sqlite/test/autoindex1.test
drh 95aa47b10a Use the estimated number of rows computed for subqueries in the cost
computations for outer queries.

FossilOrigin-Name: 56bbc539246a6dc9f1ae1edb898db7a4f6f6d322
2010-11-16 02:49:15 +00:00

252 lines
7.8 KiB
Plaintext

# 2010 April 07
#
# The author disclaims copyright to this source code. In place of
# a legal notice, here is a blessing:
#
# May you do good and not evil.
# May you find forgiveness for yourself and forgive others.
# May you share freely, never taking more than you give.
#
#*************************************************************************
# This file implements regression tests for SQLite library. The
# focus of this script is testing automatic index creation logic.
#
set testdir [file dirname $argv0]
source $testdir/tester.tcl
# If the library is not compiled with automatic index support then
# skip all tests in this file.
#
ifcapable {!autoindex} {
finish_test
return
}
# With automatic index turned off, we do a full scan of the T2 table
do_test autoindex1-100 {
db eval {
CREATE TABLE t1(a,b);
INSERT INTO t1 VALUES(1,11);
INSERT INTO t1 VALUES(2,22);
INSERT INTO t1 SELECT a+2, b+22 FROM t1;
INSERT INTO t1 SELECT a+4, b+44 FROM t1;
CREATE TABLE t2(c,d);
INSERT INTO t2 SELECT a, 900+b FROM t1;
}
db eval {
PRAGMA automatic_index=OFF;
SELECT b, d FROM t1 JOIN t2 ON a=c ORDER BY b;
}
} {11 911 22 922 33 933 44 944 55 955 66 966 77 977 88 988}
do_test autoindex1-101 {
db status step
} {63}
do_test autoindex1-102 {
db status autoindex
} {0}
# With autoindex turned on, we build an index once and then use that index
# to find T2 values.
do_test autoindex1-110 {
db eval {
PRAGMA automatic_index=ON;
SELECT b, d FROM t1 JOIN t2 ON a=c ORDER BY b;
}
} {11 911 22 922 33 933 44 944 55 955 66 966 77 977 88 988}
do_test autoindex1-111 {
db status step
} {7}
do_test autoindex1-112 {
db status autoindex
} {7}
# The same test as above, but this time the T2 query is a subquery rather
# than a join.
do_test autoindex1-200 {
db eval {
PRAGMA automatic_index=OFF;
SELECT b, (SELECT d FROM t2 WHERE c=a) FROM t1;
}
} {11 911 22 922 33 933 44 944 55 955 66 966 77 977 88 988}
do_test autoindex1-201 {
db status step
} {35}
do_test autoindex1-202 {
db status autoindex
} {0}
do_test autoindex1-210 {
db eval {
PRAGMA automatic_index=ON;
SELECT b, (SELECT d FROM t2 WHERE c=a) FROM t1;
}
} {11 911 22 922 33 933 44 944 55 955 66 966 77 977 88 988}
do_test autoindex1-211 {
db status step
} {7}
do_test autoindex1-212 {
db status autoindex
} {7}
# Modify the second table of the join while the join is in progress
#
do_test autoindex1-300 {
set r {}
db eval {SELECT b, d FROM t1 JOIN t2 ON (c=a)} {
lappend r $b $d
db eval {UPDATE t2 SET d=d+1}
}
set r
} {11 911 22 922 33 933 44 944 55 955 66 966 77 977 88 988}
do_test autoindex1-310 {
db eval {SELECT d FROM t2 ORDER BY d}
} {919 930 941 952 963 974 985 996}
# The next test does a 10-way join on unindexed tables. Without
# automatic indices, the join will take a long time to complete.
# With automatic indices, it should only take about a second.
#
do_test autoindex1-400 {
db eval {
CREATE TABLE t4(a, b);
INSERT INTO t4 VALUES(1,2);
INSERT INTO t4 VALUES(2,3);
}
for {set n 2} {$n<4096} {set n [expr {$n+$n}]} {
db eval {INSERT INTO t4 SELECT a+$n, b+$n FROM t4}
}
db eval {
SELECT count(*) FROM t4;
}
} {4096}
do_test autoindex1-401 {
db eval {
SELECT count(*)
FROM t4 AS x1
JOIN t4 AS x2 ON x2.a=x1.b
JOIN t4 AS x3 ON x3.a=x2.b
JOIN t4 AS x4 ON x4.a=x3.b
JOIN t4 AS x5 ON x5.a=x4.b
JOIN t4 AS x6 ON x6.a=x5.b
JOIN t4 AS x7 ON x7.a=x6.b
JOIN t4 AS x8 ON x8.a=x7.b
JOIN t4 AS x9 ON x9.a=x8.b
JOIN t4 AS x10 ON x10.a=x9.b;
}
} {4087}
# Ticket [8011086c85c6c404014c947fcf3eb9f42b184a0d] from 2010-07-08
# Make sure automatic indices are not created for the RHS of an IN expression
# that is not a correlated subquery.
#
do_execsql_test autoindex1-500 {
CREATE TABLE t501(a INTEGER PRIMARY KEY, b);
CREATE TABLE t502(x INTEGER PRIMARY KEY, y);
EXPLAIN QUERY PLAN
SELECT b FROM t501
WHERE t501.a IN (SELECT x FROM t502 WHERE y=?);
} {
0 0 0 {SEARCH TABLE t501 USING INTEGER PRIMARY KEY (rowid=?) (~25 rows)}
0 0 0 {EXECUTE LIST SUBQUERY 1}
1 0 0 {SCAN TABLE t502 (~100000 rows)}
}
do_execsql_test autoindex1-501 {
EXPLAIN QUERY PLAN
SELECT b FROM t501
WHERE t501.a IN (SELECT x FROM t502 WHERE y=t501.b);
} {
0 0 0 {SCAN TABLE t501 (~500000 rows)}
0 0 0 {EXECUTE CORRELATED LIST SUBQUERY 1}
1 0 0 {SEARCH TABLE t502 USING AUTOMATIC COVERING INDEX (y=?) (~7 rows)}
}
do_execsql_test autoindex1-502 {
EXPLAIN QUERY PLAN
SELECT b FROM t501
WHERE t501.a=123
AND t501.a IN (SELECT x FROM t502 WHERE y=t501.b);
} {
0 0 0 {SEARCH TABLE t501 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
0 0 0 {EXECUTE CORRELATED LIST SUBQUERY 1}
1 0 0 {SCAN TABLE t502 (~100000 rows)}
}
# The following code checks a performance regression reported on the
# mailing list on 2010-10-19. The problem is that the nRowEst field
# of ephermeral tables was not being initialized correctly and so no
# automatic index was being created for the emphemeral table when it was
# used as part of a join.
#
do_execsql_test autoindex1-600 {
CREATE TABLE flock_owner(
owner_rec_id INTEGER CONSTRAINT flock_owner_key PRIMARY KEY,
flock_no VARCHAR(6) NOT NULL REFERENCES flock (flock_no),
owner_person_id INTEGER NOT NULL REFERENCES person (person_id),
owner_change_date TEXT, last_changed TEXT NOT NULL,
CONSTRAINT fo_owner_date UNIQUE (flock_no, owner_change_date)
);
CREATE TABLE sheep (
Sheep_No char(7) NOT NULL,
Date_of_Birth char(8),
Sort_DoB text,
Flock_Book_Vol char(2),
Breeder_No char(6),
Breeder_Person integer,
Originating_Flock char(6),
Registering_Flock char(6),
Tag_Prefix char(9),
Tag_No char(15),
Sort_Tag_No integer,
Breeders_Temp_Tag char(15),
Sex char(1),
Sheep_Name char(32),
Sire_No char(7),
Dam_No char(7),
Register_Code char(1),
Colour char(48),
Colour_Code char(2),
Pattern_Code char(8),
Horns char(1),
Litter_Size char(1),
Coeff_of_Inbreeding real,
Date_of_Registration text,
Date_Last_Changed text,
UNIQUE(Sheep_No));
CREATE INDEX fo_flock_no_index
ON flock_owner (flock_no);
CREATE INDEX fo_owner_change_date_index
ON flock_owner (owner_change_date);
CREATE INDEX fo_owner_person_id_index
ON flock_owner (owner_person_id);
CREATE INDEX sheep_org_flock_index
ON sheep (originating_flock);
CREATE INDEX sheep_reg_flock_index
ON sheep (registering_flock);
EXPLAIN QUERY PLAN
SELECT x.sheep_no, x.registering_flock, x.date_of_registration
FROM sheep x LEFT JOIN
(SELECT s.sheep_no, prev.flock_no, prev.owner_person_id,
s.date_of_registration, prev.owner_change_date
FROM sheep s JOIN flock_owner prev ON s.registering_flock =
prev.flock_no
AND (prev.owner_change_date <= s.date_of_registration || ' 00:00:00')
WHERE NOT EXISTS
(SELECT 'x' FROM flock_owner later
WHERE prev.flock_no = later.flock_no
AND later.owner_change_date > prev.owner_change_date
AND later.owner_change_date <= s.date_of_registration||' 00:00:00')
) y ON x.sheep_no = y.sheep_no
WHERE y.sheep_no IS NULL
ORDER BY x.registering_flock;
} {
1 0 0 {SCAN TABLE sheep AS s (~1000000 rows)}
1 1 1 {SEARCH TABLE flock_owner AS prev USING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date<?) (~2 rows)}
1 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 2}
2 0 0 {SEARCH TABLE flock_owner AS later USING COVERING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date>? AND owner_change_date<?) (~1 rows)}
0 0 0 {SCAN TABLE sheep AS x USING INDEX sheep_reg_flock_index (~1000000 rows)}
0 1 1 {SEARCH SUBQUERY 1 AS y USING AUTOMATIC COVERING INDEX (sheep_no=?) (~8 rows)}
}
finish_test