518ee8f06f
FossilOrigin-Name: 9bd3be92b8add7bd0d7bc4b0742b2dd227ebb8d67a839b78f26f2b06b47490f2
761 lines
20 KiB
C
761 lines
20 KiB
C
/*
|
|
** 2015-11-16
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
**
|
|
** This file implements a simple virtual table wrapper around the LSM
|
|
** storage engine from SQLite4.
|
|
*/
|
|
#include "sqlite3ext.h"
|
|
SQLITE_EXTENSION_INIT1
|
|
#include "lsm.h"
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
/* Forward declaration of subclasses of virtual table objects */
|
|
typedef struct lsm1_vtab lsm1_vtab;
|
|
typedef struct lsm1_cursor lsm1_cursor;
|
|
|
|
/* Primitive types */
|
|
typedef unsigned char u8;
|
|
|
|
/* An open connection to an LSM table */
|
|
struct lsm1_vtab {
|
|
sqlite3_vtab base; /* Base class - must be first */
|
|
lsm_db *pDb; /* Open connection to the LSM table */
|
|
};
|
|
|
|
|
|
/* lsm1_cursor is a subclass of sqlite3_vtab_cursor which will
|
|
** serve as the underlying representation of a cursor that scans
|
|
** over rows of the result
|
|
*/
|
|
struct lsm1_cursor {
|
|
sqlite3_vtab_cursor base; /* Base class - must be first */
|
|
lsm_cursor *pLsmCur; /* The LSM cursor */
|
|
u8 isDesc; /* 0: scan forward. 1: scan reverse */
|
|
u8 atEof; /* True if the scan is complete */
|
|
u8 bUnique; /* True if no more than one row of output */
|
|
};
|
|
|
|
/*
|
|
** The lsm1Connect() method is invoked to create a new
|
|
** lsm1_vtab that describes the virtual table.
|
|
*/
|
|
static int lsm1Connect(
|
|
sqlite3 *db,
|
|
void *pAux,
|
|
int argc, const char *const*argv,
|
|
sqlite3_vtab **ppVtab,
|
|
char **pzErr
|
|
){
|
|
lsm1_vtab *pNew;
|
|
int rc;
|
|
|
|
if( argc!=4 || argv[3]==0 || argv[3][0]==0 ){
|
|
*pzErr = sqlite3_mprintf("filename argument missing");
|
|
return SQLITE_ERROR;
|
|
}
|
|
*ppVtab = sqlite3_malloc( sizeof(*pNew) );
|
|
pNew = (lsm1_vtab*)*ppVtab;
|
|
if( pNew==0 ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
memset(pNew, 0, sizeof(*pNew));
|
|
rc = lsm_new(0, &pNew->pDb);
|
|
if( rc ){
|
|
*pzErr = sqlite3_mprintf("lsm_new failed with error code %d", rc);
|
|
rc = SQLITE_ERROR;
|
|
goto connect_failed;
|
|
}
|
|
rc = lsm_open(pNew->pDb, argv[3]);
|
|
if( rc ){
|
|
*pzErr = sqlite3_mprintf("lsm_open failed with %d", rc);
|
|
rc = SQLITE_ERROR;
|
|
goto connect_failed;
|
|
}
|
|
|
|
/* Column numbers */
|
|
#define LSM1_COLUMN_KEY 0
|
|
#define LSM1_COLUMN_BLOBKEY 1
|
|
#define LSM1_COLUMN_VALUE 2
|
|
#define LSM1_COLUMN_BLOBVALUE 3
|
|
#define LSM1_COLUMN_COMMAND 4
|
|
|
|
rc = sqlite3_declare_vtab(db,
|
|
"CREATE TABLE x("
|
|
" key," /* The primary key. Any non-NULL */
|
|
" blobkey," /* Pure BLOB primary key */
|
|
" value," /* The value associated with key. Any non-NULL */
|
|
" blobvalue," /* Pure BLOB value */
|
|
" command hidden" /* Insert here for control operations */
|
|
");"
|
|
);
|
|
connect_failed:
|
|
if( rc!=SQLITE_OK ){
|
|
if( pNew ){
|
|
if( pNew->pDb ) lsm_close(pNew->pDb);
|
|
sqlite3_free(pNew);
|
|
}
|
|
*ppVtab = 0;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This method is the destructor for lsm1_cursor objects.
|
|
*/
|
|
static int lsm1Disconnect(sqlite3_vtab *pVtab){
|
|
lsm1_vtab *p = (lsm1_vtab*)pVtab;
|
|
lsm_close(p->pDb);
|
|
sqlite3_free(p);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Constructor for a new lsm1_cursor object.
|
|
*/
|
|
static int lsm1Open(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){
|
|
lsm1_vtab *p = (lsm1_vtab*)pVtab;
|
|
lsm1_cursor *pCur;
|
|
int rc;
|
|
pCur = sqlite3_malloc( sizeof(*pCur) );
|
|
if( pCur==0 ) return SQLITE_NOMEM;
|
|
memset(pCur, 0, sizeof(*pCur));
|
|
*ppCursor = &pCur->base;
|
|
rc = lsm_csr_open(p->pDb, &pCur->pLsmCur);
|
|
if( rc==LSM_OK ){
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
sqlite3_free(pCur);
|
|
*ppCursor = 0;
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Destructor for a lsm1_cursor.
|
|
*/
|
|
static int lsm1Close(sqlite3_vtab_cursor *cur){
|
|
lsm1_cursor *pCur = (lsm1_cursor*)cur;
|
|
lsm_csr_close(pCur->pLsmCur);
|
|
sqlite3_free(pCur);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
/*
|
|
** Advance a lsm1_cursor to its next row of output.
|
|
*/
|
|
static int lsm1Next(sqlite3_vtab_cursor *cur){
|
|
lsm1_cursor *pCur = (lsm1_cursor*)cur;
|
|
int rc;
|
|
if( pCur->bUnique ){
|
|
pCur->atEof = 1;
|
|
}else{
|
|
if( pCur->isDesc ){
|
|
rc = lsm_csr_prev(pCur->pLsmCur);
|
|
}else{
|
|
rc = lsm_csr_next(pCur->pLsmCur);
|
|
}
|
|
if( rc==LSM_OK && lsm_csr_valid(pCur->pLsmCur)==0 ){
|
|
pCur->atEof = 1;
|
|
}
|
|
}
|
|
return rc==LSM_OK ? SQLITE_OK : SQLITE_ERROR;
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if the cursor has been moved off of the last
|
|
** row of output.
|
|
*/
|
|
static int lsm1Eof(sqlite3_vtab_cursor *cur){
|
|
lsm1_cursor *pCur = (lsm1_cursor*)cur;
|
|
return pCur->atEof;
|
|
}
|
|
|
|
/*
|
|
** Rowids are not supported by the underlying virtual table. So always
|
|
** return 0 for the rowid.
|
|
*/
|
|
static int lsm1Rowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
|
|
*pRowid = 0;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Type prefixes on LSM keys
|
|
*/
|
|
#define LSM1_TYPE_NEGATIVE 0
|
|
#define LSM1_TYPE_POSITIVE 1
|
|
#define LSM1_TYPE_TEXT 2
|
|
#define LSM1_TYPE_BLOB 3
|
|
|
|
/*
|
|
** Write a 32-bit unsigned integer as 4 big-endian bytes.
|
|
*/
|
|
static void varintWrite32(unsigned char *z, unsigned int y){
|
|
z[0] = (unsigned char)(y>>24);
|
|
z[1] = (unsigned char)(y>>16);
|
|
z[2] = (unsigned char)(y>>8);
|
|
z[3] = (unsigned char)(y);
|
|
}
|
|
|
|
/*
|
|
** Write a varint into z[]. The buffer z[] must be at least 9 characters
|
|
** long to accommodate the largest possible varint. Return the number of
|
|
** bytes of z[] used.
|
|
*/
|
|
static int lsm1PutVarint64(unsigned char *z, sqlite3_uint64 x){
|
|
unsigned int w, y;
|
|
if( x<=240 ){
|
|
z[0] = (unsigned char)x;
|
|
return 1;
|
|
}
|
|
if( x<=2287 ){
|
|
y = (unsigned int)(x - 240);
|
|
z[0] = (unsigned char)(y/256 + 241);
|
|
z[1] = (unsigned char)(y%256);
|
|
return 2;
|
|
}
|
|
if( x<=67823 ){
|
|
y = (unsigned int)(x - 2288);
|
|
z[0] = 249;
|
|
z[1] = (unsigned char)(y/256);
|
|
z[2] = (unsigned char)(y%256);
|
|
return 3;
|
|
}
|
|
y = (unsigned int)x;
|
|
w = (unsigned int)(x>>32);
|
|
if( w==0 ){
|
|
if( y<=16777215 ){
|
|
z[0] = 250;
|
|
z[1] = (unsigned char)(y>>16);
|
|
z[2] = (unsigned char)(y>>8);
|
|
z[3] = (unsigned char)(y);
|
|
return 4;
|
|
}
|
|
z[0] = 251;
|
|
varintWrite32(z+1, y);
|
|
return 5;
|
|
}
|
|
if( w<=255 ){
|
|
z[0] = 252;
|
|
z[1] = (unsigned char)w;
|
|
varintWrite32(z+2, y);
|
|
return 6;
|
|
}
|
|
if( w<=65535 ){
|
|
z[0] = 253;
|
|
z[1] = (unsigned char)(w>>8);
|
|
z[2] = (unsigned char)w;
|
|
varintWrite32(z+3, y);
|
|
return 7;
|
|
}
|
|
if( w<=16777215 ){
|
|
z[0] = 254;
|
|
z[1] = (unsigned char)(w>>16);
|
|
z[2] = (unsigned char)(w>>8);
|
|
z[3] = (unsigned char)w;
|
|
varintWrite32(z+4, y);
|
|
return 8;
|
|
}
|
|
z[0] = 255;
|
|
varintWrite32(z+1, w);
|
|
varintWrite32(z+5, y);
|
|
return 9;
|
|
}
|
|
|
|
/*
|
|
** Decode the varint in the first n bytes z[]. Write the integer value
|
|
** into *pResult and return the number of bytes in the varint.
|
|
**
|
|
** If the decode fails because there are not enough bytes in z[] then
|
|
** return 0;
|
|
*/
|
|
static int lsm1GetVarint64(
|
|
const unsigned char *z,
|
|
int n,
|
|
sqlite3_uint64 *pResult
|
|
){
|
|
unsigned int x;
|
|
if( n<1 ) return 0;
|
|
if( z[0]<=240 ){
|
|
*pResult = z[0];
|
|
return 1;
|
|
}
|
|
if( z[0]<=248 ){
|
|
if( n<2 ) return 0;
|
|
*pResult = (z[0]-241)*256 + z[1] + 240;
|
|
return 2;
|
|
}
|
|
if( n<z[0]-246 ) return 0;
|
|
if( z[0]==249 ){
|
|
*pResult = 2288 + 256*z[1] + z[2];
|
|
return 3;
|
|
}
|
|
if( z[0]==250 ){
|
|
*pResult = (z[1]<<16) + (z[2]<<8) + z[3];
|
|
return 4;
|
|
}
|
|
x = (z[1]<<24) + (z[2]<<16) + (z[3]<<8) + z[4];
|
|
if( z[0]==251 ){
|
|
*pResult = x;
|
|
return 5;
|
|
}
|
|
if( z[0]==252 ){
|
|
*pResult = (((sqlite3_uint64)x)<<8) + z[5];
|
|
return 6;
|
|
}
|
|
if( z[0]==253 ){
|
|
*pResult = (((sqlite3_uint64)x)<<16) + (z[5]<<8) + z[6];
|
|
return 7;
|
|
}
|
|
if( z[0]==254 ){
|
|
*pResult = (((sqlite3_uint64)x)<<24) + (z[5]<<16) + (z[6]<<8) + z[7];
|
|
return 8;
|
|
}
|
|
*pResult = (((sqlite3_uint64)x)<<32) +
|
|
(0xffffffff & ((z[5]<<24) + (z[6]<<16) + (z[7]<<8) + z[8]));
|
|
return 9;
|
|
}
|
|
|
|
/*
|
|
** Generate a key encoding for pValue such that all keys compare in
|
|
** lexicographical order. Return an SQLite error code or SQLITE_OK.
|
|
**
|
|
** The key encoding is *pnKey bytes in length written into *ppKey.
|
|
** Space to hold the key is taken from pSpace if sufficient, or else
|
|
** from sqlite3_malloc(). The caller is responsible for freeing malloced
|
|
** space.
|
|
*/
|
|
static int lsm1EncodeKey(
|
|
sqlite3_value *pValue, /* Value to be encoded */
|
|
unsigned char **ppKey, /* Write the encoding here */
|
|
int *pnKey, /* Write the size of the encoding here */
|
|
unsigned char *pSpace, /* Use this space if it is large enough */
|
|
int nSpace /* Size of pSpace[] */
|
|
){
|
|
int eType = sqlite3_value_type(pValue);
|
|
*ppKey = 0;
|
|
*pnKey = 0;
|
|
assert( nSpace>=32 );
|
|
switch( eType ){
|
|
default: {
|
|
return SQLITE_ERROR; /* We cannot handle NULL keys */
|
|
}
|
|
case SQLITE_BLOB:
|
|
case SQLITE_TEXT: {
|
|
int nVal = sqlite3_value_bytes(pValue);
|
|
const void *pVal;
|
|
if( eType==SQLITE_BLOB ){
|
|
eType = LSM1_TYPE_BLOB;
|
|
pVal = sqlite3_value_blob(pValue);
|
|
}else{
|
|
eType = LSM1_TYPE_TEXT;
|
|
pVal = (const void*)sqlite3_value_text(pValue);
|
|
if( pVal==0 ) return SQLITE_NOMEM;
|
|
}
|
|
if( nVal+1>nSpace ){
|
|
pSpace = sqlite3_malloc( nVal+1 );
|
|
if( pSpace==0 ) return SQLITE_NOMEM;
|
|
}
|
|
pSpace[0] = eType;
|
|
memcpy(&pSpace[1], pVal, nVal);
|
|
*ppKey = pSpace;
|
|
*pnKey = nVal+1;
|
|
break;
|
|
}
|
|
case SQLITE_INTEGER: {
|
|
sqlite3_int64 iVal = sqlite3_value_int64(pValue);
|
|
sqlite3_uint64 uVal;
|
|
if( iVal<0 ){
|
|
if( iVal==0xffffffffffffffffLL ) return SQLITE_ERROR;
|
|
uVal = *(sqlite3_uint64*)&iVal;
|
|
eType = LSM1_TYPE_NEGATIVE;
|
|
}else{
|
|
uVal = iVal;
|
|
eType = LSM1_TYPE_POSITIVE;
|
|
}
|
|
pSpace[0] = eType;
|
|
*ppKey = pSpace;
|
|
*pnKey = 1 + lsm1PutVarint64(&pSpace[1], uVal);
|
|
}
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Return values of columns for the row at which the lsm1_cursor
|
|
** is currently pointing.
|
|
*/
|
|
static int lsm1Column(
|
|
sqlite3_vtab_cursor *cur, /* The cursor */
|
|
sqlite3_context *ctx, /* First argument to sqlite3_result_...() */
|
|
int i /* Which column to return */
|
|
){
|
|
lsm1_cursor *pCur = (lsm1_cursor*)cur;
|
|
switch( i ){
|
|
case LSM1_COLUMN_BLOBKEY: {
|
|
const void *pVal;
|
|
int nVal;
|
|
if( lsm_csr_key(pCur->pLsmCur, &pVal, &nVal)==LSM_OK ){
|
|
sqlite3_result_blob(ctx, pVal, nVal, SQLITE_TRANSIENT);
|
|
}
|
|
break;
|
|
}
|
|
case LSM1_COLUMN_KEY: {
|
|
const unsigned char *pVal;
|
|
int nVal;
|
|
if( lsm_csr_key(pCur->pLsmCur, (const void**)&pVal, &nVal)==LSM_OK
|
|
&& nVal>=1
|
|
){
|
|
if( pVal[0]==LSM1_TYPE_BLOB ){
|
|
sqlite3_result_blob(ctx, (const void*)&pVal[1],nVal-1,
|
|
SQLITE_TRANSIENT);
|
|
}else if( pVal[0]==LSM1_TYPE_TEXT ){
|
|
sqlite3_result_text(ctx, (const char*)&pVal[1],nVal-1,
|
|
SQLITE_TRANSIENT);
|
|
}else if( nVal>=2 && nVal<=10 &&
|
|
(pVal[0]==LSM1_TYPE_POSITIVE || pVal[0]==LSM1_TYPE_NEGATIVE)
|
|
){
|
|
sqlite3_int64 iVal;
|
|
lsm1GetVarint64(pVal+1, nVal-1, (sqlite3_uint64*)&iVal);
|
|
sqlite3_result_int64(ctx, iVal);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case LSM1_COLUMN_BLOBVALUE: {
|
|
const void *pVal;
|
|
int nVal;
|
|
if( lsm_csr_value(pCur->pLsmCur, (const void**)&pVal, &nVal)==LSM_OK ){
|
|
sqlite3_result_blob(ctx, pVal, nVal, SQLITE_TRANSIENT);
|
|
}
|
|
break;
|
|
}
|
|
case LSM1_COLUMN_VALUE: {
|
|
const unsigned char *aVal;
|
|
int nVal;
|
|
if( lsm_csr_value(pCur->pLsmCur, (const void**)&aVal, &nVal)==LSM_OK
|
|
&& nVal>=1
|
|
){
|
|
switch( aVal[0] ){
|
|
case SQLITE_FLOAT:
|
|
case SQLITE_INTEGER: {
|
|
sqlite3_uint64 x = 0;
|
|
int j;
|
|
for(j=1; j<nVal; j++){
|
|
x = (x<<8) | aVal[j];
|
|
}
|
|
if( aVal[0]==SQLITE_INTEGER ){
|
|
sqlite3_result_int64(ctx, *(sqlite3_int64*)&x);
|
|
}else{
|
|
double r;
|
|
assert( sizeof(r)==sizeof(x) );
|
|
memcpy(&r, &x, sizeof(r));
|
|
sqlite3_result_double(ctx, r);
|
|
}
|
|
break;
|
|
}
|
|
case SQLITE_TEXT: {
|
|
sqlite3_result_text(ctx, (char*)&aVal[1], nVal-1, SQLITE_TRANSIENT);
|
|
break;
|
|
}
|
|
case SQLITE_BLOB: {
|
|
sqlite3_result_blob(ctx, &aVal[1], nVal-1, SQLITE_TRANSIENT);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
break;
|
|
}
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Move to the first row to return.
|
|
*/
|
|
static int lsm1Filter(
|
|
sqlite3_vtab_cursor *pVtabCursor,
|
|
int idxNum, const char *idxStr,
|
|
int argc, sqlite3_value **argv
|
|
){
|
|
lsm1_cursor *pCur = (lsm1_cursor *)pVtabCursor;
|
|
int rc = LSM_OK;
|
|
pCur->atEof = 1;
|
|
if( idxNum==1 ){
|
|
assert( argc==1 );
|
|
pCur->isDesc = 0;
|
|
pCur->bUnique = 1;
|
|
if( sqlite3_value_type(argv[0])==SQLITE_BLOB ){
|
|
const void *pVal = sqlite3_value_blob(argv[0]);
|
|
int nVal = sqlite3_value_bytes(argv[0]);
|
|
rc = lsm_csr_seek(pCur->pLsmCur, pVal, nVal, LSM_SEEK_EQ);
|
|
}
|
|
}else{
|
|
rc = lsm_csr_first(pCur->pLsmCur);
|
|
pCur->isDesc = 0;
|
|
pCur->bUnique = 0;
|
|
}
|
|
if( rc==LSM_OK && lsm_csr_valid(pCur->pLsmCur)!=0 ){
|
|
pCur->atEof = 0;
|
|
}
|
|
return rc==LSM_OK ? SQLITE_OK : SQLITE_ERROR;
|
|
}
|
|
|
|
/*
|
|
** Only comparisons against the key are allowed. The idxNum defines
|
|
** which comparisons are available:
|
|
**
|
|
** 0 Full table scan only
|
|
** bit 1 key==?1 single argument for ?1
|
|
** bit 2 key>?1
|
|
** bit 3 key>=?1
|
|
** bit 4 key<?N (N==1 if bits 2,3 clear, or 2 if bits2,3 set)
|
|
** bit 5 key<=?N (N==1 if bits 2,3 clear, or 2 if bits2,3 set)
|
|
** bit 6 Use blobkey instead of key
|
|
**
|
|
** To put it another way:
|
|
**
|
|
** 0 Full table scan.
|
|
** 1 key==?1
|
|
** 2 key>?1
|
|
** 4 key>=?1
|
|
** 8 key<?1
|
|
** 10 key>?1 AND key<?2
|
|
** 12 key>=?1 AND key<?2
|
|
** 16 key<=?1
|
|
** 18 key>?1 AND key<=?2
|
|
** 20 key>=?1 AND key<=?2
|
|
** 33..52 Use blobkey in place of key...
|
|
*/
|
|
static int lsm1BestIndex(
|
|
sqlite3_vtab *tab,
|
|
sqlite3_index_info *pIdxInfo
|
|
){
|
|
int i; /* Loop over constraints */
|
|
int idxNum = 0; /* The query plan bitmask */
|
|
int nArg = 0; /* Number of arguments to xFilter */
|
|
int eqIdx = -1; /* Index of the key== constraint, or -1 if none */
|
|
|
|
const struct sqlite3_index_constraint *pConstraint;
|
|
pConstraint = pIdxInfo->aConstraint;
|
|
for(i=0; i<pIdxInfo->nConstraint && idxNum<16; i++, pConstraint++){
|
|
if( pConstraint->usable==0 ) continue;
|
|
if( pConstraint->iColumn!=LSM1_COLUMN_KEY ) continue;
|
|
if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
|
|
switch( pConstraint->op ){
|
|
case SQLITE_INDEX_CONSTRAINT_EQ: {
|
|
eqIdx = i;
|
|
idxNum = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if( eqIdx>=0 ){
|
|
pIdxInfo->aConstraintUsage[eqIdx].argvIndex = ++nArg;
|
|
pIdxInfo->aConstraintUsage[eqIdx].omit = 1;
|
|
}
|
|
if( idxNum==1 ){
|
|
pIdxInfo->estimatedCost = (double)1;
|
|
pIdxInfo->estimatedRows = 1;
|
|
pIdxInfo->orderByConsumed = 1;
|
|
}else{
|
|
/* Full table scan */
|
|
pIdxInfo->estimatedCost = (double)2147483647;
|
|
pIdxInfo->estimatedRows = 2147483647;
|
|
}
|
|
pIdxInfo->idxNum = idxNum;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** The xUpdate method is normally used for INSERT, REPLACE, UPDATE, and
|
|
** DELETE. But this virtual table only supports INSERT and REPLACE.
|
|
** DELETE is accomplished by inserting a record with a value of NULL.
|
|
** UPDATE is achieved by using REPLACE.
|
|
*/
|
|
int lsm1Update(
|
|
sqlite3_vtab *pVTab,
|
|
int argc,
|
|
sqlite3_value **argv,
|
|
sqlite_int64 *pRowid
|
|
){
|
|
lsm1_vtab *p = (lsm1_vtab*)pVTab;
|
|
const void *pKey;
|
|
int nKey;
|
|
int eType;
|
|
int rc;
|
|
sqlite3_value *pValue;
|
|
const unsigned char *pVal;
|
|
unsigned char *pData;
|
|
int nVal;
|
|
unsigned char pSpace[100];
|
|
|
|
if( argc==1 ){
|
|
pVTab->zErrMsg = sqlite3_mprintf("cannot DELETE");
|
|
return SQLITE_ERROR;
|
|
}
|
|
if( sqlite3_value_type(argv[0])!=SQLITE_NULL ){
|
|
pVTab->zErrMsg = sqlite3_mprintf("cannot UPDATE");
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
/* "INSERT INTO tab(command) VALUES('....')" is used to implement
|
|
** special commands.
|
|
*/
|
|
if( sqlite3_value_type(argv[2+LSM1_COLUMN_COMMAND])!=SQLITE_NULL ){
|
|
return SQLITE_OK;
|
|
}
|
|
if( sqlite3_value_type(argv[2+LSM1_COLUMN_BLOBKEY])==SQLITE_BLOB ){
|
|
/* Use the blob key exactly as supplied */
|
|
pKey = sqlite3_value_blob(argv[2+LSM1_COLUMN_BLOBKEY]);
|
|
nKey = sqlite3_value_bytes(argv[2+LSM1_COLUMN_BLOBKEY]);
|
|
}else{
|
|
/* Use a key encoding that sorts in lexicographical order */
|
|
rc = lsm1EncodeKey(argv[2+LSM1_COLUMN_KEY],
|
|
(unsigned char**)&pKey,&nKey,
|
|
pSpace,sizeof(pSpace));
|
|
if( rc ) return rc;
|
|
}
|
|
if( sqlite3_value_type(argv[2+LSM1_COLUMN_BLOBVALUE])==SQLITE_BLOB ){
|
|
pVal = sqlite3_value_blob(argv[2+LSM1_COLUMN_BLOBVALUE]);
|
|
nVal = sqlite3_value_bytes(argv[2+LSM1_COLUMN_BLOBVALUE]);
|
|
rc = lsm_insert(p->pDb, pKey, nKey, pVal, nVal);
|
|
}else{
|
|
pValue = argv[2+LSM1_COLUMN_VALUE];
|
|
eType = sqlite3_value_type(pValue);
|
|
switch( eType ){
|
|
case SQLITE_NULL: {
|
|
rc = lsm_delete(p->pDb, pKey, nKey);
|
|
break;
|
|
}
|
|
case SQLITE_BLOB:
|
|
case SQLITE_TEXT: {
|
|
if( eType==SQLITE_TEXT ){
|
|
pVal = sqlite3_value_text(pValue);
|
|
}else{
|
|
pVal = (unsigned char*)sqlite3_value_blob(pValue);
|
|
}
|
|
nVal = sqlite3_value_bytes(pValue);
|
|
pData = sqlite3_malloc( nVal+1 );
|
|
if( pData==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
pData[0] = eType;
|
|
memcpy(&pData[1], pVal, nVal);
|
|
rc = lsm_insert(p->pDb, pKey, nKey, pData, nVal+1);
|
|
sqlite3_free(pData);
|
|
}
|
|
break;
|
|
}
|
|
case SQLITE_INTEGER:
|
|
case SQLITE_FLOAT: {
|
|
sqlite3_uint64 x;
|
|
unsigned char aVal[9];
|
|
int i;
|
|
if( eType==SQLITE_INTEGER ){
|
|
*(sqlite3_int64*)&x = sqlite3_value_int64(pValue);
|
|
}else{
|
|
double r = sqlite3_value_double(pValue);
|
|
assert( sizeof(r)==sizeof(x) );
|
|
memcpy(&x, &r, sizeof(r));
|
|
}
|
|
for(i=8; x>0 && i>=1; i--){
|
|
aVal[i] = x & 0xff;
|
|
x >>= 8;
|
|
}
|
|
aVal[i] = eType;
|
|
rc = lsm_insert(p->pDb, pKey, nKey, &aVal[i], 9-i);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if( pKey!=(const void*)pSpace ) sqlite3_free((void*)pKey);
|
|
return rc==LSM_OK ? SQLITE_OK : SQLITE_ERROR;
|
|
}
|
|
|
|
/* Begin a transaction
|
|
*/
|
|
static int lsm1Begin(sqlite3_vtab *pVtab){
|
|
lsm1_vtab *p = (lsm1_vtab*)pVtab;
|
|
int rc = lsm_begin(p->pDb, 1);
|
|
return rc==LSM_OK ? SQLITE_OK : SQLITE_ERROR;
|
|
}
|
|
|
|
/* Phase 1 of a transaction commit.
|
|
*/
|
|
static int lsm1Sync(sqlite3_vtab *pVtab){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Commit a transaction
|
|
*/
|
|
static int lsm1Commit(sqlite3_vtab *pVtab){
|
|
lsm1_vtab *p = (lsm1_vtab*)pVtab;
|
|
int rc = lsm_commit(p->pDb, 0);
|
|
return rc==LSM_OK ? SQLITE_OK : SQLITE_ERROR;
|
|
}
|
|
|
|
/* Rollback a transaction
|
|
*/
|
|
static int lsm1Rollback(sqlite3_vtab *pVtab){
|
|
lsm1_vtab *p = (lsm1_vtab*)pVtab;
|
|
int rc = lsm_rollback(p->pDb, 0);
|
|
return rc==LSM_OK ? SQLITE_OK : SQLITE_ERROR;
|
|
}
|
|
|
|
/*
|
|
** This following structure defines all the methods for the
|
|
** generate_lsm1 virtual table.
|
|
*/
|
|
static sqlite3_module lsm1Module = {
|
|
0, /* iVersion */
|
|
lsm1Connect, /* xCreate */
|
|
lsm1Connect, /* xConnect */
|
|
lsm1BestIndex, /* xBestIndex */
|
|
lsm1Disconnect, /* xDisconnect */
|
|
lsm1Disconnect, /* xDestroy */
|
|
lsm1Open, /* xOpen - open a cursor */
|
|
lsm1Close, /* xClose - close a cursor */
|
|
lsm1Filter, /* xFilter - configure scan constraints */
|
|
lsm1Next, /* xNext - advance a cursor */
|
|
lsm1Eof, /* xEof - check for end of scan */
|
|
lsm1Column, /* xColumn - read data */
|
|
lsm1Rowid, /* xRowid - read data */
|
|
lsm1Update, /* xUpdate */
|
|
lsm1Begin, /* xBegin */
|
|
lsm1Sync, /* xSync */
|
|
lsm1Commit, /* xCommit */
|
|
lsm1Rollback, /* xRollback */
|
|
0, /* xFindMethod */
|
|
0, /* xRename */
|
|
};
|
|
|
|
|
|
#ifdef _WIN32
|
|
__declspec(dllexport)
|
|
#endif
|
|
int sqlite3_lsm_init(
|
|
sqlite3 *db,
|
|
char **pzErrMsg,
|
|
const sqlite3_api_routines *pApi
|
|
){
|
|
int rc = SQLITE_OK;
|
|
SQLITE_EXTENSION_INIT2(pApi);
|
|
rc = sqlite3_create_module(db, "lsm1", &lsm1Module, 0);
|
|
return rc;
|
|
}
|