sqlite/ext/misc/shathree.c
mistachkin c620522175 Avoid naming collision between the sha1 and shathree extensions.
FossilOrigin-Name: 9ec923b5dc24d6082da8d42bc0ee8ab1c418912625c0c56de9627be2c818ef98
2022-11-22 20:04:00 +00:00

725 lines
20 KiB
C

/*
** 2017-03-08
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This SQLite extension implements functions that compute SHA3 hashes.
** Two SQL functions are implemented:
**
** sha3(X,SIZE)
** sha3_query(Y,SIZE)
**
** The sha3(X) function computes the SHA3 hash of the input X, or NULL if
** X is NULL.
**
** The sha3_query(Y) function evaluates all queries in the SQL statements of Y
** and returns a hash of their results.
**
** The SIZE argument is optional. If omitted, the SHA3-256 hash algorithm
** is used. If SIZE is included it must be one of the integers 224, 256,
** 384, or 512, to determine SHA3 hash variant that is computed.
*/
#include "sqlite3ext.h"
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>
#include <stdarg.h>
#ifndef SQLITE_AMALGAMATION
typedef sqlite3_uint64 u64;
#endif /* SQLITE_AMALGAMATION */
/******************************************************************************
** The Hash Engine
*/
/*
** Macros to determine whether the machine is big or little endian,
** and whether or not that determination is run-time or compile-time.
**
** For best performance, an attempt is made to guess at the byte-order
** using C-preprocessor macros. If that is unsuccessful, or if
** -DSHA3_BYTEORDER=0 is set, then byte-order is determined
** at run-time.
*/
#ifndef SHA3_BYTEORDER
# if defined(i386) || defined(__i386__) || defined(_M_IX86) || \
defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \
defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \
defined(__arm__)
# define SHA3_BYTEORDER 1234
# elif defined(sparc) || defined(__ppc__)
# define SHA3_BYTEORDER 4321
# else
# define SHA3_BYTEORDER 0
# endif
#endif
/*
** State structure for a SHA3 hash in progress
*/
typedef struct SHA3Context SHA3Context;
struct SHA3Context {
union {
u64 s[25]; /* Keccak state. 5x5 lines of 64 bits each */
unsigned char x[1600]; /* ... or 1600 bytes */
} u;
unsigned nRate; /* Bytes of input accepted per Keccak iteration */
unsigned nLoaded; /* Input bytes loaded into u.x[] so far this cycle */
unsigned ixMask; /* Insert next input into u.x[nLoaded^ixMask]. */
};
/*
** A single step of the Keccak mixing function for a 1600-bit state
*/
static void KeccakF1600Step(SHA3Context *p){
int i;
u64 b0, b1, b2, b3, b4;
u64 c0, c1, c2, c3, c4;
u64 d0, d1, d2, d3, d4;
static const u64 RC[] = {
0x0000000000000001ULL, 0x0000000000008082ULL,
0x800000000000808aULL, 0x8000000080008000ULL,
0x000000000000808bULL, 0x0000000080000001ULL,
0x8000000080008081ULL, 0x8000000000008009ULL,
0x000000000000008aULL, 0x0000000000000088ULL,
0x0000000080008009ULL, 0x000000008000000aULL,
0x000000008000808bULL, 0x800000000000008bULL,
0x8000000000008089ULL, 0x8000000000008003ULL,
0x8000000000008002ULL, 0x8000000000000080ULL,
0x000000000000800aULL, 0x800000008000000aULL,
0x8000000080008081ULL, 0x8000000000008080ULL,
0x0000000080000001ULL, 0x8000000080008008ULL
};
# define a00 (p->u.s[0])
# define a01 (p->u.s[1])
# define a02 (p->u.s[2])
# define a03 (p->u.s[3])
# define a04 (p->u.s[4])
# define a10 (p->u.s[5])
# define a11 (p->u.s[6])
# define a12 (p->u.s[7])
# define a13 (p->u.s[8])
# define a14 (p->u.s[9])
# define a20 (p->u.s[10])
# define a21 (p->u.s[11])
# define a22 (p->u.s[12])
# define a23 (p->u.s[13])
# define a24 (p->u.s[14])
# define a30 (p->u.s[15])
# define a31 (p->u.s[16])
# define a32 (p->u.s[17])
# define a33 (p->u.s[18])
# define a34 (p->u.s[19])
# define a40 (p->u.s[20])
# define a41 (p->u.s[21])
# define a42 (p->u.s[22])
# define a43 (p->u.s[23])
# define a44 (p->u.s[24])
# define ROL64(a,x) ((a<<x)|(a>>(64-x)))
for(i=0; i<24; i+=4){
c0 = a00^a10^a20^a30^a40;
c1 = a01^a11^a21^a31^a41;
c2 = a02^a12^a22^a32^a42;
c3 = a03^a13^a23^a33^a43;
c4 = a04^a14^a24^a34^a44;
d0 = c4^ROL64(c1, 1);
d1 = c0^ROL64(c2, 1);
d2 = c1^ROL64(c3, 1);
d3 = c2^ROL64(c4, 1);
d4 = c3^ROL64(c0, 1);
b0 = (a00^d0);
b1 = ROL64((a11^d1), 44);
b2 = ROL64((a22^d2), 43);
b3 = ROL64((a33^d3), 21);
b4 = ROL64((a44^d4), 14);
a00 = b0 ^((~b1)& b2 );
a00 ^= RC[i];
a11 = b1 ^((~b2)& b3 );
a22 = b2 ^((~b3)& b4 );
a33 = b3 ^((~b4)& b0 );
a44 = b4 ^((~b0)& b1 );
b2 = ROL64((a20^d0), 3);
b3 = ROL64((a31^d1), 45);
b4 = ROL64((a42^d2), 61);
b0 = ROL64((a03^d3), 28);
b1 = ROL64((a14^d4), 20);
a20 = b0 ^((~b1)& b2 );
a31 = b1 ^((~b2)& b3 );
a42 = b2 ^((~b3)& b4 );
a03 = b3 ^((~b4)& b0 );
a14 = b4 ^((~b0)& b1 );
b4 = ROL64((a40^d0), 18);
b0 = ROL64((a01^d1), 1);
b1 = ROL64((a12^d2), 6);
b2 = ROL64((a23^d3), 25);
b3 = ROL64((a34^d4), 8);
a40 = b0 ^((~b1)& b2 );
a01 = b1 ^((~b2)& b3 );
a12 = b2 ^((~b3)& b4 );
a23 = b3 ^((~b4)& b0 );
a34 = b4 ^((~b0)& b1 );
b1 = ROL64((a10^d0), 36);
b2 = ROL64((a21^d1), 10);
b3 = ROL64((a32^d2), 15);
b4 = ROL64((a43^d3), 56);
b0 = ROL64((a04^d4), 27);
a10 = b0 ^((~b1)& b2 );
a21 = b1 ^((~b2)& b3 );
a32 = b2 ^((~b3)& b4 );
a43 = b3 ^((~b4)& b0 );
a04 = b4 ^((~b0)& b1 );
b3 = ROL64((a30^d0), 41);
b4 = ROL64((a41^d1), 2);
b0 = ROL64((a02^d2), 62);
b1 = ROL64((a13^d3), 55);
b2 = ROL64((a24^d4), 39);
a30 = b0 ^((~b1)& b2 );
a41 = b1 ^((~b2)& b3 );
a02 = b2 ^((~b3)& b4 );
a13 = b3 ^((~b4)& b0 );
a24 = b4 ^((~b0)& b1 );
c0 = a00^a20^a40^a10^a30;
c1 = a11^a31^a01^a21^a41;
c2 = a22^a42^a12^a32^a02;
c3 = a33^a03^a23^a43^a13;
c4 = a44^a14^a34^a04^a24;
d0 = c4^ROL64(c1, 1);
d1 = c0^ROL64(c2, 1);
d2 = c1^ROL64(c3, 1);
d3 = c2^ROL64(c4, 1);
d4 = c3^ROL64(c0, 1);
b0 = (a00^d0);
b1 = ROL64((a31^d1), 44);
b2 = ROL64((a12^d2), 43);
b3 = ROL64((a43^d3), 21);
b4 = ROL64((a24^d4), 14);
a00 = b0 ^((~b1)& b2 );
a00 ^= RC[i+1];
a31 = b1 ^((~b2)& b3 );
a12 = b2 ^((~b3)& b4 );
a43 = b3 ^((~b4)& b0 );
a24 = b4 ^((~b0)& b1 );
b2 = ROL64((a40^d0), 3);
b3 = ROL64((a21^d1), 45);
b4 = ROL64((a02^d2), 61);
b0 = ROL64((a33^d3), 28);
b1 = ROL64((a14^d4), 20);
a40 = b0 ^((~b1)& b2 );
a21 = b1 ^((~b2)& b3 );
a02 = b2 ^((~b3)& b4 );
a33 = b3 ^((~b4)& b0 );
a14 = b4 ^((~b0)& b1 );
b4 = ROL64((a30^d0), 18);
b0 = ROL64((a11^d1), 1);
b1 = ROL64((a42^d2), 6);
b2 = ROL64((a23^d3), 25);
b3 = ROL64((a04^d4), 8);
a30 = b0 ^((~b1)& b2 );
a11 = b1 ^((~b2)& b3 );
a42 = b2 ^((~b3)& b4 );
a23 = b3 ^((~b4)& b0 );
a04 = b4 ^((~b0)& b1 );
b1 = ROL64((a20^d0), 36);
b2 = ROL64((a01^d1), 10);
b3 = ROL64((a32^d2), 15);
b4 = ROL64((a13^d3), 56);
b0 = ROL64((a44^d4), 27);
a20 = b0 ^((~b1)& b2 );
a01 = b1 ^((~b2)& b3 );
a32 = b2 ^((~b3)& b4 );
a13 = b3 ^((~b4)& b0 );
a44 = b4 ^((~b0)& b1 );
b3 = ROL64((a10^d0), 41);
b4 = ROL64((a41^d1), 2);
b0 = ROL64((a22^d2), 62);
b1 = ROL64((a03^d3), 55);
b2 = ROL64((a34^d4), 39);
a10 = b0 ^((~b1)& b2 );
a41 = b1 ^((~b2)& b3 );
a22 = b2 ^((~b3)& b4 );
a03 = b3 ^((~b4)& b0 );
a34 = b4 ^((~b0)& b1 );
c0 = a00^a40^a30^a20^a10;
c1 = a31^a21^a11^a01^a41;
c2 = a12^a02^a42^a32^a22;
c3 = a43^a33^a23^a13^a03;
c4 = a24^a14^a04^a44^a34;
d0 = c4^ROL64(c1, 1);
d1 = c0^ROL64(c2, 1);
d2 = c1^ROL64(c3, 1);
d3 = c2^ROL64(c4, 1);
d4 = c3^ROL64(c0, 1);
b0 = (a00^d0);
b1 = ROL64((a21^d1), 44);
b2 = ROL64((a42^d2), 43);
b3 = ROL64((a13^d3), 21);
b4 = ROL64((a34^d4), 14);
a00 = b0 ^((~b1)& b2 );
a00 ^= RC[i+2];
a21 = b1 ^((~b2)& b3 );
a42 = b2 ^((~b3)& b4 );
a13 = b3 ^((~b4)& b0 );
a34 = b4 ^((~b0)& b1 );
b2 = ROL64((a30^d0), 3);
b3 = ROL64((a01^d1), 45);
b4 = ROL64((a22^d2), 61);
b0 = ROL64((a43^d3), 28);
b1 = ROL64((a14^d4), 20);
a30 = b0 ^((~b1)& b2 );
a01 = b1 ^((~b2)& b3 );
a22 = b2 ^((~b3)& b4 );
a43 = b3 ^((~b4)& b0 );
a14 = b4 ^((~b0)& b1 );
b4 = ROL64((a10^d0), 18);
b0 = ROL64((a31^d1), 1);
b1 = ROL64((a02^d2), 6);
b2 = ROL64((a23^d3), 25);
b3 = ROL64((a44^d4), 8);
a10 = b0 ^((~b1)& b2 );
a31 = b1 ^((~b2)& b3 );
a02 = b2 ^((~b3)& b4 );
a23 = b3 ^((~b4)& b0 );
a44 = b4 ^((~b0)& b1 );
b1 = ROL64((a40^d0), 36);
b2 = ROL64((a11^d1), 10);
b3 = ROL64((a32^d2), 15);
b4 = ROL64((a03^d3), 56);
b0 = ROL64((a24^d4), 27);
a40 = b0 ^((~b1)& b2 );
a11 = b1 ^((~b2)& b3 );
a32 = b2 ^((~b3)& b4 );
a03 = b3 ^((~b4)& b0 );
a24 = b4 ^((~b0)& b1 );
b3 = ROL64((a20^d0), 41);
b4 = ROL64((a41^d1), 2);
b0 = ROL64((a12^d2), 62);
b1 = ROL64((a33^d3), 55);
b2 = ROL64((a04^d4), 39);
a20 = b0 ^((~b1)& b2 );
a41 = b1 ^((~b2)& b3 );
a12 = b2 ^((~b3)& b4 );
a33 = b3 ^((~b4)& b0 );
a04 = b4 ^((~b0)& b1 );
c0 = a00^a30^a10^a40^a20;
c1 = a21^a01^a31^a11^a41;
c2 = a42^a22^a02^a32^a12;
c3 = a13^a43^a23^a03^a33;
c4 = a34^a14^a44^a24^a04;
d0 = c4^ROL64(c1, 1);
d1 = c0^ROL64(c2, 1);
d2 = c1^ROL64(c3, 1);
d3 = c2^ROL64(c4, 1);
d4 = c3^ROL64(c0, 1);
b0 = (a00^d0);
b1 = ROL64((a01^d1), 44);
b2 = ROL64((a02^d2), 43);
b3 = ROL64((a03^d3), 21);
b4 = ROL64((a04^d4), 14);
a00 = b0 ^((~b1)& b2 );
a00 ^= RC[i+3];
a01 = b1 ^((~b2)& b3 );
a02 = b2 ^((~b3)& b4 );
a03 = b3 ^((~b4)& b0 );
a04 = b4 ^((~b0)& b1 );
b2 = ROL64((a10^d0), 3);
b3 = ROL64((a11^d1), 45);
b4 = ROL64((a12^d2), 61);
b0 = ROL64((a13^d3), 28);
b1 = ROL64((a14^d4), 20);
a10 = b0 ^((~b1)& b2 );
a11 = b1 ^((~b2)& b3 );
a12 = b2 ^((~b3)& b4 );
a13 = b3 ^((~b4)& b0 );
a14 = b4 ^((~b0)& b1 );
b4 = ROL64((a20^d0), 18);
b0 = ROL64((a21^d1), 1);
b1 = ROL64((a22^d2), 6);
b2 = ROL64((a23^d3), 25);
b3 = ROL64((a24^d4), 8);
a20 = b0 ^((~b1)& b2 );
a21 = b1 ^((~b2)& b3 );
a22 = b2 ^((~b3)& b4 );
a23 = b3 ^((~b4)& b0 );
a24 = b4 ^((~b0)& b1 );
b1 = ROL64((a30^d0), 36);
b2 = ROL64((a31^d1), 10);
b3 = ROL64((a32^d2), 15);
b4 = ROL64((a33^d3), 56);
b0 = ROL64((a34^d4), 27);
a30 = b0 ^((~b1)& b2 );
a31 = b1 ^((~b2)& b3 );
a32 = b2 ^((~b3)& b4 );
a33 = b3 ^((~b4)& b0 );
a34 = b4 ^((~b0)& b1 );
b3 = ROL64((a40^d0), 41);
b4 = ROL64((a41^d1), 2);
b0 = ROL64((a42^d2), 62);
b1 = ROL64((a43^d3), 55);
b2 = ROL64((a44^d4), 39);
a40 = b0 ^((~b1)& b2 );
a41 = b1 ^((~b2)& b3 );
a42 = b2 ^((~b3)& b4 );
a43 = b3 ^((~b4)& b0 );
a44 = b4 ^((~b0)& b1 );
}
}
/*
** Initialize a new hash. iSize determines the size of the hash
** in bits and should be one of 224, 256, 384, or 512. Or iSize
** can be zero to use the default hash size of 256 bits.
*/
static void SHA3Init(SHA3Context *p, int iSize){
memset(p, 0, sizeof(*p));
if( iSize>=128 && iSize<=512 ){
p->nRate = (1600 - ((iSize + 31)&~31)*2)/8;
}else{
p->nRate = (1600 - 2*256)/8;
}
#if SHA3_BYTEORDER==1234
/* Known to be little-endian at compile-time. No-op */
#elif SHA3_BYTEORDER==4321
p->ixMask = 7; /* Big-endian */
#else
{
static unsigned int one = 1;
if( 1==*(unsigned char*)&one ){
/* Little endian. No byte swapping. */
p->ixMask = 0;
}else{
/* Big endian. Byte swap. */
p->ixMask = 7;
}
}
#endif
}
/*
** Make consecutive calls to the SHA3Update function to add new content
** to the hash
*/
static void SHA3Update(
SHA3Context *p,
const unsigned char *aData,
unsigned int nData
){
unsigned int i = 0;
if( aData==0 ) return;
#if SHA3_BYTEORDER==1234
if( (p->nLoaded % 8)==0 && ((aData - (const unsigned char*)0)&7)==0 ){
for(; i+7<nData; i+=8){
p->u.s[p->nLoaded/8] ^= *(u64*)&aData[i];
p->nLoaded += 8;
if( p->nLoaded>=p->nRate ){
KeccakF1600Step(p);
p->nLoaded = 0;
}
}
}
#endif
for(; i<nData; i++){
#if SHA3_BYTEORDER==1234
p->u.x[p->nLoaded] ^= aData[i];
#elif SHA3_BYTEORDER==4321
p->u.x[p->nLoaded^0x07] ^= aData[i];
#else
p->u.x[p->nLoaded^p->ixMask] ^= aData[i];
#endif
p->nLoaded++;
if( p->nLoaded==p->nRate ){
KeccakF1600Step(p);
p->nLoaded = 0;
}
}
}
/*
** After all content has been added, invoke SHA3Final() to compute
** the final hash. The function returns a pointer to the binary
** hash value.
*/
static unsigned char *SHA3Final(SHA3Context *p){
unsigned int i;
if( p->nLoaded==p->nRate-1 ){
const unsigned char c1 = 0x86;
SHA3Update(p, &c1, 1);
}else{
const unsigned char c2 = 0x06;
const unsigned char c3 = 0x80;
SHA3Update(p, &c2, 1);
p->nLoaded = p->nRate - 1;
SHA3Update(p, &c3, 1);
}
for(i=0; i<p->nRate; i++){
p->u.x[i+p->nRate] = p->u.x[i^p->ixMask];
}
return &p->u.x[p->nRate];
}
/* End of the hashing logic
*****************************************************************************/
/*
** Implementation of the sha3(X,SIZE) function.
**
** Return a BLOB which is the SIZE-bit SHA3 hash of X. The default
** size is 256. If X is a BLOB, it is hashed as is.
** For all other non-NULL types of input, X is converted into a UTF-8 string
** and the string is hashed without the trailing 0x00 terminator. The hash
** of a NULL value is NULL.
*/
static void sha3Func(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
SHA3Context cx;
int eType = sqlite3_value_type(argv[0]);
int nByte = sqlite3_value_bytes(argv[0]);
int iSize;
if( argc==1 ){
iSize = 256;
}else{
iSize = sqlite3_value_int(argv[1]);
if( iSize!=224 && iSize!=256 && iSize!=384 && iSize!=512 ){
sqlite3_result_error(context, "SHA3 size should be one of: 224 256 "
"384 512", -1);
return;
}
}
if( eType==SQLITE_NULL ) return;
SHA3Init(&cx, iSize);
if( eType==SQLITE_BLOB ){
SHA3Update(&cx, sqlite3_value_blob(argv[0]), nByte);
}else{
SHA3Update(&cx, sqlite3_value_text(argv[0]), nByte);
}
sqlite3_result_blob(context, SHA3Final(&cx), iSize/8, SQLITE_TRANSIENT);
}
/* Compute a string using sqlite3_vsnprintf() with a maximum length
** of 50 bytes and add it to the hash.
*/
static void sha3_step_vformat(
SHA3Context *p, /* Add content to this context */
const char *zFormat,
...
){
va_list ap;
int n;
char zBuf[50];
va_start(ap, zFormat);
sqlite3_vsnprintf(sizeof(zBuf),zBuf,zFormat,ap);
va_end(ap);
n = (int)strlen(zBuf);
SHA3Update(p, (unsigned char*)zBuf, n);
}
/*
** Implementation of the sha3_query(SQL,SIZE) function.
**
** This function compiles and runs the SQL statement(s) given in the
** argument. The results are hashed using a SIZE-bit SHA3. The default
** size is 256.
**
** The format of the byte stream that is hashed is summarized as follows:
**
** S<n>:<sql>
** R
** N
** I<int>
** F<ieee-float>
** B<size>:<bytes>
** T<size>:<text>
**
** <sql> is the original SQL text for each statement run and <n> is
** the size of that text. The SQL text is UTF-8. A single R character
** occurs before the start of each row. N means a NULL value.
** I mean an 8-byte little-endian integer <int>. F is a floating point
** number with an 8-byte little-endian IEEE floating point value <ieee-float>.
** B means blobs of <size> bytes. T means text rendered as <size>
** bytes of UTF-8. The <n> and <size> values are expressed as an ASCII
** text integers.
**
** For each SQL statement in the X input, there is one S segment. Each
** S segment is followed by zero or more R segments, one for each row in the
** result set. After each R, there are one or more N, I, F, B, or T segments,
** one for each column in the result set. Segments are concatentated directly
** with no delimiters of any kind.
*/
static void sha3QueryFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
sqlite3 *db = sqlite3_context_db_handle(context);
const char *zSql = (const char*)sqlite3_value_text(argv[0]);
sqlite3_stmt *pStmt = 0;
int nCol; /* Number of columns in the result set */
int i; /* Loop counter */
int rc;
int n;
const char *z;
SHA3Context cx;
int iSize;
if( argc==1 ){
iSize = 256;
}else{
iSize = sqlite3_value_int(argv[1]);
if( iSize!=224 && iSize!=256 && iSize!=384 && iSize!=512 ){
sqlite3_result_error(context, "SHA3 size should be one of: 224 256 "
"384 512", -1);
return;
}
}
if( zSql==0 ) return;
SHA3Init(&cx, iSize);
while( zSql[0] ){
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zSql);
if( rc ){
char *zMsg = sqlite3_mprintf("error SQL statement [%s]: %s",
zSql, sqlite3_errmsg(db));
sqlite3_finalize(pStmt);
sqlite3_result_error(context, zMsg, -1);
sqlite3_free(zMsg);
return;
}
if( !sqlite3_stmt_readonly(pStmt) ){
char *zMsg = sqlite3_mprintf("non-query: [%s]", sqlite3_sql(pStmt));
sqlite3_finalize(pStmt);
sqlite3_result_error(context, zMsg, -1);
sqlite3_free(zMsg);
return;
}
nCol = sqlite3_column_count(pStmt);
z = sqlite3_sql(pStmt);
if( z ){
n = (int)strlen(z);
sha3_step_vformat(&cx,"S%d:",n);
SHA3Update(&cx,(unsigned char*)z,n);
}
/* Compute a hash over the result of the query */
while( SQLITE_ROW==sqlite3_step(pStmt) ){
SHA3Update(&cx,(const unsigned char*)"R",1);
for(i=0; i<nCol; i++){
switch( sqlite3_column_type(pStmt,i) ){
case SQLITE_NULL: {
SHA3Update(&cx, (const unsigned char*)"N",1);
break;
}
case SQLITE_INTEGER: {
sqlite3_uint64 u;
int j;
unsigned char x[9];
sqlite3_int64 v = sqlite3_column_int64(pStmt,i);
memcpy(&u, &v, 8);
for(j=8; j>=1; j--){
x[j] = u & 0xff;
u >>= 8;
}
x[0] = 'I';
SHA3Update(&cx, x, 9);
break;
}
case SQLITE_FLOAT: {
sqlite3_uint64 u;
int j;
unsigned char x[9];
double r = sqlite3_column_double(pStmt,i);
memcpy(&u, &r, 8);
for(j=8; j>=1; j--){
x[j] = u & 0xff;
u >>= 8;
}
x[0] = 'F';
SHA3Update(&cx,x,9);
break;
}
case SQLITE_TEXT: {
int n2 = sqlite3_column_bytes(pStmt, i);
const unsigned char *z2 = sqlite3_column_text(pStmt, i);
sha3_step_vformat(&cx,"T%d:",n2);
SHA3Update(&cx, z2, n2);
break;
}
case SQLITE_BLOB: {
int n2 = sqlite3_column_bytes(pStmt, i);
const unsigned char *z2 = sqlite3_column_blob(pStmt, i);
sha3_step_vformat(&cx,"B%d:",n2);
SHA3Update(&cx, z2, n2);
break;
}
}
}
}
sqlite3_finalize(pStmt);
}
sqlite3_result_blob(context, SHA3Final(&cx), iSize/8, SQLITE_TRANSIENT);
}
#ifdef _WIN32
__declspec(dllexport)
#endif
int sqlite3_shathree_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg; /* Unused parameter */
rc = sqlite3_create_function(db, "sha3", 1,
SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC,
0, sha3Func, 0, 0);
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "sha3", 2,
SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC,
0, sha3Func, 0, 0);
}
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "sha3_query", 1,
SQLITE_UTF8 | SQLITE_DIRECTONLY,
0, sha3QueryFunc, 0, 0);
}
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "sha3_query", 2,
SQLITE_UTF8 | SQLITE_DIRECTONLY,
0, sha3QueryFunc, 0, 0);
}
return rc;
}