sqlite/tool/lemon.c
drh 539e741e50 Enhance LEMON to track which symbols actually carry semantic content.
Output the list of symbols that do not carry content at the end of the
report, but do not (yet) do anything else with the information.

FossilOrigin-Name: dcf2bafc159179859b91ffea3a4ebd70b5ca6de9e1d515eaf9afde8cfff26c6c
2018-04-21 20:24:19 +00:00

5619 lines
169 KiB
C

/*
** This file contains all sources (including headers) to the LEMON
** LALR(1) parser generator. The sources have been combined into a
** single file to make it easy to include LEMON in the source tree
** and Makefile of another program.
**
** The author of this program disclaims copyright.
*/
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#include <assert.h>
#define ISSPACE(X) isspace((unsigned char)(X))
#define ISDIGIT(X) isdigit((unsigned char)(X))
#define ISALNUM(X) isalnum((unsigned char)(X))
#define ISALPHA(X) isalpha((unsigned char)(X))
#define ISUPPER(X) isupper((unsigned char)(X))
#define ISLOWER(X) islower((unsigned char)(X))
#ifndef __WIN32__
# if defined(_WIN32) || defined(WIN32)
# define __WIN32__
# endif
#endif
#ifdef __WIN32__
#ifdef __cplusplus
extern "C" {
#endif
extern int access(const char *path, int mode);
#ifdef __cplusplus
}
#endif
#else
#include <unistd.h>
#endif
/* #define PRIVATE static */
#define PRIVATE
#ifdef TEST
#define MAXRHS 5 /* Set low to exercise exception code */
#else
#define MAXRHS 1000
#endif
static int showPrecedenceConflict = 0;
static char *msort(char*,char**,int(*)(const char*,const char*));
/*
** Compilers are getting increasingly pedantic about type conversions
** as C evolves ever closer to Ada.... To work around the latest problems
** we have to define the following variant of strlen().
*/
#define lemonStrlen(X) ((int)strlen(X))
/*
** Compilers are starting to complain about the use of sprintf() and strcpy(),
** saying they are unsafe. So we define our own versions of those routines too.
**
** There are three routines here: lemon_sprintf(), lemon_vsprintf(), and
** lemon_addtext(). The first two are replacements for sprintf() and vsprintf().
** The third is a helper routine for vsnprintf() that adds texts to the end of a
** buffer, making sure the buffer is always zero-terminated.
**
** The string formatter is a minimal subset of stdlib sprintf() supporting only
** a few simply conversions:
**
** %d
** %s
** %.*s
**
*/
static void lemon_addtext(
char *zBuf, /* The buffer to which text is added */
int *pnUsed, /* Slots of the buffer used so far */
const char *zIn, /* Text to add */
int nIn, /* Bytes of text to add. -1 to use strlen() */
int iWidth /* Field width. Negative to left justify */
){
if( nIn<0 ) for(nIn=0; zIn[nIn]; nIn++){}
while( iWidth>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth--; }
if( nIn==0 ) return;
memcpy(&zBuf[*pnUsed], zIn, nIn);
*pnUsed += nIn;
while( (-iWidth)>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth++; }
zBuf[*pnUsed] = 0;
}
static int lemon_vsprintf(char *str, const char *zFormat, va_list ap){
int i, j, k, c;
int nUsed = 0;
const char *z;
char zTemp[50];
str[0] = 0;
for(i=j=0; (c = zFormat[i])!=0; i++){
if( c=='%' ){
int iWidth = 0;
lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
c = zFormat[++i];
if( ISDIGIT(c) || (c=='-' && ISDIGIT(zFormat[i+1])) ){
if( c=='-' ) i++;
while( ISDIGIT(zFormat[i]) ) iWidth = iWidth*10 + zFormat[i++] - '0';
if( c=='-' ) iWidth = -iWidth;
c = zFormat[i];
}
if( c=='d' ){
int v = va_arg(ap, int);
if( v<0 ){
lemon_addtext(str, &nUsed, "-", 1, iWidth);
v = -v;
}else if( v==0 ){
lemon_addtext(str, &nUsed, "0", 1, iWidth);
}
k = 0;
while( v>0 ){
k++;
zTemp[sizeof(zTemp)-k] = (v%10) + '0';
v /= 10;
}
lemon_addtext(str, &nUsed, &zTemp[sizeof(zTemp)-k], k, iWidth);
}else if( c=='s' ){
z = va_arg(ap, const char*);
lemon_addtext(str, &nUsed, z, -1, iWidth);
}else if( c=='.' && memcmp(&zFormat[i], ".*s", 3)==0 ){
i += 2;
k = va_arg(ap, int);
z = va_arg(ap, const char*);
lemon_addtext(str, &nUsed, z, k, iWidth);
}else if( c=='%' ){
lemon_addtext(str, &nUsed, "%", 1, 0);
}else{
fprintf(stderr, "illegal format\n");
exit(1);
}
j = i+1;
}
}
lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
return nUsed;
}
static int lemon_sprintf(char *str, const char *format, ...){
va_list ap;
int rc;
va_start(ap, format);
rc = lemon_vsprintf(str, format, ap);
va_end(ap);
return rc;
}
static void lemon_strcpy(char *dest, const char *src){
while( (*(dest++) = *(src++))!=0 ){}
}
static void lemon_strcat(char *dest, const char *src){
while( *dest ) dest++;
lemon_strcpy(dest, src);
}
/* a few forward declarations... */
struct rule;
struct lemon;
struct action;
static struct action *Action_new(void);
static struct action *Action_sort(struct action *);
/********** From the file "build.h" ************************************/
void FindRulePrecedences(struct lemon*);
void FindFirstSets(struct lemon*);
void FindStates(struct lemon*);
void FindLinks(struct lemon*);
void FindFollowSets(struct lemon*);
void FindActions(struct lemon*);
/********* From the file "configlist.h" *********************************/
void Configlist_init(void);
struct config *Configlist_add(struct rule *, int);
struct config *Configlist_addbasis(struct rule *, int);
void Configlist_closure(struct lemon *);
void Configlist_sort(void);
void Configlist_sortbasis(void);
struct config *Configlist_return(void);
struct config *Configlist_basis(void);
void Configlist_eat(struct config *);
void Configlist_reset(void);
/********* From the file "error.h" ***************************************/
void ErrorMsg(const char *, int,const char *, ...);
/****** From the file "option.h" ******************************************/
enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR,
OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR};
struct s_options {
enum option_type type;
const char *label;
char *arg;
const char *message;
};
int OptInit(char**,struct s_options*,FILE*);
int OptNArgs(void);
char *OptArg(int);
void OptErr(int);
void OptPrint(void);
/******** From the file "parse.h" *****************************************/
void Parse(struct lemon *lemp);
/********* From the file "plink.h" ***************************************/
struct plink *Plink_new(void);
void Plink_add(struct plink **, struct config *);
void Plink_copy(struct plink **, struct plink *);
void Plink_delete(struct plink *);
/********** From the file "report.h" *************************************/
void Reprint(struct lemon *);
void ReportOutput(struct lemon *);
void ReportTable(struct lemon *, int);
void ReportHeader(struct lemon *);
void CompressTables(struct lemon *);
void ResortStates(struct lemon *);
/********** From the file "set.h" ****************************************/
void SetSize(int); /* All sets will be of size N */
char *SetNew(void); /* A new set for element 0..N */
void SetFree(char*); /* Deallocate a set */
int SetAdd(char*,int); /* Add element to a set */
int SetUnion(char *,char *); /* A <- A U B, thru element N */
#define SetFind(X,Y) (X[Y]) /* True if Y is in set X */
/********** From the file "struct.h" *************************************/
/*
** Principal data structures for the LEMON parser generator.
*/
typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean;
/* Symbols (terminals and nonterminals) of the grammar are stored
** in the following: */
enum symbol_type {
TERMINAL,
NONTERMINAL,
MULTITERMINAL
};
enum e_assoc {
LEFT,
RIGHT,
NONE,
UNK
};
struct symbol {
const char *name; /* Name of the symbol */
int index; /* Index number for this symbol */
enum symbol_type type; /* Symbols are all either TERMINALS or NTs */
struct rule *rule; /* Linked list of rules of this (if an NT) */
struct symbol *fallback; /* fallback token in case this token doesn't parse */
int prec; /* Precedence if defined (-1 otherwise) */
enum e_assoc assoc; /* Associativity if precedence is defined */
char *firstset; /* First-set for all rules of this symbol */
Boolean lambda; /* True if NT and can generate an empty string */
int useCnt; /* Number of times used */
char *destructor; /* Code which executes whenever this symbol is
** popped from the stack during error processing */
int destLineno; /* Line number for start of destructor. Set to
** -1 for duplicate destructors. */
char *datatype; /* The data type of information held by this
** object. Only used if type==NONTERMINAL */
int dtnum; /* The data type number. In the parser, the value
** stack is a union. The .yy%d element of this
** union is the correct data type for this object */
int bContent; /* True if this symbol ever carries content - if
** it is ever more than just syntax */
/* The following fields are used by MULTITERMINALs only */
int nsubsym; /* Number of constituent symbols in the MULTI */
struct symbol **subsym; /* Array of constituent symbols */
};
/* Each production rule in the grammar is stored in the following
** structure. */
struct rule {
struct symbol *lhs; /* Left-hand side of the rule */
const char *lhsalias; /* Alias for the LHS (NULL if none) */
int lhsStart; /* True if left-hand side is the start symbol */
int ruleline; /* Line number for the rule */
int nrhs; /* Number of RHS symbols */
struct symbol **rhs; /* The RHS symbols */
const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */
int line; /* Line number at which code begins */
const char *code; /* The code executed when this rule is reduced */
const char *codePrefix; /* Setup code before code[] above */
const char *codeSuffix; /* Breakdown code after code[] above */
int noCode; /* True if this rule has no associated C code */
int codeEmitted; /* True if the code has been emitted already */
struct symbol *precsym; /* Precedence symbol for this rule */
int index; /* An index number for this rule */
int iRule; /* Rule number as used in the generated tables */
Boolean canReduce; /* True if this rule is ever reduced */
Boolean doesReduce; /* Reduce actions occur after optimization */
struct rule *nextlhs; /* Next rule with the same LHS */
struct rule *next; /* Next rule in the global list */
};
/* A configuration is a production rule of the grammar together with
** a mark (dot) showing how much of that rule has been processed so far.
** Configurations also contain a follow-set which is a list of terminal
** symbols which are allowed to immediately follow the end of the rule.
** Every configuration is recorded as an instance of the following: */
enum cfgstatus {
COMPLETE,
INCOMPLETE
};
struct config {
struct rule *rp; /* The rule upon which the configuration is based */
int dot; /* The parse point */
char *fws; /* Follow-set for this configuration only */
struct plink *fplp; /* Follow-set forward propagation links */
struct plink *bplp; /* Follow-set backwards propagation links */
struct state *stp; /* Pointer to state which contains this */
enum cfgstatus status; /* used during followset and shift computations */
struct config *next; /* Next configuration in the state */
struct config *bp; /* The next basis configuration */
};
enum e_action {
SHIFT,
ACCEPT,
REDUCE,
ERROR,
SSCONFLICT, /* A shift/shift conflict */
SRCONFLICT, /* Was a reduce, but part of a conflict */
RRCONFLICT, /* Was a reduce, but part of a conflict */
SH_RESOLVED, /* Was a shift. Precedence resolved conflict */
RD_RESOLVED, /* Was reduce. Precedence resolved conflict */
NOT_USED, /* Deleted by compression */
SHIFTREDUCE /* Shift first, then reduce */
};
/* Every shift or reduce operation is stored as one of the following */
struct action {
struct symbol *sp; /* The look-ahead symbol */
enum e_action type;
union {
struct state *stp; /* The new state, if a shift */
struct rule *rp; /* The rule, if a reduce */
} x;
struct symbol *spOpt; /* SHIFTREDUCE optimization to this symbol */
struct action *next; /* Next action for this state */
struct action *collide; /* Next action with the same hash */
};
/* Each state of the generated parser's finite state machine
** is encoded as an instance of the following structure. */
struct state {
struct config *bp; /* The basis configurations for this state */
struct config *cfp; /* All configurations in this set */
int statenum; /* Sequential number for this state */
struct action *ap; /* List of actions for this state */
int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */
int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */
int iDfltReduce; /* Default action is to REDUCE by this rule */
struct rule *pDfltReduce;/* The default REDUCE rule. */
int autoReduce; /* True if this is an auto-reduce state */
};
#define NO_OFFSET (-2147483647)
/* A followset propagation link indicates that the contents of one
** configuration followset should be propagated to another whenever
** the first changes. */
struct plink {
struct config *cfp; /* The configuration to which linked */
struct plink *next; /* The next propagate link */
};
/* The state vector for the entire parser generator is recorded as
** follows. (LEMON uses no global variables and makes little use of
** static variables. Fields in the following structure can be thought
** of as begin global variables in the program.) */
struct lemon {
struct state **sorted; /* Table of states sorted by state number */
struct rule *rule; /* List of all rules */
struct rule *startRule; /* First rule */
int nstate; /* Number of states */
int nxstate; /* nstate with tail degenerate states removed */
int nrule; /* Number of rules */
int nsymbol; /* Number of terminal and nonterminal symbols */
int nterminal; /* Number of terminal symbols */
int minShiftReduce; /* Minimum shift-reduce action value */
int errAction; /* Error action value */
int accAction; /* Accept action value */
int noAction; /* No-op action value */
int minReduce; /* Minimum reduce action */
int maxAction; /* Maximum action value of any kind */
struct symbol **symbols; /* Sorted array of pointers to symbols */
int errorcnt; /* Number of errors */
struct symbol *errsym; /* The error symbol */
struct symbol *wildcard; /* Token that matches anything */
char *name; /* Name of the generated parser */
char *arg; /* Declaration of the 3th argument to parser */
char *ctx; /* Declaration of 2nd argument to constructor */
char *tokentype; /* Type of terminal symbols in the parser stack */
char *vartype; /* The default type of non-terminal symbols */
char *start; /* Name of the start symbol for the grammar */
char *stacksize; /* Size of the parser stack */
char *include; /* Code to put at the start of the C file */
char *error; /* Code to execute when an error is seen */
char *overflow; /* Code to execute on a stack overflow */
char *failure; /* Code to execute on parser failure */
char *accept; /* Code to execute when the parser excepts */
char *extracode; /* Code appended to the generated file */
char *tokendest; /* Code to execute to destroy token data */
char *vardest; /* Code for the default non-terminal destructor */
char *filename; /* Name of the input file */
char *outname; /* Name of the current output file */
char *tokenprefix; /* A prefix added to token names in the .h file */
int nconflict; /* Number of parsing conflicts */
int nactiontab; /* Number of entries in the yy_action[] table */
int nlookaheadtab; /* Number of entries in yy_lookahead[] */
int tablesize; /* Total table size of all tables in bytes */
int basisflag; /* Print only basis configurations */
int has_fallback; /* True if any %fallback is seen in the grammar */
int nolinenosflag; /* True if #line statements should not be printed */
char *argv0; /* Name of the program */
};
#define MemoryCheck(X) if((X)==0){ \
extern void memory_error(); \
memory_error(); \
}
/**************** From the file "table.h" *********************************/
/*
** All code in this file has been automatically generated
** from a specification in the file
** "table.q"
** by the associative array code building program "aagen".
** Do not edit this file! Instead, edit the specification
** file, then rerun aagen.
*/
/*
** Code for processing tables in the LEMON parser generator.
*/
/* Routines for handling a strings */
const char *Strsafe(const char *);
void Strsafe_init(void);
int Strsafe_insert(const char *);
const char *Strsafe_find(const char *);
/* Routines for handling symbols of the grammar */
struct symbol *Symbol_new(const char *);
int Symbolcmpp(const void *, const void *);
void Symbol_init(void);
int Symbol_insert(struct symbol *, const char *);
struct symbol *Symbol_find(const char *);
struct symbol *Symbol_Nth(int);
int Symbol_count(void);
struct symbol **Symbol_arrayof(void);
/* Routines to manage the state table */
int Configcmp(const char *, const char *);
struct state *State_new(void);
void State_init(void);
int State_insert(struct state *, struct config *);
struct state *State_find(struct config *);
struct state **State_arrayof(void);
/* Routines used for efficiency in Configlist_add */
void Configtable_init(void);
int Configtable_insert(struct config *);
struct config *Configtable_find(struct config *);
void Configtable_clear(int(*)(struct config *));
/****************** From the file "action.c" *******************************/
/*
** Routines processing parser actions in the LEMON parser generator.
*/
/* Allocate a new parser action */
static struct action *Action_new(void){
static struct action *freelist = 0;
struct action *newaction;
if( freelist==0 ){
int i;
int amt = 100;
freelist = (struct action *)calloc(amt, sizeof(struct action));
if( freelist==0 ){
fprintf(stderr,"Unable to allocate memory for a new parser action.");
exit(1);
}
for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
freelist[amt-1].next = 0;
}
newaction = freelist;
freelist = freelist->next;
return newaction;
}
/* Compare two actions for sorting purposes. Return negative, zero, or
** positive if the first action is less than, equal to, or greater than
** the first
*/
static int actioncmp(
struct action *ap1,
struct action *ap2
){
int rc;
rc = ap1->sp->index - ap2->sp->index;
if( rc==0 ){
rc = (int)ap1->type - (int)ap2->type;
}
if( rc==0 && (ap1->type==REDUCE || ap1->type==SHIFTREDUCE) ){
rc = ap1->x.rp->index - ap2->x.rp->index;
}
if( rc==0 ){
rc = (int) (ap2 - ap1);
}
return rc;
}
/* Sort parser actions */
static struct action *Action_sort(
struct action *ap
){
ap = (struct action *)msort((char *)ap,(char **)&ap->next,
(int(*)(const char*,const char*))actioncmp);
return ap;
}
void Action_add(
struct action **app,
enum e_action type,
struct symbol *sp,
char *arg
){
struct action *newaction;
newaction = Action_new();
newaction->next = *app;
*app = newaction;
newaction->type = type;
newaction->sp = sp;
newaction->spOpt = 0;
if( type==SHIFT ){
newaction->x.stp = (struct state *)arg;
}else{
newaction->x.rp = (struct rule *)arg;
}
}
/********************** New code to implement the "acttab" module ***********/
/*
** This module implements routines use to construct the yy_action[] table.
*/
/*
** The state of the yy_action table under construction is an instance of
** the following structure.
**
** The yy_action table maps the pair (state_number, lookahead) into an
** action_number. The table is an array of integers pairs. The state_number
** determines an initial offset into the yy_action array. The lookahead
** value is then added to this initial offset to get an index X into the
** yy_action array. If the aAction[X].lookahead equals the value of the
** of the lookahead input, then the value of the action_number output is
** aAction[X].action. If the lookaheads do not match then the
** default action for the state_number is returned.
**
** All actions associated with a single state_number are first entered
** into aLookahead[] using multiple calls to acttab_action(). Then the
** actions for that single state_number are placed into the aAction[]
** array with a single call to acttab_insert(). The acttab_insert() call
** also resets the aLookahead[] array in preparation for the next
** state number.
*/
struct lookahead_action {
int lookahead; /* Value of the lookahead token */
int action; /* Action to take on the given lookahead */
};
typedef struct acttab acttab;
struct acttab {
int nAction; /* Number of used slots in aAction[] */
int nActionAlloc; /* Slots allocated for aAction[] */
struct lookahead_action
*aAction, /* The yy_action[] table under construction */
*aLookahead; /* A single new transaction set */
int mnLookahead; /* Minimum aLookahead[].lookahead */
int mnAction; /* Action associated with mnLookahead */
int mxLookahead; /* Maximum aLookahead[].lookahead */
int nLookahead; /* Used slots in aLookahead[] */
int nLookaheadAlloc; /* Slots allocated in aLookahead[] */
int nterminal; /* Number of terminal symbols */
int nsymbol; /* total number of symbols */
};
/* Return the number of entries in the yy_action table */
#define acttab_lookahead_size(X) ((X)->nAction)
/* The value for the N-th entry in yy_action */
#define acttab_yyaction(X,N) ((X)->aAction[N].action)
/* The value for the N-th entry in yy_lookahead */
#define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead)
/* Free all memory associated with the given acttab */
void acttab_free(acttab *p){
free( p->aAction );
free( p->aLookahead );
free( p );
}
/* Allocate a new acttab structure */
acttab *acttab_alloc(int nsymbol, int nterminal){
acttab *p = (acttab *) calloc( 1, sizeof(*p) );
if( p==0 ){
fprintf(stderr,"Unable to allocate memory for a new acttab.");
exit(1);
}
memset(p, 0, sizeof(*p));
p->nsymbol = nsymbol;
p->nterminal = nterminal;
return p;
}
/* Add a new action to the current transaction set.
**
** This routine is called once for each lookahead for a particular
** state.
*/
void acttab_action(acttab *p, int lookahead, int action){
if( p->nLookahead>=p->nLookaheadAlloc ){
p->nLookaheadAlloc += 25;
p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead,
sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
if( p->aLookahead==0 ){
fprintf(stderr,"malloc failed\n");
exit(1);
}
}
if( p->nLookahead==0 ){
p->mxLookahead = lookahead;
p->mnLookahead = lookahead;
p->mnAction = action;
}else{
if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
if( p->mnLookahead>lookahead ){
p->mnLookahead = lookahead;
p->mnAction = action;
}
}
p->aLookahead[p->nLookahead].lookahead = lookahead;
p->aLookahead[p->nLookahead].action = action;
p->nLookahead++;
}
/*
** Add the transaction set built up with prior calls to acttab_action()
** into the current action table. Then reset the transaction set back
** to an empty set in preparation for a new round of acttab_action() calls.
**
** Return the offset into the action table of the new transaction.
**
** If the makeItSafe parameter is true, then the offset is chosen so that
** it is impossible to overread the yy_lookaside[] table regardless of
** the lookaside token. This is done for the terminal symbols, as they
** come from external inputs and can contain syntax errors. When makeItSafe
** is false, there is more flexibility in selecting offsets, resulting in
** a smaller table. For non-terminal symbols, which are never syntax errors,
** makeItSafe can be false.
*/
int acttab_insert(acttab *p, int makeItSafe){
int i, j, k, n, end;
assert( p->nLookahead>0 );
/* Make sure we have enough space to hold the expanded action table
** in the worst case. The worst case occurs if the transaction set
** must be appended to the current action table
*/
n = p->nsymbol + 1;
if( p->nAction + n >= p->nActionAlloc ){
int oldAlloc = p->nActionAlloc;
p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
p->aAction = (struct lookahead_action *) realloc( p->aAction,
sizeof(p->aAction[0])*p->nActionAlloc);
if( p->aAction==0 ){
fprintf(stderr,"malloc failed\n");
exit(1);
}
for(i=oldAlloc; i<p->nActionAlloc; i++){
p->aAction[i].lookahead = -1;
p->aAction[i].action = -1;
}
}
/* Scan the existing action table looking for an offset that is a
** duplicate of the current transaction set. Fall out of the loop
** if and when the duplicate is found.
**
** i is the index in p->aAction[] where p->mnLookahead is inserted.
*/
end = makeItSafe ? p->mnLookahead : 0;
for(i=p->nAction-1; i>=end; i--){
if( p->aAction[i].lookahead==p->mnLookahead ){
/* All lookaheads and actions in the aLookahead[] transaction
** must match against the candidate aAction[i] entry. */
if( p->aAction[i].action!=p->mnAction ) continue;
for(j=0; j<p->nLookahead; j++){
k = p->aLookahead[j].lookahead - p->mnLookahead + i;
if( k<0 || k>=p->nAction ) break;
if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
if( p->aLookahead[j].action!=p->aAction[k].action ) break;
}
if( j<p->nLookahead ) continue;
/* No possible lookahead value that is not in the aLookahead[]
** transaction is allowed to match aAction[i] */
n = 0;
for(j=0; j<p->nAction; j++){
if( p->aAction[j].lookahead<0 ) continue;
if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
}
if( n==p->nLookahead ){
break; /* An exact match is found at offset i */
}
}
}
/* If no existing offsets exactly match the current transaction, find an
** an empty offset in the aAction[] table in which we can add the
** aLookahead[] transaction.
*/
if( i<end ){
/* Look for holes in the aAction[] table that fit the current
** aLookahead[] transaction. Leave i set to the offset of the hole.
** If no holes are found, i is left at p->nAction, which means the
** transaction will be appended. */
i = makeItSafe ? p->mnLookahead : 0;
for(; i<p->nActionAlloc - p->mxLookahead; i++){
if( p->aAction[i].lookahead<0 ){
for(j=0; j<p->nLookahead; j++){
k = p->aLookahead[j].lookahead - p->mnLookahead + i;
if( k<0 ) break;
if( p->aAction[k].lookahead>=0 ) break;
}
if( j<p->nLookahead ) continue;
for(j=0; j<p->nAction; j++){
if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
}
if( j==p->nAction ){
break; /* Fits in empty slots */
}
}
}
}
/* Insert transaction set at index i. */
#if 0
printf("Acttab:");
for(j=0; j<p->nLookahead; j++){
printf(" %d", p->aLookahead[j].lookahead);
}
printf(" inserted at %d\n", i);
#endif
for(j=0; j<p->nLookahead; j++){
k = p->aLookahead[j].lookahead - p->mnLookahead + i;
p->aAction[k] = p->aLookahead[j];
if( k>=p->nAction ) p->nAction = k+1;
}
if( makeItSafe && i+p->nterminal>=p->nAction ) p->nAction = i+p->nterminal+1;
p->nLookahead = 0;
/* Return the offset that is added to the lookahead in order to get the
** index into yy_action of the action */
return i - p->mnLookahead;
}
/*
** Return the size of the action table without the trailing syntax error
** entries.
*/
int acttab_action_size(acttab *p){
int n = p->nAction;
while( n>0 && p->aAction[n-1].lookahead<0 ){ n--; }
return n;
}
/********************** From the file "build.c" *****************************/
/*
** Routines to construction the finite state machine for the LEMON
** parser generator.
*/
/* Find a precedence symbol of every rule in the grammar.
**
** Those rules which have a precedence symbol coded in the input
** grammar using the "[symbol]" construct will already have the
** rp->precsym field filled. Other rules take as their precedence
** symbol the first RHS symbol with a defined precedence. If there
** are not RHS symbols with a defined precedence, the precedence
** symbol field is left blank.
*/
void FindRulePrecedences(struct lemon *xp)
{
struct rule *rp;
for(rp=xp->rule; rp; rp=rp->next){
if( rp->precsym==0 ){
int i, j;
for(i=0; i<rp->nrhs && rp->precsym==0; i++){
struct symbol *sp = rp->rhs[i];
if( sp->type==MULTITERMINAL ){
for(j=0; j<sp->nsubsym; j++){
if( sp->subsym[j]->prec>=0 ){
rp->precsym = sp->subsym[j];
break;
}
}
}else if( sp->prec>=0 ){
rp->precsym = rp->rhs[i];
}
}
}
}
return;
}
/* Find all nonterminals which will generate the empty string.
** Then go back and compute the first sets of every nonterminal.
** The first set is the set of all terminal symbols which can begin
** a string generated by that nonterminal.
*/
void FindFirstSets(struct lemon *lemp)
{
int i, j;
struct rule *rp;
int progress;
for(i=0; i<lemp->nsymbol; i++){
lemp->symbols[i]->lambda = LEMON_FALSE;
}
for(i=lemp->nterminal; i<lemp->nsymbol; i++){
lemp->symbols[i]->firstset = SetNew();
}
/* First compute all lambdas */
do{
progress = 0;
for(rp=lemp->rule; rp; rp=rp->next){
if( rp->lhs->lambda ) continue;
for(i=0; i<rp->nrhs; i++){
struct symbol *sp = rp->rhs[i];
assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE );
if( sp->lambda==LEMON_FALSE ) break;
}
if( i==rp->nrhs ){
rp->lhs->lambda = LEMON_TRUE;
progress = 1;
}
}
}while( progress );
/* Now compute all first sets */
do{
struct symbol *s1, *s2;
progress = 0;
for(rp=lemp->rule; rp; rp=rp->next){
s1 = rp->lhs;
for(i=0; i<rp->nrhs; i++){
s2 = rp->rhs[i];
if( s2->type==TERMINAL ){
progress += SetAdd(s1->firstset,s2->index);
break;
}else if( s2->type==MULTITERMINAL ){
for(j=0; j<s2->nsubsym; j++){
progress += SetAdd(s1->firstset,s2->subsym[j]->index);
}
break;
}else if( s1==s2 ){
if( s1->lambda==LEMON_FALSE ) break;
}else{
progress += SetUnion(s1->firstset,s2->firstset);
if( s2->lambda==LEMON_FALSE ) break;
}
}
}
}while( progress );
return;
}
/* Compute all LR(0) states for the grammar. Links
** are added to between some states so that the LR(1) follow sets
** can be computed later.
*/
PRIVATE struct state *getstate(struct lemon *); /* forward reference */
void FindStates(struct lemon *lemp)
{
struct symbol *sp;
struct rule *rp;
Configlist_init();
/* Find the start symbol */
if( lemp->start ){
sp = Symbol_find(lemp->start);
if( sp==0 ){
ErrorMsg(lemp->filename,0,
"The specified start symbol \"%s\" is not \
in a nonterminal of the grammar. \"%s\" will be used as the start \
symbol instead.",lemp->start,lemp->startRule->lhs->name);
lemp->errorcnt++;
sp = lemp->startRule->lhs;
}
}else{
sp = lemp->startRule->lhs;
}
/* Make sure the start symbol doesn't occur on the right-hand side of
** any rule. Report an error if it does. (YACC would generate a new
** start symbol in this case.) */
for(rp=lemp->rule; rp; rp=rp->next){
int i;
for(i=0; i<rp->nrhs; i++){
if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */
ErrorMsg(lemp->filename,0,
"The start symbol \"%s\" occurs on the \
right-hand side of a rule. This will result in a parser which \
does not work properly.",sp->name);
lemp->errorcnt++;
}
}
}
/* The basis configuration set for the first state
** is all rules which have the start symbol as their
** left-hand side */
for(rp=sp->rule; rp; rp=rp->nextlhs){
struct config *newcfp;
rp->lhsStart = 1;
newcfp = Configlist_addbasis(rp,0);
SetAdd(newcfp->fws,0);
}
/* Compute the first state. All other states will be
** computed automatically during the computation of the first one.
** The returned pointer to the first state is not used. */
(void)getstate(lemp);
return;
}
/* Return a pointer to a state which is described by the configuration
** list which has been built from calls to Configlist_add.
*/
PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */
PRIVATE struct state *getstate(struct lemon *lemp)
{
struct config *cfp, *bp;
struct state *stp;
/* Extract the sorted basis of the new state. The basis was constructed
** by prior calls to "Configlist_addbasis()". */
Configlist_sortbasis();
bp = Configlist_basis();
/* Get a state with the same basis */
stp = State_find(bp);
if( stp ){
/* A state with the same basis already exists! Copy all the follow-set
** propagation links from the state under construction into the
** preexisting state, then return a pointer to the preexisting state */
struct config *x, *y;
for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
Plink_copy(&y->bplp,x->bplp);
Plink_delete(x->fplp);
x->fplp = x->bplp = 0;
}
cfp = Configlist_return();
Configlist_eat(cfp);
}else{
/* This really is a new state. Construct all the details */
Configlist_closure(lemp); /* Compute the configuration closure */
Configlist_sort(); /* Sort the configuration closure */
cfp = Configlist_return(); /* Get a pointer to the config list */
stp = State_new(); /* A new state structure */
MemoryCheck(stp);
stp->bp = bp; /* Remember the configuration basis */
stp->cfp = cfp; /* Remember the configuration closure */
stp->statenum = lemp->nstate++; /* Every state gets a sequence number */
stp->ap = 0; /* No actions, yet. */
State_insert(stp,stp->bp); /* Add to the state table */
buildshifts(lemp,stp); /* Recursively compute successor states */
}
return stp;
}
/*
** Return true if two symbols are the same.
*/
int same_symbol(struct symbol *a, struct symbol *b)
{
int i;
if( a==b ) return 1;
if( a->type!=MULTITERMINAL ) return 0;
if( b->type!=MULTITERMINAL ) return 0;
if( a->nsubsym!=b->nsubsym ) return 0;
for(i=0; i<a->nsubsym; i++){
if( a->subsym[i]!=b->subsym[i] ) return 0;
}
return 1;
}
/* Construct all successor states to the given state. A "successor"
** state is any state which can be reached by a shift action.
*/
PRIVATE void buildshifts(struct lemon *lemp, struct state *stp)
{
struct config *cfp; /* For looping thru the config closure of "stp" */
struct config *bcfp; /* For the inner loop on config closure of "stp" */
struct config *newcfg; /* */
struct symbol *sp; /* Symbol following the dot in configuration "cfp" */
struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */
struct state *newstp; /* A pointer to a successor state */
/* Each configuration becomes complete after it contibutes to a successor
** state. Initially, all configurations are incomplete */
for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
/* Loop through all configurations of the state "stp" */
for(cfp=stp->cfp; cfp; cfp=cfp->next){
if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */
if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */
Configlist_reset(); /* Reset the new config set */
sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */
/* For every configuration in the state "stp" which has the symbol "sp"
** following its dot, add the same configuration to the basis set under
** construction but with the dot shifted one symbol to the right. */
for(bcfp=cfp; bcfp; bcfp=bcfp->next){
if( bcfp->status==COMPLETE ) continue; /* Already used */
if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */
if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */
bcfp->status = COMPLETE; /* Mark this config as used */
newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
Plink_add(&newcfg->bplp,bcfp);
}
/* Get a pointer to the state described by the basis configuration set
** constructed in the preceding loop */
newstp = getstate(lemp);
/* The state "newstp" is reached from the state "stp" by a shift action
** on the symbol "sp" */
if( sp->type==MULTITERMINAL ){
int i;
for(i=0; i<sp->nsubsym; i++){
Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp);
}
}else{
Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
}
}
}
/*
** Construct the propagation links
*/
void FindLinks(struct lemon *lemp)
{
int i;
struct config *cfp, *other;
struct state *stp;
struct plink *plp;
/* Housekeeping detail:
** Add to every propagate link a pointer back to the state to
** which the link is attached. */
for(i=0; i<lemp->nstate; i++){
stp = lemp->sorted[i];
for(cfp=stp->cfp; cfp; cfp=cfp->next){
cfp->stp = stp;
}
}
/* Convert all backlinks into forward links. Only the forward
** links are used in the follow-set computation. */
for(i=0; i<lemp->nstate; i++){
stp = lemp->sorted[i];
for(cfp=stp->cfp; cfp; cfp=cfp->next){
for(plp=cfp->bplp; plp; plp=plp->next){
other = plp->cfp;
Plink_add(&other->fplp,cfp);
}
}
}
}
/* Compute all followsets.
**
** A followset is the set of all symbols which can come immediately
** after a configuration.
*/
void FindFollowSets(struct lemon *lemp)
{
int i;
struct config *cfp;
struct plink *plp;
int progress;
int change;
for(i=0; i<lemp->nstate; i++){
for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
cfp->status = INCOMPLETE;
}
}
do{
progress = 0;
for(i=0; i<lemp->nstate; i++){
for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
if( cfp->status==COMPLETE ) continue;
for(plp=cfp->fplp; plp; plp=plp->next){
change = SetUnion(plp->cfp->fws,cfp->fws);
if( change ){
plp->cfp->status = INCOMPLETE;
progress = 1;
}
}
cfp->status = COMPLETE;
}
}
}while( progress );
}
static int resolve_conflict(struct action *,struct action *);
/* Compute the reduce actions, and resolve conflicts.
*/
void FindActions(struct lemon *lemp)
{
int i,j;
struct config *cfp;
struct state *stp;
struct symbol *sp;
struct rule *rp;
/* Add all of the reduce actions
** A reduce action is added for each element of the followset of
** a configuration which has its dot at the extreme right.
*/
for(i=0; i<lemp->nstate; i++){ /* Loop over all states */
stp = lemp->sorted[i];
for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */
if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */
for(j=0; j<lemp->nterminal; j++){
if( SetFind(cfp->fws,j) ){
/* Add a reduce action to the state "stp" which will reduce by the
** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
}
}
}
}
}
/* Add the accepting token */
if( lemp->start ){
sp = Symbol_find(lemp->start);
if( sp==0 ) sp = lemp->startRule->lhs;
}else{
sp = lemp->startRule->lhs;
}
/* Add to the first state (which is always the starting state of the
** finite state machine) an action to ACCEPT if the lookahead is the
** start nonterminal. */
Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
/* Resolve conflicts */
for(i=0; i<lemp->nstate; i++){
struct action *ap, *nap;
stp = lemp->sorted[i];
/* assert( stp->ap ); */
stp->ap = Action_sort(stp->ap);
for(ap=stp->ap; ap && ap->next; ap=ap->next){
for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
/* The two actions "ap" and "nap" have the same lookahead.
** Figure out which one should be used */
lemp->nconflict += resolve_conflict(ap,nap);
}
}
}
/* Report an error for each rule that can never be reduced. */
for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE;
for(i=0; i<lemp->nstate; i++){
struct action *ap;
for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE;
}
}
for(rp=lemp->rule; rp; rp=rp->next){
if( rp->canReduce ) continue;
ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
lemp->errorcnt++;
}
}
/* Resolve a conflict between the two given actions. If the
** conflict can't be resolved, return non-zero.
**
** NO LONGER TRUE:
** To resolve a conflict, first look to see if either action
** is on an error rule. In that case, take the action which
** is not associated with the error rule. If neither or both
** actions are associated with an error rule, then try to
** use precedence to resolve the conflict.
**
** If either action is a SHIFT, then it must be apx. This
** function won't work if apx->type==REDUCE and apy->type==SHIFT.
*/
static int resolve_conflict(
struct action *apx,
struct action *apy
){
struct symbol *spx, *spy;
int errcnt = 0;
assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */
if( apx->type==SHIFT && apy->type==SHIFT ){
apy->type = SSCONFLICT;
errcnt++;
}
if( apx->type==SHIFT && apy->type==REDUCE ){
spx = apx->sp;
spy = apy->x.rp->precsym;
if( spy==0 || spx->prec<0 || spy->prec<0 ){
/* Not enough precedence information. */
apy->type = SRCONFLICT;
errcnt++;
}else if( spx->prec>spy->prec ){ /* higher precedence wins */
apy->type = RD_RESOLVED;
}else if( spx->prec<spy->prec ){
apx->type = SH_RESOLVED;
}else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
apy->type = RD_RESOLVED; /* associativity */
}else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */
apx->type = SH_RESOLVED;
}else{
assert( spx->prec==spy->prec && spx->assoc==NONE );
apx->type = ERROR;
}
}else if( apx->type==REDUCE && apy->type==REDUCE ){
spx = apx->x.rp->precsym;
spy = apy->x.rp->precsym;
if( spx==0 || spy==0 || spx->prec<0 ||
spy->prec<0 || spx->prec==spy->prec ){
apy->type = RRCONFLICT;
errcnt++;
}else if( spx->prec>spy->prec ){
apy->type = RD_RESOLVED;
}else if( spx->prec<spy->prec ){
apx->type = RD_RESOLVED;
}
}else{
assert(
apx->type==SH_RESOLVED ||
apx->type==RD_RESOLVED ||
apx->type==SSCONFLICT ||
apx->type==SRCONFLICT ||
apx->type==RRCONFLICT ||
apy->type==SH_RESOLVED ||
apy->type==RD_RESOLVED ||
apy->type==SSCONFLICT ||
apy->type==SRCONFLICT ||
apy->type==RRCONFLICT
);
/* The REDUCE/SHIFT case cannot happen because SHIFTs come before
** REDUCEs on the list. If we reach this point it must be because
** the parser conflict had already been resolved. */
}
return errcnt;
}
/********************* From the file "configlist.c" *************************/
/*
** Routines to processing a configuration list and building a state
** in the LEMON parser generator.
*/
static struct config *freelist = 0; /* List of free configurations */
static struct config *current = 0; /* Top of list of configurations */
static struct config **currentend = 0; /* Last on list of configs */
static struct config *basis = 0; /* Top of list of basis configs */
static struct config **basisend = 0; /* End of list of basis configs */
/* Return a pointer to a new configuration */
PRIVATE struct config *newconfig(void){
struct config *newcfg;
if( freelist==0 ){
int i;
int amt = 3;
freelist = (struct config *)calloc( amt, sizeof(struct config) );
if( freelist==0 ){
fprintf(stderr,"Unable to allocate memory for a new configuration.");
exit(1);
}
for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
freelist[amt-1].next = 0;
}
newcfg = freelist;
freelist = freelist->next;
return newcfg;
}
/* The configuration "old" is no longer used */
PRIVATE void deleteconfig(struct config *old)
{
old->next = freelist;
freelist = old;
}
/* Initialized the configuration list builder */
void Configlist_init(void){
current = 0;
currentend = &current;
basis = 0;
basisend = &basis;
Configtable_init();
return;
}
/* Initialized the configuration list builder */
void Configlist_reset(void){
current = 0;
currentend = &current;
basis = 0;
basisend = &basis;
Configtable_clear(0);
return;
}
/* Add another configuration to the configuration list */
struct config *Configlist_add(
struct rule *rp, /* The rule */
int dot /* Index into the RHS of the rule where the dot goes */
){
struct config *cfp, model;
assert( currentend!=0 );
model.rp = rp;
model.dot = dot;
cfp = Configtable_find(&model);
if( cfp==0 ){
cfp = newconfig();
cfp->rp = rp;
cfp->dot = dot;
cfp->fws = SetNew();
cfp->stp = 0;
cfp->fplp = cfp->bplp = 0;
cfp->next = 0;
cfp->bp = 0;
*currentend = cfp;
currentend = &cfp->next;
Configtable_insert(cfp);
}
return cfp;
}
/* Add a basis configuration to the configuration list */
struct config *Configlist_addbasis(struct rule *rp, int dot)
{
struct config *cfp, model;
assert( basisend!=0 );
assert( currentend!=0 );
model.rp = rp;
model.dot = dot;
cfp = Configtable_find(&model);
if( cfp==0 ){
cfp = newconfig();
cfp->rp = rp;
cfp->dot = dot;
cfp->fws = SetNew();
cfp->stp = 0;
cfp->fplp = cfp->bplp = 0;
cfp->next = 0;
cfp->bp = 0;
*currentend = cfp;
currentend = &cfp->next;
*basisend = cfp;
basisend = &cfp->bp;
Configtable_insert(cfp);
}
return cfp;
}
/* Compute the closure of the configuration list */
void Configlist_closure(struct lemon *lemp)
{
struct config *cfp, *newcfp;
struct rule *rp, *newrp;
struct symbol *sp, *xsp;
int i, dot;
assert( currentend!=0 );
for(cfp=current; cfp; cfp=cfp->next){
rp = cfp->rp;
dot = cfp->dot;
if( dot>=rp->nrhs ) continue;
sp = rp->rhs[dot];
if( sp->type==NONTERMINAL ){
if( sp->rule==0 && sp!=lemp->errsym ){
ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
sp->name);
lemp->errorcnt++;
}
for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
newcfp = Configlist_add(newrp,0);
for(i=dot+1; i<rp->nrhs; i++){
xsp = rp->rhs[i];
if( xsp->type==TERMINAL ){
SetAdd(newcfp->fws,xsp->index);
break;
}else if( xsp->type==MULTITERMINAL ){
int k;
for(k=0; k<xsp->nsubsym; k++){
SetAdd(newcfp->fws, xsp->subsym[k]->index);
}
break;
}else{
SetUnion(newcfp->fws,xsp->firstset);
if( xsp->lambda==LEMON_FALSE ) break;
}
}
if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
}
}
}
return;
}
/* Sort the configuration list */
void Configlist_sort(void){
current = (struct config*)msort((char*)current,(char**)&(current->next),
Configcmp);
currentend = 0;
return;
}
/* Sort the basis configuration list */
void Configlist_sortbasis(void){
basis = (struct config*)msort((char*)current,(char**)&(current->bp),
Configcmp);
basisend = 0;
return;
}
/* Return a pointer to the head of the configuration list and
** reset the list */
struct config *Configlist_return(void){
struct config *old;
old = current;
current = 0;
currentend = 0;
return old;
}
/* Return a pointer to the head of the configuration list and
** reset the list */
struct config *Configlist_basis(void){
struct config *old;
old = basis;
basis = 0;
basisend = 0;
return old;
}
/* Free all elements of the given configuration list */
void Configlist_eat(struct config *cfp)
{
struct config *nextcfp;
for(; cfp; cfp=nextcfp){
nextcfp = cfp->next;
assert( cfp->fplp==0 );
assert( cfp->bplp==0 );
if( cfp->fws ) SetFree(cfp->fws);
deleteconfig(cfp);
}
return;
}
/***************** From the file "error.c" *********************************/
/*
** Code for printing error message.
*/
void ErrorMsg(const char *filename, int lineno, const char *format, ...){
va_list ap;
fprintf(stderr, "%s:%d: ", filename, lineno);
va_start(ap, format);
vfprintf(stderr,format,ap);
va_end(ap);
fprintf(stderr, "\n");
}
/**************** From the file "main.c" ************************************/
/*
** Main program file for the LEMON parser generator.
*/
/* Report an out-of-memory condition and abort. This function
** is used mostly by the "MemoryCheck" macro in struct.h
*/
void memory_error(void){
fprintf(stderr,"Out of memory. Aborting...\n");
exit(1);
}
static int nDefine = 0; /* Number of -D options on the command line */
static char **azDefine = 0; /* Name of the -D macros */
/* This routine is called with the argument to each -D command-line option.
** Add the macro defined to the azDefine array.
*/
static void handle_D_option(char *z){
char **paz;
nDefine++;
azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine);
if( azDefine==0 ){
fprintf(stderr,"out of memory\n");
exit(1);
}
paz = &azDefine[nDefine-1];
*paz = (char *) malloc( lemonStrlen(z)+1 );
if( *paz==0 ){
fprintf(stderr,"out of memory\n");
exit(1);
}
lemon_strcpy(*paz, z);
for(z=*paz; *z && *z!='='; z++){}
*z = 0;
}
/* Rember the name of the output directory
*/
static char *outputDir = NULL;
static void handle_d_option(char *z){
outputDir = (char *) malloc( lemonStrlen(z)+1 );
if( outputDir==0 ){
fprintf(stderr,"out of memory\n");
exit(1);
}
lemon_strcpy(outputDir, z);
}
static char *user_templatename = NULL;
static void handle_T_option(char *z){
user_templatename = (char *) malloc( lemonStrlen(z)+1 );
if( user_templatename==0 ){
memory_error();
}
lemon_strcpy(user_templatename, z);
}
/* Merge together to lists of rules ordered by rule.iRule */
static struct rule *Rule_merge(struct rule *pA, struct rule *pB){
struct rule *pFirst = 0;
struct rule **ppPrev = &pFirst;
while( pA && pB ){
if( pA->iRule<pB->iRule ){
*ppPrev = pA;
ppPrev = &pA->next;
pA = pA->next;
}else{
*ppPrev = pB;
ppPrev = &pB->next;
pB = pB->next;
}
}
if( pA ){
*ppPrev = pA;
}else{
*ppPrev = pB;
}
return pFirst;
}
/*
** Sort a list of rules in order of increasing iRule value
*/
static struct rule *Rule_sort(struct rule *rp){
int i;
struct rule *pNext;
struct rule *x[32];
memset(x, 0, sizeof(x));
while( rp ){
pNext = rp->next;
rp->next = 0;
for(i=0; i<sizeof(x)/sizeof(x[0]) && x[i]; i++){
rp = Rule_merge(x[i], rp);
x[i] = 0;
}
x[i] = rp;
rp = pNext;
}
rp = 0;
for(i=0; i<sizeof(x)/sizeof(x[0]); i++){
rp = Rule_merge(x[i], rp);
}
return rp;
}
/* forward reference */
static const char *minimum_size_type(int lwr, int upr, int *pnByte);
/* Print a single line of the "Parser Stats" output
*/
static void stats_line(const char *zLabel, int iValue){
int nLabel = lemonStrlen(zLabel);
printf(" %s%.*s %5d\n", zLabel,
35-nLabel, "................................",
iValue);
}
/* The main program. Parse the command line and do it... */
int main(int argc, char **argv)
{
static int version = 0;
static int rpflag = 0;
static int basisflag = 0;
static int compress = 0;
static int quiet = 0;
static int statistics = 0;
static int mhflag = 0;
static int nolinenosflag = 0;
static int noResort = 0;
static struct s_options options[] = {
{OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
{OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
{OPT_FSTR, "d", (char*)&handle_d_option, "Output directory. Default '.'"},
{OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."},
{OPT_FSTR, "f", 0, "Ignored. (Placeholder for -f compiler options.)"},
{OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
{OPT_FSTR, "I", 0, "Ignored. (Placeholder for '-I' compiler options.)"},
{OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."},
{OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."},
{OPT_FSTR, "O", 0, "Ignored. (Placeholder for '-O' compiler options.)"},
{OPT_FLAG, "p", (char*)&showPrecedenceConflict,
"Show conflicts resolved by precedence rules"},
{OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
{OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"},
{OPT_FLAG, "s", (char*)&statistics,
"Print parser stats to standard output."},
{OPT_FLAG, "x", (char*)&version, "Print the version number."},
{OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."},
{OPT_FSTR, "W", 0, "Ignored. (Placeholder for '-W' compiler options.)"},
{OPT_FLAG,0,0,0}
};
int i;
int exitcode;
struct lemon lem;
struct rule *rp;
OptInit(argv,options,stderr);
if( version ){
printf("Lemon version 1.0\n");
exit(0);
}
if( OptNArgs()!=1 ){
fprintf(stderr,"Exactly one filename argument is required.\n");
exit(1);
}
memset(&lem, 0, sizeof(lem));
lem.errorcnt = 0;
/* Initialize the machine */
Strsafe_init();
Symbol_init();
State_init();
lem.argv0 = argv[0];
lem.filename = OptArg(0);
lem.basisflag = basisflag;
lem.nolinenosflag = nolinenosflag;
Symbol_new("$");
/* Parse the input file */
Parse(&lem);
if( lem.errorcnt ) exit(lem.errorcnt);
if( lem.nrule==0 ){
fprintf(stderr,"Empty grammar.\n");
exit(1);
}
lem.errsym = Symbol_find("error");
/* Count and index the symbols of the grammar */
Symbol_new("{default}");
lem.nsymbol = Symbol_count();
lem.symbols = Symbol_arrayof();
for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp);
for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
while( lem.symbols[i-1]->type==MULTITERMINAL ){ i--; }
assert( strcmp(lem.symbols[i-1]->name,"{default}")==0 );
lem.nsymbol = i - 1;
for(i=1; ISUPPER(lem.symbols[i]->name[0]); i++);
lem.nterminal = i;
/* Assign sequential rule numbers. Start with 0. Put rules that have no
** reduce action C-code associated with them last, so that the switch()
** statement that selects reduction actions will have a smaller jump table.
*/
for(i=0, rp=lem.rule; rp; rp=rp->next){
rp->iRule = rp->code ? i++ : -1;
}
for(rp=lem.rule; rp; rp=rp->next){
if( rp->iRule<0 ) rp->iRule = i++;
}
lem.startRule = lem.rule;
lem.rule = Rule_sort(lem.rule);
/* Generate a reprint of the grammar, if requested on the command line */
if( rpflag ){
Reprint(&lem);
}else{
/* Initialize the size for all follow and first sets */
SetSize(lem.nterminal+1);
/* Find the precedence for every production rule (that has one) */
FindRulePrecedences(&lem);
/* Compute the lambda-nonterminals and the first-sets for every
** nonterminal */
FindFirstSets(&lem);
/* Compute all LR(0) states. Also record follow-set propagation
** links so that the follow-set can be computed later */
lem.nstate = 0;
FindStates(&lem);
lem.sorted = State_arrayof();
/* Tie up loose ends on the propagation links */
FindLinks(&lem);
/* Compute the follow set of every reducible configuration */
FindFollowSets(&lem);
/* Compute the action tables */
FindActions(&lem);
/* Compress the action tables */
if( compress==0 ) CompressTables(&lem);
/* Reorder and renumber the states so that states with fewer choices
** occur at the end. This is an optimization that helps make the
** generated parser tables smaller. */
if( noResort==0 ) ResortStates(&lem);
/* Generate a report of the parser generated. (the "y.output" file) */
if( !quiet ) ReportOutput(&lem);
/* Generate the source code for the parser */
ReportTable(&lem, mhflag);
/* Produce a header file for use by the scanner. (This step is
** omitted if the "-m" option is used because makeheaders will
** generate the file for us.) */
if( !mhflag ) ReportHeader(&lem);
}
if( statistics ){
printf("Parser statistics:\n");
stats_line("terminal symbols", lem.nterminal);
stats_line("non-terminal symbols", lem.nsymbol - lem.nterminal);
stats_line("total symbols", lem.nsymbol);
stats_line("rules", lem.nrule);
stats_line("states", lem.nxstate);
stats_line("conflicts", lem.nconflict);
stats_line("action table entries", lem.nactiontab);
stats_line("lookahead table entries", lem.nlookaheadtab);
stats_line("total table size (bytes)", lem.tablesize);
}
if( lem.nconflict > 0 ){
fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
}
/* return 0 on success, 1 on failure. */
exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0;
exit(exitcode);
return (exitcode);
}
/******************** From the file "msort.c" *******************************/
/*
** A generic merge-sort program.
**
** USAGE:
** Let "ptr" be a pointer to some structure which is at the head of
** a null-terminated list. Then to sort the list call:
**
** ptr = msort(ptr,&(ptr->next),cmpfnc);
**
** In the above, "cmpfnc" is a pointer to a function which compares
** two instances of the structure and returns an integer, as in
** strcmp. The second argument is a pointer to the pointer to the
** second element of the linked list. This address is used to compute
** the offset to the "next" field within the structure. The offset to
** the "next" field must be constant for all structures in the list.
**
** The function returns a new pointer which is the head of the list
** after sorting.
**
** ALGORITHM:
** Merge-sort.
*/
/*
** Return a pointer to the next structure in the linked list.
*/
#define NEXT(A) (*(char**)(((char*)A)+offset))
/*
** Inputs:
** a: A sorted, null-terminated linked list. (May be null).
** b: A sorted, null-terminated linked list. (May be null).
** cmp: A pointer to the comparison function.
** offset: Offset in the structure to the "next" field.
**
** Return Value:
** A pointer to the head of a sorted list containing the elements
** of both a and b.
**
** Side effects:
** The "next" pointers for elements in the lists a and b are
** changed.
*/
static char *merge(
char *a,
char *b,
int (*cmp)(const char*,const char*),
int offset
){
char *ptr, *head;
if( a==0 ){
head = b;
}else if( b==0 ){
head = a;
}else{
if( (*cmp)(a,b)<=0 ){
ptr = a;
a = NEXT(a);
}else{
ptr = b;
b = NEXT(b);
}
head = ptr;
while( a && b ){
if( (*cmp)(a,b)<=0 ){
NEXT(ptr) = a;
ptr = a;
a = NEXT(a);
}else{
NEXT(ptr) = b;
ptr = b;
b = NEXT(b);
}
}
if( a ) NEXT(ptr) = a;
else NEXT(ptr) = b;
}
return head;
}
/*
** Inputs:
** list: Pointer to a singly-linked list of structures.
** next: Pointer to pointer to the second element of the list.
** cmp: A comparison function.
**
** Return Value:
** A pointer to the head of a sorted list containing the elements
** orginally in list.
**
** Side effects:
** The "next" pointers for elements in list are changed.
*/
#define LISTSIZE 30
static char *msort(
char *list,
char **next,
int (*cmp)(const char*,const char*)
){
unsigned long offset;
char *ep;
char *set[LISTSIZE];
int i;
offset = (unsigned long)((char*)next - (char*)list);
for(i=0; i<LISTSIZE; i++) set[i] = 0;
while( list ){
ep = list;
list = NEXT(list);
NEXT(ep) = 0;
for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
ep = merge(ep,set[i],cmp,offset);
set[i] = 0;
}
set[i] = ep;
}
ep = 0;
for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset);
return ep;
}
/************************ From the file "option.c" **************************/
static char **argv;
static struct s_options *op;
static FILE *errstream;
#define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
/*
** Print the command line with a carrot pointing to the k-th character
** of the n-th field.
*/
static void errline(int n, int k, FILE *err)
{
int spcnt, i;
if( argv[0] ) fprintf(err,"%s",argv[0]);
spcnt = lemonStrlen(argv[0]) + 1;
for(i=1; i<n && argv[i]; i++){
fprintf(err," %s",argv[i]);
spcnt += lemonStrlen(argv[i])+1;
}
spcnt += k;
for(; argv[i]; i++) fprintf(err," %s",argv[i]);
if( spcnt<20 ){
fprintf(err,"\n%*s^-- here\n",spcnt,"");
}else{
fprintf(err,"\n%*shere --^\n",spcnt-7,"");
}
}
/*
** Return the index of the N-th non-switch argument. Return -1
** if N is out of range.
*/
static int argindex(int n)
{
int i;
int dashdash = 0;
if( argv!=0 && *argv!=0 ){
for(i=1; argv[i]; i++){
if( dashdash || !ISOPT(argv[i]) ){
if( n==0 ) return i;
n--;
}
if( strcmp(argv[i],"--")==0 ) dashdash = 1;
}
}
return -1;
}
static char emsg[] = "Command line syntax error: ";
/*
** Process a flag command line argument.
*/
static int handleflags(int i, FILE *err)
{
int v;
int errcnt = 0;
int j;
for(j=0; op[j].label; j++){
if( strncmp(&argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break;
}
v = argv[i][0]=='-' ? 1 : 0;
if( op[j].label==0 ){
if( err ){
fprintf(err,"%sundefined option.\n",emsg);
errline(i,1,err);
}
errcnt++;
}else if( op[j].arg==0 ){
/* Ignore this option */
}else if( op[j].type==OPT_FLAG ){
*((int*)op[j].arg) = v;
}else if( op[j].type==OPT_FFLAG ){
(*(void(*)(int))(op[j].arg))(v);
}else if( op[j].type==OPT_FSTR ){
(*(void(*)(char *))(op[j].arg))(&argv[i][2]);
}else{
if( err ){
fprintf(err,"%smissing argument on switch.\n",emsg);
errline(i,1,err);
}
errcnt++;
}
return errcnt;
}
/*
** Process a command line switch which has an argument.
*/
static int handleswitch(int i, FILE *err)
{
int lv = 0;
double dv = 0.0;
char *sv = 0, *end;
char *cp;
int j;
int errcnt = 0;
cp = strchr(argv[i],'=');
assert( cp!=0 );
*cp = 0;
for(j=0; op[j].label; j++){
if( strcmp(argv[i],op[j].label)==0 ) break;
}
*cp = '=';
if( op[j].label==0 ){
if( err ){
fprintf(err,"%sundefined option.\n",emsg);
errline(i,0,err);
}
errcnt++;
}else{
cp++;
switch( op[j].type ){
case OPT_FLAG:
case OPT_FFLAG:
if( err ){
fprintf(err,"%soption requires an argument.\n",emsg);
errline(i,0,err);
}
errcnt++;
break;
case OPT_DBL:
case OPT_FDBL:
dv = strtod(cp,&end);
if( *end ){
if( err ){
fprintf(err,
"%sillegal character in floating-point argument.\n",emsg);
errline(i,(int)((char*)end-(char*)argv[i]),err);
}
errcnt++;
}
break;
case OPT_INT:
case OPT_FINT:
lv = strtol(cp,&end,0);
if( *end ){
if( err ){
fprintf(err,"%sillegal character in integer argument.\n",emsg);
errline(i,(int)((char*)end-(char*)argv[i]),err);
}
errcnt++;
}
break;
case OPT_STR:
case OPT_FSTR:
sv = cp;
break;
}
switch( op[j].type ){
case OPT_FLAG:
case OPT_FFLAG:
break;
case OPT_DBL:
*(double*)(op[j].arg) = dv;
break;
case OPT_FDBL:
(*(void(*)(double))(op[j].arg))(dv);
break;
case OPT_INT:
*(int*)(op[j].arg) = lv;
break;
case OPT_FINT:
(*(void(*)(int))(op[j].arg))((int)lv);
break;
case OPT_STR:
*(char**)(op[j].arg) = sv;
break;
case OPT_FSTR:
(*(void(*)(char *))(op[j].arg))(sv);
break;
}
}
return errcnt;
}
int OptInit(char **a, struct s_options *o, FILE *err)
{
int errcnt = 0;
argv = a;
op = o;
errstream = err;
if( argv && *argv && op ){
int i;
for(i=1; argv[i]; i++){
if( argv[i][0]=='+' || argv[i][0]=='-' ){
errcnt += handleflags(i,err);
}else if( strchr(argv[i],'=') ){
errcnt += handleswitch(i,err);
}
}
}
if( errcnt>0 ){
fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
OptPrint();
exit(1);
}
return 0;
}
int OptNArgs(void){
int cnt = 0;
int dashdash = 0;
int i;
if( argv!=0 && argv[0]!=0 ){
for(i=1; argv[i]; i++){
if( dashdash || !ISOPT(argv[i]) ) cnt++;
if( strcmp(argv[i],"--")==0 ) dashdash = 1;
}
}
return cnt;
}
char *OptArg(int n)
{
int i;
i = argindex(n);
return i>=0 ? argv[i] : 0;
}
void OptErr(int n)
{
int i;
i = argindex(n);
if( i>=0 ) errline(i,0,errstream);
}
void OptPrint(void){
int i;
int max, len;
max = 0;
for(i=0; op[i].label; i++){
len = lemonStrlen(op[i].label) + 1;
switch( op[i].type ){
case OPT_FLAG:
case OPT_FFLAG:
break;
case OPT_INT:
case OPT_FINT:
len += 9; /* length of "<integer>" */
break;
case OPT_DBL:
case OPT_FDBL:
len += 6; /* length of "<real>" */
break;
case OPT_STR:
case OPT_FSTR:
len += 8; /* length of "<string>" */
break;
}
if( len>max ) max = len;
}
for(i=0; op[i].label; i++){
switch( op[i].type ){
case OPT_FLAG:
case OPT_FFLAG:
fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message);
break;
case OPT_INT:
case OPT_FINT:
fprintf(errstream," -%s<integer>%*s %s\n",op[i].label,
(int)(max-lemonStrlen(op[i].label)-9),"",op[i].message);
break;
case OPT_DBL:
case OPT_FDBL:
fprintf(errstream," -%s<real>%*s %s\n",op[i].label,
(int)(max-lemonStrlen(op[i].label)-6),"",op[i].message);
break;
case OPT_STR:
case OPT_FSTR:
fprintf(errstream," -%s<string>%*s %s\n",op[i].label,
(int)(max-lemonStrlen(op[i].label)-8),"",op[i].message);
break;
}
}
}
/*********************** From the file "parse.c" ****************************/
/*
** Input file parser for the LEMON parser generator.
*/
/* The state of the parser */
enum e_state {
INITIALIZE,
WAITING_FOR_DECL_OR_RULE,
WAITING_FOR_DECL_KEYWORD,
WAITING_FOR_DECL_ARG,
WAITING_FOR_PRECEDENCE_SYMBOL,
WAITING_FOR_ARROW,
IN_RHS,
LHS_ALIAS_1,
LHS_ALIAS_2,
LHS_ALIAS_3,
RHS_ALIAS_1,
RHS_ALIAS_2,
PRECEDENCE_MARK_1,
PRECEDENCE_MARK_2,
RESYNC_AFTER_RULE_ERROR,
RESYNC_AFTER_DECL_ERROR,
WAITING_FOR_DESTRUCTOR_SYMBOL,
WAITING_FOR_DATATYPE_SYMBOL,
WAITING_FOR_FALLBACK_ID,
WAITING_FOR_WILDCARD_ID,
WAITING_FOR_CLASS_ID,
WAITING_FOR_CLASS_TOKEN,
WAITING_FOR_TOKEN_NAME
};
struct pstate {
char *filename; /* Name of the input file */
int tokenlineno; /* Linenumber at which current token starts */
int errorcnt; /* Number of errors so far */
char *tokenstart; /* Text of current token */
struct lemon *gp; /* Global state vector */
enum e_state state; /* The state of the parser */
struct symbol *fallback; /* The fallback token */
struct symbol *tkclass; /* Token class symbol */
struct symbol *lhs; /* Left-hand side of current rule */
const char *lhsalias; /* Alias for the LHS */
int nrhs; /* Number of right-hand side symbols seen */
struct symbol *rhs[MAXRHS]; /* RHS symbols */
const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
struct rule *prevrule; /* Previous rule parsed */
const char *declkeyword; /* Keyword of a declaration */
char **declargslot; /* Where the declaration argument should be put */
int insertLineMacro; /* Add #line before declaration insert */
int *decllinenoslot; /* Where to write declaration line number */
enum e_assoc declassoc; /* Assign this association to decl arguments */
int preccounter; /* Assign this precedence to decl arguments */
struct rule *firstrule; /* Pointer to first rule in the grammar */
struct rule *lastrule; /* Pointer to the most recently parsed rule */
};
/* Parse a single token */
static void parseonetoken(struct pstate *psp)
{
const char *x;
x = Strsafe(psp->tokenstart); /* Save the token permanently */
#if 0
printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
x,psp->state);
#endif
switch( psp->state ){
case INITIALIZE:
psp->prevrule = 0;
psp->preccounter = 0;
psp->firstrule = psp->lastrule = 0;
psp->gp->nrule = 0;
/* Fall thru to next case */
case WAITING_FOR_DECL_OR_RULE:
if( x[0]=='%' ){
psp->state = WAITING_FOR_DECL_KEYWORD;
}else if( ISLOWER(x[0]) ){
psp->lhs = Symbol_new(x);
psp->nrhs = 0;
psp->lhsalias = 0;
psp->state = WAITING_FOR_ARROW;
}else if( x[0]=='{' ){
if( psp->prevrule==0 ){
ErrorMsg(psp->filename,psp->tokenlineno,
"There is no prior rule upon which to attach the code \
fragment which begins on this line.");
psp->errorcnt++;
}else if( psp->prevrule->code!=0 ){
ErrorMsg(psp->filename,psp->tokenlineno,
"Code fragment beginning on this line is not the first \
to follow the previous rule.");
psp->errorcnt++;
}else{
psp->prevrule->line = psp->tokenlineno;
psp->prevrule->code = &x[1];
psp->prevrule->noCode = 0;
}
}else if( x[0]=='[' ){
psp->state = PRECEDENCE_MARK_1;
}else{
ErrorMsg(psp->filename,psp->tokenlineno,
"Token \"%s\" should be either \"%%\" or a nonterminal name.",
x);
psp->errorcnt++;
}
break;
case PRECEDENCE_MARK_1:
if( !ISUPPER(x[0]) ){
ErrorMsg(psp->filename,psp->tokenlineno,
"The precedence symbol must be a terminal.");
psp->errorcnt++;
}else if( psp->prevrule==0 ){
ErrorMsg(psp->filename,psp->tokenlineno,
"There is no prior rule to assign precedence \"[%s]\".",x);
psp->errorcnt++;
}else if( psp->prevrule->precsym!=0 ){
ErrorMsg(psp->filename,psp->tokenlineno,
"Precedence mark on this line is not the first \
to follow the previous rule.");
psp->errorcnt++;
}else{
psp->prevrule->precsym = Symbol_new(x);
}
psp->state = PRECEDENCE_MARK_2;
break;
case PRECEDENCE_MARK_2:
if( x[0]!=']' ){
ErrorMsg(psp->filename,psp->tokenlineno,
"Missing \"]\" on precedence mark.");
psp->errorcnt++;
}
psp->state = WAITING_FOR_DECL_OR_RULE;
break;
case WAITING_FOR_ARROW:
if( x[0]==':' && x[1]==':' && x[2]=='=' ){
psp->state = IN_RHS;
}else if( x[0]=='(' ){
psp->state = LHS_ALIAS_1;
}else{
ErrorMsg(psp->filename,psp->tokenlineno,
"Expected to see a \":\" following the LHS symbol \"%s\".",
psp->lhs->name);
psp->errorcnt++;
psp->state = RESYNC_AFTER_RULE_ERROR;
}
break;
case LHS_ALIAS_1:
if( ISALPHA(x[0]) ){
psp->lhsalias = x;
psp->state = LHS_ALIAS_2;
}else{
ErrorMsg(psp->filename,psp->tokenlineno,
"\"%s\" is not a valid alias for the LHS \"%s\"\n",
x,psp->lhs->name);
psp->errorcnt++;
psp->state = RESYNC_AFTER_RULE_ERROR;
}
break;
case LHS_ALIAS_2:
if( x[0]==')' ){
psp->state = LHS_ALIAS_3;
}else{
ErrorMsg(psp->filename,psp->tokenlineno,
"Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
psp->errorcnt++;
psp->state = RESYNC_AFTER_RULE_ERROR;
}
break;
case LHS_ALIAS_3:
if( x[0]==':' && x[1]==':' && x[2]=='=' ){
psp->state = IN_RHS;
}else{
ErrorMsg(psp->filename,psp->tokenlineno,
"Missing \"->\" following: \"%s(%s)\".",
psp->lhs->name,psp->lhsalias);
psp->errorcnt++;
psp->state = RESYNC_AFTER_RULE_ERROR;
}
break;
case IN_RHS:
if( x[0]=='.' ){
struct rule *rp;
rp = (struct rule *)calloc( sizeof(struct rule) +
sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
if( rp==0 ){
ErrorMsg(psp->filename,psp->tokenlineno,
"Can't allocate enough memory for this rule.");
psp->errorcnt++;
psp->prevrule = 0;
}else{
int i;
rp->ruleline = psp->tokenlineno;
rp->rhs = (struct symbol**)&rp[1];
rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]);
for(i=0; i<psp->nrhs; i++){
rp->rhs[i] = psp->rhs[i];
rp->rhsalias[i] = psp->alias[i];
if( rp->rhsalias[i]!=0 ){ rp->rhs[i]->bContent = 1; }
}
rp->lhs = psp->lhs;
rp->lhsalias = psp->lhsalias;
rp->nrhs = psp->nrhs;
rp->code = 0;
rp->noCode = 1;
rp->precsym = 0;
rp->index = psp->gp->nrule++;
rp->nextlhs = rp->lhs->rule;
rp->lhs->rule = rp;
rp->next = 0;
if( psp->firstrule==0 ){
psp->firstrule = psp->lastrule = rp;
}else{
psp->lastrule->next = rp;
psp->lastrule = rp;
}
psp->prevrule = rp;
}
psp->state = WAITING_FOR_DECL_OR_RULE;
}else if( ISALPHA(x[0]) ){
if( psp->nrhs>=MAXRHS ){
ErrorMsg(psp->filename,psp->tokenlineno,
"Too many symbols on RHS of rule beginning at \"%s\".",
x);
psp->errorcnt++;
psp->state = RESYNC_AFTER_RULE_ERROR;
}else{
psp->rhs[psp->nrhs] = Symbol_new(x);
psp->alias[psp->nrhs] = 0;
psp->nrhs++;
}
}else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){
struct symbol *msp = psp->rhs[psp->nrhs-1];
if( msp->type!=MULTITERMINAL ){
struct symbol *origsp = msp;
msp = (struct symbol *) calloc(1,sizeof(*msp));
memset(msp, 0, sizeof(*msp));
msp->type = MULTITERMINAL;
msp->nsubsym = 1;
msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*));
msp->subsym[0] = origsp;
msp->name = origsp->name;
psp->rhs[psp->nrhs-1] = msp;
}
msp->nsubsym++;
msp->subsym = (struct symbol **) realloc(msp->subsym,
sizeof(struct symbol*)*msp->nsubsym);
msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]);
if( ISLOWER(x[1]) || ISLOWER(msp->subsym[0]->name[0]) ){
ErrorMsg(psp->filename,psp->tokenlineno,
"Cannot form a compound containing a non-terminal");
psp->errorcnt++;
}
}else if( x[0]=='(' && psp->nrhs>0 ){
psp->state = RHS_ALIAS_1;
}else{
ErrorMsg(psp->filename,psp->tokenlineno,
"Illegal character on RHS of rule: \"%s\".",x);
psp->errorcnt++;
psp->state = RESYNC_AFTER_RULE_ERROR;
}
break;
case RHS_ALIAS_1:
if( ISALPHA(x[0]) ){
psp->alias[psp->nrhs-1] = x;
psp->state = RHS_ALIAS_2;
}else{
ErrorMsg(psp->filename,psp->tokenlineno,
"\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
x,psp->rhs[psp->nrhs-1]->name);
psp->errorcnt++;
psp->state = RESYNC_AFTER_RULE_ERROR;
}
break;
case RHS_ALIAS_2:
if( x[0]==')' ){
psp->state = IN_RHS;
}else{
ErrorMsg(psp->filename,psp->tokenlineno,
"Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
psp->errorcnt++;
psp->state = RESYNC_AFTER_RULE_ERROR;
}
break;
case WAITING_FOR_DECL_KEYWORD:
if( ISALPHA(x[0]) ){
psp->declkeyword = x;
psp->declargslot = 0;
psp->decllinenoslot = 0;
psp->insertLineMacro = 1;
psp->state = WAITING_FOR_DECL_ARG;
if( strcmp(x,"name")==0 ){
psp->declargslot = &(psp->gp->name);
psp->insertLineMacro = 0;
}else if( strcmp(x,"include")==0 ){
psp->declargslot = &(psp->gp->include);
}else if( strcmp(x,"code")==0 ){
psp->declargslot = &(psp->gp->extracode);
}else if( strcmp(x,"token_destructor")==0 ){
psp->declargslot = &psp->gp->tokendest;
}else if( strcmp(x,"default_destructor")==0 ){
psp->declargslot = &psp->gp->vardest;
}else if( strcmp(x,"token_prefix")==0 ){
psp->declargslot = &psp->gp->tokenprefix;
psp->insertLineMacro = 0;
}else if( strcmp(x,"syntax_error")==0 ){
psp->declargslot = &(psp->gp->error);
}else if( strcmp(x,"parse_accept")==0 ){
psp->declargslot = &(psp->gp->accept);
}else if( strcmp(x,"parse_failure")==0 ){
psp->declargslot = &(psp->gp->failure);
}else if( strcmp(x,"stack_overflow")==0 ){
psp->declargslot = &(psp->gp->overflow);
}else if( strcmp(x,"extra_argument")==0 ){
psp->declargslot = &(psp->gp->arg);
psp->insertLineMacro = 0;
}else if( strcmp(x,"extra_context")==0 ){
psp->declargslot = &(psp->gp->ctx);
psp->insertLineMacro = 0;
}else if( strcmp(x,"token_type")==0 ){
psp->declargslot = &(psp->gp->tokentype);
psp->insertLineMacro = 0;
}else if( strcmp(x,"default_type")==0 ){
psp->declargslot = &(psp->gp->vartype);
psp->insertLineMacro = 0;
}else if( strcmp(x,"stack_size")==0 ){
psp->declargslot = &(psp->gp->stacksize);
psp->insertLineMacro = 0;
}else if( strcmp(x,"start_symbol")==0 ){
psp->declargslot = &(psp->gp->start);
psp->insertLineMacro = 0;
}else if( strcmp(x,"left")==0 ){
psp->preccounter++;
psp->declassoc = LEFT;
psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
}else if( strcmp(x,"right")==0 ){
psp->preccounter++;
psp->declassoc = RIGHT;
psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
}else if( strcmp(x,"nonassoc")==0 ){
psp->preccounter++;
psp->declassoc = NONE;
psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
}else if( strcmp(x,"destructor")==0 ){
psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
}else if( strcmp(x,"type")==0 ){
psp->state = WAITING_FOR_DATATYPE_SYMBOL;
}else if( strcmp(x,"fallback")==0 ){
psp->fallback = 0;
psp->state = WAITING_FOR_FALLBACK_ID;
}else if( strcmp(x,"token")==0 ){
psp->state = WAITING_FOR_TOKEN_NAME;
}else if( strcmp(x,"wildcard")==0 ){
psp->state = WAITING_FOR_WILDCARD_ID;
}else if( strcmp(x,"token_class")==0 ){
psp->state = WAITING_FOR_CLASS_ID;
}else{
ErrorMsg(psp->filename,psp->tokenlineno,
"Unknown declaration keyword: \"%%%s\".",x);
psp->errorcnt++;
psp->state = RESYNC_AFTER_DECL_ERROR;
}
}else{
ErrorMsg(psp->filename,psp->tokenlineno,
"Illegal declaration keyword: \"%s\".",x);
psp->errorcnt++;
psp->state = RESYNC_AFTER_DECL_ERROR;
}
break;
case WAITING_FOR_DESTRUCTOR_SYMBOL:
if( !ISALPHA(x[0]) ){
ErrorMsg(psp->filename,psp->tokenlineno,
"Symbol name missing after %%destructor keyword");
psp->errorcnt++;
psp->state = RESYNC_AFTER_DECL_ERROR;
}else{
struct symbol *sp = Symbol_new(x);
psp->declargslot = &sp->destructor;
psp->decllinenoslot = &sp->destLineno;
psp->insertLineMacro = 1;
psp->state = WAITING_FOR_DECL_ARG;
}
break;
case WAITING_FOR_DATATYPE_SYMBOL:
if( !ISALPHA(x[0]) ){
ErrorMsg(psp->filename,psp->tokenlineno,
"Symbol name missing after %%type keyword");
psp->errorcnt++;
psp->state = RESYNC_AFTER_DECL_ERROR;
}else{
struct symbol *sp = Symbol_find(x);
if((sp) && (sp->datatype)){
ErrorMsg(psp->filename,psp->tokenlineno,
"Symbol %%type \"%s\" already defined", x);
psp->errorcnt++;
psp->state = RESYNC_AFTER_DECL_ERROR;
}else{
if (!sp){
sp = Symbol_new(x);
}
psp->declargslot = &sp->datatype;
psp->insertLineMacro = 0;
psp->state = WAITING_FOR_DECL_ARG;
}
}
break;
case WAITING_FOR_PRECEDENCE_SYMBOL:
if( x[0]=='.' ){
psp->state = WAITING_FOR_DECL_OR_RULE;
}else if( ISUPPER(x[0]) ){
struct symbol *sp;
sp = Symbol_new(x);
if( sp->prec>=0 ){
ErrorMsg(psp->filename,psp->tokenlineno,
"Symbol \"%s\" has already be given a precedence.",x);
psp->errorcnt++;
}else{
sp->prec = psp->preccounter;
sp->assoc = psp->declassoc;
}
}else{
ErrorMsg(psp->filename,psp->tokenlineno,
"Can't assign a precedence to \"%s\".",x);
psp->errorcnt++;
}
break;
case WAITING_FOR_DECL_ARG:
if( x[0]=='{' || x[0]=='\"' || ISALNUM(x[0]) ){
const char *zOld, *zNew;
char *zBuf, *z;
int nOld, n, nLine = 0, nNew, nBack;
int addLineMacro;
char zLine[50];
zNew = x;
if( zNew[0]=='"' || zNew[0]=='{' ) zNew++;
nNew = lemonStrlen(zNew);
if( *psp->declargslot ){
zOld = *psp->declargslot;
}else{
zOld = "";
}
nOld = lemonStrlen(zOld);
n = nOld + nNew + 20;
addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro &&
(psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0);
if( addLineMacro ){
for(z=psp->filename, nBack=0; *z; z++){
if( *z=='\\' ) nBack++;
}
lemon_sprintf(zLine, "#line %d ", psp->tokenlineno);
nLine = lemonStrlen(zLine);
n += nLine + lemonStrlen(psp->filename) + nBack;
}
*psp->declargslot = (char *) realloc(*psp->declargslot, n);
zBuf = *psp->declargslot + nOld;
if( addLineMacro ){
if( nOld && zBuf[-1]!='\n' ){
*(zBuf++) = '\n';
}
memcpy(zBuf, zLine, nLine);
zBuf += nLine;
*(zBuf++) = '"';
for(z=psp->filename; *z; z++){
if( *z=='\\' ){
*(zBuf++) = '\\';
}
*(zBuf++) = *z;
}
*(zBuf++) = '"';
*(zBuf++) = '\n';
}
if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){
psp->decllinenoslot[0] = psp->tokenlineno;
}
memcpy(zBuf, zNew, nNew);
zBuf += nNew;
*zBuf = 0;
psp->state = WAITING_FOR_DECL_OR_RULE;
}else{
ErrorMsg(psp->filename,psp->tokenlineno,
"Illegal argument to %%%s: %s",psp->declkeyword,x);
psp->errorcnt++;
psp->state = RESYNC_AFTER_DECL_ERROR;
}
break;
case WAITING_FOR_FALLBACK_ID:
if( x[0]=='.' ){
psp->state = WAITING_FOR_DECL_OR_RULE;
}else if( !ISUPPER(x[0]) ){
ErrorMsg(psp->filename, psp->tokenlineno,
"%%fallback argument \"%s\" should be a token", x);
psp->errorcnt++;
}else{
struct symbol *sp = Symbol_new(x);
if( psp->fallback==0 ){
psp->fallback = sp;
}else if( sp->fallback ){
ErrorMsg(psp->filename, psp->tokenlineno,
"More than one fallback assigned to token %s", x);
psp->errorcnt++;
}else{
sp->fallback = psp->fallback;
psp->gp->has_fallback = 1;
}
}
break;
case WAITING_FOR_TOKEN_NAME:
/* Tokens do not have to be declared before use. But they can be
** in order to control their assigned integer number. The number for
** each token is assigned when it is first seen. So by including
**
** %token ONE TWO THREE
**
** early in the grammar file, that assigns small consecutive values
** to each of the tokens ONE TWO and THREE.
*/
if( x[0]=='.' ){
psp->state = WAITING_FOR_DECL_OR_RULE;
}else if( !ISUPPER(x[0]) ){
ErrorMsg(psp->filename, psp->tokenlineno,
"%%token argument \"%s\" should be a token", x);
psp->errorcnt++;
}else{
(void)Symbol_new(x);
}
break;
case WAITING_FOR_WILDCARD_ID:
if( x[0]=='.' ){
psp->state = WAITING_FOR_DECL_OR_RULE;
}else if( !ISUPPER(x[0]) ){
ErrorMsg(psp->filename, psp->tokenlineno,
"%%wildcard argument \"%s\" should be a token", x);
psp->errorcnt++;
}else{
struct symbol *sp = Symbol_new(x);
if( psp->gp->wildcard==0 ){
psp->gp->wildcard = sp;
}else{
ErrorMsg(psp->filename, psp->tokenlineno,
"Extra wildcard to token: %s", x);
psp->errorcnt++;
}
}
break;
case WAITING_FOR_CLASS_ID:
if( !ISLOWER(x[0]) ){
ErrorMsg(psp->filename, psp->tokenlineno,
"%%token_class must be followed by an identifier: ", x);
psp->errorcnt++;
psp->state = RESYNC_AFTER_DECL_ERROR;
}else if( Symbol_find(x) ){
ErrorMsg(psp->filename, psp->tokenlineno,
"Symbol \"%s\" already used", x);
psp->errorcnt++;
psp->state = RESYNC_AFTER_DECL_ERROR;
}else{
psp->tkclass = Symbol_new(x);
psp->tkclass->type = MULTITERMINAL;
psp->state = WAITING_FOR_CLASS_TOKEN;
}
break;
case WAITING_FOR_CLASS_TOKEN:
if( x[0]=='.' ){
psp->state = WAITING_FOR_DECL_OR_RULE;
}else if( ISUPPER(x[0]) || ((x[0]=='|' || x[0]=='/') && ISUPPER(x[1])) ){
struct symbol *msp = psp->tkclass;
msp->nsubsym++;
msp->subsym = (struct symbol **) realloc(msp->subsym,
sizeof(struct symbol*)*msp->nsubsym);
if( !ISUPPER(x[0]) ) x++;
msp->subsym[msp->nsubsym-1] = Symbol_new(x);
}else{
ErrorMsg(psp->filename, psp->tokenlineno,
"%%token_class argument \"%s\" should be a token", x);
psp->errorcnt++;
psp->state = RESYNC_AFTER_DECL_ERROR;
}
break;
case RESYNC_AFTER_RULE_ERROR:
/* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
** break; */
case RESYNC_AFTER_DECL_ERROR:
if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
break;
}
}
/* Run the preprocessor over the input file text. The global variables
** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and
** comments them out. Text in between is also commented out as appropriate.
*/
static void preprocess_input(char *z){
int i, j, k, n;
int exclude = 0;
int start = 0;
int lineno = 1;
int start_lineno = 1;
for(i=0; z[i]; i++){
if( z[i]=='\n' ) lineno++;
if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue;
if( strncmp(&z[i],"%endif",6)==0 && ISSPACE(z[i+6]) ){
if( exclude ){
exclude--;
if( exclude==0 ){
for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
}
}
for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
}else if( (strncmp(&z[i],"%ifdef",6)==0 && ISSPACE(z[i+6]))
|| (strncmp(&z[i],"%ifndef",7)==0 && ISSPACE(z[i+7])) ){
if( exclude ){
exclude++;
}else{
for(j=i+7; ISSPACE(z[j]); j++){}
for(n=0; z[j+n] && !ISSPACE(z[j+n]); n++){}
exclude = 1;
for(k=0; k<nDefine; k++){
if( strncmp(azDefine[k],&z[j],n)==0 && lemonStrlen(azDefine[k])==n ){
exclude = 0;
break;
}
}
if( z[i+3]=='n' ) exclude = !exclude;
if( exclude ){
start = i;
start_lineno = lineno;
}
}
for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
}
}
if( exclude ){
fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno);
exit(1);
}
}
/* In spite of its name, this function is really a scanner. It read
** in the entire input file (all at once) then tokenizes it. Each
** token is passed to the function "parseonetoken" which builds all
** the appropriate data structures in the global state vector "gp".
*/
void Parse(struct lemon *gp)
{
struct pstate ps;
FILE *fp;
char *filebuf;
unsigned int filesize;
int lineno;
int c;
char *cp, *nextcp;
int startline = 0;
memset(&ps, '\0', sizeof(ps));
ps.gp = gp;
ps.filename = gp->filename;
ps.errorcnt = 0;
ps.state = INITIALIZE;
/* Begin by reading the input file */
fp = fopen(ps.filename,"rb");
if( fp==0 ){
ErrorMsg(ps.filename,0,"Can't open this file for reading.");
gp->errorcnt++;
return;
}
fseek(fp,0,2);
filesize = ftell(fp);
rewind(fp);
filebuf = (char *)malloc( filesize+1 );
if( filesize>100000000 || filebuf==0 ){
ErrorMsg(ps.filename,0,"Input file too large.");
gp->errorcnt++;
fclose(fp);
return;
}
if( fread(filebuf,1,filesize,fp)!=filesize ){
ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
filesize);
free(filebuf);
gp->errorcnt++;
fclose(fp);
return;
}
fclose(fp);
filebuf[filesize] = 0;
/* Make an initial pass through the file to handle %ifdef and %ifndef */
preprocess_input(filebuf);
/* Now scan the text of the input file */
lineno = 1;
for(cp=filebuf; (c= *cp)!=0; ){
if( c=='\n' ) lineno++; /* Keep track of the line number */
if( ISSPACE(c) ){ cp++; continue; } /* Skip all white space */
if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */
cp+=2;
while( (c= *cp)!=0 && c!='\n' ) cp++;
continue;
}
if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */
cp+=2;
while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
if( c=='\n' ) lineno++;
cp++;
}
if( c ) cp++;
continue;
}
ps.tokenstart = cp; /* Mark the beginning of the token */
ps.tokenlineno = lineno; /* Linenumber on which token begins */
if( c=='\"' ){ /* String literals */
cp++;
while( (c= *cp)!=0 && c!='\"' ){
if( c=='\n' ) lineno++;
cp++;
}
if( c==0 ){
ErrorMsg(ps.filename,startline,
"String starting on this line is not terminated before the end of the file.");
ps.errorcnt++;
nextcp = cp;
}else{
nextcp = cp+1;
}
}else if( c=='{' ){ /* A block of C code */
int level;
cp++;
for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
if( c=='\n' ) lineno++;
else if( c=='{' ) level++;
else if( c=='}' ) level--;
else if( c=='/' && cp[1]=='*' ){ /* Skip comments */
int prevc;
cp = &cp[2];
prevc = 0;
while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
if( c=='\n' ) lineno++;
prevc = c;
cp++;
}
}else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */
cp = &cp[2];
while( (c= *cp)!=0 && c!='\n' ) cp++;
if( c ) lineno++;
}else if( c=='\'' || c=='\"' ){ /* String a character literals */
int startchar, prevc;
startchar = c;
prevc = 0;
for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
if( c=='\n' ) lineno++;
if( prevc=='\\' ) prevc = 0;
else prevc = c;
}
}
}
if( c==0 ){
ErrorMsg(ps.filename,ps.tokenlineno,
"C code starting on this line is not terminated before the end of the file.");
ps.errorcnt++;
nextcp = cp;
}else{
nextcp = cp+1;
}
}else if( ISALNUM(c) ){ /* Identifiers */
while( (c= *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++;
nextcp = cp;
}else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
cp += 3;
nextcp = cp;
}else if( (c=='/' || c=='|') && ISALPHA(cp[1]) ){
cp += 2;
while( (c = *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++;
nextcp = cp;
}else{ /* All other (one character) operators */
cp++;
nextcp = cp;
}
c = *cp;
*cp = 0; /* Null terminate the token */
parseonetoken(&ps); /* Parse the token */
*cp = (char)c; /* Restore the buffer */
cp = nextcp;
}
free(filebuf); /* Release the buffer after parsing */
gp->rule = ps.firstrule;
gp->errorcnt = ps.errorcnt;
}
/*************************** From the file "plink.c" *********************/
/*
** Routines processing configuration follow-set propagation links
** in the LEMON parser generator.
*/
static struct plink *plink_freelist = 0;
/* Allocate a new plink */
struct plink *Plink_new(void){
struct plink *newlink;
if( plink_freelist==0 ){
int i;
int amt = 100;
plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
if( plink_freelist==0 ){
fprintf(stderr,
"Unable to allocate memory for a new follow-set propagation link.\n");
exit(1);
}
for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
plink_freelist[amt-1].next = 0;
}
newlink = plink_freelist;
plink_freelist = plink_freelist->next;
return newlink;
}
/* Add a plink to a plink list */
void Plink_add(struct plink **plpp, struct config *cfp)
{
struct plink *newlink;
newlink = Plink_new();
newlink->next = *plpp;
*plpp = newlink;
newlink->cfp = cfp;
}
/* Transfer every plink on the list "from" to the list "to" */
void Plink_copy(struct plink **to, struct plink *from)
{
struct plink *nextpl;
while( from ){
nextpl = from->next;
from->next = *to;
*to = from;
from = nextpl;
}
}
/* Delete every plink on the list */
void Plink_delete(struct plink *plp)
{
struct plink *nextpl;
while( plp ){
nextpl = plp->next;
plp->next = plink_freelist;
plink_freelist = plp;
plp = nextpl;
}
}
/*********************** From the file "report.c" **************************/
/*
** Procedures for generating reports and tables in the LEMON parser generator.
*/
/* Generate a filename with the given suffix. Space to hold the
** name comes from malloc() and must be freed by the calling
** function.
*/
PRIVATE char *file_makename(struct lemon *lemp, const char *suffix)
{
char *name;
char *cp;
char *filename = lemp->filename;
int sz;
if( outputDir ){
cp = strrchr(filename, '/');
if( cp ) filename = cp + 1;
}
sz = lemonStrlen(filename);
sz += lemonStrlen(suffix);
if( outputDir ) sz += lemonStrlen(outputDir) + 1;
sz += 5;
name = (char*)malloc( sz );
if( name==0 ){
fprintf(stderr,"Can't allocate space for a filename.\n");
exit(1);
}
name[0] = 0;
if( outputDir ){
lemon_strcpy(name, outputDir);
lemon_strcat(name, "/");
}
lemon_strcat(name,filename);
cp = strrchr(name,'.');
if( cp ) *cp = 0;
lemon_strcat(name,suffix);
return name;
}
/* Open a file with a name based on the name of the input file,
** but with a different (specified) suffix, and return a pointer
** to the stream */
PRIVATE FILE *file_open(
struct lemon *lemp,
const char *suffix,
const char *mode
){
FILE *fp;
if( lemp->outname ) free(lemp->outname);
lemp->outname = file_makename(lemp, suffix);
fp = fopen(lemp->outname,mode);
if( fp==0 && *mode=='w' ){
fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
lemp->errorcnt++;
return 0;
}
return fp;
}
/* Print the text of a rule
*/
void rule_print(FILE *out, struct rule *rp){
int i, j;
fprintf(out, "%s",rp->lhs->name);
/* if( rp->lhsalias ) fprintf(out,"(%s)",rp->lhsalias); */
fprintf(out," ::=");
for(i=0; i<rp->nrhs; i++){
struct symbol *sp = rp->rhs[i];
if( sp->type==MULTITERMINAL ){
fprintf(out," %s", sp->subsym[0]->name);
for(j=1; j<sp->nsubsym; j++){
fprintf(out,"|%s", sp->subsym[j]->name);
}
}else{
fprintf(out," %s", sp->name);
}
/* if( rp->rhsalias[i] ) fprintf(out,"(%s)",rp->rhsalias[i]); */
}
}
/* Duplicate the input file without comments and without actions
** on rules */
void Reprint(struct lemon *lemp)
{
struct rule *rp;
struct symbol *sp;
int i, j, maxlen, len, ncolumns, skip;
printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
maxlen = 10;
for(i=0; i<lemp->nsymbol; i++){
sp = lemp->symbols[i];
len = lemonStrlen(sp->name);
if( len>maxlen ) maxlen = len;
}
ncolumns = 76/(maxlen+5);
if( ncolumns<1 ) ncolumns = 1;
skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
for(i=0; i<skip; i++){
printf("//");
for(j=i; j<lemp->nsymbol; j+=skip){
sp = lemp->symbols[j];
assert( sp->index==j );
printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
}
printf("\n");
}
for(rp=lemp->rule; rp; rp=rp->next){
rule_print(stdout, rp);
printf(".");
if( rp->precsym ) printf(" [%s]",rp->precsym->name);
/* if( rp->code ) printf("\n %s",rp->code); */
printf("\n");
}
}
/* Print a single rule.
*/
void RulePrint(FILE *fp, struct rule *rp, int iCursor){
struct symbol *sp;
int i, j;
fprintf(fp,"%s ::=",rp->lhs->name);
for(i=0; i<=rp->nrhs; i++){
if( i==iCursor ) fprintf(fp," *");
if( i==rp->nrhs ) break;
sp = rp->rhs[i];
if( sp->type==MULTITERMINAL ){
fprintf(fp," %s", sp->subsym[0]->name);
for(j=1; j<sp->nsubsym; j++){
fprintf(fp,"|%s",sp->subsym[j]->name);
}
}else{
fprintf(fp," %s", sp->name);
}
}
}
/* Print the rule for a configuration.
*/
void ConfigPrint(FILE *fp, struct config *cfp){
RulePrint(fp, cfp->rp, cfp->dot);
}
/* #define TEST */
#if 0
/* Print a set */
PRIVATE void SetPrint(out,set,lemp)
FILE *out;
char *set;
struct lemon *lemp;
{
int i;
char *spacer;
spacer = "";
fprintf(out,"%12s[","");
for(i=0; i<lemp->nterminal; i++){
if( SetFind(set,i) ){
fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
spacer = " ";
}
}
fprintf(out,"]\n");
}
/* Print a plink chain */
PRIVATE void PlinkPrint(out,plp,tag)
FILE *out;
struct plink *plp;
char *tag;
{
while( plp ){
fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum);
ConfigPrint(out,plp->cfp);
fprintf(out,"\n");
plp = plp->next;
}
}
#endif
/* Print an action to the given file descriptor. Return FALSE if
** nothing was actually printed.
*/
int PrintAction(
struct action *ap, /* The action to print */
FILE *fp, /* Print the action here */
int indent /* Indent by this amount */
){
int result = 1;
switch( ap->type ){
case SHIFT: {
struct state *stp = ap->x.stp;
fprintf(fp,"%*s shift %-7d",indent,ap->sp->name,stp->statenum);
break;
}
case REDUCE: {
struct rule *rp = ap->x.rp;
fprintf(fp,"%*s reduce %-7d",indent,ap->sp->name,rp->iRule);
RulePrint(fp, rp, -1);
break;
}
case SHIFTREDUCE: {
struct rule *rp = ap->x.rp;
fprintf(fp,"%*s shift-reduce %-7d",indent,ap->sp->name,rp->iRule);
RulePrint(fp, rp, -1);
break;
}
case ACCEPT:
fprintf(fp,"%*s accept",indent,ap->sp->name);
break;
case ERROR:
fprintf(fp,"%*s error",indent,ap->sp->name);
break;
case SRCONFLICT:
case RRCONFLICT:
fprintf(fp,"%*s reduce %-7d ** Parsing conflict **",
indent,ap->sp->name,ap->x.rp->iRule);
break;
case SSCONFLICT:
fprintf(fp,"%*s shift %-7d ** Parsing conflict **",
indent,ap->sp->name,ap->x.stp->statenum);
break;
case SH_RESOLVED:
if( showPrecedenceConflict ){
fprintf(fp,"%*s shift %-7d -- dropped by precedence",
indent,ap->sp->name,ap->x.stp->statenum);
}else{
result = 0;
}
break;
case RD_RESOLVED:
if( showPrecedenceConflict ){
fprintf(fp,"%*s reduce %-7d -- dropped by precedence",
indent,ap->sp->name,ap->x.rp->iRule);
}else{
result = 0;
}
break;
case NOT_USED:
result = 0;
break;
}
if( result && ap->spOpt ){
fprintf(fp," /* because %s==%s */", ap->sp->name, ap->spOpt->name);
}
return result;
}
/* Generate the "*.out" log file */
void ReportOutput(struct lemon *lemp)
{
int i, n;
struct state *stp;
struct config *cfp;
struct action *ap;
struct rule *rp;
FILE *fp;
fp = file_open(lemp,".out","wb");
if( fp==0 ) return;
for(i=0; i<lemp->nxstate; i++){
stp = lemp->sorted[i];
fprintf(fp,"State %d:\n",stp->statenum);
if( lemp->basisflag ) cfp=stp->bp;
else cfp=stp->cfp;
while( cfp ){
char buf[20];
if( cfp->dot==cfp->rp->nrhs ){
lemon_sprintf(buf,"(%d)",cfp->rp->iRule);
fprintf(fp," %5s ",buf);
}else{
fprintf(fp," ");
}
ConfigPrint(fp,cfp);
fprintf(fp,"\n");
#if 0
SetPrint(fp,cfp->fws,lemp);
PlinkPrint(fp,cfp->fplp,"To ");
PlinkPrint(fp,cfp->bplp,"From");
#endif
if( lemp->basisflag ) cfp=cfp->bp;
else cfp=cfp->next;
}
fprintf(fp,"\n");
for(ap=stp->ap; ap; ap=ap->next){
if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
}
fprintf(fp,"\n");
}
fprintf(fp, "----------------------------------------------------\n");
fprintf(fp, "Symbols:\n");
fprintf(fp, "The first-set of non-terminals is shown after the name.\n\n");
for(i=0; i<lemp->nsymbol; i++){
int j;
struct symbol *sp;
sp = lemp->symbols[i];
fprintf(fp, " %3d: %s", i, sp->name);
if( sp->type==NONTERMINAL ){
fprintf(fp, ":");
if( sp->lambda ){
fprintf(fp, " <lambda>");
}
for(j=0; j<lemp->nterminal; j++){
if( sp->firstset && SetFind(sp->firstset, j) ){
fprintf(fp, " %s", lemp->symbols[j]->name);
}
}
}
if( sp->prec>=0 ) fprintf(fp," (precedence=%d)", sp->prec);
fprintf(fp, "\n");
}
fprintf(fp, "----------------------------------------------------\n");
fprintf(fp, "Syntax-only Symbols:\n");
fprintf(fp, "The following symbols never carry semantic content.\n\n");
for(i=n=0; i<lemp->nsymbol; i++){
int w;
struct symbol *sp = lemp->symbols[i];
if( sp->bContent ) continue;
w = (int)strlen(sp->name);
if( n>0 && n+w>75 ){
fprintf(fp,"\n");
n = 0;
}
if( n>0 ){
fprintf(fp, " ");
n++;
}
fprintf(fp, "%s", sp->name);
n += w;
}
if( n>0 ) fprintf(fp, "\n");
fprintf(fp, "----------------------------------------------------\n");
fprintf(fp, "Rules:\n");
for(rp=lemp->rule; rp; rp=rp->next){
fprintf(fp, "%4d: ", rp->iRule);
rule_print(fp, rp);
fprintf(fp,".");
if( rp->precsym ){
fprintf(fp," [%s precedence=%d]",
rp->precsym->name, rp->precsym->prec);
}
fprintf(fp,"\n");
}
fclose(fp);
return;
}
/* Search for the file "name" which is in the same directory as
** the exacutable */
PRIVATE char *pathsearch(char *argv0, char *name, int modemask)
{
const char *pathlist;
char *pathbufptr;
char *pathbuf;
char *path,*cp;
char c;
#ifdef __WIN32__
cp = strrchr(argv0,'\\');
#else
cp = strrchr(argv0,'/');
#endif
if( cp ){
c = *cp;
*cp = 0;
path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 );
if( path ) lemon_sprintf(path,"%s/%s",argv0,name);
*cp = c;
}else{
pathlist = getenv("PATH");
if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 );
path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 );
if( (pathbuf != 0) && (path!=0) ){
pathbufptr = pathbuf;
lemon_strcpy(pathbuf, pathlist);
while( *pathbuf ){
cp = strchr(pathbuf,':');
if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)];
c = *cp;
*cp = 0;
lemon_sprintf(path,"%s/%s",pathbuf,name);
*cp = c;
if( c==0 ) pathbuf[0] = 0;
else pathbuf = &cp[1];
if( access(path,modemask)==0 ) break;
}
free(pathbufptr);
}
}
return path;
}
/* Given an action, compute the integer value for that action
** which is to be put in the action table of the generated machine.
** Return negative if no action should be generated.
*/
PRIVATE int compute_action(struct lemon *lemp, struct action *ap)
{
int act;
switch( ap->type ){
case SHIFT: act = ap->x.stp->statenum; break;
case SHIFTREDUCE: {
/* Since a SHIFT is inherient after a prior REDUCE, convert any
** SHIFTREDUCE action with a nonterminal on the LHS into a simple
** REDUCE action: */
if( ap->sp->index>=lemp->nterminal ){
act = lemp->minReduce + ap->x.rp->iRule;
}else{
act = lemp->minShiftReduce + ap->x.rp->iRule;
}
break;
}
case REDUCE: act = lemp->minReduce + ap->x.rp->iRule; break;
case ERROR: act = lemp->errAction; break;
case ACCEPT: act = lemp->accAction; break;
default: act = -1; break;
}
return act;
}
#define LINESIZE 1000
/* The next cluster of routines are for reading the template file
** and writing the results to the generated parser */
/* The first function transfers data from "in" to "out" until
** a line is seen which begins with "%%". The line number is
** tracked.
**
** if name!=0, then any word that begin with "Parse" is changed to
** begin with *name instead.
*/
PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno)
{
int i, iStart;
char line[LINESIZE];
while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
(*lineno)++;
iStart = 0;
if( name ){
for(i=0; line[i]; i++){
if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
&& (i==0 || !ISALPHA(line[i-1]))
){
if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
fprintf(out,"%s",name);
i += 4;
iStart = i+1;
}
}
}
fprintf(out,"%s",&line[iStart]);
}
}
/* The next function finds the template file and opens it, returning
** a pointer to the opened file. */
PRIVATE FILE *tplt_open(struct lemon *lemp)
{
static char templatename[] = "lempar.c";
char buf[1000];
FILE *in;
char *tpltname;
char *cp;
/* first, see if user specified a template filename on the command line. */
if (user_templatename != 0) {
if( access(user_templatename,004)==-1 ){
fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
user_templatename);
lemp->errorcnt++;
return 0;
}
in = fopen(user_templatename,"rb");
if( in==0 ){
fprintf(stderr,"Can't open the template file \"%s\".\n",
user_templatename);
lemp->errorcnt++;
return 0;
}
return in;
}
cp = strrchr(lemp->filename,'.');
if( cp ){
lemon_sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
}else{
lemon_sprintf(buf,"%s.lt",lemp->filename);
}
if( access(buf,004)==0 ){
tpltname = buf;
}else if( access(templatename,004)==0 ){
tpltname = templatename;
}else{
tpltname = pathsearch(lemp->argv0,templatename,0);
}
if( tpltname==0 ){
fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
templatename);
lemp->errorcnt++;
return 0;
}
in = fopen(tpltname,"rb");
if( in==0 ){
fprintf(stderr,"Can't open the template file \"%s\".\n",templatename);
lemp->errorcnt++;
return 0;
}
return in;
}
/* Print a #line directive line to the output file. */
PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename)
{
fprintf(out,"#line %d \"",lineno);
while( *filename ){
if( *filename == '\\' ) putc('\\',out);
putc(*filename,out);
filename++;
}
fprintf(out,"\"\n");
}
/* Print a string to the file and keep the linenumber up to date */
PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno)
{
if( str==0 ) return;
while( *str ){
putc(*str,out);
if( *str=='\n' ) (*lineno)++;
str++;
}
if( str[-1]!='\n' ){
putc('\n',out);
(*lineno)++;
}
if (!lemp->nolinenosflag) {
(*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
}
return;
}
/*
** The following routine emits code for the destructor for the
** symbol sp
*/
void emit_destructor_code(
FILE *out,
struct symbol *sp,
struct lemon *lemp,
int *lineno
){
char *cp = 0;
if( sp->type==TERMINAL ){
cp = lemp->tokendest;
if( cp==0 ) return;
fprintf(out,"{\n"); (*lineno)++;
}else if( sp->destructor ){
cp = sp->destructor;
fprintf(out,"{\n"); (*lineno)++;
if( !lemp->nolinenosflag ){
(*lineno)++;
tplt_linedir(out,sp->destLineno,lemp->filename);
}
}else if( lemp->vardest ){
cp = lemp->vardest;
if( cp==0 ) return;
fprintf(out,"{\n"); (*lineno)++;
}else{
assert( 0 ); /* Cannot happen */
}
for(; *cp; cp++){
if( *cp=='$' && cp[1]=='$' ){
fprintf(out,"(yypminor->yy%d)",sp->dtnum);
cp++;
continue;
}
if( *cp=='\n' ) (*lineno)++;
fputc(*cp,out);
}
fprintf(out,"\n"); (*lineno)++;
if (!lemp->nolinenosflag) {
(*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
}
fprintf(out,"}\n"); (*lineno)++;
return;
}
/*
** Return TRUE (non-zero) if the given symbol has a destructor.
*/
int has_destructor(struct symbol *sp, struct lemon *lemp)
{
int ret;
if( sp->type==TERMINAL ){
ret = lemp->tokendest!=0;
}else{
ret = lemp->vardest!=0 || sp->destructor!=0;
}
return ret;
}
/*
** Append text to a dynamically allocated string. If zText is 0 then
** reset the string to be empty again. Always return the complete text
** of the string (which is overwritten with each call).
**
** n bytes of zText are stored. If n==0 then all of zText up to the first
** \000 terminator is stored. zText can contain up to two instances of
** %d. The values of p1 and p2 are written into the first and second
** %d.
**
** If n==-1, then the previous character is overwritten.
*/
PRIVATE char *append_str(const char *zText, int n, int p1, int p2){
static char empty[1] = { 0 };
static char *z = 0;
static int alloced = 0;
static int used = 0;
int c;
char zInt[40];
if( zText==0 ){
if( used==0 && z!=0 ) z[0] = 0;
used = 0;
return z;
}
if( n<=0 ){
if( n<0 ){
used += n;
assert( used>=0 );
}
n = lemonStrlen(zText);
}
if( (int) (n+sizeof(zInt)*2+used) >= alloced ){
alloced = n + sizeof(zInt)*2 + used + 200;
z = (char *) realloc(z, alloced);
}
if( z==0 ) return empty;
while( n-- > 0 ){
c = *(zText++);
if( c=='%' && n>0 && zText[0]=='d' ){
lemon_sprintf(zInt, "%d", p1);
p1 = p2;
lemon_strcpy(&z[used], zInt);
used += lemonStrlen(&z[used]);
zText++;
n--;
}else{
z[used++] = (char)c;
}
}
z[used] = 0;
return z;
}
/*
** Write and transform the rp->code string so that symbols are expanded.
** Populate the rp->codePrefix and rp->codeSuffix strings, as appropriate.
**
** Return 1 if the expanded code requires that "yylhsminor" local variable
** to be defined.
*/
PRIVATE int translate_code(struct lemon *lemp, struct rule *rp){
char *cp, *xp;
int i;
int rc = 0; /* True if yylhsminor is used */
int dontUseRhs0 = 0; /* If true, use of left-most RHS label is illegal */
const char *zSkip = 0; /* The zOvwrt comment within rp->code, or NULL */
char lhsused = 0; /* True if the LHS element has been used */
char lhsdirect; /* True if LHS writes directly into stack */
char used[MAXRHS]; /* True for each RHS element which is used */
char zLhs[50]; /* Convert the LHS symbol into this string */
char zOvwrt[900]; /* Comment that to allow LHS to overwrite RHS */
for(i=0; i<rp->nrhs; i++) used[i] = 0;
lhsused = 0;
if( rp->code==0 ){
static char newlinestr[2] = { '\n', '\0' };
rp->code = newlinestr;
rp->line = rp->ruleline;
rp->noCode = 1;
}else{
rp->noCode = 0;
}
if( rp->nrhs==0 ){
/* If there are no RHS symbols, then writing directly to the LHS is ok */
lhsdirect = 1;
}else if( rp->rhsalias[0]==0 ){
/* The left-most RHS symbol has no value. LHS direct is ok. But
** we have to call the distructor on the RHS symbol first. */
lhsdirect = 1;
if( has_destructor(rp->rhs[0],lemp) ){
append_str(0,0,0,0);
append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
rp->rhs[0]->index,1-rp->nrhs);
rp->codePrefix = Strsafe(append_str(0,0,0,0));
rp->noCode = 0;
}
}else if( rp->lhsalias==0 ){
/* There is no LHS value symbol. */
lhsdirect = 1;
}else if( strcmp(rp->lhsalias,rp->rhsalias[0])==0 ){
/* The LHS symbol and the left-most RHS symbol are the same, so
** direct writing is allowed */
lhsdirect = 1;
lhsused = 1;
used[0] = 1;
if( rp->lhs->dtnum!=rp->rhs[0]->dtnum ){
ErrorMsg(lemp->filename,rp->ruleline,
"%s(%s) and %s(%s) share the same label but have "
"different datatypes.",
rp->lhs->name, rp->lhsalias, rp->rhs[0]->name, rp->rhsalias[0]);
lemp->errorcnt++;
}
}else{
lemon_sprintf(zOvwrt, "/*%s-overwrites-%s*/",
rp->lhsalias, rp->rhsalias[0]);
zSkip = strstr(rp->code, zOvwrt);
if( zSkip!=0 ){
/* The code contains a special comment that indicates that it is safe
** for the LHS label to overwrite left-most RHS label. */
lhsdirect = 1;
}else{
lhsdirect = 0;
}
}
if( lhsdirect ){
sprintf(zLhs, "yymsp[%d].minor.yy%d",1-rp->nrhs,rp->lhs->dtnum);
}else{
rc = 1;
sprintf(zLhs, "yylhsminor.yy%d",rp->lhs->dtnum);
}
append_str(0,0,0,0);
/* This const cast is wrong but harmless, if we're careful. */
for(cp=(char *)rp->code; *cp; cp++){
if( cp==zSkip ){
append_str(zOvwrt,0,0,0);
cp += lemonStrlen(zOvwrt)-1;
dontUseRhs0 = 1;
continue;
}
if( ISALPHA(*cp) && (cp==rp->code || (!ISALNUM(cp[-1]) && cp[-1]!='_')) ){
char saved;
for(xp= &cp[1]; ISALNUM(*xp) || *xp=='_'; xp++);
saved = *xp;
*xp = 0;
if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
append_str(zLhs,0,0,0);
cp = xp;
lhsused = 1;
}else{
for(i=0; i<rp->nrhs; i++){
if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
if( i==0 && dontUseRhs0 ){
ErrorMsg(lemp->filename,rp->ruleline,
"Label %s used after '%s'.",
rp->rhsalias[0], zOvwrt);
lemp->errorcnt++;
}else if( cp!=rp->code && cp[-1]=='@' ){
/* If the argument is of the form @X then substituted
** the token number of X, not the value of X */
append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0);
}else{
struct symbol *sp = rp->rhs[i];
int dtnum;
if( sp->type==MULTITERMINAL ){
dtnum = sp->subsym[0]->dtnum;
}else{
dtnum = sp->dtnum;
}
append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum);
}
cp = xp;
used[i] = 1;
break;
}
}
}
*xp = saved;
}
append_str(cp, 1, 0, 0);
} /* End loop */
/* Main code generation completed */
cp = append_str(0,0,0,0);
if( cp && cp[0] ) rp->code = Strsafe(cp);
append_str(0,0,0,0);
/* Check to make sure the LHS has been used */
if( rp->lhsalias && !lhsused ){
ErrorMsg(lemp->filename,rp->ruleline,
"Label \"%s\" for \"%s(%s)\" is never used.",
rp->lhsalias,rp->lhs->name,rp->lhsalias);
lemp->errorcnt++;
}
/* Generate destructor code for RHS minor values which are not referenced.
** Generate error messages for unused labels and duplicate labels.
*/
for(i=0; i<rp->nrhs; i++){
if( rp->rhsalias[i] ){
if( i>0 ){
int j;
if( rp->lhsalias && strcmp(rp->lhsalias,rp->rhsalias[i])==0 ){
ErrorMsg(lemp->filename,rp->ruleline,
"%s(%s) has the same label as the LHS but is not the left-most "
"symbol on the RHS.",
rp->rhs[i]->name, rp->rhsalias);
lemp->errorcnt++;
}
for(j=0; j<i; j++){
if( rp->rhsalias[j] && strcmp(rp->rhsalias[j],rp->rhsalias[i])==0 ){
ErrorMsg(lemp->filename,rp->ruleline,
"Label %s used for multiple symbols on the RHS of a rule.",
rp->rhsalias[i]);
lemp->errorcnt++;
break;
}
}
}
if( !used[i] ){
ErrorMsg(lemp->filename,rp->ruleline,
"Label %s for \"%s(%s)\" is never used.",
rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
lemp->errorcnt++;
}
}else if( i>0 && has_destructor(rp->rhs[i],lemp) ){
append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
rp->rhs[i]->index,i-rp->nrhs+1);
}
}
/* If unable to write LHS values directly into the stack, write the
** saved LHS value now. */
if( lhsdirect==0 ){
append_str(" yymsp[%d].minor.yy%d = ", 0, 1-rp->nrhs, rp->lhs->dtnum);
append_str(zLhs, 0, 0, 0);
append_str(";\n", 0, 0, 0);
}
/* Suffix code generation complete */
cp = append_str(0,0,0,0);
if( cp && cp[0] ){
rp->codeSuffix = Strsafe(cp);
rp->noCode = 0;
}
return rc;
}
/*
** Generate code which executes when the rule "rp" is reduced. Write
** the code to "out". Make sure lineno stays up-to-date.
*/
PRIVATE void emit_code(
FILE *out,
struct rule *rp,
struct lemon *lemp,
int *lineno
){
const char *cp;
/* Setup code prior to the #line directive */
if( rp->codePrefix && rp->codePrefix[0] ){
fprintf(out, "{%s", rp->codePrefix);
for(cp=rp->codePrefix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
}
/* Generate code to do the reduce action */
if( rp->code ){
if( !lemp->nolinenosflag ){
(*lineno)++;
tplt_linedir(out,rp->line,lemp->filename);
}
fprintf(out,"{%s",rp->code);
for(cp=rp->code; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
fprintf(out,"}\n"); (*lineno)++;
if( !lemp->nolinenosflag ){
(*lineno)++;
tplt_linedir(out,*lineno,lemp->outname);
}
}
/* Generate breakdown code that occurs after the #line directive */
if( rp->codeSuffix && rp->codeSuffix[0] ){
fprintf(out, "%s", rp->codeSuffix);
for(cp=rp->codeSuffix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
}
if( rp->codePrefix ){
fprintf(out, "}\n"); (*lineno)++;
}
return;
}
/*
** Print the definition of the union used for the parser's data stack.
** This union contains fields for every possible data type for tokens
** and nonterminals. In the process of computing and printing this
** union, also set the ".dtnum" field of every terminal and nonterminal
** symbol.
*/
void print_stack_union(
FILE *out, /* The output stream */
struct lemon *lemp, /* The main info structure for this parser */
int *plineno, /* Pointer to the line number */
int mhflag /* True if generating makeheaders output */
){
int lineno = *plineno; /* The line number of the output */
char **types; /* A hash table of datatypes */
int arraysize; /* Size of the "types" array */
int maxdtlength; /* Maximum length of any ".datatype" field. */
char *stddt; /* Standardized name for a datatype */
int i,j; /* Loop counters */
unsigned hash; /* For hashing the name of a type */
const char *name; /* Name of the parser */
/* Allocate and initialize types[] and allocate stddt[] */
arraysize = lemp->nsymbol * 2;
types = (char**)calloc( arraysize, sizeof(char*) );
if( types==0 ){
fprintf(stderr,"Out of memory.\n");
exit(1);
}
for(i=0; i<arraysize; i++) types[i] = 0;
maxdtlength = 0;
if( lemp->vartype ){
maxdtlength = lemonStrlen(lemp->vartype);
}
for(i=0; i<lemp->nsymbol; i++){
int len;
struct symbol *sp = lemp->symbols[i];
if( sp->datatype==0 ) continue;
len = lemonStrlen(sp->datatype);
if( len>maxdtlength ) maxdtlength = len;
}
stddt = (char*)malloc( maxdtlength*2 + 1 );
if( stddt==0 ){
fprintf(stderr,"Out of memory.\n");
exit(1);
}
/* Build a hash table of datatypes. The ".dtnum" field of each symbol
** is filled in with the hash index plus 1. A ".dtnum" value of 0 is
** used for terminal symbols. If there is no %default_type defined then
** 0 is also used as the .dtnum value for nonterminals which do not specify
** a datatype using the %type directive.
*/
for(i=0; i<lemp->nsymbol; i++){
struct symbol *sp = lemp->symbols[i];
char *cp;
if( sp==lemp->errsym ){
sp->dtnum = arraysize+1;
continue;
}
if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
sp->dtnum = 0;
continue;
}
cp = sp->datatype;
if( cp==0 ) cp = lemp->vartype;
j = 0;
while( ISSPACE(*cp) ) cp++;
while( *cp ) stddt[j++] = *cp++;
while( j>0 && ISSPACE(stddt[j-1]) ) j--;
stddt[j] = 0;
if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){
sp->dtnum = 0;
continue;
}
hash = 0;
for(j=0; stddt[j]; j++){
hash = hash*53 + stddt[j];
}
hash = (hash & 0x7fffffff)%arraysize;
while( types[hash] ){
if( strcmp(types[hash],stddt)==0 ){
sp->dtnum = hash + 1;
break;
}
hash++;
if( hash>=(unsigned)arraysize ) hash = 0;
}
if( types[hash]==0 ){
sp->dtnum = hash + 1;
types[hash] = (char*)malloc( lemonStrlen(stddt)+1 );
if( types[hash]==0 ){
fprintf(stderr,"Out of memory.\n");
exit(1);
}
lemon_strcpy(types[hash],stddt);
}
}
/* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
name = lemp->name ? lemp->name : "Parse";
lineno = *plineno;
if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
fprintf(out,"#define %sTOKENTYPE %s\n",name,
lemp->tokentype?lemp->tokentype:"void*"); lineno++;
if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
fprintf(out,"typedef union {\n"); lineno++;
fprintf(out," int yyinit;\n"); lineno++;
fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++;
for(i=0; i<arraysize; i++){
if( types[i]==0 ) continue;
fprintf(out," %s yy%d;\n",types[i],i+1); lineno++;
free(types[i]);
}
if( lemp->errsym && lemp->errsym->useCnt ){
fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++;
}
free(stddt);
free(types);
fprintf(out,"} YYMINORTYPE;\n"); lineno++;
*plineno = lineno;
}
/*
** Return the name of a C datatype able to represent values between
** lwr and upr, inclusive. If pnByte!=NULL then also write the sizeof
** for that type (1, 2, or 4) into *pnByte.
*/
static const char *minimum_size_type(int lwr, int upr, int *pnByte){
const char *zType = "int";
int nByte = 4;
if( lwr>=0 ){
if( upr<=255 ){
zType = "unsigned char";
nByte = 1;
}else if( upr<65535 ){
zType = "unsigned short int";
nByte = 2;
}else{
zType = "unsigned int";
nByte = 4;
}
}else if( lwr>=-127 && upr<=127 ){
zType = "signed char";
nByte = 1;
}else if( lwr>=-32767 && upr<32767 ){
zType = "short";
nByte = 2;
}
if( pnByte ) *pnByte = nByte;
return zType;
}
/*
** Each state contains a set of token transaction and a set of
** nonterminal transactions. Each of these sets makes an instance
** of the following structure. An array of these structures is used
** to order the creation of entries in the yy_action[] table.
*/
struct axset {
struct state *stp; /* A pointer to a state */
int isTkn; /* True to use tokens. False for non-terminals */
int nAction; /* Number of actions */
int iOrder; /* Original order of action sets */
};
/*
** Compare to axset structures for sorting purposes
*/
static int axset_compare(const void *a, const void *b){
struct axset *p1 = (struct axset*)a;
struct axset *p2 = (struct axset*)b;
int c;
c = p2->nAction - p1->nAction;
if( c==0 ){
c = p1->iOrder - p2->iOrder;
}
assert( c!=0 || p1==p2 );
return c;
}
/*
** Write text on "out" that describes the rule "rp".
*/
static void writeRuleText(FILE *out, struct rule *rp){
int j;
fprintf(out,"%s ::=", rp->lhs->name);
for(j=0; j<rp->nrhs; j++){
struct symbol *sp = rp->rhs[j];
if( sp->type!=MULTITERMINAL ){
fprintf(out," %s", sp->name);
}else{
int k;
fprintf(out," %s", sp->subsym[0]->name);
for(k=1; k<sp->nsubsym; k++){
fprintf(out,"|%s",sp->subsym[k]->name);
}
}
}
}
/* Generate C source code for the parser */
void ReportTable(
struct lemon *lemp,
int mhflag /* Output in makeheaders format if true */
){
FILE *out, *in;
char line[LINESIZE];
int lineno;
struct state *stp;
struct action *ap;
struct rule *rp;
struct acttab *pActtab;
int i, j, n, sz;
int szActionType; /* sizeof(YYACTIONTYPE) */
int szCodeType; /* sizeof(YYCODETYPE) */
const char *name;
int mnTknOfst, mxTknOfst;
int mnNtOfst, mxNtOfst;
struct axset *ax;
lemp->minShiftReduce = lemp->nstate;
lemp->errAction = lemp->minShiftReduce + lemp->nrule;
lemp->accAction = lemp->errAction + 1;
lemp->noAction = lemp->accAction + 1;
lemp->minReduce = lemp->noAction + 1;
lemp->maxAction = lemp->minReduce + lemp->nrule;
in = tplt_open(lemp);
if( in==0 ) return;
out = file_open(lemp,".c","wb");
if( out==0 ){
fclose(in);
return;
}
lineno = 1;
tplt_xfer(lemp->name,in,out,&lineno);
/* Generate the include code, if any */
tplt_print(out,lemp,lemp->include,&lineno);
if( mhflag ){
char *incName = file_makename(lemp, ".h");
fprintf(out,"#include \"%s\"\n", incName); lineno++;
free(incName);
}
tplt_xfer(lemp->name,in,out,&lineno);
/* Generate #defines for all tokens */
if( mhflag ){
const char *prefix;
fprintf(out,"#if INTERFACE\n"); lineno++;
if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
else prefix = "";
for(i=1; i<lemp->nterminal; i++){
fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
lineno++;
}
fprintf(out,"#endif\n"); lineno++;
}
tplt_xfer(lemp->name,in,out,&lineno);
/* Generate the defines */
fprintf(out,"#define YYCODETYPE %s\n",
minimum_size_type(0, lemp->nsymbol, &szCodeType)); lineno++;
fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol); lineno++;
fprintf(out,"#define YYACTIONTYPE %s\n",
minimum_size_type(0,lemp->maxAction,&szActionType)); lineno++;
if( lemp->wildcard ){
fprintf(out,"#define YYWILDCARD %d\n",
lemp->wildcard->index); lineno++;
}
print_stack_union(out,lemp,&lineno,mhflag);
fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
if( lemp->stacksize ){
fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++;
}else{
fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++;
}
fprintf(out, "#endif\n"); lineno++;
if( mhflag ){
fprintf(out,"#if INTERFACE\n"); lineno++;
}
name = lemp->name ? lemp->name : "Parse";
if( lemp->arg && lemp->arg[0] ){
i = lemonStrlen(lemp->arg);
while( i>=1 && ISSPACE(lemp->arg[i-1]) ) i--;
while( i>=1 && (ISALNUM(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++;
fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++;
fprintf(out,"#define %sARG_PARAM ,%s\n",name,&lemp->arg[i]); lineno++;
fprintf(out,"#define %sARG_FETCH %s=yypParser->%s;\n",
name,lemp->arg,&lemp->arg[i]); lineno++;
fprintf(out,"#define %sARG_STORE yypParser->%s=%s;\n",
name,&lemp->arg[i],&lemp->arg[i]); lineno++;
}else{
fprintf(out,"#define %sARG_SDECL\n",name); lineno++;
fprintf(out,"#define %sARG_PDECL\n",name); lineno++;
fprintf(out,"#define %sARG_PARAM\n",name); lineno++;
fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
fprintf(out,"#define %sARG_STORE\n",name); lineno++;
}
if( lemp->ctx && lemp->ctx[0] ){
i = lemonStrlen(lemp->ctx);
while( i>=1 && ISSPACE(lemp->ctx[i-1]) ) i--;
while( i>=1 && (ISALNUM(lemp->ctx[i-1]) || lemp->ctx[i-1]=='_') ) i--;
fprintf(out,"#define %sCTX_SDECL %s;\n",name,lemp->ctx); lineno++;
fprintf(out,"#define %sCTX_PDECL ,%s\n",name,lemp->ctx); lineno++;
fprintf(out,"#define %sCTX_PARAM ,%s\n",name,&lemp->ctx[i]); lineno++;
fprintf(out,"#define %sCTX_FETCH %s=yypParser->%s;\n",
name,lemp->ctx,&lemp->ctx[i]); lineno++;
fprintf(out,"#define %sCTX_STORE yypParser->%s=%s;\n",
name,&lemp->ctx[i],&lemp->ctx[i]); lineno++;
}else{
fprintf(out,"#define %sCTX_SDECL\n",name); lineno++;
fprintf(out,"#define %sCTX_PDECL\n",name); lineno++;
fprintf(out,"#define %sCTX_PARAM\n",name); lineno++;
fprintf(out,"#define %sCTX_FETCH\n",name); lineno++;
fprintf(out,"#define %sCTX_STORE\n",name); lineno++;
}
if( mhflag ){
fprintf(out,"#endif\n"); lineno++;
}
if( lemp->errsym && lemp->errsym->useCnt ){
fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
}
if( lemp->has_fallback ){
fprintf(out,"#define YYFALLBACK 1\n"); lineno++;
}
/* Compute the action table, but do not output it yet. The action
** table must be computed before generating the YYNSTATE macro because
** we need to know how many states can be eliminated.
*/
ax = (struct axset *) calloc(lemp->nxstate*2, sizeof(ax[0]));
if( ax==0 ){
fprintf(stderr,"malloc failed\n");
exit(1);
}
for(i=0; i<lemp->nxstate; i++){
stp = lemp->sorted[i];
ax[i*2].stp = stp;
ax[i*2].isTkn = 1;
ax[i*2].nAction = stp->nTknAct;
ax[i*2+1].stp = stp;
ax[i*2+1].isTkn = 0;
ax[i*2+1].nAction = stp->nNtAct;
}
mxTknOfst = mnTknOfst = 0;
mxNtOfst = mnNtOfst = 0;
/* In an effort to minimize the action table size, use the heuristic
** of placing the largest action sets first */
for(i=0; i<lemp->nxstate*2; i++) ax[i].iOrder = i;
qsort(ax, lemp->nxstate*2, sizeof(ax[0]), axset_compare);
pActtab = acttab_alloc(lemp->nsymbol, lemp->nterminal);
for(i=0; i<lemp->nxstate*2 && ax[i].nAction>0; i++){
stp = ax[i].stp;
if( ax[i].isTkn ){
for(ap=stp->ap; ap; ap=ap->next){
int action;
if( ap->sp->index>=lemp->nterminal ) continue;
action = compute_action(lemp, ap);
if( action<0 ) continue;
acttab_action(pActtab, ap->sp->index, action);
}
stp->iTknOfst = acttab_insert(pActtab, 1);
if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
}else{
for(ap=stp->ap; ap; ap=ap->next){
int action;
if( ap->sp->index<lemp->nterminal ) continue;
if( ap->sp->index==lemp->nsymbol ) continue;
action = compute_action(lemp, ap);
if( action<0 ) continue;
acttab_action(pActtab, ap->sp->index, action);
}
stp->iNtOfst = acttab_insert(pActtab, 0);
if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
}
#if 0 /* Uncomment for a trace of how the yy_action[] table fills out */
{ int jj, nn;
for(jj=nn=0; jj<pActtab->nAction; jj++){
if( pActtab->aAction[jj].action<0 ) nn++;
}
printf("%4d: State %3d %s n: %2d size: %5d freespace: %d\n",
i, stp->statenum, ax[i].isTkn ? "Token" : "Var ",
ax[i].nAction, pActtab->nAction, nn);
}
#endif
}
free(ax);
/* Mark rules that are actually used for reduce actions after all
** optimizations have been applied
*/
for(rp=lemp->rule; rp; rp=rp->next) rp->doesReduce = LEMON_FALSE;
for(i=0; i<lemp->nxstate; i++){
for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
if( ap->type==REDUCE || ap->type==SHIFTREDUCE ){
ap->x.rp->doesReduce = 1;
}
}
}
/* Finish rendering the constants now that the action table has
** been computed */
fprintf(out,"#define YYNSTATE %d\n",lemp->nxstate); lineno++;
fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++;
fprintf(out,"#define YYNTOKEN %d\n",lemp->nterminal); lineno++;
fprintf(out,"#define YY_MAX_SHIFT %d\n",lemp->nxstate-1); lineno++;
i = lemp->minShiftReduce;
fprintf(out,"#define YY_MIN_SHIFTREDUCE %d\n",i); lineno++;
i += lemp->nrule;
fprintf(out,"#define YY_MAX_SHIFTREDUCE %d\n", i-1); lineno++;
fprintf(out,"#define YY_ERROR_ACTION %d\n", lemp->errAction); lineno++;
fprintf(out,"#define YY_ACCEPT_ACTION %d\n", lemp->accAction); lineno++;
fprintf(out,"#define YY_NO_ACTION %d\n", lemp->noAction); lineno++;
fprintf(out,"#define YY_MIN_REDUCE %d\n", lemp->minReduce); lineno++;
i = lemp->minReduce + lemp->nrule;
fprintf(out,"#define YY_MAX_REDUCE %d\n", i-1); lineno++;
tplt_xfer(lemp->name,in,out,&lineno);
/* Now output the action table and its associates:
**
** yy_action[] A single table containing all actions.
** yy_lookahead[] A table containing the lookahead for each entry in
** yy_action. Used to detect hash collisions.
** yy_shift_ofst[] For each state, the offset into yy_action for
** shifting terminals.
** yy_reduce_ofst[] For each state, the offset into yy_action for
** shifting non-terminals after a reduce.
** yy_default[] Default action for each state.
*/
/* Output the yy_action table */
lemp->nactiontab = n = acttab_action_size(pActtab);
lemp->tablesize += n*szActionType;
fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++;
fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
for(i=j=0; i<n; i++){
int action = acttab_yyaction(pActtab, i);
if( action<0 ) action = lemp->noAction;
if( j==0 ) fprintf(out," /* %5d */ ", i);
fprintf(out, " %4d,", action);
if( j==9 || i==n-1 ){
fprintf(out, "\n"); lineno++;
j = 0;
}else{
j++;
}
}
fprintf(out, "};\n"); lineno++;
/* Output the yy_lookahead table */
lemp->nlookaheadtab = n = acttab_lookahead_size(pActtab);
lemp->tablesize += n*szCodeType;
fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
for(i=j=0; i<n; i++){
int la = acttab_yylookahead(pActtab, i);
if( la<0 ) la = lemp->nsymbol;
if( j==0 ) fprintf(out," /* %5d */ ", i);
fprintf(out, " %4d,", la);
if( j==9 || i==n-1 ){
fprintf(out, "\n"); lineno++;
j = 0;
}else{
j++;
}
}
fprintf(out, "};\n"); lineno++;
/* Output the yy_shift_ofst[] table */
n = lemp->nxstate;
while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++;
fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst); lineno++;
fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst); lineno++;
fprintf(out, "static const %s yy_shift_ofst[] = {\n",
minimum_size_type(mnTknOfst, lemp->nterminal+lemp->nactiontab, &sz));
lineno++;
lemp->tablesize += n*sz;
for(i=j=0; i<n; i++){
int ofst;
stp = lemp->sorted[i];
ofst = stp->iTknOfst;
if( ofst==NO_OFFSET ) ofst = lemp->nactiontab;
if( j==0 ) fprintf(out," /* %5d */ ", i);
fprintf(out, " %4d,", ofst);
if( j==9 || i==n-1 ){
fprintf(out, "\n"); lineno++;
j = 0;
}else{
j++;
}
}
fprintf(out, "};\n"); lineno++;
/* Output the yy_reduce_ofst[] table */
n = lemp->nxstate;
while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst); lineno++;
fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst); lineno++;
fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
minimum_size_type(mnNtOfst-1, mxNtOfst, &sz)); lineno++;
lemp->tablesize += n*sz;
for(i=j=0; i<n; i++){
int ofst;
stp = lemp->sorted[i];
ofst = stp->iNtOfst;
if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
if( j==0 ) fprintf(out," /* %5d */ ", i);
fprintf(out, " %4d,", ofst);
if( j==9 || i==n-1 ){
fprintf(out, "\n"); lineno++;
j = 0;
}else{
j++;
}
}
fprintf(out, "};\n"); lineno++;
/* Output the default action table */
fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
n = lemp->nxstate;
lemp->tablesize += n*szActionType;
for(i=j=0; i<n; i++){
stp = lemp->sorted[i];
if( j==0 ) fprintf(out," /* %5d */ ", i);
if( stp->iDfltReduce<0 ){
fprintf(out, " %4d,", lemp->errAction);
}else{
fprintf(out, " %4d,", stp->iDfltReduce + lemp->minReduce);
}
if( j==9 || i==n-1 ){
fprintf(out, "\n"); lineno++;
j = 0;
}else{
j++;
}
}
fprintf(out, "};\n"); lineno++;
tplt_xfer(lemp->name,in,out,&lineno);
/* Generate the table of fallback tokens.
*/
if( lemp->has_fallback ){
int mx = lemp->nterminal - 1;
while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; }
lemp->tablesize += (mx+1)*szCodeType;
for(i=0; i<=mx; i++){
struct symbol *p = lemp->symbols[i];
if( p->fallback==0 ){
fprintf(out, " 0, /* %10s => nothing */\n", p->name);
}else{
fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index,
p->name, p->fallback->name);
}
lineno++;
}
}
tplt_xfer(lemp->name, in, out, &lineno);
/* Generate a table containing the symbolic name of every symbol
*/
for(i=0; i<lemp->nsymbol; i++){
lemon_sprintf(line,"\"%s\",",lemp->symbols[i]->name);
fprintf(out," /* %4d */ \"%s\",\n",i, lemp->symbols[i]->name); lineno++;
}
tplt_xfer(lemp->name,in,out,&lineno);
/* Generate a table containing a text string that describes every
** rule in the rule set of the grammar. This information is used
** when tracing REDUCE actions.
*/
for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
assert( rp->iRule==i );
fprintf(out," /* %3d */ \"", i);
writeRuleText(out, rp);
fprintf(out,"\",\n"); lineno++;
}
tplt_xfer(lemp->name,in,out,&lineno);
/* Generate code which executes every time a symbol is popped from
** the stack while processing errors or while destroying the parser.
** (In other words, generate the %destructor actions)
*/
if( lemp->tokendest ){
int once = 1;
for(i=0; i<lemp->nsymbol; i++){
struct symbol *sp = lemp->symbols[i];
if( sp==0 || sp->type!=TERMINAL ) continue;
if( once ){
fprintf(out, " /* TERMINAL Destructor */\n"); lineno++;
once = 0;
}
fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
}
for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
if( i<lemp->nsymbol ){
emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
fprintf(out," break;\n"); lineno++;
}
}
if( lemp->vardest ){
struct symbol *dflt_sp = 0;
int once = 1;
for(i=0; i<lemp->nsymbol; i++){
struct symbol *sp = lemp->symbols[i];
if( sp==0 || sp->type==TERMINAL ||
sp->index<=0 || sp->destructor!=0 ) continue;
if( once ){
fprintf(out, " /* Default NON-TERMINAL Destructor */\n");lineno++;
once = 0;
}
fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
dflt_sp = sp;
}
if( dflt_sp!=0 ){
emit_destructor_code(out,dflt_sp,lemp,&lineno);
}
fprintf(out," break;\n"); lineno++;
}
for(i=0; i<lemp->nsymbol; i++){
struct symbol *sp = lemp->symbols[i];
if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
if( sp->destLineno<0 ) continue; /* Already emitted */
fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
/* Combine duplicate destructors into a single case */
for(j=i+1; j<lemp->nsymbol; j++){
struct symbol *sp2 = lemp->symbols[j];
if( sp2 && sp2->type!=TERMINAL && sp2->destructor
&& sp2->dtnum==sp->dtnum
&& strcmp(sp->destructor,sp2->destructor)==0 ){
fprintf(out," case %d: /* %s */\n",
sp2->index, sp2->name); lineno++;
sp2->destLineno = -1; /* Avoid emitting this destructor again */
}
}
emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
fprintf(out," break;\n"); lineno++;
}
tplt_xfer(lemp->name,in,out,&lineno);
/* Generate code which executes whenever the parser stack overflows */
tplt_print(out,lemp,lemp->overflow,&lineno);
tplt_xfer(lemp->name,in,out,&lineno);
/* Generate the table of rule information
**
** Note: This code depends on the fact that rules are number
** sequentually beginning with 0.
*/
for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
fprintf(out," { %4d, %4d }, /* (%d) ",rp->lhs->index,-rp->nrhs,i);
rule_print(out, rp);
fprintf(out," */\n"); lineno++;
}
tplt_xfer(lemp->name,in,out,&lineno);
/* Generate code which execution during each REDUCE action */
i = 0;
for(rp=lemp->rule; rp; rp=rp->next){
i += translate_code(lemp, rp);
}
if( i ){
fprintf(out," YYMINORTYPE yylhsminor;\n"); lineno++;
}
/* First output rules other than the default: rule */
for(rp=lemp->rule; rp; rp=rp->next){
struct rule *rp2; /* Other rules with the same action */
if( rp->codeEmitted ) continue;
if( rp->noCode ){
/* No C code actions, so this will be part of the "default:" rule */
continue;
}
fprintf(out," case %d: /* ", rp->iRule);
writeRuleText(out, rp);
fprintf(out, " */\n"); lineno++;
for(rp2=rp->next; rp2; rp2=rp2->next){
if( rp2->code==rp->code && rp2->codePrefix==rp->codePrefix
&& rp2->codeSuffix==rp->codeSuffix ){
fprintf(out," case %d: /* ", rp2->iRule);
writeRuleText(out, rp2);
fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->iRule); lineno++;
rp2->codeEmitted = 1;
}
}
emit_code(out,rp,lemp,&lineno);
fprintf(out," break;\n"); lineno++;
rp->codeEmitted = 1;
}
/* Finally, output the default: rule. We choose as the default: all
** empty actions. */
fprintf(out," default:\n"); lineno++;
for(rp=lemp->rule; rp; rp=rp->next){
if( rp->codeEmitted ) continue;
assert( rp->noCode );
fprintf(out," /* (%d) ", rp->iRule);
writeRuleText(out, rp);
if( rp->doesReduce ){
fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->iRule); lineno++;
}else{
fprintf(out, " (OPTIMIZED OUT) */ assert(yyruleno!=%d);\n",
rp->iRule); lineno++;
}
}
fprintf(out," break;\n"); lineno++;
tplt_xfer(lemp->name,in,out,&lineno);
/* Generate code which executes if a parse fails */
tplt_print(out,lemp,lemp->failure,&lineno);
tplt_xfer(lemp->name,in,out,&lineno);
/* Generate code which executes when a syntax error occurs */
tplt_print(out,lemp,lemp->error,&lineno);
tplt_xfer(lemp->name,in,out,&lineno);
/* Generate code which executes when the parser accepts its input */
tplt_print(out,lemp,lemp->accept,&lineno);
tplt_xfer(lemp->name,in,out,&lineno);
/* Append any addition code the user desires */
tplt_print(out,lemp,lemp->extracode,&lineno);
fclose(in);
fclose(out);
return;
}
/* Generate a header file for the parser */
void ReportHeader(struct lemon *lemp)
{
FILE *out, *in;
const char *prefix;
char line[LINESIZE];
char pattern[LINESIZE];
int i;
if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
else prefix = "";
in = file_open(lemp,".h","rb");
if( in ){
int nextChar;
for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
lemon_sprintf(pattern,"#define %s%-30s %3d\n",
prefix,lemp->symbols[i]->name,i);
if( strcmp(line,pattern) ) break;
}
nextChar = fgetc(in);
fclose(in);
if( i==lemp->nterminal && nextChar==EOF ){
/* No change in the file. Don't rewrite it. */
return;
}
}
out = file_open(lemp,".h","wb");
if( out ){
for(i=1; i<lemp->nterminal; i++){
fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i);
}
fclose(out);
}
return;
}
/* Reduce the size of the action tables, if possible, by making use
** of defaults.
**
** In this version, we take the most frequent REDUCE action and make
** it the default. Except, there is no default if the wildcard token
** is a possible look-ahead.
*/
void CompressTables(struct lemon *lemp)
{
struct state *stp;
struct action *ap, *ap2, *nextap;
struct rule *rp, *rp2, *rbest;
int nbest, n;
int i;
int usesWildcard;
for(i=0; i<lemp->nstate; i++){
stp = lemp->sorted[i];
nbest = 0;
rbest = 0;
usesWildcard = 0;
for(ap=stp->ap; ap; ap=ap->next){
if( ap->type==SHIFT && ap->sp==lemp->wildcard ){
usesWildcard = 1;
}
if( ap->type!=REDUCE ) continue;
rp = ap->x.rp;
if( rp->lhsStart ) continue;
if( rp==rbest ) continue;
n = 1;
for(ap2=ap->next; ap2; ap2=ap2->next){
if( ap2->type!=REDUCE ) continue;
rp2 = ap2->x.rp;
if( rp2==rbest ) continue;
if( rp2==rp ) n++;
}
if( n>nbest ){
nbest = n;
rbest = rp;
}
}
/* Do not make a default if the number of rules to default
** is not at least 1 or if the wildcard token is a possible
** lookahead.
*/
if( nbest<1 || usesWildcard ) continue;
/* Combine matching REDUCE actions into a single default */
for(ap=stp->ap; ap; ap=ap->next){
if( ap->type==REDUCE && ap->x.rp==rbest ) break;
}
assert( ap );
ap->sp = Symbol_new("{default}");
for(ap=ap->next; ap; ap=ap->next){
if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
}
stp->ap = Action_sort(stp->ap);
for(ap=stp->ap; ap; ap=ap->next){
if( ap->type==SHIFT ) break;
if( ap->type==REDUCE && ap->x.rp!=rbest ) break;
}
if( ap==0 ){
stp->autoReduce = 1;
stp->pDfltReduce = rbest;
}
}
/* Make a second pass over all states and actions. Convert
** every action that is a SHIFT to an autoReduce state into
** a SHIFTREDUCE action.
*/
for(i=0; i<lemp->nstate; i++){
stp = lemp->sorted[i];
for(ap=stp->ap; ap; ap=ap->next){
struct state *pNextState;
if( ap->type!=SHIFT ) continue;
pNextState = ap->x.stp;
if( pNextState->autoReduce && pNextState->pDfltReduce!=0 ){
ap->type = SHIFTREDUCE;
ap->x.rp = pNextState->pDfltReduce;
}
}
}
/* If a SHIFTREDUCE action specifies a rule that has a single RHS term
** (meaning that the SHIFTREDUCE will land back in the state where it
** started) and if there is no C-code associated with the reduce action,
** then we can go ahead and convert the action to be the same as the
** action for the RHS of the rule.
*/
for(i=0; i<lemp->nstate; i++){
stp = lemp->sorted[i];
for(ap=stp->ap; ap; ap=nextap){
nextap = ap->next;
if( ap->type!=SHIFTREDUCE ) continue;
rp = ap->x.rp;
if( rp->noCode==0 ) continue;
if( rp->nrhs!=1 ) continue;
#if 1
/* Only apply this optimization to non-terminals. It would be OK to
** apply it to terminal symbols too, but that makes the parser tables
** larger. */
if( ap->sp->index<lemp->nterminal ) continue;
#endif
/* If we reach this point, it means the optimization can be applied */
nextap = ap;
for(ap2=stp->ap; ap2 && (ap2==ap || ap2->sp!=rp->lhs); ap2=ap2->next){}
assert( ap2!=0 );
ap->spOpt = ap2->sp;
ap->type = ap2->type;
ap->x = ap2->x;
}
}
}
/*
** Compare two states for sorting purposes. The smaller state is the
** one with the most non-terminal actions. If they have the same number
** of non-terminal actions, then the smaller is the one with the most
** token actions.
*/
static int stateResortCompare(const void *a, const void *b){
const struct state *pA = *(const struct state**)a;
const struct state *pB = *(const struct state**)b;
int n;
n = pB->nNtAct - pA->nNtAct;
if( n==0 ){
n = pB->nTknAct - pA->nTknAct;
if( n==0 ){
n = pB->statenum - pA->statenum;
}
}
assert( n!=0 );
return n;
}
/*
** Renumber and resort states so that states with fewer choices
** occur at the end. Except, keep state 0 as the first state.
*/
void ResortStates(struct lemon *lemp)
{
int i;
struct state *stp;
struct action *ap;
for(i=0; i<lemp->nstate; i++){
stp = lemp->sorted[i];
stp->nTknAct = stp->nNtAct = 0;
stp->iDfltReduce = -1; /* Init dflt action to "syntax error" */
stp->iTknOfst = NO_OFFSET;
stp->iNtOfst = NO_OFFSET;
for(ap=stp->ap; ap; ap=ap->next){
int iAction = compute_action(lemp,ap);
if( iAction>=0 ){
if( ap->sp->index<lemp->nterminal ){
stp->nTknAct++;
}else if( ap->sp->index<lemp->nsymbol ){
stp->nNtAct++;
}else{
assert( stp->autoReduce==0 || stp->pDfltReduce==ap->x.rp );
stp->iDfltReduce = iAction;
}
}
}
}
qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
stateResortCompare);
for(i=0; i<lemp->nstate; i++){
lemp->sorted[i]->statenum = i;
}
lemp->nxstate = lemp->nstate;
while( lemp->nxstate>1 && lemp->sorted[lemp->nxstate-1]->autoReduce ){
lemp->nxstate--;
}
}
/***************** From the file "set.c" ************************************/
/*
** Set manipulation routines for the LEMON parser generator.
*/
static int size = 0;
/* Set the set size */
void SetSize(int n)
{
size = n+1;
}
/* Allocate a new set */
char *SetNew(void){
char *s;
s = (char*)calloc( size, 1);
if( s==0 ){
extern void memory_error();
memory_error();
}
return s;
}
/* Deallocate a set */
void SetFree(char *s)
{
free(s);
}
/* Add a new element to the set. Return TRUE if the element was added
** and FALSE if it was already there. */
int SetAdd(char *s, int e)
{
int rv;
assert( e>=0 && e<size );
rv = s[e];
s[e] = 1;
return !rv;
}
/* Add every element of s2 to s1. Return TRUE if s1 changes. */
int SetUnion(char *s1, char *s2)
{
int i, progress;
progress = 0;
for(i=0; i<size; i++){
if( s2[i]==0 ) continue;
if( s1[i]==0 ){
progress = 1;
s1[i] = 1;
}
}
return progress;
}
/********************** From the file "table.c" ****************************/
/*
** All code in this file has been automatically generated
** from a specification in the file
** "table.q"
** by the associative array code building program "aagen".
** Do not edit this file! Instead, edit the specification
** file, then rerun aagen.
*/
/*
** Code for processing tables in the LEMON parser generator.
*/
PRIVATE unsigned strhash(const char *x)
{
unsigned h = 0;
while( *x ) h = h*13 + *(x++);
return h;
}
/* Works like strdup, sort of. Save a string in malloced memory, but
** keep strings in a table so that the same string is not in more
** than one place.
*/
const char *Strsafe(const char *y)
{
const char *z;
char *cpy;
if( y==0 ) return 0;
z = Strsafe_find(y);
if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){
lemon_strcpy(cpy,y);
z = cpy;
Strsafe_insert(z);
}
MemoryCheck(z);
return z;
}
/* There is one instance of the following structure for each
** associative array of type "x1".
*/
struct s_x1 {
int size; /* The number of available slots. */
/* Must be a power of 2 greater than or */
/* equal to 1 */
int count; /* Number of currently slots filled */
struct s_x1node *tbl; /* The data stored here */
struct s_x1node **ht; /* Hash table for lookups */
};
/* There is one instance of this structure for every data element
** in an associative array of type "x1".
*/
typedef struct s_x1node {
const char *data; /* The data */
struct s_x1node *next; /* Next entry with the same hash */
struct s_x1node **from; /* Previous link */
} x1node;
/* There is only one instance of the array, which is the following */
static struct s_x1 *x1a;
/* Allocate a new associative array */
void Strsafe_init(void){
if( x1a ) return;
x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
if( x1a ){
x1a->size = 1024;
x1a->count = 0;
x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*));
if( x1a->tbl==0 ){
free(x1a);
x1a = 0;
}else{
int i;
x1a->ht = (x1node**)&(x1a->tbl[1024]);
for(i=0; i<1024; i++) x1a->ht[i] = 0;
}
}
}
/* Insert a new record into the array. Return TRUE if successful.
** Prior data with the same key is NOT overwritten */
int Strsafe_insert(const char *data)
{
x1node *np;
unsigned h;
unsigned ph;
if( x1a==0 ) return 0;
ph = strhash(data);
h = ph & (x1a->size-1);
np = x1a->ht[h];
while( np ){
if( strcmp(np->data,data)==0 ){
/* An existing entry with the same key is found. */
/* Fail because overwrite is not allows. */
return 0;
}
np = np->next;
}
if( x1a->count>=x1a->size ){
/* Need to make the hash table bigger */
int i,arrSize;
struct s_x1 array;
array.size = arrSize = x1a->size*2;
array.count = x1a->count;
array.tbl = (x1node*)calloc(arrSize, sizeof(x1node) + sizeof(x1node*));
if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
array.ht = (x1node**)&(array.tbl[arrSize]);
for(i=0; i<arrSize; i++) array.ht[i] = 0;
for(i=0; i<x1a->count; i++){
x1node *oldnp, *newnp;
oldnp = &(x1a->tbl[i]);
h = strhash(oldnp->data) & (arrSize-1);
newnp = &(array.tbl[i]);
if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
newnp->next = array.ht[h];
newnp->data = oldnp->data;
newnp->from = &(array.ht[h]);
array.ht[h] = newnp;
}
free(x1a->tbl);
*x1a = array;
}
/* Insert the new data */
h = ph & (x1a->size-1);
np = &(x1a->tbl[x1a->count++]);
np->data = data;
if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
np->next = x1a->ht[h];
x1a->ht[h] = np;
np->from = &(x1a->ht[h]);
return 1;
}
/* Return a pointer to data assigned to the given key. Return NULL
** if no such key. */
const char *Strsafe_find(const char *key)
{
unsigned h;
x1node *np;
if( x1a==0 ) return 0;
h = strhash(key) & (x1a->size-1);
np = x1a->ht[h];
while( np ){
if( strcmp(np->data,key)==0 ) break;
np = np->next;
}
return np ? np->data : 0;
}
/* Return a pointer to the (terminal or nonterminal) symbol "x".
** Create a new symbol if this is the first time "x" has been seen.
*/
struct symbol *Symbol_new(const char *x)
{
struct symbol *sp;
sp = Symbol_find(x);
if( sp==0 ){
sp = (struct symbol *)calloc(1, sizeof(struct symbol) );
MemoryCheck(sp);
sp->name = Strsafe(x);
sp->type = ISUPPER(*x) ? TERMINAL : NONTERMINAL;
sp->rule = 0;
sp->fallback = 0;
sp->prec = -1;
sp->assoc = UNK;
sp->firstset = 0;
sp->lambda = LEMON_FALSE;
sp->destructor = 0;
sp->destLineno = 0;
sp->datatype = 0;
sp->useCnt = 0;
Symbol_insert(sp,sp->name);
}
sp->useCnt++;
return sp;
}
/* Compare two symbols for sorting purposes. Return negative,
** zero, or positive if a is less then, equal to, or greater
** than b.
**
** Symbols that begin with upper case letters (terminals or tokens)
** must sort before symbols that begin with lower case letters
** (non-terminals). And MULTITERMINAL symbols (created using the
** %token_class directive) must sort at the very end. Other than
** that, the order does not matter.
**
** We find experimentally that leaving the symbols in their original
** order (the order they appeared in the grammar file) gives the
** smallest parser tables in SQLite.
*/
int Symbolcmpp(const void *_a, const void *_b)
{
const struct symbol *a = *(const struct symbol **) _a;
const struct symbol *b = *(const struct symbol **) _b;
int i1 = a->type==MULTITERMINAL ? 3 : a->name[0]>'Z' ? 2 : 1;
int i2 = b->type==MULTITERMINAL ? 3 : b->name[0]>'Z' ? 2 : 1;
return i1==i2 ? a->index - b->index : i1 - i2;
}
/* There is one instance of the following structure for each
** associative array of type "x2".
*/
struct s_x2 {
int size; /* The number of available slots. */
/* Must be a power of 2 greater than or */
/* equal to 1 */
int count; /* Number of currently slots filled */
struct s_x2node *tbl; /* The data stored here */
struct s_x2node **ht; /* Hash table for lookups */
};
/* There is one instance of this structure for every data element
** in an associative array of type "x2".
*/
typedef struct s_x2node {
struct symbol *data; /* The data */
const char *key; /* The key */
struct s_x2node *next; /* Next entry with the same hash */
struct s_x2node **from; /* Previous link */
} x2node;
/* There is only one instance of the array, which is the following */
static struct s_x2 *x2a;
/* Allocate a new associative array */
void Symbol_init(void){
if( x2a ) return;
x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
if( x2a ){
x2a->size = 128;
x2a->count = 0;
x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*));
if( x2a->tbl==0 ){
free(x2a);
x2a = 0;
}else{
int i;
x2a->ht = (x2node**)&(x2a->tbl[128]);
for(i=0; i<128; i++) x2a->ht[i] = 0;
}
}
}
/* Insert a new record into the array. Return TRUE if successful.
** Prior data with the same key is NOT overwritten */
int Symbol_insert(struct symbol *data, const char *key)
{
x2node *np;
unsigned h;
unsigned ph;
if( x2a==0 ) return 0;
ph = strhash(key);
h = ph & (x2a->size-1);
np = x2a->ht[h];
while( np ){
if( strcmp(np->key,key)==0 ){
/* An existing entry with the same key is found. */
/* Fail because overwrite is not allows. */
return 0;
}
np = np->next;
}
if( x2a->count>=x2a->size ){
/* Need to make the hash table bigger */
int i,arrSize;
struct s_x2 array;
array.size = arrSize = x2a->size*2;
array.count = x2a->count;
array.tbl = (x2node*)calloc(arrSize, sizeof(x2node) + sizeof(x2node*));
if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
array.ht = (x2node**)&(array.tbl[arrSize]);
for(i=0; i<arrSize; i++) array.ht[i] = 0;
for(i=0; i<x2a->count; i++){
x2node *oldnp, *newnp;
oldnp = &(x2a->tbl[i]);
h = strhash(oldnp->key) & (arrSize-1);
newnp = &(array.tbl[i]);
if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
newnp->next = array.ht[h];
newnp->key = oldnp->key;
newnp->data = oldnp->data;
newnp->from = &(array.ht[h]);
array.ht[h] = newnp;
}
free(x2a->tbl);
*x2a = array;
}
/* Insert the new data */
h = ph & (x2a->size-1);
np = &(x2a->tbl[x2a->count++]);
np->key = key;
np->data = data;
if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
np->next = x2a->ht[h];
x2a->ht[h] = np;
np->from = &(x2a->ht[h]);
return 1;
}
/* Return a pointer to data assigned to the given key. Return NULL
** if no such key. */
struct symbol *Symbol_find(const char *key)
{
unsigned h;
x2node *np;
if( x2a==0 ) return 0;
h = strhash(key) & (x2a->size-1);
np = x2a->ht[h];
while( np ){
if( strcmp(np->key,key)==0 ) break;
np = np->next;
}
return np ? np->data : 0;
}
/* Return the n-th data. Return NULL if n is out of range. */
struct symbol *Symbol_Nth(int n)
{
struct symbol *data;
if( x2a && n>0 && n<=x2a->count ){
data = x2a->tbl[n-1].data;
}else{
data = 0;
}
return data;
}
/* Return the size of the array */
int Symbol_count()
{
return x2a ? x2a->count : 0;
}
/* Return an array of pointers to all data in the table.
** The array is obtained from malloc. Return NULL if memory allocation
** problems, or if the array is empty. */
struct symbol **Symbol_arrayof()
{
struct symbol **array;
int i,arrSize;
if( x2a==0 ) return 0;
arrSize = x2a->count;
array = (struct symbol **)calloc(arrSize, sizeof(struct symbol *));
if( array ){
for(i=0; i<arrSize; i++) array[i] = x2a->tbl[i].data;
}
return array;
}
/* Compare two configurations */
int Configcmp(const char *_a,const char *_b)
{
const struct config *a = (struct config *) _a;
const struct config *b = (struct config *) _b;
int x;
x = a->rp->index - b->rp->index;
if( x==0 ) x = a->dot - b->dot;
return x;
}
/* Compare two states */
PRIVATE int statecmp(struct config *a, struct config *b)
{
int rc;
for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){
rc = a->rp->index - b->rp->index;
if( rc==0 ) rc = a->dot - b->dot;
}
if( rc==0 ){
if( a ) rc = 1;
if( b ) rc = -1;
}
return rc;
}
/* Hash a state */
PRIVATE unsigned statehash(struct config *a)
{
unsigned h=0;
while( a ){
h = h*571 + a->rp->index*37 + a->dot;
a = a->bp;
}
return h;
}
/* Allocate a new state structure */
struct state *State_new()
{
struct state *newstate;
newstate = (struct state *)calloc(1, sizeof(struct state) );
MemoryCheck(newstate);
return newstate;
}
/* There is one instance of the following structure for each
** associative array of type "x3".
*/
struct s_x3 {
int size; /* The number of available slots. */
/* Must be a power of 2 greater than or */
/* equal to 1 */
int count; /* Number of currently slots filled */
struct s_x3node *tbl; /* The data stored here */
struct s_x3node **ht; /* Hash table for lookups */
};
/* There is one instance of this structure for every data element
** in an associative array of type "x3".
*/
typedef struct s_x3node {
struct state *data; /* The data */
struct config *key; /* The key */
struct s_x3node *next; /* Next entry with the same hash */
struct s_x3node **from; /* Previous link */
} x3node;
/* There is only one instance of the array, which is the following */
static struct s_x3 *x3a;
/* Allocate a new associative array */
void State_init(void){
if( x3a ) return;
x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
if( x3a ){
x3a->size = 128;
x3a->count = 0;
x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*));
if( x3a->tbl==0 ){
free(x3a);
x3a = 0;
}else{
int i;
x3a->ht = (x3node**)&(x3a->tbl[128]);
for(i=0; i<128; i++) x3a->ht[i] = 0;
}
}
}
/* Insert a new record into the array. Return TRUE if successful.
** Prior data with the same key is NOT overwritten */
int State_insert(struct state *data, struct config *key)
{
x3node *np;
unsigned h;
unsigned ph;
if( x3a==0 ) return 0;
ph = statehash(key);
h = ph & (x3a->size-1);
np = x3a->ht[h];
while( np ){
if( statecmp(np->key,key)==0 ){
/* An existing entry with the same key is found. */
/* Fail because overwrite is not allows. */
return 0;
}
np = np->next;
}
if( x3a->count>=x3a->size ){
/* Need to make the hash table bigger */
int i,arrSize;
struct s_x3 array;
array.size = arrSize = x3a->size*2;
array.count = x3a->count;
array.tbl = (x3node*)calloc(arrSize, sizeof(x3node) + sizeof(x3node*));
if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
array.ht = (x3node**)&(array.tbl[arrSize]);
for(i=0; i<arrSize; i++) array.ht[i] = 0;
for(i=0; i<x3a->count; i++){
x3node *oldnp, *newnp;
oldnp = &(x3a->tbl[i]);
h = statehash(oldnp->key) & (arrSize-1);
newnp = &(array.tbl[i]);
if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
newnp->next = array.ht[h];
newnp->key = oldnp->key;
newnp->data = oldnp->data;
newnp->from = &(array.ht[h]);
array.ht[h] = newnp;
}
free(x3a->tbl);
*x3a = array;
}
/* Insert the new data */
h = ph & (x3a->size-1);
np = &(x3a->tbl[x3a->count++]);
np->key = key;
np->data = data;
if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
np->next = x3a->ht[h];
x3a->ht[h] = np;
np->from = &(x3a->ht[h]);
return 1;
}
/* Return a pointer to data assigned to the given key. Return NULL
** if no such key. */
struct state *State_find(struct config *key)
{
unsigned h;
x3node *np;
if( x3a==0 ) return 0;
h = statehash(key) & (x3a->size-1);
np = x3a->ht[h];
while( np ){
if( statecmp(np->key,key)==0 ) break;
np = np->next;
}
return np ? np->data : 0;
}
/* Return an array of pointers to all data in the table.
** The array is obtained from malloc. Return NULL if memory allocation
** problems, or if the array is empty. */
struct state **State_arrayof(void)
{
struct state **array;
int i,arrSize;
if( x3a==0 ) return 0;
arrSize = x3a->count;
array = (struct state **)calloc(arrSize, sizeof(struct state *));
if( array ){
for(i=0; i<arrSize; i++) array[i] = x3a->tbl[i].data;
}
return array;
}
/* Hash a configuration */
PRIVATE unsigned confighash(struct config *a)
{
unsigned h=0;
h = h*571 + a->rp->index*37 + a->dot;
return h;
}
/* There is one instance of the following structure for each
** associative array of type "x4".
*/
struct s_x4 {
int size; /* The number of available slots. */
/* Must be a power of 2 greater than or */
/* equal to 1 */
int count; /* Number of currently slots filled */
struct s_x4node *tbl; /* The data stored here */
struct s_x4node **ht; /* Hash table for lookups */
};
/* There is one instance of this structure for every data element
** in an associative array of type "x4".
*/
typedef struct s_x4node {
struct config *data; /* The data */
struct s_x4node *next; /* Next entry with the same hash */
struct s_x4node **from; /* Previous link */
} x4node;
/* There is only one instance of the array, which is the following */
static struct s_x4 *x4a;
/* Allocate a new associative array */
void Configtable_init(void){
if( x4a ) return;
x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
if( x4a ){
x4a->size = 64;
x4a->count = 0;
x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*));
if( x4a->tbl==0 ){
free(x4a);
x4a = 0;
}else{
int i;
x4a->ht = (x4node**)&(x4a->tbl[64]);
for(i=0; i<64; i++) x4a->ht[i] = 0;
}
}
}
/* Insert a new record into the array. Return TRUE if successful.
** Prior data with the same key is NOT overwritten */
int Configtable_insert(struct config *data)
{
x4node *np;
unsigned h;
unsigned ph;
if( x4a==0 ) return 0;
ph = confighash(data);
h = ph & (x4a->size-1);
np = x4a->ht[h];
while( np ){
if( Configcmp((const char *) np->data,(const char *) data)==0 ){
/* An existing entry with the same key is found. */
/* Fail because overwrite is not allows. */
return 0;
}
np = np->next;
}
if( x4a->count>=x4a->size ){
/* Need to make the hash table bigger */
int i,arrSize;
struct s_x4 array;
array.size = arrSize = x4a->size*2;
array.count = x4a->count;
array.tbl = (x4node*)calloc(arrSize, sizeof(x4node) + sizeof(x4node*));
if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
array.ht = (x4node**)&(array.tbl[arrSize]);
for(i=0; i<arrSize; i++) array.ht[i] = 0;
for(i=0; i<x4a->count; i++){
x4node *oldnp, *newnp;
oldnp = &(x4a->tbl[i]);
h = confighash(oldnp->data) & (arrSize-1);
newnp = &(array.tbl[i]);
if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
newnp->next = array.ht[h];
newnp->data = oldnp->data;
newnp->from = &(array.ht[h]);
array.ht[h] = newnp;
}
free(x4a->tbl);
*x4a = array;
}
/* Insert the new data */
h = ph & (x4a->size-1);
np = &(x4a->tbl[x4a->count++]);
np->data = data;
if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
np->next = x4a->ht[h];
x4a->ht[h] = np;
np->from = &(x4a->ht[h]);
return 1;
}
/* Return a pointer to data assigned to the given key. Return NULL
** if no such key. */
struct config *Configtable_find(struct config *key)
{
int h;
x4node *np;
if( x4a==0 ) return 0;
h = confighash(key) & (x4a->size-1);
np = x4a->ht[h];
while( np ){
if( Configcmp((const char *) np->data,(const char *) key)==0 ) break;
np = np->next;
}
return np ? np->data : 0;
}
/* Remove all data from the table. Pass each data to the function "f"
** as it is removed. ("f" may be null to avoid this step.) */
void Configtable_clear(int(*f)(struct config *))
{
int i;
if( x4a==0 || x4a->count==0 ) return;
if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
x4a->count = 0;
return;
}