sqlite/ext/lsm1/lsm-test/lsmtest_main.c
mistachkin b2950c48e1 Fix harmless compiler warnings in lsmtest.
FossilOrigin-Name: bd8a1fb9b33418717c786a7275f636cd4d5facd66de9a416f948b61c6490c743
2017-07-10 21:32:11 +00:00

1549 lines
37 KiB
C

#include "lsmtest.h"
#include <sqlite3.h>
void test_failed(){
assert( 0 );
return;
}
#define testSetError(rc) testSetErrorFunc(rc, pRc, __FILE__, __LINE__)
static void testSetErrorFunc(int rc, int *pRc, const char *zFile, int iLine){
if( rc ){
*pRc = rc;
fprintf(stderr, "FAILED (%s:%d) rc=%d ", zFile, iLine, rc);
test_failed();
}
}
static int lsm_memcmp(u8 *a, u8 *b, int c){
int i;
for(i=0; i<c; i++){
if( a[i]!=b[i] ) return a[i] - b[i];
}
return 0;
}
/*
** A test utility function.
*/
void testFetch(
TestDb *pDb, /* Database handle */
void *pKey, int nKey, /* Key to query database for */
void *pVal, int nVal, /* Expected value */
int *pRc /* IN/OUT: Error code */
){
if( *pRc==0 ){
void *pDbVal;
int nDbVal;
int rc;
static int nCall = 0; nCall++;
rc = tdb_fetch(pDb, pKey, nKey, &pDbVal, &nDbVal);
testSetError(rc);
if( rc==0 && (nVal!=nDbVal || (nVal>0 && lsm_memcmp(pVal, pDbVal, nVal))) ){
testSetError(1);
}
}
}
void testWrite(
TestDb *pDb, /* Database handle */
void *pKey, int nKey, /* Key to query database for */
void *pVal, int nVal, /* Value to write */
int *pRc /* IN/OUT: Error code */
){
if( *pRc==0 ){
int rc;
static int nCall = 0;
nCall++;
rc = tdb_write(pDb, pKey, nKey, pVal, nVal);
testSetError(rc);
}
}
void testDelete(
TestDb *pDb, /* Database handle */
void *pKey, int nKey, /* Key to query database for */
int *pRc /* IN/OUT: Error code */
){
if( *pRc==0 ){
int rc;
*pRc = rc = tdb_delete(pDb, pKey, nKey);
testSetError(rc);
}
}
void testDeleteRange(
TestDb *pDb, /* Database handle */
void *pKey1, int nKey1,
void *pKey2, int nKey2,
int *pRc /* IN/OUT: Error code */
){
if( *pRc==0 ){
int rc;
*pRc = rc = tdb_delete_range(pDb, pKey1, nKey1, pKey2, nKey2);
testSetError(rc);
}
}
void testBegin(TestDb *pDb, int iTrans, int *pRc){
if( *pRc==0 ){
int rc;
rc = tdb_begin(pDb, iTrans);
testSetError(rc);
}
}
void testCommit(TestDb *pDb, int iTrans, int *pRc){
if( *pRc==0 ){
int rc;
rc = tdb_commit(pDb, iTrans);
testSetError(rc);
}
}
#if 0 /* unused */
static void testRollback(TestDb *pDb, int iTrans, int *pRc){
if( *pRc==0 ){
int rc;
rc = tdb_rollback(pDb, iTrans);
testSetError(rc);
}
}
#endif
void testWriteStr(
TestDb *pDb, /* Database handle */
const char *zKey, /* Key to query database for */
const char *zVal, /* Value to write */
int *pRc /* IN/OUT: Error code */
){
int nVal = (zVal ? strlen(zVal) : 0);
testWrite(pDb, (void *)zKey, strlen(zKey), (void *)zVal, nVal, pRc);
}
#if 0 /* unused */
static void testDeleteStr(TestDb *pDb, const char *zKey, int *pRc){
testDelete(pDb, (void *)zKey, strlen(zKey), pRc);
}
#endif
void testFetchStr(
TestDb *pDb, /* Database handle */
const char *zKey, /* Key to query database for */
const char *zVal, /* Value to write */
int *pRc /* IN/OUT: Error code */
){
int nVal = (zVal ? strlen(zVal) : 0);
testFetch(pDb, (void *)zKey, strlen(zKey), (void *)zVal, nVal, pRc);
}
void testFetchCompare(
TestDb *pControl,
TestDb *pDb,
void *pKey, int nKey,
int *pRc
){
int rc;
void *pDbVal1;
void *pDbVal2;
int nDbVal1;
int nDbVal2;
static int nCall = 0;
nCall++;
rc = tdb_fetch(pControl, pKey, nKey, &pDbVal1, &nDbVal1);
testSetError(rc);
rc = tdb_fetch(pDb, pKey, nKey, &pDbVal2, &nDbVal2);
testSetError(rc);
if( *pRc==0
&& (nDbVal1!=nDbVal2 || (nDbVal1>0 && memcmp(pDbVal1, pDbVal2, nDbVal1)))
){
testSetError(1);
}
}
typedef struct ScanResult ScanResult;
struct ScanResult {
TestDb *pDb;
int nRow;
u32 cksum1;
u32 cksum2;
void *pKey1; int nKey1;
void *pKey2; int nKey2;
int bReverse;
int nPrevKey;
u8 aPrevKey[256];
};
static int keyCompare(void *pKey1, int nKey1, void *pKey2, int nKey2){
int res;
res = memcmp(pKey1, pKey2, MIN(nKey1, nKey2));
if( res==0 ){
res = nKey1 - nKey2;
}
return res;
}
int test_scan_debug = 0;
static void scanCompareCb(
void *pCtx,
void *pKey, int nKey,
void *pVal, int nVal
){
ScanResult *p = (ScanResult *)pCtx;
u8 *aKey = (u8 *)pKey;
u8 *aVal = (u8 *)pVal;
int i;
if( test_scan_debug ){
printf("%d: %.*s\n", p->nRow, nKey, (char *)pKey);
fflush(stdout);
}
#if 0
if( test_scan_debug ) printf("%.20s\n", (char *)pVal);
#endif
#if 0
/* Check tdb_fetch() matches */
int rc = 0;
testFetch(p->pDb, pKey, nKey, pVal, nVal, &rc);
assert( rc==0 );
#endif
/* Update the checksum data */
p->nRow++;
for(i=0; i<nKey; i++){
p->cksum1 += ((int)aKey[i] << (i&0x0F));
p->cksum2 += p->cksum1;
}
for(i=0; i<nVal; i++){
p->cksum1 += ((int)aVal[i] << (i&0x0F));
p->cksum2 += p->cksum1;
}
/* Check that the delivered row is not out of order. */
if( nKey<(int)sizeof(p->aPrevKey) ){
if( p->nPrevKey ){
int res = keyCompare(p->aPrevKey, p->nPrevKey, pKey, nKey);
if( (res<0 && p->bReverse) || (res>0 && p->bReverse==0) ){
testPrintError("Returned key out of order at %s:%d\n",
__FILE__, __LINE__
);
}
}
p->nPrevKey = nKey;
memcpy(p->aPrevKey, pKey, MIN(p->nPrevKey, nKey));
}
/* Check that the delivered row is within range. */
if( p->pKey1 && (
(memcmp(p->pKey1, pKey, MIN(p->nKey1, nKey))>0)
|| (memcmp(p->pKey1, pKey, MIN(p->nKey1, nKey))==0 && p->nKey1>nKey)
)){
testPrintError("Returned key too small at %s:%d\n", __FILE__, __LINE__);
}
if( p->pKey2 && (
(memcmp(p->pKey2, pKey, MIN(p->nKey2, nKey))<0)
|| (memcmp(p->pKey2, pKey, MIN(p->nKey2, nKey))==0 && p->nKey2<nKey)
)){
testPrintError("Returned key too large at %s:%d\n", __FILE__, __LINE__);
}
}
/*
** Scan the contents of the two databases. Check that they match.
*/
void testScanCompare(
TestDb *pDb1, /* Control (trusted) database */
TestDb *pDb2, /* Database being tested */
int bReverse,
void *pKey1, int nKey1,
void *pKey2, int nKey2,
int *pRc
){
static int nCall = 0; nCall++;
if( *pRc==0 ){
ScanResult res1;
ScanResult res2;
void *pRes1 = (void *)&res1;
void *pRes2 = (void *)&res2;
memset(&res1, 0, sizeof(ScanResult));
memset(&res2, 0, sizeof(ScanResult));
res1.pDb = pDb1;
res1.nKey1 = nKey1; res1.pKey1 = pKey1;
res1.nKey2 = nKey2; res1.pKey2 = pKey2;
res1.bReverse = bReverse;
res2.pDb = pDb2;
res2.nKey1 = nKey1; res2.pKey1 = pKey1;
res2.nKey2 = nKey2; res2.pKey2 = pKey2;
res2.bReverse = bReverse;
tdb_scan(pDb1, pRes1, bReverse, pKey1, nKey1, pKey2, nKey2, scanCompareCb);
if( test_scan_debug ) printf("\n\n\n");
tdb_scan(pDb2, pRes2, bReverse, pKey1, nKey1, pKey2, nKey2, scanCompareCb);
if( test_scan_debug ) printf("\n\n\n");
if( res1.nRow!=res2.nRow
|| res1.cksum1!=res2.cksum1
|| res1.cksum2!=res2.cksum2
){
printf("expected: %d %X %X\n", res1.nRow, res1.cksum1, res1.cksum2);
printf("got: %d %X %X\n", res2.nRow, res2.cksum1, res2.cksum2);
testSetError(1);
*pRc = 1;
}
}
}
void testClose(TestDb **ppDb){
tdb_close(*ppDb);
*ppDb = 0;
}
TestDb *testOpen(const char *zSystem, int bClear, int *pRc){
TestDb *pDb = 0;
if( *pRc==0 ){
int rc;
rc = tdb_open(zSystem, 0, bClear, &pDb);
if( rc!=0 ){
testSetError(rc);
*pRc = rc;
}
}
return pDb;
}
void testReopen(TestDb **ppDb, int *pRc){
if( *pRc==0 ){
const char *zLib;
zLib = tdb_library_name(*ppDb);
testClose(ppDb);
*pRc = tdb_open(zLib, 0, 0, ppDb);
}
}
#if 0 /* unused */
static void testSystemSelect(const char *zSys, int *piSel, int *pRc){
if( *pRc==0 ){
struct SysName { const char *zName; } *aName;
int nSys;
int i;
for(nSys=0; tdb_system_name(nSys); nSys++);
aName = malloc(sizeof(struct SysName) * (nSys+1));
for(i=0; i<=nSys; i++){
aName[i].zName = tdb_system_name(i);
}
*pRc = testArgSelect(aName, "db", zSys, piSel);
free(aName);
}
}
#endif
char *testMallocVPrintf(const char *zFormat, va_list ap){
int nByte;
va_list copy;
char *zRet;
__va_copy(copy, ap);
nByte = vsnprintf(0, 0, zFormat, copy);
va_end(copy);
assert( nByte>=0 );
zRet = (char *)testMalloc(nByte+1);
vsnprintf(zRet, nByte+1, zFormat, ap);
return zRet;
}
char *testMallocPrintf(const char *zFormat, ...){
va_list ap;
char *zRet;
va_start(ap, zFormat);
zRet = testMallocVPrintf(zFormat, ap);
va_end(ap);
return zRet;
}
/*
** A wrapper around malloc(3).
**
** This function should be used for all allocations made by test procedures.
** It has the following properties:
**
** * Test code may assume that allocations may not fail.
** * Returned memory is always zeroed.
**
** Allocations made using testMalloc() should be freed using testFree().
*/
void *testMalloc(int n){
u8 *p = (u8*)malloc(n + 8);
memset(p, 0, n+8);
*(int*)p = n;
return (void*)&p[8];
}
void *testMallocCopy(void *pCopy, int nByte){
void *pRet = testMalloc(nByte);
memcpy(pRet, pCopy, nByte);
return pRet;
}
void *testRealloc(void *ptr, int n){
if( ptr ){
u8 *p = (u8*)ptr - 8;
int nOrig = *(int*)p;
p = (u8*)realloc(p, n+8);
if( nOrig<n ){
memset(&p[8+nOrig], 0, n-nOrig);
}
*(int*)p = n;
return (void*)&p[8];
}
return testMalloc(n);
}
/*
** Free an allocation made by an earlier call to testMalloc().
*/
void testFree(void *ptr){
if( ptr ){
u8 *p = (u8*)ptr - 8;
memset(p, 0x55, *(int*)p + 8);
free(p);
}
}
/*
** String zPattern contains a glob pattern. Return true if zStr matches
** the pattern, or false if it does not.
*/
int testGlobMatch(const char *zPattern, const char *zStr){
int i = 0;
int j = 0;
while( zPattern[i] ){
char p = zPattern[i];
if( p=='*' || p=='%' ){
do {
if( testGlobMatch(&zPattern[i+1], &zStr[j]) ) return 1;
}while( zStr[j++] );
return 0;
}
if( zStr[j]==0 || (p!='?' && p!=zStr[j]) ){
/* Match failed. */
return 0;
}
j++;
i++;
}
return (zPattern[i]==0 && zStr[j]==0);
}
/*
** End of test utilities
**************************************************************************/
int do_test(int nArg, char **azArg){
int j;
int rc;
int nFail = 0;
const char *zPattern = 0;
if( nArg>1 ){
testPrintError("Usage: test ?PATTERN?\n");
return 1;
}
if( nArg==1 ){
zPattern = azArg[0];
}
for(j=0; tdb_system_name(j); j++){
rc = 0;
test_data_1(tdb_system_name(j), zPattern, &rc);
test_data_2(tdb_system_name(j), zPattern, &rc);
test_data_3(tdb_system_name(j), zPattern, &rc);
test_data_4(tdb_system_name(j), zPattern, &rc);
test_rollback(tdb_system_name(j), zPattern, &rc);
test_mc(tdb_system_name(j), zPattern, &rc);
test_mt(tdb_system_name(j), zPattern, &rc);
if( rc ) nFail++;
}
rc = 0;
test_oom(zPattern, &rc);
if( rc ) nFail++;
rc = 0;
test_api(zPattern, &rc);
if( rc ) nFail++;
rc = 0;
do_crash_test(zPattern, &rc);
if( rc ) nFail++;
rc = 0;
do_writer_crash_test(zPattern, &rc);
if( rc ) nFail++;
return (nFail!=0);
}
static lsm_db *configure_lsm_db(TestDb *pDb){
lsm_db *pLsm;
pLsm = tdb_lsm(pDb);
if( pLsm ){
tdb_lsm_config_str(pDb, "mmap=1 autowork=1 automerge=4 worker_automerge=4");
}
return pLsm;
}
typedef struct WriteHookEvent WriteHookEvent;
struct WriteHookEvent {
i64 iOff;
int nData;
int nUs;
};
WriteHookEvent prev = {0, 0, 0};
static void flushPrev(FILE *pOut){
if( prev.nData ){
fprintf(pOut, "w %s %lld %d %d\n", "d", prev.iOff, prev.nData, prev.nUs);
prev.nData = 0;
}
}
#if 0 /* unused */
static void do_speed_write_hook2(
void *pCtx,
int bLog,
i64 iOff,
int nData,
int nUs
){
FILE *pOut = (FILE *)pCtx;
if( bLog ) return;
if( prev.nData && nData && iOff==prev.iOff+prev.nData ){
prev.nData += nData;
prev.nUs += nUs;
}else{
flushPrev(pOut);
if( nData==0 ){
fprintf(pOut, "s %s 0 0 %d\n", (bLog ? "l" : "d"), nUs);
}else{
prev.iOff = iOff;
prev.nData = nData;
prev.nUs = nUs;
}
}
}
#endif
#define ST_REPEAT 0
#define ST_WRITE 1
#define ST_PAUSE 2
#define ST_FETCH 3
#define ST_SCAN 4
#define ST_NSCAN 5
#define ST_KEYSIZE 6
#define ST_VALSIZE 7
#define ST_TRANS 8
static void print_speed_test_help(){
printf(
"\n"
"Repeat the following $repeat times:\n"
" 1. Insert $write key-value pairs. One transaction for each write op.\n"
" 2. Pause for $pause ms.\n"
" 3. Perform $fetch queries on the database.\n"
"\n"
" Keys are $keysize bytes in size. Values are $valsize bytes in size\n"
" Both keys and values are pseudo-randomly generated\n"
"\n"
"Options are:\n"
" -repeat $repeat (default value 10)\n"
" -write $write (default value 10000)\n"
" -pause $pause (default value 0)\n"
" -fetch $fetch (default value 0)\n"
" -keysize $keysize (default value 12)\n"
" -valsize $valsize (default value 100)\n"
" -system $system (default value \"lsm\")\n"
" -trans $trans (default value 0)\n"
"\n"
);
}
int do_speed_test2(int nArg, char **azArg){
struct Option {
const char *zOpt;
int eVal;
int iDefault;
} aOpt[] = {
{ "-repeat", ST_REPEAT, 10},
{ "-write", ST_WRITE, 10000},
{ "-pause", ST_PAUSE, 0},
{ "-fetch", ST_FETCH, 0},
{ "-scan", ST_SCAN, 0},
{ "-nscan", ST_NSCAN, 0},
{ "-keysize", ST_KEYSIZE, 12},
{ "-valsize", ST_VALSIZE, 100},
{ "-trans", ST_TRANS, 0},
{ "-system", -1, 0},
{ "help", -2, 0},
{0, 0, 0}
};
int i;
int aParam[9];
int rc = 0;
int bReadonly = 0;
int nContent = 0;
TestDb *pDb;
Datasource *pData;
DatasourceDefn defn = { TEST_DATASOURCE_RANDOM, 0, 0, 0, 0 };
char *zSystem = "";
int bLsm = 1;
FILE *pLog = 0;
#ifdef NDEBUG
/* If NDEBUG is defined, disable the dynamic memory related checks in
** lsmtest_mem.c. They slow things down. */
testMallocUninstall(tdb_lsm_env());
#endif
/* Initialize aParam[] with default values. */
for(i=0; i<ArraySize(aOpt); i++){
if( aOpt[i].zOpt ) aParam[aOpt[i].eVal] = aOpt[i].iDefault;
}
/* Process the command line switches. */
for(i=0; i<nArg; i+=2){
int iSel;
rc = testArgSelect(aOpt, "switch", azArg[i], &iSel);
if( rc ){
return rc;
}
if( aOpt[iSel].eVal==-2 ){
print_speed_test_help();
return 0;
}
if( i+1==nArg ){
testPrintError("option %s requires an argument\n", aOpt[iSel].zOpt);
return 1;
}
if( aOpt[iSel].eVal>=0 ){
aParam[aOpt[iSel].eVal] = atoi(azArg[i+1]);
}else{
zSystem = azArg[i+1];
bLsm = 0;
#if 0
for(j=0; zSystem[j]; j++){
if( zSystem[j]=='=' ) bLsm = 1;
}
#endif
}
}
printf("#");
for(i=0; i<ArraySize(aOpt); i++){
if( aOpt[i].zOpt ){
if( aOpt[i].eVal>=0 ){
printf(" %s=%d", &aOpt[i].zOpt[1], aParam[aOpt[i].eVal]);
}else if( aOpt[i].eVal==-1 ){
printf(" %s=\"%s\"", &aOpt[i].zOpt[1], zSystem);
}
}
}
printf("\n");
defn.nMinKey = defn.nMaxKey = aParam[ST_KEYSIZE];
defn.nMinVal = defn.nMaxVal = aParam[ST_VALSIZE];
pData = testDatasourceNew(&defn);
if( aParam[ST_WRITE]==0 ){
bReadonly = 1;
}
if( bLsm ){
rc = tdb_lsm_open(zSystem, "testdb.lsm", !bReadonly, &pDb);
}else{
pDb = testOpen(zSystem, !bReadonly, &rc);
}
if( rc!=0 ) return rc;
if( bReadonly ){
nContent = testCountDatabase(pDb);
}
#if 0
pLog = fopen("/tmp/speed.log", "w");
tdb_lsm_write_hook(pDb, do_speed_write_hook2, (void *)pLog);
#endif
for(i=0; i<aParam[ST_REPEAT] && rc==0; i++){
int msWrite, msFetch;
int iFetch;
int nWrite = aParam[ST_WRITE];
if( bReadonly ){
msWrite = 0;
}else{
testTimeInit();
if( aParam[ST_TRANS] ) testBegin(pDb, 2, &rc);
testWriteDatasourceRange(pDb, pData, i*nWrite, nWrite, &rc);
if( aParam[ST_TRANS] ) testCommit(pDb, 0, &rc);
msWrite = testTimeGet();
nContent += nWrite;
}
if( aParam[ST_PAUSE] ){
if( aParam[ST_PAUSE]/1000 ) sleep(aParam[ST_PAUSE]/1000);
if( aParam[ST_PAUSE]%1000 ) usleep(1000 * (aParam[ST_PAUSE]%1000));
}
if( aParam[ST_FETCH] ){
testTimeInit();
if( aParam[ST_TRANS] ) testBegin(pDb, 1, &rc);
for(iFetch=0; iFetch<aParam[ST_FETCH]; iFetch++){
int iKey = testPrngValue(i*nWrite+iFetch) % nContent;
#ifndef NDEBUG
testDatasourceFetch(pDb, pData, iKey, &rc);
#else
void *pKey; int nKey; /* Database key to query for */
void *pVal; int nVal; /* Result of query */
testDatasourceEntry(pData, iKey, &pKey, &nKey, 0, 0);
rc = tdb_fetch(pDb, pKey, nKey, &pVal, &nVal);
if( rc==0 && nVal<0 ) rc = 1;
if( rc ) break;
#endif
}
if( aParam[ST_TRANS] ) testCommit(pDb, 0, &rc);
msFetch = testTimeGet();
}else{
msFetch = 0;
}
if( i==(aParam[ST_REPEAT]-1) ){
testTimeInit();
testClose(&pDb);
msWrite += testTimeGet();
}
printf("%d %d %d\n", i, msWrite, msFetch);
fflush(stdout);
}
testClose(&pDb);
testDatasourceFree(pData);
if( pLog ){
flushPrev(pLog);
fclose(pLog);
}
return rc;
}
int do_speed_tests(int nArg, char **azArg){
struct DbSystem {
const char *zLibrary;
const char *zColor;
} aSys[] = {
{ "sqlite3", "black" },
{ "leveldb", "blue" },
{ "lsm", "red" },
{ "lsm_mt2", "orange" },
{ "lsm_mt3", "purple" },
{ "kyotocabinet", "green" },
{0, 0}
};
int i;
int j;
int rc;
int nSleep = 0; /* ms of rest allowed between INSERT tests */
int nRow = 0; /* Number of rows to insert into database */
int nStep; /* Measure INSERT time after this many rows */
int nSelStep; /* Measure SELECT time after this many rows */
int nSelTest; /* Number of SELECTs to run for timing */
int doReadTest = 1;
int doWriteTest = 1;
int *aTime; /* INSERT timing data */
int *aWrite; /* Writes per nStep inserts */
int *aSelTime; /* SELECT timing data */
int isFirst = 1;
int bSleep = 0;
/* File to write gnuplot script to. */
const char *zOut = "lsmtest_speed.gnuplot";
u32 sys_mask = 0;
testMallocUninstall(tdb_lsm_env());
for(i=0; i<nArg; i++){
struct Opt {
const char *zOpt;
int isSwitch;
} aOpt[] = {
{ "sqlite3" , 0},
{ "leveldb" , 0},
{ "lsm" , 0},
{ "lsm_mt2" , 0},
{ "lsm_mt3" , 0},
{ "kyotocabinet" , 0},
{ "-rows" , 1},
{ "-sleep" , 2},
{ "-testmode" , 3},
{ "-out" , 4},
{ 0, 0}
};
int iSel;
rc = testArgSelect(aOpt, "argument", azArg[i], &iSel);
if( rc ) return rc;
if( aOpt[iSel].isSwitch ){
i++;
if( i>=nArg ){
testPrintError("option %s requires an argument\n", aOpt[iSel].zOpt);
return 1;
}
if( aOpt[iSel].isSwitch==1 ){
nRow = atoi(azArg[i]);
}
if( aOpt[iSel].isSwitch==2 ){
nSleep = atoi(azArg[i]);
}
if( aOpt[iSel].isSwitch==3 ){
struct Mode {
const char *zMode;
int doReadTest;
int doWriteTest;
} aMode[] = {{"ro", 1, 0} , {"rw", 1, 1}, {"wo", 0, 1}, {0, 0, 0}};
int iMode;
rc = testArgSelect(aMode, "option", azArg[i], &iMode);
if( rc ) return rc;
doReadTest = aMode[iMode].doReadTest;
doWriteTest = aMode[iMode].doWriteTest;
}
if( aOpt[iSel].isSwitch==4 ){
/* The "-out FILE" switch. This option is used to specify a file to
** write the gnuplot script to. */
zOut = azArg[i];
}
}else{
/* A db name */
rc = testArgSelect(aOpt, "system", azArg[i], &iSel);
if( rc ) return rc;
sys_mask |= (1<<iSel);
}
}
if( sys_mask==0 ) sys_mask = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3);
nRow = MAX(nRow, 100000);
nStep = nRow/100;
nSelStep = nRow/10;
nSelTest = (nSelStep > 100000) ? 100000 : nSelStep;
aTime = malloc(sizeof(int) * ArraySize(aSys) * nRow/nStep);
aWrite = malloc(sizeof(int) * nRow/nStep);
aSelTime = malloc(sizeof(int) * ArraySize(aSys) * nRow/nSelStep);
/* This loop collects the INSERT speed data. */
if( doWriteTest ){
printf("Writing output to file \"%s\".\n", zOut);
for(j=0; aSys[j].zLibrary; j++){
FILE *pLog = 0;
TestDb *pDb; /* Database being tested */
lsm_db *pLsm;
int iDot = 0;
if( ((1<<j)&sys_mask)==0 ) continue;
if( bSleep && nSleep ) sqlite3_sleep(nSleep);
bSleep = 1;
testCaseBegin(&rc, 0, "speed.insert.%s", aSys[j].zLibrary);
rc = tdb_open(aSys[j].zLibrary, 0, 1, &pDb);
if( rc ) return rc;
pLsm = configure_lsm_db(pDb);
#if 0
pLog = fopen("/tmp/speed.log", "w");
tdb_lsm_write_hook(pDb, do_speed_write_hook2, (void *)pLog);
#endif
testTimeInit();
for(i=0; i<nRow; i+=nStep){
int iStep;
int nWrite1 = 0, nWrite2 = 0;
testCaseProgress(i, nRow, testCaseNDot(), &iDot);
if( pLsm ) lsm_info(pLsm, LSM_INFO_NWRITE, &nWrite1);
for(iStep=0; iStep<nStep; iStep++){
u32 aKey[4]; /* 16-byte key */
u32 aVal[25]; /* 100 byte value */
testPrngArray(i+iStep, aKey, ArraySize(aKey));
testPrngArray(i+iStep, aVal, ArraySize(aVal));
rc = tdb_write(pDb, aKey, sizeof(aKey), aVal, sizeof(aVal));
}
aTime[(j*nRow+i)/nStep] = testTimeGet();
if( pLsm ) lsm_info(pLsm, LSM_INFO_NWRITE, &nWrite2);
aWrite[i/nStep] = nWrite2 - nWrite1;
}
tdb_close(pDb);
if( pLog ) fclose(pLog);
testCaseFinish(rc);
}
}
/* This loop collects the SELECT speed data. */
if( doReadTest ){
for(j=0; aSys[j].zLibrary; j++){
int iDot = 0;
TestDb *pDb; /* Database being tested */
if( ((1<<j)&sys_mask)==0 ) continue;
if( bSleep && nSleep ) sqlite3_sleep(nSleep);
bSleep = 1;
testCaseBegin(&rc, 0, "speed.select.%s", aSys[j].zLibrary);
if( doWriteTest ){
rc = tdb_open(aSys[j].zLibrary, 0, 1, &pDb);
if( rc ) return rc;
configure_lsm_db(pDb);
for(i=0; i<nRow; i+=nSelStep){
int iStep;
int iSel;
testCaseProgress(i, nRow, testCaseNDot(), &iDot);
for(iStep=0; iStep<nSelStep; iStep++){
u32 aKey[4]; /* 16-byte key */
u32 aVal[25]; /* 100 byte value */
testPrngArray(i+iStep, aKey, ArraySize(aKey));
testPrngArray(i+iStep, aVal, ArraySize(aVal));
rc = tdb_write(pDb, aKey, sizeof(aKey), aVal, sizeof(aVal));
}
testTimeInit();
for(iSel=0; iSel<nSelTest; iSel++){
void *pDummy;
int nDummy;
u32 iKey;
u32 aKey[4]; /* 16-byte key */
iKey = testPrngValue(iSel) % (i+nSelStep);
testPrngArray(iKey, aKey, ArraySize(aKey));
rc = tdb_fetch(pDb, aKey, sizeof(aKey), &pDummy, &nDummy);
}
aSelTime[(j*nRow+i)/nSelStep] = testTimeGet();
tdb_fetch(pDb, 0, 0, 0, 0);
}
}else{
int t;
int iSel;
rc = tdb_open(aSys[j].zLibrary, 0, 0, &pDb);
configure_lsm_db(pDb);
testTimeInit();
for(iSel=0; rc==LSM_OK && iSel<nSelTest; iSel++){
void *pDummy;
int nDummy;
u32 iKey;
u32 aKey[4]; /* 16-byte key */
#ifndef NDEBUG
u32 aVal[25]; /* 100 byte value */
#endif
testCaseProgress(iSel, nSelTest, testCaseNDot(), &iDot);
iKey = testPrngValue(iSel) % nRow;
testPrngArray(iKey, aKey, ArraySize(aKey));
rc = tdb_fetch(pDb, aKey, sizeof(aKey), &pDummy, &nDummy);
#ifndef NDEBUG
testPrngArray(iKey, aVal, ArraySize(aVal));
assert( nDummy==100 && memcmp(aVal, pDummy, 100)==0 );
#endif
}
if( rc!=LSM_OK ) return rc;
t = testTimeGet();
tdb_fetch(pDb, 0, 0, 0, 0);
printf("%s: %d selects/second\n",
aSys[j].zLibrary, (int)((double)nSelTest*1000.0/t)
);
}
tdb_close(pDb);
testCaseFinish(rc);
}
}
if( doWriteTest ){
FILE *pOut = fopen(zOut, "w");
if( !pOut ){
printf("fopen(\"%s\", \"w\"): %s\n", zOut, strerror(errno));
return 1;
}
fprintf(pOut, "set xlabel \"Rows Inserted\"\n");
fprintf(pOut, "set ylabel \"Inserts per second\"\n");
if( doReadTest ){
fprintf(pOut, "set y2label \"Selects per second\"\n");
}else if( sys_mask==(1<<2) ){
fprintf(pOut, "set y2label \"Page writes per insert\"\n");
}
fprintf(pOut, "set yrange [0:*]\n");
fprintf(pOut, "set y2range [0:*]\n");
fprintf(pOut, "set xrange [%d:*]\n", MAX(nStep, nRow/20) );
fprintf(pOut, "set ytics nomirror\n");
fprintf(pOut, "set y2tics nomirror\n");
fprintf(pOut, "set key box lw 0.01\n");
fprintf(pOut, "plot ");
for(j=0; aSys[j].zLibrary; j++){
if( (1<<j)&sys_mask ){
const char *zLib = aSys[j].zLibrary;
fprintf(pOut, "%s\"-\" ti \"%s INSERT\" with lines lc rgb \"%s\" ",
(isFirst?"":", "), zLib, aSys[j].zColor
);
if( doReadTest ){
fprintf(pOut, ", \"-\" ti \"%s SELECT\" "
"axis x1y2 with points lw 3 lc rgb \"%s\""
, zLib, aSys[j].zColor
);
}
isFirst = 0;
}
}
assert( strcmp(aSys[2].zLibrary, "lsm")==0 );
if( sys_mask==(1<<2) && !doReadTest ){
fprintf(pOut, ", \"-\" ti \"lsm pages written\" "
"axis x1y2 with boxes lw 1 lc rgb \"grey\""
);
}
fprintf(pOut, "\n");
for(j=0; aSys[j].zLibrary; j++){
if( ((1<<j)&sys_mask)==0 ) continue;
fprintf(pOut, "# Rows Inserts per second\n");
for(i=0; i<nRow; i+=nStep){
int iTime = aTime[(j*nRow+i)/nStep];
int ips = (int)((i+nStep)*1000.0 / (double)iTime);
fprintf(pOut, "%d %d\n", i+nStep, ips);
}
fprintf(pOut, "end\n");
if( doReadTest ){
fprintf(pOut, "# Rows Selects per second\n");
for(i=0; i<nRow; i+=nSelStep){
int sps = (int)(nSelTest*1000.0/(double)aSelTime[(j*nRow+i)/nSelStep]);
fprintf(pOut, "%d %d\n", i+nSelStep, sps);
}
fprintf(pOut, "end\n");
}else if( sys_mask==(1<<2) ){
for(i=0; i<(nRow/nStep); i++){
fprintf(pOut, "%d %f\n", i*nStep, (double)aWrite[i] / (double)nStep);
}
fprintf(pOut, "end\n");
}
}
fprintf(pOut, "pause -1\n");
fclose(pOut);
}
free(aTime);
free(aSelTime);
free(aWrite);
testMallocInstall(tdb_lsm_env());
return 0;
}
/*
** Usage: lsmtest random ?N?
**
** This command prints a sequence of zero or more numbers from the PRNG
** system to stdout. If the "N" argument is missing, values the first 10
** values (i=0, i=1, ... i=9) are printed. Otherwise, the first N.
**
** This was added to verify that the PRNG values do not change between
** runs of the lsmtest program.
*/
int do_random_tests(int nArg, char **azArg){
int i;
int nRand;
if( nArg==0 ){
nRand = 10;
}else if( nArg==1 ){
nRand = atoi(azArg[0]);
}else{
testPrintError("Usage: random ?N?\n");
return -1;
}
for(i=0; i<nRand; i++){
printf("0x%x\n", testPrngValue(i));
}
return 0;
}
static int testFormatSize(char *aBuf, int nBuf, i64 nByte){
int res;
if( nByte<(1<<10) ){
res = snprintf(aBuf, nBuf, "%d byte", (int)nByte);
}else if( nByte<(1<<20) ){
res = snprintf(aBuf, nBuf, "%dK", (int)(nByte/(1<<10)));
}else{
res = snprintf(aBuf, nBuf, "%dM", (int)(nByte/(1<<20)));
}
return res;
}
static i64 testReadSize(char *z){
int n = strlen(z);
char c = z[n-1];
i64 nMul = 1;
switch( c ){
case 'g': case 'G':
nMul = (1<<30);
break;
case 'm': case 'M':
nMul = (1<<20);
break;
case 'k': case 'K':
nMul = (1<<10);
break;
default:
nMul = 1;
}
return nMul * (i64)atoi(z);
}
/*
** Usage: lsmtest writespeed FILESIZE BLOCKSIZE SYNCSIZE
*/
static int do_writer_test(int nArg, char **azArg){
int nBlock;
int nSize;
int i;
int fd;
int ms;
char aFilesize[32];
char aBlockSize[32];
char *aPage;
int *aOrder;
int nSync;
i64 filesize;
i64 blocksize;
i64 syncsize;
int nPage = 4096;
/* How long to sleep before running a trial (in ms). */
#if 0
const int nSleep = 10000;
#endif
const int nSleep = 0;
if( nArg!=3 ){
testPrintUsage("FILESIZE BLOCKSIZE SYNCSIZE");
return -1;
}
filesize = testReadSize(azArg[0]);
blocksize = testReadSize(azArg[1]);
syncsize = testReadSize(azArg[2]);
nBlock = (int)(filesize / blocksize);
nSize = (int)blocksize;
nSync = (int)(syncsize / blocksize);
aPage = (char *)malloc(4096);
aOrder = (int *)malloc(nBlock * sizeof(int));
for(i=0; i<nBlock; i++) aOrder[i] = i;
for(i=0; i<(nBlock*25); i++){
int tmp;
u32 a = testPrngValue(i);
u32 b = testPrngValue(a);
a = a % nBlock;
b = b % nBlock;
tmp = aOrder[a];
aOrder[a] = aOrder[b];
aOrder[b] = tmp;
}
testFormatSize(aFilesize, sizeof(aFilesize), (i64)nBlock * (i64)nSize);
testFormatSize(aBlockSize, sizeof(aFilesize), nSize);
printf("Testing writing a %s file using %s blocks. ", aFilesize, aBlockSize);
if( nSync==1 ){
printf("Sync after each block.\n");
}else{
printf("Sync after each %d blocks.\n", nSync);
}
printf("Preparing file... ");
fflush(stdout);
unlink("writer.out");
fd = open("writer.out", O_RDWR|O_CREAT|_O_BINARY, 0664);
if( fd<0 ){
testPrintError("open(): %d - %s\n", errno, strerror(errno));
return -1;
}
testTimeInit();
for(i=0; i<nBlock; i++){
int iPg;
memset(aPage, i&0xFF, nPage);
for(iPg=0; iPg<(nSize/nPage); iPg++){
write(fd, aPage, nPage);
}
}
fsync(fd);
printf("ok (%d ms)\n", testTimeGet());
for(i=0; i<5; i++){
int j;
sqlite3_sleep(nSleep);
printf("Now writing sequentially... ");
fflush(stdout);
lseek(fd, 0, SEEK_SET);
testTimeInit();
for(j=0; j<nBlock; j++){
int iPg;
if( ((j+1)%nSync)==0 ) fdatasync(fd);
memset(aPage, j&0xFF, nPage);
for(iPg=0; iPg<(nSize/nPage); iPg++){
write(fd, aPage, nPage);
}
}
fdatasync(fd);
ms = testTimeGet();
printf("%d ms\n", ms);
sqlite3_sleep(nSleep);
printf("Now in an arbitrary order... ");
fflush(stdout);
testTimeInit();
for(j=0; j<nBlock; j++){
int iPg;
if( ((j+1)%nSync)==0 ) fdatasync(fd);
lseek(fd, aOrder[j]*nSize, SEEK_SET);
memset(aPage, j&0xFF, nPage);
for(iPg=0; iPg<(nSize/nPage); iPg++){
write(fd, aPage, nPage);
}
}
fdatasync(fd);
ms = testTimeGet();
printf("%d ms\n", ms);
}
close(fd);
free(aPage);
free(aOrder);
return 0;
}
static void do_insert_work_hook(lsm_db *db, void *p){
char *z = 0;
lsm_info(db, LSM_INFO_DB_STRUCTURE, &z);
if( z ){
printf("%s\n", z);
fflush(stdout);
lsm_free(lsm_get_env(db), z);
}
unused_parameter(p);
}
typedef struct InsertWriteHook InsertWriteHook;
struct InsertWriteHook {
FILE *pOut;
int bLog;
i64 iOff;
int nData;
};
static void flushHook(InsertWriteHook *pHook){
if( pHook->nData ){
fprintf(pHook->pOut, "write %s %d %d\n",
(pHook->bLog ? "log" : "db"), (int)pHook->iOff, pHook->nData
);
pHook->nData = 0;
fflush(pHook->pOut);
}
}
static void do_insert_write_hook(
void *pCtx,
int bLog,
i64 iOff,
int nData,
int nUs
){
InsertWriteHook *pHook = (InsertWriteHook *)pCtx;
if( bLog ) return;
if( nData==0 ){
flushHook(pHook);
fprintf(pHook->pOut, "sync %s\n", (bLog ? "log" : "db"));
}else if( pHook->nData
&& bLog==pHook->bLog
&& iOff==(pHook->iOff+pHook->nData)
){
pHook->nData += nData;
}else{
flushHook(pHook);
pHook->bLog = bLog;
pHook->iOff = iOff;
pHook->nData = nData;
}
}
static int do_replay(int nArg, char **azArg){
char aBuf[4096];
FILE *pInput;
FILE *pClose = 0;
const char *zDb;
lsm_env *pEnv;
lsm_file *pOut;
int rc;
if( nArg!=2 ){
testPrintError("Usage: replay WRITELOG FILE\n");
return 1;
}
if( strcmp(azArg[0], "-")==0 ){
pInput = stdin;
}else{
pClose = pInput = fopen(azArg[0], "r");
}
zDb = azArg[1];
pEnv = tdb_lsm_env();
rc = pEnv->xOpen(pEnv, zDb, 0, &pOut);
if( rc!=LSM_OK ) return rc;
while( feof(pInput)==0 ){
char zLine[80];
fgets(zLine, sizeof(zLine)-1, pInput);
zLine[sizeof(zLine)-1] = '\0';
if( 0==memcmp("sync db", zLine, 7) ){
rc = pEnv->xSync(pOut);
if( rc!=0 ) break;
}else{
int iOff;
int nData;
int nMatch;
nMatch = sscanf(zLine, "write db %d %d", &iOff, &nData);
if( nMatch==2 ){
int i;
for(i=0; i<nData; i+=sizeof(aBuf)){
memset(aBuf, i&0xFF, sizeof(aBuf));
rc = pEnv->xWrite(pOut, iOff+i, aBuf, sizeof(aBuf));
if( rc!=0 ) break;
}
}
}
}
if( pClose ) fclose(pClose);
pEnv->xClose(pOut);
return rc;
}
static int do_insert(int nArg, char **azArg){
const char *zDb = "lsm";
TestDb *pDb = 0;
int i;
int rc;
const int nRow = 1 * 1000 * 1000;
DatasourceDefn defn = { TEST_DATASOURCE_RANDOM, 8, 15, 80, 150 };
Datasource *pData = 0;
if( nArg>1 ){
testPrintError("Usage: insert ?DATABASE?\n");
return 1;
}
if( nArg==1 ){ zDb = azArg[0]; }
testMallocUninstall(tdb_lsm_env());
for(i=0; zDb[i] && zDb[i]!='='; i++);
if( zDb[i] ){
rc = tdb_lsm_open(zDb, "testdb.lsm", 1, &pDb);
}else{
rc = tdb_open(zDb, 0, 1, &pDb);
}
if( rc!=0 ){
testPrintError("Error opening db \"%s\": %d\n", zDb, rc);
}else{
InsertWriteHook hook;
memset(&hook, 0, sizeof(hook));
hook.pOut = fopen("writelog.txt", "w");
pData = testDatasourceNew(&defn);
tdb_lsm_config_work_hook(pDb, do_insert_work_hook, 0);
tdb_lsm_write_hook(pDb, do_insert_write_hook, (void *)&hook);
if( rc==0 ){
for(i=0; i<nRow; i++){
void *pKey; int nKey; /* Database key to insert */
void *pVal; int nVal; /* Database value to insert */
testDatasourceEntry(pData, i, &pKey, &nKey, &pVal, &nVal);
tdb_write(pDb, pKey, nKey, pVal, nVal);
}
}
testDatasourceFree(pData);
tdb_close(pDb);
flushHook(&hook);
fclose(hook.pOut);
}
testMallocInstall(tdb_lsm_env());
return rc;
}
static int st_do_show(int a, char **b) { return do_show(a, b); }
static int st_do_work(int a, char **b) { return do_work(a, b); }
static int st_do_io(int a, char **b) { return do_io(a, b); }
#ifdef __linux__
#include <sys/time.h>
#include <sys/resource.h>
static void lsmtest_rusage_report(void){
struct rusage r;
memset(&r, 0, sizeof(r));
getrusage(RUSAGE_SELF, &r);
printf("# getrusage: { ru_maxrss %d ru_oublock %d ru_inblock %d }\n",
(int)r.ru_maxrss, (int)r.ru_oublock, (int)r.ru_inblock
);
}
#else
static void lsmtest_rusage_report(void){
/* no-op */
}
#endif
int main(int argc, char **argv){
struct TestFunc {
const char *zName;
int bRusageReport;
int (*xFunc)(int, char **);
} aTest[] = {
{"random", 1, do_random_tests},
{"writespeed", 1, do_writer_test},
{"io", 1, st_do_io},
{"insert", 1, do_insert},
{"replay", 1, do_replay},
{"speed", 1, do_speed_tests},
{"speed2", 1, do_speed_test2},
{"show", 0, st_do_show},
{"work", 1, st_do_work},
{"test", 1, do_test},
{0, 0}
};
int rc; /* Return Code */
int iFunc; /* Index into aTest[] */
int nLeakAlloc = 0; /* Allocations leaked by lsm */
int nLeakByte = 0; /* Bytes leaked by lsm */
#ifdef LSM_DEBUG_MEM
FILE *pReport = 0; /* lsm malloc() report file */
const char *zReport = "malloc.txt generated";
#else
const char *zReport = "malloc.txt NOT generated";
#endif
testMallocInstall(tdb_lsm_env());
if( argc<2 ){
testPrintError("Usage: %s sub-command ?args...?\n", argv[0]);
return -1;
}
/* Initialize error reporting */
testErrorInit(argc, argv);
/* Initialize PRNG system */
testPrngInit();
rc = testArgSelect(aTest, "sub-command", argv[1], &iFunc);
if( rc==0 ){
rc = aTest[iFunc].xFunc(argc-2, &argv[2]);
}
#ifdef LSM_DEBUG_MEM
pReport = fopen("malloc.txt", "w");
testMallocCheck(tdb_lsm_env(), &nLeakAlloc, &nLeakByte, pReport);
fclose(pReport);
#else
testMallocCheck(tdb_lsm_env(), &nLeakAlloc, &nLeakByte, 0);
#endif
if( nLeakAlloc ){
testPrintError("Leaked %d bytes in %d allocations (%s)\n",
nLeakByte, nLeakAlloc, zReport
);
if( rc==0 ) rc = -1;
}
testMallocUninstall(tdb_lsm_env());
if( aTest[iFunc].bRusageReport ){
lsmtest_rusage_report();
}
return rc;
}