode *pAnd /* FTS5_AND node to advance */
|
|
){
|
|
int iChild;
|
|
i64 iLast = pAnd->iRowid;
|
|
int rc = SQLITE_OK;
|
|
int bMatch;
|
|
|
|
assert( pAnd->bEof==0 );
|
|
do {
|
|
pAnd->bNomatch = 0;
|
|
bMatch = 1;
|
|
for(iChild=0; iChild<pAnd->nChild; iChild++){
|
|
Fts5ExprNode *pChild = pAnd->apChild[iChild];
|
|
if( 0 && pChild->eType==FTS5_STRING ){
|
|
/* TODO */
|
|
}else{
|
|
int cmp = fts5RowidCmp(pExpr, iLast, pChild->iRowid);
|
|
if( cmp>0 ){
|
|
/* Advance pChild until it points to iLast or laster */
|
|
rc = fts5ExprNodeNext(pExpr, pChild, 1, iLast);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
}
|
|
|
|
/* If the child node is now at EOF, so is the parent AND node. Otherwise,
|
|
** the child node is guaranteed to have advanced at least as far as
|
|
** rowid iLast. So if it is not at exactly iLast, pChild->iRowid is the
|
|
** new lastest rowid seen so far. */
|
|
assert( pChild->bEof || fts5RowidCmp(pExpr, iLast, pChild->iRowid)<=0 );
|
|
if( pChild->bEof ){
|
|
fts5ExprSetEof(pAnd);
|
|
bMatch = 1;
|
|
break;
|
|
}else if( iLast!=pChild->iRowid ){
|
|
bMatch = 0;
|
|
iLast = pChild->iRowid;
|
|
}
|
|
|
|
if( pChild->bNomatch ){
|
|
pAnd->bNomatch = 1;
|
|
}
|
|
}
|
|
}while( bMatch==0 );
|
|
|
|
if( pAnd->bNomatch && pAnd!=pExpr->pRoot ){
|
|
fts5ExprNodeZeroPoslist(pAnd);
|
|
}
|
|
pAnd->iRowid = iLast;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
/*
|
|
** Compare the values currently indicated by the two nodes as follows:
|
|
**
|
|
** res = (*p1) - (*p2)
|
|
**
|
|
** Nodes that point to values that come later in the iteration order are
|
|
** considered to be larger. Nodes at EOF are the largest of all.
|
|
**
|
|
** This means that if the iteration order is ASC, then numerically larger
|
|
** rowids are considered larger. Or if it is the default DESC, numerically
|
|
** smaller rowids are larger.
|
|
*/
|
|
static int fts5NodeCompare(
|
|
Fts5Expr *pExpr,
|
|
Fts5ExprNode *p1,
|
|
Fts5ExprNode *p2
|
|
){
|
|
if( p2->bEof ) return -1;
|
|
if( p1->bEof ) return +1;
|
|
return fts5RowidCmp(pExpr, p1->iRowid, p2->iRowid);
|
|
}
|
|
|
|
/*
|
|
** Advance node iterator pNode, part of expression pExpr. If argument
|
|
** bFromValid is zero, then pNode is advanced exactly once. Or, if argument
|
|
** bFromValid is non-zero, then pNode is advanced until it is at or past
|
|
** rowid value iFrom. Whether "past" means "less than" or "greater than"
|
|
** depends on whether this is an ASC or DESC iterator.
|
|
*/
|
|
static int fts5ExprNodeNext(
|
|
Fts5Expr *pExpr,
|
|
Fts5ExprNode *pNode,
|
|
int bFromValid,
|
|
i64 iFrom
|
|
){
|
|
int rc = SQLITE_OK;
|
|
|
|
if( pNode->bEof==0 ){
|
|
switch( pNode->eType ){
|
|
case FTS5_STRING: {
|
|
rc = fts5ExprNearAdvanceFirst(pExpr, pNode, bFromValid, iFrom);
|
|
break;
|
|
};
|
|
|
|
case FTS5_TERM: {
|
|
rc = fts5ExprNearAdvanceFirst(pExpr, pNode, bFromValid, iFrom);
|
|
if( pNode->bEof==0 ){
|
|
assert( rc==SQLITE_OK );
|
|
rc = fts5ExprTokenTest(pExpr, pNode);
|
|
}
|
|
return rc;
|
|
};
|
|
|
|
case FTS5_AND: {
|
|
Fts5ExprNode *pLeft = pNode->apChild[0];
|
|
rc = fts5ExprNodeNext(pExpr, pLeft, bFromValid, iFrom);
|
|
break;
|
|
}
|
|
|
|
case FTS5_OR: {
|
|
int i;
|
|
i64 iLast = pNode->iRowid;
|
|
|
|
for(i=0; rc==SQLITE_OK && i<pNode->nChild; i++){
|
|
Fts5ExprNode *p1 = pNode->apChild[i];
|
|
assert( p1->bEof || fts5RowidCmp(pExpr, p1->iRowid, iLast)>=0 );
|
|
if( p1->bEof==0 ){
|
|
if( (p1->iRowid==iLast)
|
|
|| (bFromValid && fts5RowidCmp(pExpr, p1->iRowid, iFrom)<0)
|
|
){
|
|
rc = fts5ExprNodeNext(pExpr, p1, bFromValid, iFrom);
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default: assert( pNode->eType==FTS5_NOT ); {
|
|
assert( pNode->nChild==2 );
|
|
rc = fts5ExprNodeNext(pExpr, pNode->apChild[0], bFromValid, iFrom);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
rc = fts5ExprNodeNextMatch(pExpr, pNode);
|
|
}
|
|
}
|
|
|
|
/* Assert that if bFromValid was true, either:
|
|
**
|
|
** a) an error occurred, or
|
|
** b) the node is now at EOF, or
|
|
** c) the node is now at or past rowid iFrom.
|
|
*/
|
|
assert( bFromValid==0
|
|
|| rc!=SQLITE_OK /* a */
|
|
|| pNode->bEof /* b */
|
|
|| pNode->iRowid==iFrom || pExpr->bDesc==(pNode->iRowid<iFrom) /* c */
|
|
);
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** If pNode currently points to a match, this function returns SQLITE_OK
|
|
** without modifying it. Otherwise, pNode is advanced until it does point
|
|
** to a match or EOF is reached.
|
|
*/
|
|
static int fts5ExprNodeNextMatch(
|
|
Fts5Expr *pExpr, /* Expression of which pNode is a part */
|
|
Fts5ExprNode *pNode /* Expression node to test */
|
|
){
|
|
int rc = SQLITE_OK;
|
|
if( pNode->bEof==0 ){
|
|
switch( pNode->eType ){
|
|
|
|
case FTS5_STRING: {
|
|
/* Advance the iterators until they all point to the same rowid */
|
|
rc = fts5ExprNearNextMatch(pExpr, pNode);
|
|
break;
|
|
}
|
|
|
|
case FTS5_TERM: {
|
|
rc = fts5ExprTokenTest(pExpr, pNode);
|
|
break;
|
|
}
|
|
|
|
case FTS5_AND: {
|
|
rc = fts5ExprAndNextRowid(pExpr, pNode);
|
|
break;
|
|
}
|
|
|
|
case FTS5_OR: {
|
|
Fts5ExprNode *pNext = pNode->apChild[0];
|
|
int i;
|
|
|
|
for(i=1; i<pNode->nChild; i++){
|
|
Fts5ExprNode *pChild = pNode->apChild[i];
|
|
int cmp = fts5NodeCompare(pExpr, pNext, pChild);
|
|
if( cmp>0 || (cmp==0 && pChild->bNomatch==0) ){
|
|
pNext = pChild;
|
|
}
|
|
}
|
|
pNode->iRowid = pNext->iRowid;
|
|
pNode->bEof = pNext->bEof;
|
|
pNode->bNomatch = pNext->bNomatch;
|
|
break;
|
|
}
|
|
|
|
default: assert( pNode->eType==FTS5_NOT ); {
|
|
Fts5ExprNode *p1 = pNode->apChild[0];
|
|
Fts5ExprNode *p2 = pNode->apChild[1];
|
|
assert( pNode->nChild==2 );
|
|
|
|
while( rc==SQLITE_OK && p1->bEof==0 ){
|
|
int cmp = fts5NodeCompare(pExpr, p1, p2);
|
|
if( cmp>0 ){
|
|
rc = fts5ExprNodeNext(pExpr, p2, 1, p1->iRowid);
|
|
cmp = fts5NodeCompare(pExpr, p1, p2);
|
|
}
|
|
assert( rc!=SQLITE_OK || cmp<=0 );
|
|
if( cmp || p2->bNomatch ) break;
|
|
rc = fts5ExprNodeNext(pExpr, p1, 0, 0);
|
|
}
|
|
pNode->bEof = p1->bEof;
|
|
pNode->iRowid = p1->iRowid;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Set node pNode, which is part of expression pExpr, to point to the first
|
|
** match. If there are no matches, set the Node.bEof flag to indicate EOF.
|
|
**
|
|
** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise.
|
|
** It is not an error if there are no matches.
|
|
*/
|
|
static int fts5ExprNodeFirst(Fts5Expr *pExpr, Fts5ExprNode *pNode){
|
|
int rc = SQLITE_OK;
|
|
pNode->bEof = 0;
|
|
|
|
if( Fts5NodeIsString(pNode) ){
|
|
/* Initialize all term iterators in the NEAR object. */
|
|
rc = fts5ExprNearInitAll(pExpr, pNode);
|
|
}else{
|
|
int i;
|
|
for(i=0; i<pNode->nChild && rc==SQLITE_OK; i++){
|
|
rc = fts5ExprNodeFirst(pExpr, pNode->apChild[i]);
|
|
}
|
|
pNode->iRowid = pNode->apChild[0]->iRowid;
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
rc = fts5ExprNodeNextMatch(pExpr, pNode);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Begin iterating through the set of documents in index pIdx matched by
|
|
** the MATCH expression passed as the first argument. If the "bDesc"
|
|
** parameter is passed a non-zero value, iteration is in descending rowid
|
|
** order. Or, if it is zero, in ascending order.
|
|
**
|
|
** If iterating in ascending rowid order (bDesc==0), the first document
|
|
** visited is that with the smallest rowid that is larger than or equal
|
|
** to parameter iFirst. Or, if iterating in ascending order (bDesc==1),
|
|
** then the first document visited must have a rowid smaller than or
|
|
** equal to iFirst.
|
|
**
|
|
** Return SQLITE_OK if successful, or an SQLite error code otherwise. It
|
|
** is not considered an error if the query does not match any documents.
|
|
*/
|
|
int sqlite3Fts5ExprFirst(Fts5Expr *p, Fts5Index *pIdx, i64 iFirst, int bDesc){
|
|
Fts5ExprNode *pRoot = p->pRoot;
|
|
int rc = SQLITE_OK;
|
|
if( pRoot ){
|
|
p->pIndex = pIdx;
|
|
p->bDesc = bDesc;
|
|
rc = fts5ExprNodeFirst(p, pRoot);
|
|
|
|
/* If not at EOF but the current rowid occurs earlier than iFirst in
|
|
** the iteration order, move to document iFirst or later. */
|
|
if( pRoot->bEof==0 && fts5RowidCmp(p, pRoot->iRowid, iFirst)<0 ){
|
|
rc = fts5ExprNodeNext(p, pRoot, 1, iFirst);
|
|
}
|
|
|
|
/* If the iterator is not at a real match, skip forward until it is. */
|
|
while( pRoot->bNomatch && rc==SQLITE_OK && pRoot->bEof==0 ){
|
|
rc = fts5ExprNodeNext(p, pRoot, 0, 0);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Move to the next document
|
|
**
|
|
** Return SQLITE_OK if successful, or an SQLite error code otherwise. It
|
|
** is not considered an error if the query does not match any documents.
|
|
*/
|
|
int sqlite3Fts5ExprNext(Fts5Expr *p, i64 iLast){
|
|
int rc;
|
|
Fts5ExprNode *pRoot = p->pRoot;
|
|
do {
|
|
rc = fts5ExprNodeNext(p, pRoot, 0, 0);
|
|
}while( pRoot->bNomatch && pRoot->bEof==0 && rc==SQLITE_OK );
|
|
if( fts5RowidCmp(p, pRoot->iRowid, iLast)>0 ){
|
|
pRoot->bEof = 1;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
int sqlite3Fts5ExprEof(Fts5Expr *p){
|
|
return (p->pRoot==0 || p->pRoot->bEof);
|
|
}
|
|
|
|
i64 sqlite3Fts5ExprRowid(Fts5Expr *p){
|
|
return p->pRoot->iRowid;
|
|
}
|
|
|
|
static int fts5ParseStringFromToken(Fts5Token *pToken, char **pz){
|
|
int rc = SQLITE_OK;
|
|
*pz = sqlite3Fts5Strndup(&rc, pToken->p, pToken->n);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Free the phrase object passed as the only argument.
|
|
*/
|
|
static void fts5ExprPhraseFree(Fts5ExprPhrase *pPhrase){
|
|
if( pPhrase ){
|
|
int i;
|
|
for(i=0; i<pPhrase->nTerm; i++){
|
|
Fts5ExprTerm *pTerm = &pPhrase->aTerm[i];
|
|
sqlite3_free(pTerm->zTerm);
|
|
if( pTerm->pIter ){
|
|
sqlite3Fts5IterClose(pTerm->pIter);
|
|
}
|
|
}
|
|
if( pPhrase->poslist.nSpace>0 ) fts5BufferFree(&pPhrase->poslist);
|
|
sqlite3_free(pPhrase);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** If argument pNear is NULL, then a new Fts5ExprNearset object is allocated
|
|
** and populated with pPhrase. Or, if pNear is not NULL, phrase pPhrase is
|
|
** appended to it and the results returned.
|
|
**
|
|
** If an OOM error occurs, both the pNear and pPhrase objects are freed and
|
|
** NULL returned.
|
|
*/
|
|
Fts5ExprNearset *sqlite3Fts5ParseNearset(
|
|
Fts5Parse *pParse, /* Parse context */
|
|
Fts5ExprNearset *pNear, /* Existing nearset, or NULL */
|
|
Fts5ExprPhrase *pPhrase /* Recently parsed phrase */
|
|
){
|
|
const int SZALLOC = 8;
|
|
Fts5ExprNearset *pRet = 0;
|
|
|
|
if( pParse->rc==SQLITE_OK ){
|
|
if( pPhrase==0 ){
|
|
return pNear;
|
|
}
|
|
if( pNear==0 ){
|
|
int nByte = sizeof(Fts5ExprNearset) + SZALLOC * sizeof(Fts5ExprPhrase*);
|
|
pRet = sqlite3_malloc(nByte);
|
|
if( pRet==0 ){
|
|
pParse->rc = SQLITE_NOMEM;
|
|
}else{
|
|
memset(pRet, 0, nByte);
|
|
}
|
|
}else if( (pNear->nPhrase % SZALLOC)==0 ){
|
|
int nNew = pNear->nPhrase + SZALLOC;
|
|
int nByte = sizeof(Fts5ExprNearset) + nNew * sizeof(Fts5ExprPhrase*);
|
|
|
|
pRet = (Fts5ExprNearset*)sqlite3_realloc(pNear, nByte);
|
|
if( pRet==0 ){
|
|
pParse->rc = SQLITE_NOMEM;
|
|
}
|
|
}else{
|
|
pRet = pNear;
|
|
}
|
|
}
|
|
|
|
if( pRet==0 ){
|
|
assert( pParse->rc!=SQLITE_OK );
|
|
sqlite3Fts5ParseNearsetFree(pNear);
|
|
sqlite3Fts5ParsePhraseFree(pPhrase);
|
|
}else{
|
|
pRet->apPhrase[pRet->nPhrase++] = pPhrase;
|
|
}
|
|
return pRet;
|
|
}
|
|
|
|
typedef struct TokenCtx TokenCtx;
|
|
struct TokenCtx {
|
|
Fts5ExprPhrase *pPhrase;
|
|
};
|
|
|
|
/*
|
|
** Callback for tokenizing terms used by ParseTerm().
|
|
*/
|
|
static int fts5ParseTokenize(
|
|
void *pContext, /* Pointer to Fts5InsertCtx object */
|
|
const char *pToken, /* Buffer containing token */
|
|
int nToken, /* Size of token in bytes */
|
|
int iStart, /* Start offset of token */
|
|
int iEnd /* End offset of token */
|
|
){
|
|
int rc = SQLITE_OK;
|
|
const int SZALLOC = 8;
|
|
TokenCtx *pCtx = (TokenCtx*)pContext;
|
|
Fts5ExprPhrase *pPhrase = pCtx->pPhrase;
|
|
Fts5ExprTerm *pTerm;
|
|
|
|
if( pPhrase==0 || (pPhrase->nTerm % SZALLOC)==0 ){
|
|
Fts5ExprPhrase *pNew;
|
|
int nNew = SZALLOC + (pPhrase ? pPhrase->nTerm : 0);
|
|
|
|
pNew = (Fts5ExprPhrase*)sqlite3_realloc(pPhrase,
|
|
sizeof(Fts5ExprPhrase) + sizeof(Fts5ExprTerm) * nNew
|
|
);
|
|
if( pNew==0 ) return SQLITE_NOMEM;
|
|
if( pPhrase==0 ) memset(pNew, 0, sizeof(Fts5ExprPhrase));
|
|
pCtx->pPhrase = pPhrase = pNew;
|
|
pNew->nTerm = nNew - SZALLOC;
|
|
}
|
|
|
|
pTerm = &pPhrase->aTerm[pPhrase->nTerm++];
|
|
memset(pTerm, 0, sizeof(Fts5ExprTerm));
|
|
pTerm->zTerm = sqlite3Fts5Strndup(&rc, pToken, nToken);
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Free the phrase object passed as the only argument.
|
|
*/
|
|
void sqlite3Fts5ParsePhraseFree(Fts5ExprPhrase *pPhrase){
|
|
fts5ExprPhraseFree(pPhrase);
|
|
}
|
|
|
|
/*
|
|
** Free the phrase object passed as the second argument.
|
|
*/
|
|
void sqlite3Fts5ParseNearsetFree(Fts5ExprNearset *pNear){
|
|
if( pNear ){
|
|
int i;
|
|
for(i=0; i<pNear->nPhrase; i++){
|
|
fts5ExprPhraseFree(pNear->apPhrase[i]);
|
|
}
|
|
sqlite3_free(pNear->pColset);
|
|
sqlite3_free(pNear);
|
|
}
|
|
}
|
|
|
|
void sqlite3Fts5ParseFinished(Fts5Parse *pParse, Fts5ExprNode *p){
|
|
assert( pParse->pExpr==0 );
|
|
pParse->pExpr = p;
|
|
}
|
|
|
|
/*
|
|
** This function is called by the parser to process a string token. The
|
|
** string may or may not be quoted. In any case it is tokenized and a
|
|
** phrase object consisting of all tokens returned.
|
|
*/
|
|
Fts5ExprPhrase *sqlite3Fts5ParseTerm(
|
|
Fts5Parse *pParse, /* Parse context */
|
|
Fts5ExprPhrase *pAppend, /* Phrase to append to */
|
|
Fts5Token *pToken, /* String to tokenize */
|
|
int bPrefix /* True if there is a trailing "*" */
|
|
){
|
|
Fts5Config *pConfig = pParse->pConfig;
|
|
TokenCtx sCtx; /* Context object passed to callback */
|
|
int rc; /* Tokenize return code */
|
|
char *z = 0;
|
|
|
|
memset(&sCtx, 0, sizeof(TokenCtx));
|
|
sCtx.pPhrase = pAppend;
|
|
|
|
rc = fts5ParseStringFromToken(pToken, &z);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3Fts5Dequote(z);
|
|
rc = sqlite3Fts5Tokenize(pConfig, z, strlen(z), &sCtx, fts5ParseTokenize);
|
|
}
|
|
sqlite3_free(z);
|
|
if( rc ){
|
|
pParse->rc = rc;
|
|
fts5ExprPhraseFree(sCtx.pPhrase);
|
|
sCtx.pPhrase = 0;
|
|
}else if( sCtx.pPhrase ){
|
|
|
|
if( pAppend==0 ){
|
|
if( (pParse->nPhrase % 8)==0 ){
|
|
int nByte = sizeof(Fts5ExprPhrase*) * (pParse->nPhrase + 8);
|
|
Fts5ExprPhrase **apNew;
|
|
apNew = (Fts5ExprPhrase**)sqlite3_realloc(pParse->apPhrase, nByte);
|
|
if( apNew==0 ){
|
|
pParse->rc = SQLITE_NOMEM;
|
|
fts5ExprPhraseFree(sCtx.pPhrase);
|
|
return 0;
|
|
}
|
|
pParse->apPhrase = apNew;
|
|
}
|
|
pParse->nPhrase++;
|
|
}
|
|
|
|
pParse->apPhrase[pParse->nPhrase-1] = sCtx.pPhrase;
|
|
assert( sCtx.pPhrase->nTerm>0 );
|
|
sCtx.pPhrase->aTerm[sCtx.pPhrase->nTerm-1].bPrefix = bPrefix;
|
|
}
|
|
|
|
return sCtx.pPhrase;
|
|
}
|
|
|
|
/*
|
|
** Token pTok has appeared in a MATCH expression where the NEAR operator
|
|
** is expected. If token pTok does not contain "NEAR", store an error
|
|
** in the pParse object.
|
|
*/
|
|
void sqlite3Fts5ParseNear(Fts5Parse *pParse, Fts5Token *pTok){
|
|
if( pTok->n!=4 || memcmp("NEAR", pTok->p, 4) ){
|
|
sqlite3Fts5ParseError(
|
|
pParse, "fts5: syntax error near \"%.*s\"", pTok->n, pTok->p
|
|
);
|
|
}
|
|
}
|
|
|
|
void sqlite3Fts5ParseSetDistance(
|
|
Fts5Parse *pParse,
|
|
Fts5ExprNearset *pNear,
|
|
Fts5Token *p
|
|
){
|
|
int nNear = 0;
|
|
int i;
|
|
if( p->n ){
|
|
for(i=0; i<p->n; i++){
|
|
char c = (char)p->p[i];
|
|
if( c<'0' || c>'9' ){
|
|
sqlite3Fts5ParseError(
|
|
pParse, "expected integer, got \"%.*s\"", p->n, p->p
|
|
);
|
|
return;
|
|
}
|
|
nNear = nNear * 10 + (p->p[i] - '0');
|
|
}
|
|
}else{
|
|
nNear = FTS5_DEFAULT_NEARDIST;
|
|
}
|
|
pNear->nNear = nNear;
|
|
}
|
|
|
|
/*
|
|
** The second argument passed to this function may be NULL, or it may be
|
|
** an existing Fts5ExprColset object. This function returns a pointer to
|
|
** a new colset object containing the contents of (p) with new value column
|
|
** number iCol appended.
|
|
**
|
|
** If an OOM error occurs, store an error code in pParse and return NULL.
|
|
** The old colset object (if any) is not freed in this case.
|
|
*/
|
|
static Fts5ExprColset *fts5ParseColset(
|
|
Fts5Parse *pParse, /* Store SQLITE_NOMEM here if required */
|
|
Fts5ExprColset *p, /* Existing colset object */
|
|
int iCol /* New column to add to colset object */
|
|
){
|
|
int nCol = p ? p->nCol : 0; /* Num. columns already in colset object */
|
|
Fts5ExprColset *pNew; /* New colset object to return */
|
|
|
|
assert( pParse->rc==SQLITE_OK );
|
|
assert( iCol>=0 && iCol<pParse->pConfig->nCol );
|
|
|
|
pNew = sqlite3_realloc(p, sizeof(Fts5ExprColset) + sizeof(int)*nCol);
|
|
if( pNew==0 ){
|
|
pParse->rc = SQLITE_NOMEM;
|
|
}else{
|
|
int *aiCol = pNew->aiCol;
|
|
int i, j;
|
|
for(i=0; i<nCol; i++){
|
|
if( aiCol[i]==iCol ) return pNew;
|
|
if( aiCol[i]>iCol ) break;
|
|
}
|
|
for(j=nCol; j>i; j--){
|
|
aiCol[j] = aiCol[j-1];
|
|
}
|
|
aiCol[i] = iCol;
|
|
pNew->nCol = nCol+1;
|
|
|
|
#ifndef NDEBUG
|
|
/* Check that the array is in order and contains no duplicate entries. */
|
|
for(i=1; i<pNew->nCol; i++) assert( pNew->aiCol[i]>pNew->aiCol[i-1] );
|
|
#endif
|
|
}
|
|
|
|
return pNew;
|
|
}
|
|
|
|
Fts5ExprColset *sqlite3Fts5ParseColset(
|
|
Fts5Parse *pParse, /* Store SQLITE_NOMEM here if required */
|
|
Fts5ExprColset *pColset, /* Existing colset object */
|
|
Fts5Token *p
|
|
){
|
|
Fts5ExprColset *pRet = 0;
|
|
int iCol;
|
|
char *z; /* Dequoted copy of token p */
|
|
|
|
z = sqlite3Fts5Strndup(&pParse->rc, p->p, p->n);
|
|
if( pParse->rc==SQLITE_OK ){
|
|
Fts5Config *pConfig = pParse->pConfig;
|
|
sqlite3Fts5Dequote(z);
|
|
for(iCol=0; iCol<pConfig->nCol; iCol++){
|
|
if( 0==sqlite3_stricmp(pConfig->azCol[iCol], z) ) break;
|
|
}
|
|
if( iCol==pConfig->nCol ){
|
|
sqlite3Fts5ParseError(pParse, "no such column: %s", z);
|
|
}else{
|
|
pRet = fts5ParseColset(pParse, pColset, iCol);
|
|
}
|
|
sqlite3_free(z);
|
|
}
|
|
|
|
if( pRet==0 ){
|
|
assert( pParse->rc!=SQLITE_OK );
|
|
sqlite3_free(pColset);
|
|
}
|
|
|
|
return pRet;
|
|
}
|
|
|
|
void sqlite3Fts5ParseSetColset(
|
|
Fts5Parse *pParse,
|
|
Fts5ExprNearset *pNear,
|
|
Fts5ExprColset *pColset
|
|
){
|
|
if( pNear ){
|
|
pNear->pColset = pColset;
|
|
}else{
|
|
sqlite3_free(pColset);
|
|
}
|
|
}
|
|
|
|
static void fts5ExprAddChildren(Fts5ExprNode *p, Fts5ExprNode *pSub){
|
|
if( p->eType!=FTS5_NOT && pSub->eType==p->eType ){
|
|
int nByte = sizeof(Fts5ExprNode*) * pSub->nChild;
|
|
memcpy(&p->apChild[p->nChild], pSub->apChild, nByte);
|
|
p->nChild += pSub->nChild;
|
|
sqlite3_free(pSub);
|
|
}else{
|
|
p->apChild[p->nChild++] = pSub;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Allocate and return a new expression object. If anything goes wrong (i.e.
|
|
** OOM error), leave an error code in pParse and return NULL.
|
|
*/
|
|
Fts5ExprNode *sqlite3Fts5ParseNode(
|
|
Fts5Parse *pParse, /* Parse context */
|
|
int eType, /* FTS5_STRING, AND, OR or NOT */
|
|
Fts5ExprNode *pLeft, /* Left hand child expression */
|
|
Fts5ExprNode *pRight, /* Right hand child expression */
|
|
Fts5ExprNearset *pNear /* For STRING expressions, the near cluster */
|
|
){
|
|
Fts5ExprNode *pRet = 0;
|
|
|
|
if( pParse->rc==SQLITE_OK ){
|
|
int nChild = 0; /* Number of children of returned node */
|
|
int nByte; /* Bytes of space to allocate for this node */
|
|
|
|
assert( (eType!=FTS5_STRING && !pNear)
|
|
|| (eType==FTS5_STRING && !pLeft && !pRight)
|
|
);
|
|
if( eType==FTS5_STRING && pNear==0 ) return 0;
|
|
if( eType!=FTS5_STRING && pLeft==0 ) return pRight;
|
|
if( eType!=FTS5_STRING && pRight==0 ) return pLeft;
|
|
|
|
if( eType==FTS5_NOT ){
|
|
nChild = 2;
|
|
}else if( eType==FTS5_AND || eType==FTS5_OR ){
|
|
nChild = 2;
|
|
if( pLeft->eType==eType ) nChild += pLeft->nChild-1;
|
|
if( pRight->eType==eType ) nChild += pRight->nChild-1;
|
|
}
|
|
|
|
nByte = sizeof(Fts5ExprNode) + sizeof(Fts5ExprNode*)*(nChild-1);
|
|
pRet = (Fts5ExprNode*)sqlite3Fts5MallocZero(&pParse->rc, nByte);
|
|
|
|
if( pRet ){
|
|
pRet->eType = eType;
|
|
pRet->pNear = pNear;
|
|
if( eType==FTS5_STRING ){
|
|
int iPhrase;
|
|
for(iPhrase=0; iPhrase<pNear->nPhrase; iPhrase++){
|
|
pNear->apPhrase[iPhrase]->pNode = pRet;
|
|
}
|
|
if( pNear->nPhrase==1 && pNear->apPhrase[0]->nTerm==1 ){
|
|
pRet->eType = FTS5_TERM;
|
|
}
|
|
}else{
|
|
fts5ExprAddChildren(pRet, pLeft);
|
|
fts5ExprAddChildren(pRet, pRight);
|
|
}
|
|
}
|
|
}
|
|
|
|
if( pRet==0 ){
|
|
assert( pParse->rc!=SQLITE_OK );
|
|
sqlite3Fts5ParseNodeFree(pLeft);
|
|
sqlite3Fts5ParseNodeFree(pRight);
|
|
sqlite3Fts5ParseNearsetFree(pNear);
|
|
}
|
|
return pRet;
|
|
}
|
|
|
|
static char *fts5ExprTermPrint(Fts5ExprTerm *pTerm){
|
|
char *zQuoted = sqlite3_malloc(strlen(pTerm->zTerm) * 2 + 3 + 2);
|
|
if( zQuoted ){
|
|
int i = 0;
|
|
char *zIn = pTerm->zTerm;
|
|
zQuoted[i++] = '"';
|
|
while( *zIn ){
|
|
if( *zIn=='"' ) zQuoted[i++] = '"';
|
|
zQuoted[i++] = *zIn++;
|
|
}
|
|
zQuoted[i++] = '"';
|
|
if( pTerm->bPrefix ){
|
|
zQuoted[i++] = ' ';
|
|
zQuoted[i++] = '*';
|
|
}
|
|
zQuoted[i++] = '\0';
|
|
}
|
|
return zQuoted;
|
|
}
|
|
|
|
static char *fts5PrintfAppend(char *zApp, const char *zFmt, ...){
|
|
char *zNew;
|
|
va_list ap;
|
|
va_start(ap, zFmt);
|
|
zNew = sqlite3_vmprintf(zFmt, ap);
|
|
va_end(ap);
|
|
if( zApp && zNew ){
|
|
char *zNew2 = sqlite3_mprintf("%s%s", zApp, zNew);
|
|
sqlite3_free(zNew);
|
|
zNew = zNew2;
|
|
}
|
|
sqlite3_free(zApp);
|
|
return zNew;
|
|
}
|
|
|
|
/*
|
|
** Compose a tcl-readable representation of expression pExpr. Return a
|
|
** pointer to a buffer containing that representation. It is the
|
|
** responsibility of the caller to at some point free the buffer using
|
|
** sqlite3_free().
|
|
*/
|
|
static char *fts5ExprPrintTcl(
|
|
Fts5Config *pConfig,
|
|
const char *zNearsetCmd,
|
|
Fts5ExprNode *pExpr
|
|
){
|
|
char *zRet = 0;
|
|
if( pExpr->eType==FTS5_STRING || pExpr->eType==FTS5_TERM ){
|
|
Fts5ExprNearset *pNear = pExpr->pNear;
|
|
int i;
|
|
int iTerm;
|
|
|
|
zRet = fts5PrintfAppend(zRet, "%s ", zNearsetCmd);
|
|
if( zRet==0 ) return 0;
|
|
if( pNear->pColset ){
|
|
int *aiCol = pNear->pColset->aiCol;
|
|
int nCol = pNear->pColset->nCol;
|
|
if( nCol==1 ){
|
|
zRet = fts5PrintfAppend(zRet, "-col %d ", aiCol[0]);
|
|
}else{
|
|
zRet = fts5PrintfAppend(zRet, "-col {%d", aiCol[0]);
|
|
for(i=1; i<pNear->pColset->nCol; i++){
|
|
zRet = fts5PrintfAppend(zRet, " %d", aiCol[i]);
|
|
}
|
|
zRet = fts5PrintfAppend(zRet, "} ");
|
|
}
|
|
if( zRet==0 ) return 0;
|
|
}
|
|
|
|
if( pNear->nPhrase>1 ){
|
|
zRet = fts5PrintfAppend(zRet, "-near %d ", pNear->nNear);
|
|
if( zRet==0 ) return 0;
|
|
}
|
|
|
|
zRet = fts5PrintfAppend(zRet, "--");
|
|
if( zRet==0 ) return 0;
|
|
|
|
for(i=0; i<pNear->nPhrase; i++){
|
|
Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
|
|
|
|
zRet = fts5PrintfAppend(zRet, " {");
|
|
for(iTerm=0; zRet && iTerm<pPhrase->nTerm; iTerm++){
|
|
char *zTerm = pPhrase->aTerm[iTerm].zTerm;
|
|
zRet = fts5PrintfAppend(zRet, "%s%s", iTerm==0?"":" ", zTerm);
|
|
}
|
|
|
|
if( zRet ) zRet = fts5PrintfAppend(zRet, "}");
|
|
if( zRet==0 ) return 0;
|
|
}
|
|
|
|
}else{
|
|
char const *zOp = 0;
|
|
int i;
|
|
switch( pExpr->eType ){
|
|
case FTS5_AND: zOp = "AND"; break;
|
|
case FTS5_NOT: zOp = "NOT"; break;
|
|
default:
|
|
assert( pExpr->eType==FTS5_OR );
|
|
zOp = "OR";
|
|
break;
|
|
}
|
|
|
|
zRet = sqlite3_mprintf("%s", zOp);
|
|
for(i=0; zRet && i<pExpr->nChild; i++){
|
|
char *z = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->apChild[i]);
|
|
if( !z ){
|
|
sqlite3_free(zRet);
|
|
zRet = 0;
|
|
}else{
|
|
zRet = fts5PrintfAppend(zRet, " [%z]", z);
|
|
}
|
|
}
|
|
}
|
|
|
|
return zRet;
|
|
}
|
|
|
|
static char *fts5ExprPrint(Fts5Config *pConfig, Fts5ExprNode *pExpr){
|
|
char *zRet = 0;
|
|
if( pExpr->eType==FTS5_STRING || pExpr->eType==FTS5_TERM ){
|
|
Fts5ExprNearset *pNear = pExpr->pNear;
|
|
int i;
|
|
int iTerm;
|
|
|
|
if( pNear->pColset ){
|
|
int iCol = pNear->pColset->aiCol[0];
|
|
zRet = fts5PrintfAppend(zRet, "%s : ", pConfig->azCol[iCol]);
|
|
if( zRet==0 ) return 0;
|
|
}
|
|
|
|
if( pNear->nPhrase>1 ){
|
|
zRet = fts5PrintfAppend(zRet, "NEAR(");
|
|
if( zRet==0 ) return 0;
|
|
}
|
|
|
|
for(i=0; i<pNear->nPhrase; i++){
|
|
Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
|
|
if( i!=0 ){
|
|
zRet = fts5PrintfAppend(zRet, " ");
|
|
if( zRet==0 ) return 0;
|
|
}
|
|
for(iTerm=0; iTerm<pPhrase->nTerm; iTerm++){
|
|
char *zTerm = fts5ExprTermPrint(&pPhrase->aTerm[iTerm]);
|
|
if( zTerm ){
|
|
zRet = fts5PrintfAppend(zRet, "%s%s", iTerm==0?"":" + ", zTerm);
|
|
sqlite3_free(zTerm);
|
|
}
|
|
if( zTerm==0 || zRet==0 ){
|
|
sqlite3_free(zRet);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( pNear->nPhrase>1 ){
|
|
zRet = fts5PrintfAppend(zRet, ", %d)", pNear->nNear);
|
|
if( zRet==0 ) return 0;
|
|
}
|
|
|
|
}else{
|
|
char const *zOp = 0;
|
|
int i;
|
|
|
|
switch( pExpr->eType ){
|
|
case FTS5_AND: zOp = " AND "; break;
|
|
case FTS5_NOT: zOp = " NOT "; break;
|
|
default:
|
|
assert( pExpr->eType==FTS5_OR );
|
|
zOp = " OR ";
|
|
break;
|
|
}
|
|
|
|
for(i=0; i<pExpr->nChild; i++){
|
|
char *z = fts5ExprPrint(pConfig, pExpr->apChild[i]);
|
|
if( z==0 ){
|
|
sqlite3_free(zRet);
|
|
zRet = 0;
|
|
}else{
|
|
int e = pExpr->apChild[i]->eType;
|
|
int b = (e!=FTS5_STRING && e!=FTS5_TERM);
|
|
zRet = fts5PrintfAppend(zRet, "%s%s%z%s",
|
|
(i==0 ? "" : zOp),
|
|
(b?"(":""), z, (b?")":"")
|
|
);
|
|
}
|
|
if( zRet==0 ) break;
|
|
}
|
|
}
|
|
|
|
return zRet;
|
|
}
|
|
|
|
/*
|
|
** The implementation of user-defined scalar functions fts5_expr() (bTcl==0)
|
|
** and fts5_expr_tcl() (bTcl!=0).
|
|
*/
|
|
static void fts5ExprFunction(
|
|
sqlite3_context *pCtx, /* Function call context */
|
|
int nArg, /* Number of args */
|
|
sqlite3_value **apVal, /* Function arguments */
|
|
int bTcl
|
|
){
|
|
Fts5Global *pGlobal = (Fts5Global*)sqlite3_user_data(pCtx);
|
|
sqlite3 *db = sqlite3_context_db_handle(pCtx);
|
|
const char *zExpr = 0;
|
|
char *zErr = 0;
|
|
Fts5Expr *pExpr = 0;
|
|
int rc;
|
|
int i;
|
|
|
|
const char **azConfig; /* Array of arguments for Fts5Config */
|
|
const char *zNearsetCmd = "nearset";
|
|
int nConfig; /* Size of azConfig[] */
|
|
Fts5Config *pConfig = 0;
|
|
int iArg = 1;
|
|
|
|
if( nArg<1 ){
|
|
char *zErr = sqlite3_mprintf("wrong number of arguments to function %s",
|
|
bTcl ? "fts5_expr_tcl" : "fts5_expr"
|
|
);
|
|
sqlite3_result_error(pCtx, zErr, -1);
|
|
sqlite3_free(zErr);
|
|
return;
|
|
}
|
|
|
|
if( bTcl && nArg>1 ){
|
|
zNearsetCmd = (const char*)sqlite3_value_text(apVal[1]);
|
|
iArg = 2;
|
|
}
|
|
|
|
nConfig = 3 + (nArg-iArg);
|
|
azConfig = (const char**)sqlite3_malloc(sizeof(char*) * nConfig);
|
|
if( azConfig==0 ){
|
|
sqlite3_result_error_nomem(pCtx);
|
|
return;
|
|
}
|
|
azConfig[0] = 0;
|
|
azConfig[1] = "main";
|
|
azConfig[2] = "tbl";
|
|
for(i=3; iArg<nArg; iArg++){
|
|
azConfig[i++] = (const char*)sqlite3_value_text(apVal[iArg]);
|
|
}
|
|
|
|
zExpr = (const char*)sqlite3_value_text(apVal[0]);
|
|
|
|
rc = sqlite3Fts5ConfigParse(pGlobal, db, nConfig, azConfig, &pConfig, &zErr);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3Fts5ExprNew(pConfig, zExpr, &pExpr, &zErr);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
char *zText;
|
|
if( pExpr->pRoot==0 ){
|
|
zText = sqlite3_mprintf("");
|
|
}else if( bTcl ){
|
|
zText = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->pRoot);
|
|
}else{
|
|
zText = fts5ExprPrint(pConfig, pExpr->pRoot);
|
|
}
|
|
if( zText==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
sqlite3_result_text(pCtx, zText, -1, SQLITE_TRANSIENT);
|
|
sqlite3_free(zText);
|
|
}
|
|
}
|
|
|
|
if( rc!=SQLITE_OK ){
|
|
if( zErr ){
|
|
sqlite3_result_error(pCtx, zErr, -1);
|
|
sqlite3_free(zErr);
|
|
}else{
|
|
sqlite3_result_error_code(pCtx, rc);
|
|
}
|
|
}
|
|
sqlite3_free((void *)azConfig);
|
|
sqlite3Fts5ConfigFree(pConfig);
|
|
sqlite3Fts5ExprFree(pExpr);
|
|
}
|
|
|
|
static void fts5ExprFunctionHr(
|
|
sqlite3_context *pCtx, /* Function call context */
|
|
int nArg, /* Number of args */
|
|
sqlite3_value **apVal /* Function arguments */
|
|
){
|
|
fts5ExprFunction(pCtx, nArg, apVal, 0);
|
|
}
|
|
static void fts5ExprFunctionTcl(
|
|
sqlite3_context *pCtx, /* Function call context */
|
|
int nArg, /* Number of args */
|
|
sqlite3_value **apVal /* Function arguments */
|
|
){
|
|
fts5ExprFunction(pCtx, nArg, apVal, 1);
|
|
}
|
|
|
|
/*
|
|
** The implementation of an SQLite user-defined-function that accepts a
|
|
** single integer as an argument. If the integer is an alpha-numeric
|
|
** unicode code point, 1 is returned. Otherwise 0.
|
|
*/
|
|
static void fts5ExprIsAlnum(
|
|
sqlite3_context *pCtx, /* Function call context */
|
|
int nArg, /* Number of args */
|
|
sqlite3_value **apVal /* Function arguments */
|
|
){
|
|
int iCode;
|
|
if( nArg!=1 ){
|
|
sqlite3_result_error(pCtx,
|
|
"wrong number of arguments to function fts5_isalnum", -1
|
|
);
|
|
return;
|
|
}
|
|
iCode = sqlite3_value_int(apVal[0]);
|
|
sqlite3_result_int(pCtx, sqlite3Fts5UnicodeIsalnum(iCode));
|
|
}
|
|
|
|
static void fts5ExprFold(
|
|
sqlite3_context *pCtx, /* Function call context */
|
|
int nArg, /* Number of args */
|
|
sqlite3_value **apVal /* Function arguments */
|
|
){
|
|
if( nArg!=1 && nArg!=2 ){
|
|
sqlite3_result_error(pCtx,
|
|
"wrong number of arguments to function fts5_fold", -1
|
|
);
|
|
}else{
|
|
int iCode;
|
|
int bRemoveDiacritics = 0;
|
|
iCode = sqlite3_value_int(apVal[0]);
|
|
if( nArg==2 ) bRemoveDiacritics = sqlite3_value_int(apVal[1]);
|
|
sqlite3_result_int(pCtx, sqlite3Fts5UnicodeFold(iCode, bRemoveDiacritics));
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This is called during initialization to register the fts5_expr() scalar
|
|
** UDF with the SQLite handle passed as the only argument.
|
|
*/
|
|
int sqlite3Fts5ExprInit(Fts5Global *pGlobal, sqlite3 *db){
|
|
struct Fts5ExprFunc {
|
|
const char *z;
|
|
void (*x)(sqlite3_context*,int,sqlite3_value**);
|
|
} aFunc[] = {
|
|
{ "fts5_expr", fts5ExprFunctionHr },
|
|
{ "fts5_expr_tcl", fts5ExprFunctionTcl },
|
|
{ "fts5_isalnum", fts5ExprIsAlnum },
|
|
{ "fts5_fold", fts5ExprFold },
|
|
};
|
|
int i;
|
|
int rc = SQLITE_OK;
|
|
void *pCtx = (void*)pGlobal;
|
|
|
|
for(i=0; rc==SQLITE_OK && i<(sizeof(aFunc) / sizeof(aFunc[0])); i++){
|
|
struct Fts5ExprFunc *p = &aFunc[i];
|
|
rc = sqlite3_create_function(db, p->z, -1, SQLITE_UTF8, pCtx, p->x, 0, 0);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return the number of phrases in expression pExpr.
|
|
*/
|
|
int sqlite3Fts5ExprPhraseCount(Fts5Expr *pExpr){
|
|
return pExpr->nPhrase;
|
|
}
|
|
|
|
/*
|
|
** Return the number of terms in the iPhrase'th phrase in pExpr.
|
|
*/
|
|
int sqlite3Fts5ExprPhraseSize(Fts5Expr *pExpr, int iPhrase){
|
|
if( iPhrase<0 || iPhrase>=pExpr->nPhrase ) return 0;
|
|
return pExpr->apExprPhrase[iPhrase]->nTerm;
|
|
}
|
|
|
|
/*
|
|
** This function is used to access the current position list for phrase
|
|
** iPhrase.
|
|
*/
|
|
int sqlite3Fts5ExprPoslist(Fts5Expr *pExpr, int iPhrase, const u8 **pa){
|
|
int nRet;
|
|
Fts5ExprPhrase *pPhrase = pExpr->apExprPhrase[iPhrase];
|
|
Fts5ExprNode *pNode = pPhrase->pNode;
|
|
if( pNode->bEof==0 && pNode->iRowid==pExpr->pRoot->iRowid ){
|
|
*pa = pPhrase->poslist.p;
|
|
nRet = pPhrase->poslist.n;
|
|
}else{
|
|
*pa = 0;
|
|
nRet = 0;
|
|
}
|
|
return nRet;
|
|
}
|
|
|