sqlite/ext/fts5/fts5_index.c
dan 5bb97c2b80 Fix a problem in fts5fault1.test.
FossilOrigin-Name: a21d60cb2ac6463c012d82d1970d90da5da2a14a
2015-04-21 20:13:38 +00:00

5338 lines
164 KiB
C

/*
** 2014 May 31
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** Low level access to the FTS index stored in the database file. The
** routines in this file file implement all read and write access to the
** %_data table. Other parts of the system access this functionality via
** the interface defined in fts5Int.h.
*/
#ifdef SQLITE_ENABLE_FTS5
#include "fts5Int.h"
/*
** Overview:
**
** The %_data table contains all the FTS indexes for an FTS5 virtual table.
** As well as the main term index, there may be up to 31 prefix indexes.
** The format is similar to FTS3/4, except that:
**
** * all segment b-tree leaf data is stored in fixed size page records
** (e.g. 1000 bytes). A single doclist may span multiple pages. Care is
** taken to ensure it is possible to iterate in either direction through
** the entries in a doclist, or to seek to a specific entry within a
** doclist, without loading it into memory.
**
** * large doclists that span many pages have associated "doclist index"
** records that contain a copy of the first docid on each page spanned by
** the doclist. This is used to speed up seek operations, and merges of
** large doclists with very small doclists.
**
** * extra fields in the "structure record" record the state of ongoing
** incremental merge operations.
**
*/
#define FTS5_OPT_WORK_UNIT 1000 /* Number of leaf pages per optimize step */
#define FTS5_WORK_UNIT 64 /* Number of leaf pages in unit of work */
#define FTS5_MIN_DLIDX_SIZE 4 /* Add dlidx if this many empty pages */
/*
** Details:
**
** The %_data table managed by this module,
**
** CREATE TABLE %_data(id INTEGER PRIMARY KEY, block BLOB);
**
** , contains the following 5 types of records. See the comments surrounding
** the FTS5_*_ROWID macros below for a description of how %_data rowids are
** assigned to each fo them.
**
** 1. Structure Records:
**
** The set of segments that make up an index - the index structure - are
** recorded in a single record within the %_data table. The record consists
** of a single 32-bit configuration cookie value followed by a list of
** SQLite varints. If the FTS table features more than one index (because
** there are one or more prefix indexes), it is guaranteed that all share
** the same cookie value.
**
** Immediately following the configuration cookie, the record begins with
** three varints:
**
** + number of levels,
** + total number of segments on all levels,
** + value of write counter.
**
** Then, for each level from 0 to nMax:
**
** + number of input segments in ongoing merge.
** + total number of segments in level.
** + for each segment from oldest to newest:
** + segment id (always > 0)
** + b-tree height (1 -> root is leaf, 2 -> root is parent of leaf etc.)
** + first leaf page number (often 1, always greater than 0)
** + final leaf page number
**
** 2. The Averages Record:
**
** A single record within the %_data table. The data is a list of varints.
** The first value is the number of rows in the index. Then, for each column
** from left to right, the total number of tokens in the column for all
** rows of the table.
**
** 3. Segment leaves:
**
** TERM DOCLIST FORMAT:
**
** Most of each segment leaf is taken up by term/doclist data. The
** general format of the term/doclist data is:
**
** varint : size of first term
** blob: first term data
** doclist: first doclist
** zero-or-more {
** varint: number of bytes in common with previous term
** varint: number of bytes of new term data (nNew)
** blob: nNew bytes of new term data
** doclist: next doclist
** }
**
** doclist format:
**
** varint: first rowid
** poslist: first poslist
** zero-or-more {
** varint: rowid delta (always > 0)
** poslist: next poslist
** }
** 0x00 byte
**
** poslist format:
**
** varint: size of poslist in bytes multiplied by 2, not including
** this field. Plus 1 if this entry carries the "delete" flag.
** collist: collist for column 0
** zero-or-more {
** 0x01 byte
** varint: column number (I)
** collist: collist for column I
** }
**
** collist format:
**
** varint: first offset + 2
** zero-or-more {
** varint: offset delta + 2
** }
**
** PAGINATION
**
** The format described above is only accurate if the entire term/doclist
** data fits on a single leaf page. If this is not the case, the format
** is changed in two ways:
**
** + if the first rowid on a page occurs before the first term, it
** is stored as a literal value:
**
** varint: first rowid
**
** + the first term on each page is stored in the same way as the
** very first term of the segment:
**
** varint : size of first term
** blob: first term data
**
** Each leaf page begins with:
**
** + 2-byte unsigned containing offset to first rowid (or 0).
** + 2-byte unsigned containing offset to first term (or 0).
**
** Followed by term/doclist data.
**
** 4. Segment interior nodes:
**
** The interior nodes turn the list of leaves into a b+tree.
**
** Each interior node begins with a varint - the page number of the left
** most child node. Following this, for each leaf page except the first,
** the interior nodes contain:
**
** a) If the leaf page contains at least one term, then a term-prefix that
** is greater than all previous terms, and less than or equal to the
** first term on the leaf page.
**
** b) If the leaf page no terms, a record indicating how many consecutive
** leaves contain no terms, and whether or not there is an associated
** by-rowid index record.
**
** By definition, there is never more than one type (b) record in a row.
** Type (b) records only ever appear on height=1 pages - immediate parents
** of leaves. Only type (a) records are pushed to higher levels.
**
** Term format:
**
** * Number of bytes in common with previous term plus 2, as a varint.
** * Number of bytes of new term data, as a varint.
** * new term data.
**
** No-term format:
**
** * either an 0x00 or 0x01 byte. If the value 0x01 is used, then there
** is an associated index-by-rowid record.
** * the number of zero-term leaves as a varint.
**
** 5. Segment doclist indexes:
**
** A list of varints. If the first termless page contains at least one
** docid, the list begins with that docid as a varint followed by the
** value 1 (0x01). Or, if the first termless page contains no docids,
** a varint containing the last docid stored on the term page followed
** by a 0 (0x00) value.
**
** For each subsequent page in the doclist, either a 0x00 byte if the
** page contains no terms, or a delta-encoded docid (always +ve)
** representing the first docid on the page otherwise.
*/
/*
** Rowids for the averages and structure records in the %_data table.
*/
#define FTS5_AVERAGES_ROWID 1 /* Rowid used for the averages record */
#define FTS5_STRUCTURE_ROWID(iIdx) (10 + (iIdx)) /* For structure records */
/*
** Macros determining the rowids used by segment nodes. All nodes in all
** segments for all indexes (the regular FTS index and any prefix indexes)
** are stored in the %_data table with large positive rowids.
**
** The %_data table may contain up to (1<<FTS5_SEGMENT_INDEX_BITS)
** indexes - one regular term index and zero or more prefix indexes.
**
** Each segment in an index has a unique id greater than zero.
**
** Each node in a segment b-tree is assigned a "page number" that is unique
** within nodes of its height within the segment (leaf nodes have a height
** of 0, parents 1, etc.). Page numbers are allocated sequentially so that
** a nodes page number is always one more than its left sibling.
**
** The rowid for a node is then found using the FTS5_SEGMENT_ROWID() macro
** below. The FTS5_SEGMENT_*_BITS macros define the number of bits used
** to encode the three FTS5_SEGMENT_ROWID() arguments. This module returns
** SQLITE_FULL and fails the current operation if they ever prove too small.
*/
#define FTS5_DATA_IDX_B 5 /* Max of 31 prefix indexes */
#define FTS5_DATA_ID_B 16 /* Max seg id number 65535 */
#define FTS5_DATA_HEIGHT_B 5 /* Max b-tree height of 32 */
#define FTS5_DATA_PAGE_B 31 /* Max page number of 2147483648 */
#define FTS5_SEGMENT_ROWID(idx, segid, height, pgno) ( \
((i64)(idx) << (FTS5_DATA_ID_B + FTS5_DATA_PAGE_B + FTS5_DATA_HEIGHT_B)) + \
((i64)(segid) << (FTS5_DATA_PAGE_B + FTS5_DATA_HEIGHT_B)) + \
((i64)(height) << (FTS5_DATA_PAGE_B)) + \
((i64)(pgno)) \
)
#if FTS5_MAX_PREFIX_INDEXES > ((1<<FTS5_DATA_IDX_B)-1)
# error "FTS5_MAX_PREFIX_INDEXES is too large"
#endif
/*
** The height of segment b-trees is actually limited to one less than
** (1<<HEIGHT_BITS). This is because the rowid address space for nodes
** with such a height is used by doclist indexes.
*/
#define FTS5_SEGMENT_MAX_HEIGHT ((1 << FTS5_DATA_HEIGHT_B)-1)
/*
** The rowid for the doclist index associated with leaf page pgno of segment
** segid in index idx.
*/
#define FTS5_DOCLIST_IDX_ROWID(idx, segid, pgno) \
FTS5_SEGMENT_ROWID(idx, segid, FTS5_SEGMENT_MAX_HEIGHT, pgno)
#ifdef SQLITE_DEBUG
int sqlite3Fts5Corrupt() { return SQLITE_CORRUPT_VTAB; }
#endif
/*
** Each time a blob is read from the %_data table, it is padded with this
** many zero bytes. This makes it easier to decode the various record formats
** without overreading if the records are corrupt.
*/
#define FTS5_DATA_ZERO_PADDING 8
typedef struct Fts5BtreeIter Fts5BtreeIter;
typedef struct Fts5BtreeIterLevel Fts5BtreeIterLevel;
typedef struct Fts5ChunkIter Fts5ChunkIter;
typedef struct Fts5Data Fts5Data;
typedef struct Fts5DlidxIter Fts5DlidxIter;
typedef struct Fts5MultiSegIter Fts5MultiSegIter;
typedef struct Fts5NodeIter Fts5NodeIter;
typedef struct Fts5PageWriter Fts5PageWriter;
typedef struct Fts5PosIter Fts5PosIter;
typedef struct Fts5SegIter Fts5SegIter;
typedef struct Fts5DoclistIter Fts5DoclistIter;
typedef struct Fts5SegWriter Fts5SegWriter;
typedef struct Fts5Structure Fts5Structure;
typedef struct Fts5StructureLevel Fts5StructureLevel;
typedef struct Fts5StructureSegment Fts5StructureSegment;
struct Fts5Data {
u8 *p; /* Pointer to buffer containing record */
int n; /* Size of record in bytes */
int nRef; /* Ref count */
};
/*
** One object per %_data table.
*/
struct Fts5Index {
Fts5Config *pConfig; /* Virtual table configuration */
char *zDataTbl; /* Name of %_data table */
int nWorkUnit; /* Leaf pages in a "unit" of work */
/*
** Variables related to the accumulation of tokens and doclists within the
** in-memory hash tables before they are flushed to disk.
*/
Fts5Hash **apHash; /* Array of hash tables */
int nMaxPendingData; /* Max pending data before flush to disk */
int nPendingData; /* Current bytes of pending data */
i64 iWriteRowid; /* Rowid for current doc being written */
/* Error state. */
int rc; /* Current error code */
/* State used by the fts5DataXXX() functions. */
sqlite3_blob *pReader; /* RO incr-blob open on %_data table */
sqlite3_stmt *pWriter; /* "INSERT ... %_data VALUES(?,?)" */
sqlite3_stmt *pDeleter; /* "DELETE FROM %_data ... id>=? AND id<=?" */
int nRead; /* Total number of blocks read */
};
struct Fts5DoclistIter {
int bDesc; /* True for DESC order, false for ASC */
u8 *a;
int n;
int i;
/* Output variables. aPoslist==0 at EOF */
i64 iRowid;
u8 *aPoslist;
int nPoslist;
};
/*
** Each iterator used by external modules is an instance of this type.
*/
struct Fts5IndexIter {
Fts5Index *pIndex;
Fts5Structure *pStruct;
Fts5MultiSegIter *pMulti;
Fts5DoclistIter *pDoclist;
Fts5Buffer poslist; /* Buffer containing current poslist */
};
/*
** The contents of the "structure" record for each index are represented
** using an Fts5Structure record in memory. Which uses instances of the
** other Fts5StructureXXX types as components.
*/
struct Fts5StructureSegment {
int iSegid; /* Segment id */
int nHeight; /* Height of segment b-tree */
int pgnoFirst; /* First leaf page number in segment */
int pgnoLast; /* Last leaf page number in segment */
};
struct Fts5StructureLevel {
int nMerge; /* Number of segments in incr-merge */
int nSeg; /* Total number of segments on level */
Fts5StructureSegment *aSeg; /* Array of segments. aSeg[0] is oldest. */
};
struct Fts5Structure {
u64 nWriteCounter; /* Total leaves written to level 0 */
int nLevel; /* Number of levels in this index */
Fts5StructureLevel aLevel[0]; /* Array of nLevel level objects */
};
/*
** An object of type Fts5SegWriter is used to write to segments.
*/
struct Fts5PageWriter {
int pgno; /* Page number for this page */
Fts5Buffer buf; /* Buffer containing page data */
Fts5Buffer term; /* Buffer containing previous term on page */
};
struct Fts5SegWriter {
int iIdx; /* Index to write to */
int iSegid; /* Segid to write to */
int nWriter; /* Number of entries in aWriter */
Fts5PageWriter *aWriter; /* Array of PageWriter objects */
i64 iPrevRowid; /* Previous docid written to current leaf */
u8 bFirstRowidInDoclist; /* True if next rowid is first in doclist */
u8 bFirstRowidInPage; /* True if next rowid is first in page */
u8 bFirstTermInPage; /* True if next term will be first in leaf */
int nLeafWritten; /* Number of leaf pages written */
int nEmpty; /* Number of contiguous term-less nodes */
Fts5Buffer cdlidx; /* Doclist index */
i64 iDlidxPrev; /* Previous rowid appended to dlidx */
int bDlidxPrevValid; /* True if iDlidxPrev is valid */
};
/*
** Object for iterating through the merged results of one or more segments,
** visiting each term/docid pair in the merged data.
**
** nSeg is always a power of two greater than or equal to the number of
** segments that this object is merging data from. Both the aSeg[] and
** aFirst[] arrays are sized at nSeg entries. The aSeg[] array is padded
** with zeroed objects - these are handled as if they were iterators opened
** on empty segments.
**
** The results of comparing segments aSeg[N] and aSeg[N+1], where N is an
** even number, is stored in aFirst[(nSeg+N)/2]. The "result" of the
** comparison in this context is the index of the iterator that currently
** points to the smaller term/rowid combination. Iterators at EOF are
** considered to be greater than all other iterators.
**
** aFirst[1] contains the index in aSeg[] of the iterator that points to
** the smallest key overall. aFirst[0] is unused.
*/
typedef struct Fts5CResult Fts5CResult;
struct Fts5CResult {
u16 iFirst; /* aSeg[] index of firstest iterator */
u8 bTermEq; /* True if the terms are equal */
};
struct Fts5MultiSegIter {
int nSeg; /* Size of aSeg[] array */
int bRev; /* True to iterate in reverse order */
int bSkipEmpty; /* True to skip deleted entries */
Fts5SegIter *aSeg; /* Array of segment iterators */
Fts5CResult *aFirst; /* Current merge state (see above) */
};
/*
** Object for iterating through a single segment, visiting each term/docid
** pair in the segment.
**
** pSeg:
** The segment to iterate through.
**
** iLeafPgno:
** Current leaf page number within segment.
**
** iLeafOffset:
** Byte offset within the current leaf that is the first byte of the
** position list data (one byte passed the position-list size field).
** rowid field of the current entry. Usually this is the size field of the
** position list data. The exception is if the rowid for the current entry
** is the last thing on the leaf page.
**
** pLeaf:
** Buffer containing current leaf page data. Set to NULL at EOF.
**
** iTermLeafPgno, iTermLeafOffset:
** Leaf page number containing the last term read from the segment. And
** the offset immediately following the term data.
**
** flags:
** Mask of FTS5_SEGITER_XXX values. Interpreted as follows:
**
** FTS5_SEGITER_ONETERM:
** If set, set the iterator to point to EOF after the current doclist
** has been exhausted. Do not proceed to the next term in the segment.
**
** FTS5_SEGITER_REVERSE:
** This flag is only ever set if FTS5_SEGITER_ONETERM is also set. If
** it is set, iterate through docids in descending order instead of the
** default ascending order.
**
** iRowidOffset/nRowidOffset/aRowidOffset:
** These are used if the FTS5_SEGITER_REVERSE flag is set.
**
** For each rowid on the page corresponding to the current term, the
** corresponding aRowidOffset[] entry is set to the byte offset of the
** start of the "position-list-size" field within the page.
*/
struct Fts5SegIter {
Fts5StructureSegment *pSeg; /* Segment to iterate through */
int iIdx; /* Byte offset within current leaf */
int flags; /* Mask of configuration flags */
int iLeafPgno; /* Current leaf page number */
Fts5Data *pLeaf; /* Current leaf data */
int iLeafOffset; /* Byte offset within current leaf */
/* The page and offset from which the current term was read. The offset
** is the offset of the first rowid in the current doclist. */
int iTermLeafPgno;
int iTermLeafOffset;
/* The following are only used if the FTS5_SEGITER_REVERSE flag is set. */
int iRowidOffset; /* Current entry in aRowidOffset[] */
int nRowidOffset; /* Allocated size of aRowidOffset[] array */
int *aRowidOffset; /* Array of offset to rowid fields */
Fts5DlidxIter *pDlidx; /* If there is a doclist-index */
/* Variables populated based on current entry. */
Fts5Buffer term; /* Current term */
i64 iRowid; /* Current rowid */
int nPos; /* Number of bytes in current position list */
int bDel; /* True if the delete flag is set */
};
#define FTS5_SEGITER_ONETERM 0x01
#define FTS5_SEGITER_REVERSE 0x02
/*
** Object for iterating through paginated data.
*/
struct Fts5ChunkIter {
Fts5Data *pLeaf; /* Current leaf data. NULL -> EOF. */
i64 iLeafRowid; /* Absolute rowid of current leaf */
int nRem; /* Remaining bytes of data to read */
/* Output parameters */
u8 *p; /* Pointer to chunk of data */
int n; /* Size of buffer p in bytes */
};
/*
** Object for iterating through a single position list on disk.
*/
struct Fts5PosIter {
Fts5ChunkIter chunk; /* Current chunk of data */
int iOff; /* Offset within chunk data */
int iCol;
int iPos;
};
/*
** Object for iterating through the conents of a single internal node in
** memory.
*/
struct Fts5NodeIter {
/* Internal. Set and managed by fts5NodeIterXXX() functions. Except,
** the EOF test for the iterator is (Fts5NodeIter.aData==0). */
const u8 *aData;
int nData;
int iOff;
/* Output variables */
Fts5Buffer term;
int nEmpty;
int iChild;
int bDlidx;
};
/*
** An instance of the following type is used to iterate through the contents
** of a doclist-index record.
**
** pData:
** Record containing the doclist-index data.
**
** bEof:
** Set to true once iterator has reached EOF.
**
** iOff:
** Set to the current offset within record pData.
*/
struct Fts5DlidxIter {
Fts5Data *pData; /* Data for doclist index, if any */
int iOff; /* Current offset into pDlidx */
int bEof; /* At EOF already */
int iFirstOff; /* Used by reverse iterators only */
/* Output variables */
int iLeafPgno; /* Page number of current leaf page */
i64 iRowid; /* First rowid on leaf iLeafPgno */
};
/*
** An Fts5BtreeIter object is used to iterate through all entries in the
** b-tree hierarchy belonging to a single fts5 segment. In this case the
** "b-tree hierarchy" is all b-tree nodes except leaves. Each entry in the
** b-tree hierarchy consists of the following:
**
** iLeaf: The page number of the leaf page the entry points to.
**
** term: A split-key that all terms on leaf page $iLeaf must be greater
** than or equal to. The "term" associated with the first b-tree
** hierarchy entry (the one that points to leaf page 1) is always
** an empty string.
**
** nEmpty: The number of empty (termless) leaf pages that immediately
** following iLeaf.
**
** The Fts5BtreeIter object is only used as part of the integrity-check code.
*/
struct Fts5BtreeIterLevel {
Fts5NodeIter s; /* Iterator for the current node */
Fts5Data *pData; /* Data for the current node */
};
struct Fts5BtreeIter {
Fts5Index *p; /* FTS5 backend object */
Fts5StructureSegment *pSeg; /* Iterate through this segment's b-tree */
int iIdx; /* Index pSeg belongs to */
int nLvl; /* Size of aLvl[] array */
Fts5BtreeIterLevel *aLvl; /* Level for each tier of b-tree */
/* Output variables */
Fts5Buffer term; /* Current term */
int iLeaf; /* Leaf containing terms >= current term */
int nEmpty; /* Number of "empty" leaves following iLeaf */
int bEof; /* Set to true at EOF */
int bDlidx; /* True if there exists a dlidx */
};
static void fts5PutU16(u8 *aOut, u16 iVal){
aOut[0] = (iVal>>8);
aOut[1] = (iVal&0xFF);
}
static u16 fts5GetU16(const u8 *aIn){
return ((u16)aIn[0] << 8) + aIn[1];
}
/*
** This is a copy of the sqlite3GetVarint32() routine from the SQLite core.
** Except, this version does handle the single byte case that the core
** version depends on being handled before its function is called.
*/
int sqlite3Fts5GetVarint32(const unsigned char *p, u32 *v){
u32 a,b;
/* The 1-byte case. Overwhelmingly the most common. */
a = *p;
/* a: p0 (unmasked) */
if (!(a&0x80))
{
/* Values between 0 and 127 */
*v = a;
return 1;
}
/* The 2-byte case */
p++;
b = *p;
/* b: p1 (unmasked) */
if (!(b&0x80))
{
/* Values between 128 and 16383 */
a &= 0x7f;
a = a<<7;
*v = a | b;
return 2;
}
/* The 3-byte case */
p++;
a = a<<14;
a |= *p;
/* a: p0<<14 | p2 (unmasked) */
if (!(a&0x80))
{
/* Values between 16384 and 2097151 */
a &= (0x7f<<14)|(0x7f);
b &= 0x7f;
b = b<<7;
*v = a | b;
return 3;
}
/* A 32-bit varint is used to store size information in btrees.
** Objects are rarely larger than 2MiB limit of a 3-byte varint.
** A 3-byte varint is sufficient, for example, to record the size
** of a 1048569-byte BLOB or string.
**
** We only unroll the first 1-, 2-, and 3- byte cases. The very
** rare larger cases can be handled by the slower 64-bit varint
** routine.
*/
{
u64 v64;
u8 n;
p -= 2;
n = sqlite3GetVarint(p, &v64);
*v = (u32)v64;
assert( n>3 && n<=9 );
return n;
}
}
int sqlite3Fts5GetVarintLen(u32 iVal){
if( iVal<(1 << 7 ) ) return 1;
if( iVal<(1 << 14) ) return 2;
if( iVal<(1 << 21) ) return 3;
if( iVal<(1 << 28) ) return 4;
return 5;
}
/*
** Allocate and return a buffer at least nByte bytes in size.
**
** If an OOM error is encountered, return NULL and set the error code in
** the Fts5Index handle passed as the first argument.
*/
static void *fts5IdxMalloc(Fts5Index *p, int nByte){
void *pRet = 0;
if( p->rc==SQLITE_OK ){
pRet = sqlite3_malloc(nByte);
if( pRet==0 ){
p->rc = SQLITE_NOMEM;
}else{
memset(pRet, 0, nByte);
}
}
return pRet;
}
/*
** Compare the contents of the pLeft buffer with the pRight/nRight blob.
**
** Return -ve if pLeft is smaller than pRight, 0 if they are equal or
** +ve if pRight is smaller than pLeft. In other words:
**
** res = *pLeft - *pRight
*/
static int fts5BufferCompareBlob(
Fts5Buffer *pLeft, /* Left hand side of comparison */
const u8 *pRight, int nRight /* Right hand side of comparison */
){
int nCmp = MIN(pLeft->n, nRight);
int res = memcmp(pLeft->p, pRight, nCmp);
return (res==0 ? (pLeft->n - nRight) : res);
}
/*
** Compare the contents of the two buffers using memcmp(). If one buffer
** is a prefix of the other, it is considered the lesser.
**
** Return -ve if pLeft is smaller than pRight, 0 if they are equal or
** +ve if pRight is smaller than pLeft. In other words:
**
** res = *pLeft - *pRight
*/
static int fts5BufferCompare(Fts5Buffer *pLeft, Fts5Buffer *pRight){
int nCmp = MIN(pLeft->n, pRight->n);
int res = memcmp(pLeft->p, pRight->p, nCmp);
return (res==0 ? (pLeft->n - pRight->n) : res);
}
/*
** Close the read-only blob handle, if it is open.
*/
static void fts5CloseReader(Fts5Index *p){
if( p->pReader ){
sqlite3_blob *pReader = p->pReader;
p->pReader = 0;
sqlite3_blob_close(pReader);
}
}
static Fts5Data *fts5DataReadOrBuffer(
Fts5Index *p,
Fts5Buffer *pBuf,
i64 iRowid
){
Fts5Data *pRet = 0;
if( p->rc==SQLITE_OK ){
int rc = SQLITE_OK;
#if 0
Fts5Buffer buf = {0,0,0};
fts5DebugRowid(&rc, &buf, iRowid);
fprintf(stdout, "read: %s\n", buf.p);
fflush(stdout);
sqlite3_free(buf.p);
#endif
if( p->pReader ){
/* This call may return SQLITE_ABORT if there has been a savepoint
** rollback since it was last used. In this case a new blob handle
** is required. */
rc = sqlite3_blob_reopen(p->pReader, iRowid);
if( rc==SQLITE_ABORT ){
fts5CloseReader(p);
rc = SQLITE_OK;
}
}
/* If the blob handle is not yet open, open and seek it. Otherwise, use
** the blob_reopen() API to reseek the existing blob handle. */
if( p->pReader==0 ){
Fts5Config *pConfig = p->pConfig;
rc = sqlite3_blob_open(pConfig->db,
pConfig->zDb, p->zDataTbl, "block", iRowid, 0, &p->pReader
);
}
if( rc==SQLITE_OK ){
u8 *aOut; /* Read blob data into this buffer */
int nByte = sqlite3_blob_bytes(p->pReader);
if( pBuf ){
fts5BufferZero(pBuf);
fts5BufferGrow(&rc, pBuf, nByte);
aOut = pBuf->p;
pBuf->n = nByte;
}else{
int nSpace = nByte + FTS5_DATA_ZERO_PADDING;
pRet = (Fts5Data*)sqlite3Fts5MallocZero(&rc, nSpace+sizeof(Fts5Data));
if( pRet ){
pRet->n = nByte;
aOut = pRet->p = (u8*)&pRet[1];
pRet->nRef = 1;
}
}
if( rc==SQLITE_OK ){
rc = sqlite3_blob_read(p->pReader, aOut, nByte, 0);
}
if( rc!=SQLITE_OK ){
sqlite3_free(pRet);
pRet = 0;
}
}
p->rc = rc;
p->nRead++;
}
return pRet;
}
/*
** Retrieve a record from the %_data table.
**
** If an error occurs, NULL is returned and an error left in the
** Fts5Index object.
*/
static Fts5Data *fts5DataRead(Fts5Index *p, i64 iRowid){
Fts5Data *pRet = fts5DataReadOrBuffer(p, 0, iRowid);
assert( (pRet==0)==(p->rc!=SQLITE_OK) );
return pRet;
}
/*
** Read a record from the %_data table into the buffer supplied as the
** second argument.
**
** If an error occurs, an error is left in the Fts5Index object. If an
** error has already occurred when this function is called, it is a
** no-op.
*/
static void fts5DataBuffer(Fts5Index *p, Fts5Buffer *pBuf, i64 iRowid){
(void)fts5DataReadOrBuffer(p, pBuf, iRowid);
}
/*
** Release a reference to data record returned by an earlier call to
** fts5DataRead().
*/
static void fts5DataRelease(Fts5Data *pData){
if( pData ){
assert( pData->nRef>0 );
pData->nRef--;
if( pData->nRef==0 ) sqlite3_free(pData);
}
}
static void fts5DataReference(Fts5Data *pData){
pData->nRef++;
}
/*
** INSERT OR REPLACE a record into the %_data table.
*/
static void fts5DataWrite(Fts5Index *p, i64 iRowid, const u8 *pData, int nData){
if( p->rc!=SQLITE_OK ) return;
if( p->pWriter==0 ){
int rc;
Fts5Config *pConfig = p->pConfig;
char *zSql = sqlite3_mprintf(
"REPLACE INTO '%q'.%Q(id, block) VALUES(?,?)", pConfig->zDb, p->zDataTbl
);
if( zSql==0 ){
rc = SQLITE_NOMEM;
}else{
rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &p->pWriter, 0);
sqlite3_free(zSql);
}
if( rc!=SQLITE_OK ){
p->rc = rc;
return;
}
}
sqlite3_bind_int64(p->pWriter, 1, iRowid);
sqlite3_bind_blob(p->pWriter, 2, pData, nData, SQLITE_STATIC);
sqlite3_step(p->pWriter);
p->rc = sqlite3_reset(p->pWriter);
}
/*
** Execute the following SQL:
**
** DELETE FROM %_data WHERE id BETWEEN $iFirst AND $iLast
*/
static void fts5DataDelete(Fts5Index *p, i64 iFirst, i64 iLast){
if( p->rc!=SQLITE_OK ) return;
if( p->pDeleter==0 ){
int rc;
Fts5Config *pConfig = p->pConfig;
char *zSql = sqlite3_mprintf(
"DELETE FROM '%q'.%Q WHERE id>=? AND id<=?", pConfig->zDb, p->zDataTbl
);
if( zSql==0 ){
rc = SQLITE_NOMEM;
}else{
rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &p->pDeleter, 0);
sqlite3_free(zSql);
}
if( rc!=SQLITE_OK ){
p->rc = rc;
return;
}
}
sqlite3_bind_int64(p->pDeleter, 1, iFirst);
sqlite3_bind_int64(p->pDeleter, 2, iLast);
sqlite3_step(p->pDeleter);
p->rc = sqlite3_reset(p->pDeleter);
}
/*
** Close the sqlite3_blob handle used to read records from the %_data table.
** And discard any cached reads. This function is called at the end of
** a read transaction or when any sub-transaction is rolled back.
*/
#if 0
static void fts5DataReset(Fts5Index *p){
if( p->pReader ){
sqlite3_blob_close(p->pReader);
p->pReader = 0;
}
}
#endif
/*
** Remove all records associated with segment iSegid in index iIdx.
*/
static void fts5DataRemoveSegment(Fts5Index *p, int iIdx, int iSegid){
i64 iFirst = FTS5_SEGMENT_ROWID(iIdx, iSegid, 0, 0);
i64 iLast = FTS5_SEGMENT_ROWID(iIdx, iSegid+1, 0, 0)-1;
fts5DataDelete(p, iFirst, iLast);
}
/*
** Release a reference to an Fts5Structure object returned by an earlier
** call to fts5StructureRead() or fts5StructureDecode().
*/
static void fts5StructureRelease(Fts5Structure *pStruct){
if( pStruct ){
int i;
for(i=0; i<pStruct->nLevel; i++){
sqlite3_free(pStruct->aLevel[i].aSeg);
}
sqlite3_free(pStruct);
}
}
/*
** Deserialize and return the structure record currently stored in serialized
** form within buffer pData/nData.
**
** The Fts5Structure.aLevel[] and each Fts5StructureLevel.aSeg[] array
** are over-allocated by one slot. This allows the structure contents
** to be more easily edited.
**
** If an error occurs, *ppOut is set to NULL and an SQLite error code
** returned. Otherwise, *ppOut is set to point to the new object and
** SQLITE_OK returned.
*/
static int fts5StructureDecode(
const u8 *pData, /* Buffer containing serialized structure */
int nData, /* Size of buffer pData in bytes */
int *piCookie, /* Configuration cookie value */
Fts5Structure **ppOut /* OUT: Deserialized object */
){
int rc = SQLITE_OK;
int i = 0;
int iLvl;
int nLevel = 0;
int nSegment = 0;
int nByte; /* Bytes of space to allocate at pRet */
Fts5Structure *pRet = 0; /* Structure object to return */
/* Grab the cookie value */
if( piCookie ) *piCookie = sqlite3Fts5Get32(pData);
i = 4;
/* Read the total number of levels and segments from the start of the
** structure record. */
i += fts5GetVarint32(&pData[i], nLevel);
i += fts5GetVarint32(&pData[i], nSegment);
nByte = (
sizeof(Fts5Structure) + /* Main structure */
sizeof(Fts5StructureLevel) * (nLevel) /* aLevel[] array */
);
pRet = (Fts5Structure*)sqlite3Fts5MallocZero(&rc, nByte);
if( pRet ){
pRet->nLevel = nLevel;
i += sqlite3GetVarint(&pData[i], &pRet->nWriteCounter);
for(iLvl=0; rc==SQLITE_OK && iLvl<nLevel; iLvl++){
Fts5StructureLevel *pLvl = &pRet->aLevel[iLvl];
int nTotal;
int iSeg;
i += fts5GetVarint32(&pData[i], pLvl->nMerge);
i += fts5GetVarint32(&pData[i], nTotal);
assert( nTotal>=pLvl->nMerge );
pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(&rc,
nTotal * sizeof(Fts5StructureSegment)
);
if( rc==SQLITE_OK ){
pLvl->nSeg = nTotal;
for(iSeg=0; iSeg<nTotal; iSeg++){
i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].iSegid);
i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].nHeight);
i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].pgnoFirst);
i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].pgnoLast);
}
}else{
fts5StructureRelease(pRet);
pRet = 0;
}
}
}
*ppOut = pRet;
return rc;
}
/*
**
*/
static void fts5StructureAddLevel(int *pRc, Fts5Structure **ppStruct){
if( *pRc==SQLITE_OK ){
Fts5Structure *pStruct = *ppStruct;
int nLevel = pStruct->nLevel;
int nByte = (
sizeof(Fts5Structure) + /* Main structure */
sizeof(Fts5StructureLevel) * (nLevel+1) /* aLevel[] array */
);
pStruct = sqlite3_realloc(pStruct, nByte);
if( pStruct ){
memset(&pStruct->aLevel[nLevel], 0, sizeof(Fts5StructureLevel));
pStruct->nLevel++;
*ppStruct = pStruct;
}else{
*pRc = SQLITE_NOMEM;
}
}
}
/*
** Extend level iLvl so that there is room for at least nExtra more
** segments.
*/
static void fts5StructureExtendLevel(
int *pRc,
Fts5Structure *pStruct,
int iLvl,
int nExtra,
int bInsert
){
if( *pRc==SQLITE_OK ){
Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
Fts5StructureSegment *aNew;
int nByte;
nByte = (pLvl->nSeg + nExtra) * sizeof(Fts5StructureSegment);
aNew = sqlite3_realloc(pLvl->aSeg, nByte);
if( aNew ){
if( bInsert==0 ){
memset(&aNew[pLvl->nSeg], 0, sizeof(Fts5StructureSegment) * nExtra);
}else{
int nMove = pLvl->nSeg * sizeof(Fts5StructureSegment);
memmove(&aNew[nExtra], aNew, nMove);
memset(aNew, 0, sizeof(Fts5StructureSegment) * nExtra);
}
pLvl->aSeg = aNew;
}else{
*pRc = SQLITE_NOMEM;
}
}
}
/*
** Read, deserialize and return the structure record for index iIdx.
**
** The Fts5Structure.aLevel[] and each Fts5StructureLevel.aSeg[] array
** are over-allocated as described for function fts5StructureDecode()
** above.
**
** If an error occurs, NULL is returned and an error code left in the
** Fts5Index handle. If an error has already occurred when this function
** is called, it is a no-op.
*/
static Fts5Structure *fts5StructureRead(Fts5Index *p, int iIdx){
Fts5Config *pConfig = p->pConfig;
Fts5Structure *pRet = 0; /* Object to return */
Fts5Data *pData; /* %_data entry containing structure record */
int iCookie; /* Configuration cookie */
assert( iIdx<=pConfig->nPrefix );
pData = fts5DataRead(p, FTS5_STRUCTURE_ROWID(iIdx));
if( !pData ) return 0;
p->rc = fts5StructureDecode(pData->p, pData->n, &iCookie, &pRet);
if( p->rc==SQLITE_OK && pConfig->iCookie!=iCookie ){
p->rc = sqlite3Fts5ConfigLoad(pConfig, iCookie);
}
fts5DataRelease(pData);
if( p->rc!=SQLITE_OK ){
fts5StructureRelease(pRet);
pRet = 0;
}
return pRet;
}
/*
** Return the total number of segments in index structure pStruct.
*/
static int fts5StructureCountSegments(Fts5Structure *pStruct){
int nSegment = 0; /* Total number of segments */
if( pStruct ){
int iLvl; /* Used to iterate through levels */
for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
nSegment += pStruct->aLevel[iLvl].nSeg;
}
}
return nSegment;
}
/*
** Serialize and store the "structure" record for index iIdx.
**
** If an error occurs, leave an error code in the Fts5Index object. If an
** error has already occurred, this function is a no-op.
*/
static void fts5StructureWrite(Fts5Index *p, int iIdx, Fts5Structure *pStruct){
if( p->rc==SQLITE_OK ){
int nSegment; /* Total number of segments */
Fts5Buffer buf; /* Buffer to serialize record into */
int iLvl; /* Used to iterate through levels */
int iCookie; /* Cookie value to store */
nSegment = fts5StructureCountSegments(pStruct);
memset(&buf, 0, sizeof(Fts5Buffer));
/* Append the current configuration cookie */
iCookie = p->pConfig->iCookie;
if( iCookie<0 ) iCookie = 0;
fts5BufferAppend32(&p->rc, &buf, iCookie);
fts5BufferAppendVarint(&p->rc, &buf, pStruct->nLevel);
fts5BufferAppendVarint(&p->rc, &buf, nSegment);
fts5BufferAppendVarint(&p->rc, &buf, (i64)pStruct->nWriteCounter);
for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
int iSeg; /* Used to iterate through segments */
Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
fts5BufferAppendVarint(&p->rc, &buf, pLvl->nMerge);
fts5BufferAppendVarint(&p->rc, &buf, pLvl->nSeg);
assert( pLvl->nMerge<=pLvl->nSeg );
for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){
fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].iSegid);
fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].nHeight);
fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].pgnoFirst);
fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].pgnoLast);
}
}
fts5DataWrite(p, FTS5_STRUCTURE_ROWID(iIdx), buf.p, buf.n);
fts5BufferFree(&buf);
}
}
#if 0
static void fts5DebugStructure(int*,Fts5Buffer*,Fts5Structure*);
static void fts5PrintStructure(const char *zCaption, Fts5Structure *pStruct){
int rc = SQLITE_OK;
Fts5Buffer buf;
memset(&buf, 0, sizeof(buf));
fts5DebugStructure(&rc, &buf, pStruct);
fprintf(stdout, "%s: %s\n", zCaption, buf.p);
fflush(stdout);
fts5BufferFree(&buf);
}
#else
# define fts5PrintStructure(x,y)
#endif
static int fts5SegmentSize(Fts5StructureSegment *pSeg){
return 1 + pSeg->pgnoLast - pSeg->pgnoFirst;
}
/*
** Return a copy of index structure pStruct. Except, promote as many
** segments as possible to level iPromote. If an OOM occurs, NULL is
** returned.
*/
static void fts5StructurePromoteTo(
Fts5Index *p,
int iPromote,
int szPromote,
Fts5Structure *pStruct
){
int il, is;
Fts5StructureLevel *pOut = &pStruct->aLevel[iPromote];
if( pOut->nMerge==0 ){
for(il=iPromote+1; il<pStruct->nLevel; il++){
Fts5StructureLevel *pLvl = &pStruct->aLevel[il];
if( pLvl->nMerge ) return;
for(is=pLvl->nSeg-1; is>=0; is--){
int sz = fts5SegmentSize(&pLvl->aSeg[is]);
if( sz>szPromote ) return;
fts5StructureExtendLevel(&p->rc, pStruct, iPromote, 1, 1);
if( p->rc ) return;
memcpy(pOut->aSeg, &pLvl->aSeg[is], sizeof(Fts5StructureSegment));
pOut->nSeg++;
pLvl->nSeg--;
}
}
}
}
/*
** A new segment has just been written to level iLvl of index structure
** pStruct. This function determines if any segments should be promoted
** as a result. Segments are promoted in two scenarios:
**
** a) If the segment just written is smaller than one or more segments
** within the previous populated level, it is promoted to the previous
** populated level.
**
** b) If the segment just written is larger than the newest segment on
** the next populated level, then that segment, and any other adjacent
** segments that are also smaller than the one just written, are
** promoted.
**
** If one or more segments are promoted, the structure object is updated
** to reflect this.
*/
static void fts5StructurePromote(
Fts5Index *p, /* FTS5 backend object */
int iLvl, /* Index level just updated */
Fts5Structure *pStruct /* Index structure */
){
if( p->rc==SQLITE_OK ){
int iTst;
int iPromote = -1;
int szPromote; /* Promote anything this size or smaller */
Fts5StructureSegment *pSeg; /* Segment just written */
int szSeg; /* Size of segment just written */
pSeg = &pStruct->aLevel[iLvl].aSeg[pStruct->aLevel[iLvl].nSeg-1];
szSeg = (1 + pSeg->pgnoLast - pSeg->pgnoFirst);
/* Check for condition (a) */
for(iTst=iLvl-1; iTst>=0 && pStruct->aLevel[iTst].nSeg==0; iTst--);
if( iTst>=0 ){
int i;
int szMax = 0;
Fts5StructureLevel *pTst = &pStruct->aLevel[iTst];
assert( pTst->nMerge==0 );
for(i=0; i<pTst->nSeg; i++){
int sz = pTst->aSeg[i].pgnoLast - pTst->aSeg[i].pgnoFirst + 1;
if( sz>szMax ) szMax = sz;
}
if( szMax>=szSeg ){
/* Condition (a) is true. Promote the newest segment on level
** iLvl to level iTst. */
iPromote = iTst;
szPromote = szMax;
}
}
/* If condition (a) is not met, assume (b) is true. StructurePromoteTo()
** is a no-op if it is not. */
if( iPromote<0 ){
iPromote = iLvl;
szPromote = szSeg;
}
fts5StructurePromoteTo(p, iPromote, szPromote, pStruct);
}
}
/*
** If the pIter->iOff offset currently points to an entry indicating one
** or more term-less nodes, advance past it and set pIter->nEmpty to
** the number of empty child nodes.
*/
static void fts5NodeIterGobbleNEmpty(Fts5NodeIter *pIter){
if( pIter->iOff<pIter->nData && 0==(pIter->aData[pIter->iOff] & 0xfe) ){
pIter->bDlidx = pIter->aData[pIter->iOff] & 0x01;
pIter->iOff++;
pIter->iOff += fts5GetVarint32(&pIter->aData[pIter->iOff], pIter->nEmpty);
}else{
pIter->nEmpty = 0;
pIter->bDlidx = 0;
}
}
/*
** Advance to the next entry within the node.
*/
static void fts5NodeIterNext(int *pRc, Fts5NodeIter *pIter){
if( pIter->iOff>=pIter->nData ){
pIter->aData = 0;
pIter->iChild += pIter->nEmpty;
}else{
int nPre, nNew;
pIter->iOff += fts5GetVarint32(&pIter->aData[pIter->iOff], nPre);
pIter->iOff += fts5GetVarint32(&pIter->aData[pIter->iOff], nNew);
pIter->term.n = nPre-2;
fts5BufferAppendBlob(pRc, &pIter->term, nNew, pIter->aData+pIter->iOff);
pIter->iOff += nNew;
pIter->iChild += (1 + pIter->nEmpty);
fts5NodeIterGobbleNEmpty(pIter);
if( *pRc ) pIter->aData = 0;
}
}
/*
** Initialize the iterator object pIter to iterate through the internal
** segment node in pData.
*/
static void fts5NodeIterInit(const u8 *aData, int nData, Fts5NodeIter *pIter){
memset(pIter, 0, sizeof(*pIter));
pIter->aData = aData;
pIter->nData = nData;
pIter->iOff = fts5GetVarint32(aData, pIter->iChild);
fts5NodeIterGobbleNEmpty(pIter);
}
/*
** Free any memory allocated by the iterator object.
*/
static void fts5NodeIterFree(Fts5NodeIter *pIter){
fts5BufferFree(&pIter->term);
}
/*
** The iterator passed as the first argument has the following fields set
** as follows. This function sets up the rest of the iterator so that it
** points to the first rowid in the doclist-index.
**
** pData: pointer to doclist-index record,
** iLeafPgno: page number that this doclist-index is associated with.
**
** When this function is called pIter->iLeafPgno is the page number the
** doclist is associated with (the one featuring the term).
*/
static int fts5DlidxIterFirst(Fts5DlidxIter *pIter){
Fts5Data *pData = pIter->pData;
int i;
int bPresent;
assert( pIter->pData );
assert( pIter->iLeafPgno>0 );
/* Read the first rowid value. And the "present" flag that follows it. */
pIter->iOff += getVarint(&pData->p[0], (u64*)&pIter->iRowid);
bPresent = pData->p[pIter->iOff++];
if( bPresent ){
i = 0;
}else{
/* Count the number of leading 0x00 bytes. */
for(i=1; pIter->iOff<pData->n; i++){
if( pData->p[pIter->iOff] ) break;
pIter->iOff++;
}
/* Unless we are already at the end of the doclist-index, load the first
** rowid value. */
if( pIter->iOff<pData->n ){
i64 iVal;
pIter->iOff += getVarint(&pData->p[pIter->iOff], (u64*)&iVal);
pIter->iRowid += iVal;
}else{
pIter->bEof = 1;
}
}
pIter->iLeafPgno += (i+1);
pIter->iFirstOff = pIter->iOff;
return pIter->bEof;
}
/*
** Advance the iterator passed as the only argument.
*/
static int fts5DlidxIterNext(Fts5DlidxIter *pIter){
Fts5Data *pData = pIter->pData;
int iOff;
for(iOff=pIter->iOff; iOff<pData->n; iOff++){
if( pData->p[iOff] ) break;
}
if( iOff<pData->n ){
i64 iVal;
pIter->iLeafPgno += (iOff - pIter->iOff) + 1;
iOff += getVarint(&pData->p[iOff], (u64*)&iVal);
pIter->iRowid += iVal;
pIter->iOff = iOff;
}else{
pIter->bEof = 1;
}
return pIter->bEof;
}
static int fts5DlidxIterEof(Fts5Index *p, Fts5DlidxIter *pIter){
return pIter->bEof;
}
static void fts5DlidxIterLast(Fts5DlidxIter *pIter){
if( fts5DlidxIterFirst(pIter)==0 ){
while( 0==fts5DlidxIterNext(pIter) );
pIter->bEof = 0;
}
}
static int fts5DlidxIterPrev(Fts5DlidxIter *pIter){
int iOff = pIter->iOff;
assert( pIter->bEof==0 );
if( iOff<=pIter->iFirstOff ){
pIter->bEof = 1;
}else{
u8 *a = pIter->pData->p;
i64 iVal;
int iLimit;
/* Currently iOff points to the first byte of a varint. This block
** decrements iOff until it points to the first byte of the previous
** varint. Taking care not to read any memory locations that occur
** before the buffer in memory. */
iLimit = (iOff>9 ? iOff-9 : 0);
for(iOff--; iOff>iLimit; iOff--){
if( (a[iOff-1] & 0x80)==0 ) break;
}
getVarint(&a[iOff], (u64*)&iVal);
pIter->iRowid -= iVal;
pIter->iLeafPgno--;
/* Skip backwards passed any 0x00 bytes. */
while( iOff>pIter->iFirstOff
&& a[iOff-1]==0x00 && (a[iOff-2] & 0x80)==0
){
iOff--;
pIter->iLeafPgno--;
}
pIter->iOff = iOff;
}
return pIter->bEof;
}
static Fts5DlidxIter *fts5DlidxIterInit(
Fts5Index *p, /* Fts5 Backend to iterate within */
int bRev, /* True for ORDER BY ASC */
int iIdx, int iSegid, /* Segment iSegid within index iIdx */
int iLeafPg /* Leaf page number to load dlidx for */
){
Fts5DlidxIter *pIter;
pIter = (Fts5DlidxIter*)fts5IdxMalloc(p, sizeof(Fts5DlidxIter));
if( pIter==0 ) return 0;
pIter->pData = fts5DataRead(p, FTS5_DOCLIST_IDX_ROWID(iIdx, iSegid, iLeafPg));
if( pIter->pData==0 ){
sqlite3_free(pIter);
pIter = 0;
}else{
pIter->iLeafPgno = iLeafPg;
if( bRev==0 ){
fts5DlidxIterFirst(pIter);
}else{
fts5DlidxIterLast(pIter);
}
}
return pIter;
}
/*
** Free a doclist-index iterator object allocated by fts5DlidxIterInit().
*/
static void fts5DlidxIterFree(Fts5DlidxIter *pIter){
if( pIter ){
fts5DataRelease(pIter->pData);
sqlite3_free(pIter);
}
}
static void fts5LeafHeader(Fts5Data *pLeaf, int *piRowid, int *piTerm){
*piRowid = (int)fts5GetU16(&pLeaf->p[0]);
*piTerm = (int)fts5GetU16(&pLeaf->p[2]);
}
/*
** Load the next leaf page into the segment iterator.
*/
static void fts5SegIterNextPage(
Fts5Index *p, /* FTS5 backend object */
Fts5SegIter *pIter /* Iterator to advance to next page */
){
Fts5StructureSegment *pSeg = pIter->pSeg;
fts5DataRelease(pIter->pLeaf);
pIter->iLeafPgno++;
if( pIter->iLeafPgno<=pSeg->pgnoLast ){
pIter->pLeaf = fts5DataRead(p,
FTS5_SEGMENT_ROWID(pIter->iIdx, pSeg->iSegid, 0, pIter->iLeafPgno)
);
}else{
pIter->pLeaf = 0;
}
}
/*
** Argument p points to a buffer containing a varint to be interpreted as a
** position list size field. Read the varint and return the number of bytes
** read. Before returning, set *pnSz to the number of bytes in the position
** list, and *pbDel to true if the delete flag is set, or false otherwise.
*/
static int fts5GetPoslistSize(const u8 *p, int *pnSz, int *pbDel){
int nSz;
int n = fts5GetVarint32(p, nSz);
*pnSz = nSz/2;
*pbDel = nSz & 0x0001;
return n;
}
/*
** Fts5SegIter.iLeafOffset currently points to the first byte of a
** position-list size field. Read the value of the field and store it
** in the following variables:
**
** Fts5SegIter.nPos
** Fts5SegIter.bDel
**
** Leave Fts5SegIter.iLeafOffset pointing to the first byte of the
** position list content (if any).
*/
static void fts5SegIterLoadNPos(Fts5Index *p, Fts5SegIter *pIter){
if( p->rc==SQLITE_OK ){
int iOff = pIter->iLeafOffset; /* Offset to read at */
if( iOff>=pIter->pLeaf->n ){
assert( 0 );
fts5SegIterNextPage(p, pIter);
if( pIter->pLeaf==0 ){
if( p->rc==SQLITE_OK ) p->rc = FTS5_CORRUPT;
return;
}
iOff = 4;
}
iOff += fts5GetPoslistSize(pIter->pLeaf->p+iOff, &pIter->nPos,&pIter->bDel);
pIter->iLeafOffset = iOff;
}
}
/*
** Fts5SegIter.iLeafOffset currently points to the first byte of the
** "nSuffix" field of a term. Function parameter nKeep contains the value
** of the "nPrefix" field (if there was one - it is passed 0 if this is
** the first term in the segment).
**
** This function populates:
**
** Fts5SegIter.term
** Fts5SegIter.rowid
** Fts5SegIter.nPos
** Fts5SegIter.bDel
**
** accordingly and leaves (Fts5SegIter.iLeafOffset) set to the content of
** the first position list. The position list belonging to document
** (Fts5SegIter.iRowid).
*/
static void fts5SegIterLoadTerm(Fts5Index *p, Fts5SegIter *pIter, int nKeep){
u8 *a = pIter->pLeaf->p; /* Buffer to read data from */
int iOff = pIter->iLeafOffset; /* Offset to read at */
int nNew; /* Bytes of new data */
iOff += fts5GetVarint32(&a[iOff], nNew);
pIter->term.n = nKeep;
fts5BufferAppendBlob(&p->rc, &pIter->term, nNew, &a[iOff]);
iOff += nNew;
pIter->iTermLeafOffset = iOff;
pIter->iTermLeafPgno = pIter->iLeafPgno;
if( iOff>=pIter->pLeaf->n ){
fts5SegIterNextPage(p, pIter);
if( pIter->pLeaf==0 ){
if( p->rc==SQLITE_OK ) p->rc = FTS5_CORRUPT;
return;
}
iOff = 4;
a = pIter->pLeaf->p;
}
iOff += sqlite3GetVarint(&a[iOff], (u64*)&pIter->iRowid);
pIter->iLeafOffset = iOff;
}
/*
** Initialize the iterator object pIter to iterate through the entries in
** segment pSeg within index iIdx. The iterator is left pointing to the
** first entry when this function returns.
**
** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
** an error has already occurred when this function is called, it is a no-op.
*/
static void fts5SegIterInit(
Fts5Index *p,
int iIdx, /* Config.aHash[] index of FTS index */
Fts5StructureSegment *pSeg, /* Description of segment */
Fts5SegIter *pIter /* Object to populate */
){
if( pSeg->pgnoFirst==0 ){
/* This happens if the segment is being used as an input to an incremental
** merge and all data has already been "trimmed". See function
** fts5TrimSegments() for details. In this case leave the iterator empty.
** The caller will see the (pIter->pLeaf==0) and assume the iterator is
** at EOF already. */
assert( pIter->pLeaf==0 );
return;
}
if( p->rc==SQLITE_OK ){
memset(pIter, 0, sizeof(*pIter));
pIter->pSeg = pSeg;
pIter->iIdx = iIdx;
pIter->iLeafPgno = pSeg->pgnoFirst-1;
fts5SegIterNextPage(p, pIter);
}
if( p->rc==SQLITE_OK ){
u8 *a = pIter->pLeaf->p;
pIter->iLeafOffset = fts5GetU16(&a[2]);
fts5SegIterLoadTerm(p, pIter, 0);
fts5SegIterLoadNPos(p, pIter);
}
}
/*
** This function is only ever called on iterators created by calls to
** Fts5IndexQuery() with the FTS5INDEX_QUERY_DESC flag set.
**
** The iterator is in an unusual state when this function is called: the
** Fts5SegIter.iLeafOffset variable is set to the offset of the start of
** the position-list size field for the first relevant rowid on the page.
** Fts5SegIter.rowid is set, but nPos and bDel are not.
**
** This function advances the iterator so that it points to the last
** relevant rowid on the page and, if necessary, initializes the
** aRowidOffset[] and iRowidOffset variables. At this point the iterator
** is in its regular state - Fts5SegIter.iLeafOffset points to the first
** byte of the position list content associated with said rowid.
*/
static void fts5SegIterReverseInitPage(Fts5Index *p, Fts5SegIter *pIter){
int n = pIter->pLeaf->n;
int i = pIter->iLeafOffset;
u8 *a = pIter->pLeaf->p;
int iRowidOffset = 0;
while( p->rc==SQLITE_OK && i<n ){
i64 iDelta = 0;
int nPos;
int bDummy;
i += fts5GetPoslistSize(&a[i], &nPos, &bDummy);
i += nPos;
if( i>=n ) break;
i += getVarint(&a[i], (u64*)&iDelta);
if( iDelta==0 ) break;
pIter->iRowid += iDelta;
if( iRowidOffset>=pIter->nRowidOffset ){
int nNew = pIter->nRowidOffset + 8;
int *aNew = (int*)sqlite3_realloc(pIter->aRowidOffset, nNew*sizeof(int));
if( aNew==0 ){
p->rc = SQLITE_NOMEM;
break;
}
pIter->aRowidOffset = aNew;
pIter->nRowidOffset = nNew;
}
pIter->aRowidOffset[iRowidOffset++] = pIter->iLeafOffset;
pIter->iLeafOffset = i;
}
pIter->iRowidOffset = iRowidOffset;
fts5SegIterLoadNPos(p, pIter);
}
/*
**
*/
static void fts5SegIterReverseNewPage(Fts5Index *p, Fts5SegIter *pIter){
assert( pIter->flags & FTS5_SEGITER_REVERSE );
assert( pIter->flags & FTS5_SEGITER_ONETERM );
fts5DataRelease(pIter->pLeaf);
pIter->pLeaf = 0;
while( p->rc==SQLITE_OK && pIter->iLeafPgno>pIter->iTermLeafPgno ){
Fts5Data *pNew;
pIter->iLeafPgno--;
pNew = fts5DataRead(p, FTS5_SEGMENT_ROWID(
pIter->iIdx, pIter->pSeg->iSegid, 0, pIter->iLeafPgno
));
if( pNew ){
if( pIter->iLeafPgno==pIter->iTermLeafPgno ){
if( pIter->iTermLeafOffset<pNew->n ){
pIter->pLeaf = pNew;
pIter->iLeafOffset = pIter->iTermLeafOffset;
}
}else{
int iRowidOff, dummy;
fts5LeafHeader(pNew, &iRowidOff, &dummy);
if( iRowidOff ){
pIter->pLeaf = pNew;
pIter->iLeafOffset = iRowidOff;
}
}
if( pIter->pLeaf ){
u8 *a = &pIter->pLeaf->p[pIter->iLeafOffset];
pIter->iLeafOffset += getVarint(a, (u64*)&pIter->iRowid);
break;
}else{
fts5DataRelease(pNew);
}
}
}
if( pIter->pLeaf ){
fts5SegIterReverseInitPage(p, pIter);
}
}
/*
** Return true if the iterator passed as the second argument currently
** points to a delete marker. A delete marker is an entry with a 0 byte
** position-list.
*/
static int fts5MultiIterIsEmpty(Fts5Index *p, Fts5MultiSegIter *pIter){
Fts5SegIter *pSeg = &pIter->aSeg[pIter->aFirst[1].iFirst];
return (p->rc==SQLITE_OK && pSeg->pLeaf && pSeg->nPos==0);
}
/*
** Advance iterator pIter to the next entry.
**
** If an error occurs, Fts5Index.rc is set to an appropriate error code. It
** is not considered an error if the iterator reaches EOF. If an error has
** already occurred when this function is called, it is a no-op.
*/
static void fts5SegIterNext(
Fts5Index *p, /* FTS5 backend object */
Fts5SegIter *pIter, /* Iterator to advance */
int *pbNewTerm /* OUT: Set for new term */
){
assert( pbNewTerm==0 || *pbNewTerm==0 );
if( p->rc==SQLITE_OK ){
if( pIter->flags & FTS5_SEGITER_REVERSE ){
if( pIter->iRowidOffset>0 ){
u8 *a = pIter->pLeaf->p;
int iOff;
int nPos;
int bDummy;
i64 iDelta;
if( p->rc==SQLITE_OK ){
pIter->iRowidOffset--;
pIter->iLeafOffset = iOff = pIter->aRowidOffset[pIter->iRowidOffset];
iOff += fts5GetPoslistSize(&a[iOff], &nPos, &bDummy);
iOff += nPos;
getVarint(&a[iOff], (u64*)&iDelta);
pIter->iRowid -= iDelta;
fts5SegIterLoadNPos(p, pIter);
}
}else{
fts5SegIterReverseNewPage(p, pIter);
}
}else{
Fts5Data *pLeaf = pIter->pLeaf;
int iOff;
int bNewTerm = 0;
int nKeep = 0;
/* Search for the end of the position list within the current page. */
u8 *a = pLeaf->p;
int n = pLeaf->n;
iOff = pIter->iLeafOffset + pIter->nPos;
if( iOff<n ){
/* The next entry is on the current page */
u64 iDelta;
iOff += sqlite3GetVarint(&a[iOff], &iDelta);
pIter->iLeafOffset = iOff;
if( iDelta==0 ){
bNewTerm = 1;
if( iOff>=n ){
fts5SegIterNextPage(p, pIter);
pIter->iLeafOffset = 4;
}else if( iOff!=fts5GetU16(&a[2]) ){
pIter->iLeafOffset += fts5GetVarint32(&a[iOff], nKeep);
}
}else{
pIter->iRowid += iDelta;
}
}else if( pIter->pSeg==0 ){
const u8 *pList = 0;
const char *zTerm;
int nList;
if( 0==(pIter->flags & FTS5_SEGITER_ONETERM) ){
sqlite3Fts5HashScanNext(p->apHash[0]);
sqlite3Fts5HashScanEntry(p->apHash[0], &zTerm, &pList, &nList);
}
if( pList==0 ){
fts5DataRelease(pIter->pLeaf);
pIter->pLeaf = 0;
}else{
pIter->pLeaf->p = (u8*)pList;
pIter->pLeaf->n = nList;
sqlite3Fts5BufferSet(&p->rc, &pIter->term, strlen(zTerm), (u8*)zTerm);
pIter->iLeafOffset = getVarint(pList, (u64*)&pIter->iRowid);
}
}else{
iOff = 0;
/* Next entry is not on the current page */
while( iOff==0 ){
fts5SegIterNextPage(p, pIter);
pLeaf = pIter->pLeaf;
if( pLeaf==0 ) break;
if( (iOff = fts5GetU16(&pLeaf->p[0])) ){
iOff += sqlite3GetVarint(&pLeaf->p[iOff], (u64*)&pIter->iRowid);
pIter->iLeafOffset = iOff;
}
else if( (iOff = fts5GetU16(&pLeaf->p[2])) ){
pIter->iLeafOffset = iOff;
bNewTerm = 1;
}
}
}
/* Check if the iterator is now at EOF. If so, return early. */
if( pIter->pLeaf ){
if( bNewTerm ){
if( pIter->flags & FTS5_SEGITER_ONETERM ){
fts5DataRelease(pIter->pLeaf);
pIter->pLeaf = 0;
}else{
fts5SegIterLoadTerm(p, pIter, nKeep);
fts5SegIterLoadNPos(p, pIter);
if( pbNewTerm ) *pbNewTerm = 1;
}
}else{
fts5SegIterLoadNPos(p, pIter);
}
}
}
}
}
#define SWAPVAL(T, a, b) { T tmp; tmp=a; a=b; b=tmp; }
/*
** Iterator pIter currently points to the first rowid in a doclist. This
** function sets the iterator up so that iterates in reverse order through
** the doclist.
*/
static void fts5SegIterReverse(Fts5Index *p, int iIdx, Fts5SegIter *pIter){
Fts5DlidxIter *pDlidx = pIter->pDlidx;
Fts5Data *pLast = 0;
int pgnoLast = 0;
if( pDlidx ){
/* If the doclist-iterator is already at EOF, then the current doclist
** contains no entries except those on the current page. */
if( fts5DlidxIterEof(p, pDlidx)==0 ){
int iSegid = pIter->pSeg->iSegid;
pgnoLast = pDlidx->iLeafPgno;
pLast = fts5DataRead(p, FTS5_SEGMENT_ROWID(iIdx, iSegid, 0, pgnoLast));
}else{
pIter->iLeafOffset -= sqlite3Fts5GetVarintLen(pIter->nPos*2+pIter->bDel);
}
}else{
int iOff; /* Byte offset within pLeaf */
Fts5Data *pLeaf = pIter->pLeaf; /* Current leaf data */
/* Currently, Fts5SegIter.iLeafOffset (and iOff) points to the first
** byte of position-list content for the current rowid. Back it up
** so that it points to the start of the position-list size field. */
pIter->iLeafOffset -= sqlite3Fts5GetVarintLen(pIter->nPos*2+pIter->bDel);
iOff = pIter->iLeafOffset;
assert( iOff>=4 );
/* Search for a new term within the current leaf. If one can be found,
** then this page contains the largest rowid for the current term. */
while( iOff<pLeaf->n ){
int nPos;
i64 iDelta;
int bDummy;
/* Read the position-list size field */
iOff += fts5GetPoslistSize(&pLeaf->p[iOff], &nPos, &bDummy);
iOff += nPos;
if( iOff>=pLeaf->n ) break;
/* Rowid delta. Or, if 0x00, the end of doclist marker. */
nPos = getVarint(&pLeaf->p[iOff], (u64*)&iDelta);
if( iDelta==0 ) break;
iOff += nPos;
}
/* If this condition is true then the largest rowid for the current
** term may not be stored on the current page. So search forward to
** see where said rowid really is. */
if( iOff>=pLeaf->n ){
int pgno;
Fts5StructureSegment *pSeg = pIter->pSeg;
/* The last rowid in the doclist may not be on the current page. Search
** forward to find the page containing the last rowid. */
for(pgno=pIter->iLeafPgno+1; !p->rc && pgno<=pSeg->pgnoLast; pgno++){
i64 iAbs = FTS5_SEGMENT_ROWID(iIdx, pSeg->iSegid, 0, pgno);
Fts5Data *pNew = fts5DataRead(p, iAbs);
if( pNew ){
int iRowid, iTerm;
fts5LeafHeader(pNew, &iRowid, &iTerm);
if( iRowid ){
SWAPVAL(Fts5Data*, pNew, pLast);
pgnoLast = pgno;
}
fts5DataRelease(pNew);
if( iTerm ) break;
}
}
}
}
/* If pLast is NULL at this point, then the last rowid for this doclist
** lies on the page currently indicated by the iterator. In this case
** pIter->iLeafOffset is already set to point to the position-list size
** field associated with the first relevant rowid on the page.
**
** Or, if pLast is non-NULL, then it is the page that contains the last
** rowid. In this case configure the iterator so that it points to the
** first rowid on this page.
*/
if( pLast ){
int dummy;
int iOff;
fts5DataRelease(pIter->pLeaf);
pIter->pLeaf = pLast;
pIter->iLeafPgno = pgnoLast;
fts5LeafHeader(pLast, &iOff, &dummy);
iOff += getVarint(&pLast->p[iOff], (u64*)&pIter->iRowid);
pIter->iLeafOffset = iOff;
}
fts5SegIterReverseInitPage(p, pIter);
}
/*
** Iterator pIter currently points to the first rowid of a doclist within
** index iIdx. There is a doclist-index associated with the final term on
** the current page. If the current term is the last term on the page,
** load the doclist-index from disk and initialize an iterator at
** (pIter->pDlidx).
*/
static void fts5SegIterLoadDlidx(Fts5Index *p, int iIdx, Fts5SegIter *pIter){
int iSeg = pIter->pSeg->iSegid;
int bRev = (pIter->flags & FTS5_SEGITER_REVERSE);
Fts5Data *pLeaf = pIter->pLeaf; /* Current leaf data */
assert( pIter->flags & FTS5_SEGITER_ONETERM );
assert( pIter->pDlidx==0 );
/* Check if the current doclist ends on this page. If it does, return
** early without loading the doclist-index (as it belongs to a different
** term. */
if( pIter->iTermLeafPgno==pIter->iLeafPgno ){
int iOff = pIter->iLeafOffset + pIter->nPos;
while( iOff<pLeaf->n ){
i64 iDelta;
/* iOff is currently the offset of the start of position list data */
iOff += getVarint(&pLeaf->p[iOff], (u64*)&iDelta);
if( iDelta==0 ) return;
if( iOff<pLeaf->n ){
int bDummy;
int nPos;
iOff += fts5GetPoslistSize(&pLeaf->p[iOff], &nPos, &bDummy);
iOff += nPos;
}
}
}
pIter->pDlidx = fts5DlidxIterInit(p, bRev, iIdx, iSeg, pIter->iTermLeafPgno);
}
/*
** Initialize the object pIter to point to term pTerm/nTerm within segment
** pSeg, index iIdx. If there is no such term in the index, the iterator
** is set to EOF.
**
** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
** an error has already occurred when this function is called, it is a no-op.
*/
static void fts5SegIterSeekInit(
Fts5Index *p, /* FTS5 backend */
int iIdx, /* Config.aHash[] index of FTS index */
const u8 *pTerm, int nTerm, /* Term to seek to */
int flags, /* Mask of FTS5INDEX_XXX flags */
Fts5StructureSegment *pSeg, /* Description of segment */
Fts5SegIter *pIter /* Object to populate */
){
int iPg = 1;
int h;
int bGe = ((flags & FTS5INDEX_QUERY_PREFIX) && iIdx==0);
int bDlidx = 0; /* True if there is a doclist-index */
assert( bGe==0 || (flags & FTS5INDEX_QUERY_DESC)==0 );
assert( pTerm && nTerm );
memset(pIter, 0, sizeof(*pIter));
pIter->pSeg = pSeg;
pIter->iIdx = iIdx;
/* This block sets stack variable iPg to the leaf page number that may
** contain term (pTerm/nTerm), if it is present in the segment. */
for(h=pSeg->nHeight-1; h>0; h--){
Fts5NodeIter node; /* For iterating through internal nodes */
i64 iRowid = FTS5_SEGMENT_ROWID(iIdx, pSeg->iSegid, h, iPg);
Fts5Data *pNode = fts5DataRead(p, iRowid);
if( pNode==0 ) break;
fts5NodeIterInit(pNode->p, pNode->n, &node);
assert( node.term.n==0 );
iPg = node.iChild;
bDlidx = node.bDlidx;
for(fts5NodeIterNext(&p->rc, &node);
node.aData && fts5BufferCompareBlob(&node.term, pTerm, nTerm)<=0;
fts5NodeIterNext(&p->rc, &node)
){
iPg = node.iChild;
bDlidx = node.bDlidx;
}
fts5NodeIterFree(&node);
fts5DataRelease(pNode);
}
if( iPg<pSeg->pgnoFirst ){
iPg = pSeg->pgnoFirst;
bDlidx = 0;
}
pIter->iLeafPgno = iPg - 1;
fts5SegIterNextPage(p, pIter);
if( pIter->pLeaf ){
int res;
pIter->iLeafOffset = fts5GetU16(&pIter->pLeaf->p[2]);
fts5SegIterLoadTerm(p, pIter, 0);
fts5SegIterLoadNPos(p, pIter);
do {
res = fts5BufferCompareBlob(&pIter->term, pTerm, nTerm);
if( res>=0 ) break;
fts5SegIterNext(p, pIter, 0);
}while( pIter->pLeaf && p->rc==SQLITE_OK );
if( bGe==0 && res ){
/* Set iterator to point to EOF */
fts5DataRelease(pIter->pLeaf);
pIter->pLeaf = 0;
}
}
if( p->rc==SQLITE_OK && bGe==0 ){
pIter->flags |= FTS5_SEGITER_ONETERM;
if( pIter->pLeaf ){
if( flags & FTS5INDEX_QUERY_DESC ){
pIter->flags |= FTS5_SEGITER_REVERSE;
}
if( bDlidx ){
fts5SegIterLoadDlidx(p, iIdx, pIter);
}
if( flags & FTS5INDEX_QUERY_DESC ){
fts5SegIterReverse(p, iIdx, pIter);
}
}
}
}
/*
** Initialize the object pIter to point to term pTerm/nTerm within the
** in-memory hash table iIdx. If there is no such term in the table, the
** iterator is set to EOF.
**
** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
** an error has already occurred when this function is called, it is a no-op.
*/
static void fts5SegIterHashInit(
Fts5Index *p, /* FTS5 backend */
int iIdx, /* Config.aHash[] index of FTS index */
const u8 *pTerm, int nTerm, /* Term to seek to */
int flags, /* Mask of FTS5INDEX_XXX flags */
Fts5SegIter *pIter /* Object to populate */
){
Fts5Hash *pHash = p->apHash[iIdx];
const u8 *pList = 0;
int nList = 0;
const u8 *z = 0;
int n = 0;
assert( pHash );
assert( p->rc==SQLITE_OK );
if( pTerm==0 || (iIdx==0 && (flags & FTS5INDEX_QUERY_PREFIX)) ){
p->rc = sqlite3Fts5HashScanInit(pHash, (const char*)pTerm, nTerm);
sqlite3Fts5HashScanEntry(pHash, (const char**)&z, &pList, &nList);
n = (z ? strlen((const char*)z) : 0);
}else{
pIter->flags |= FTS5_SEGITER_ONETERM;
sqlite3Fts5HashQuery(pHash, (const char*)pTerm, nTerm, &pList, &nList);
z = pTerm;
n = nTerm;
}
if( pList ){
Fts5Data *pLeaf;
sqlite3Fts5BufferSet(&p->rc, &pIter->term, n, z);
pLeaf = fts5IdxMalloc(p, sizeof(Fts5Data));
if( pLeaf==0 ) return;
pLeaf->nRef = 1;
pLeaf->p = (u8*)pList;
pLeaf->n = nList;
pIter->pLeaf = pLeaf;
pIter->iLeafOffset = getVarint(pLeaf->p, (u64*)&pIter->iRowid);
if( flags & FTS5INDEX_QUERY_DESC ){
pIter->flags |= FTS5_SEGITER_REVERSE;
fts5SegIterReverseInitPage(p, pIter);
}else{
fts5SegIterLoadNPos(p, pIter);
}
}
}
/*
** Zero the iterator passed as the only argument.
*/
static void fts5SegIterClear(Fts5SegIter *pIter){
fts5BufferFree(&pIter->term);
fts5DataRelease(pIter->pLeaf);
fts5DlidxIterFree(pIter->pDlidx);
sqlite3_free(pIter->aRowidOffset);
memset(pIter, 0, sizeof(Fts5SegIter));
}
#ifdef SQLITE_DEBUG
/*
** This function is used as part of the big assert() procedure implemented by
** fts5AssertMultiIterSetup(). It ensures that the result currently stored
** in *pRes is the correct result of comparing the current positions of the
** two iterators.
*/
static void fts5AssertComparisonResult(
Fts5MultiSegIter *pIter,
Fts5SegIter *p1,
Fts5SegIter *p2,
Fts5CResult *pRes
){
int i1 = p1 - pIter->aSeg;
int i2 = p2 - pIter->aSeg;
if( p1->pLeaf || p2->pLeaf ){
if( p1->pLeaf==0 ){
assert( pRes->iFirst==i2 );
}else if( p2->pLeaf==0 ){
assert( pRes->iFirst==i1 );
}else{
int nMin = MIN(p1->term.n, p2->term.n);
int res = memcmp(p1->term.p, p2->term.p, nMin);
if( res==0 ) res = p1->term.n - p2->term.n;
if( res==0 ){
assert( pRes->bTermEq==1 );
assert( p1->iRowid!=p2->iRowid );
res = ((p1->iRowid > p2->iRowid)==pIter->bRev) ? -1 : 1;
}else{
assert( pRes->bTermEq==0 );
}
if( res<0 ){
assert( pRes->iFirst==i1 );
}else{
assert( pRes->iFirst==i2 );
}
}
}
}
/*
** This function is a no-op unless SQLITE_DEBUG is defined when this module
** is compiled. In that case, this function is essentially an assert()
** statement used to verify that the contents of the pIter->aFirst[] array
** are correct.
*/
static void fts5AssertMultiIterSetup(Fts5Index *p, Fts5MultiSegIter *pIter){
if( p->rc==SQLITE_OK ){
int i;
for(i=0; i<pIter->nSeg; i+=2){
Fts5SegIter *p1 = &pIter->aSeg[i];
Fts5SegIter *p2 = &pIter->aSeg[i+1];
Fts5CResult *pRes = &pIter->aFirst[(pIter->nSeg + i) / 2];
fts5AssertComparisonResult(pIter, p1, p2, pRes);
}
for(i=1; i<(pIter->nSeg / 2); i+=2){
Fts5CResult *pRes = &pIter->aFirst[i];
Fts5SegIter *p1 = &pIter->aSeg[ pIter->aFirst[i*2].iFirst ];
Fts5SegIter *p2 = &pIter->aSeg[ pIter->aFirst[i*2+1].iFirst ];
fts5AssertComparisonResult(pIter, p1, p2, pRes);
}
}
}
#else
# define fts5AssertMultiIterSetup(x,y)
#endif
/*
** Do the comparison necessary to populate pIter->aFirst[iOut].
**
** If the returned value is non-zero, then it is the index of an entry
** in the pIter->aSeg[] array that is (a) not at EOF, and (b) pointing
** to a key that is a duplicate of another, higher priority,
** segment-iterator in the pSeg->aSeg[] array.
*/
static int fts5MultiIterDoCompare(Fts5MultiSegIter *pIter, int iOut){
int i1; /* Index of left-hand Fts5SegIter */
int i2; /* Index of right-hand Fts5SegIter */
int iRes;
Fts5SegIter *p1; /* Left-hand Fts5SegIter */
Fts5SegIter *p2; /* Right-hand Fts5SegIter */
Fts5CResult *pRes = &pIter->aFirst[iOut];
assert( iOut<pIter->nSeg && iOut>0 );
assert( pIter->bRev==0 || pIter->bRev==1 );
if( iOut>=(pIter->nSeg/2) ){
i1 = (iOut - pIter->nSeg/2) * 2;
i2 = i1 + 1;
}else{
i1 = pIter->aFirst[iOut*2].iFirst;
i2 = pIter->aFirst[iOut*2+1].iFirst;
}
p1 = &pIter->aSeg[i1];
p2 = &pIter->aSeg[i2];
pRes->bTermEq = 0;
if( p1->pLeaf==0 ){ /* If p1 is at EOF */
iRes = i2;
}else if( p2->pLeaf==0 ){ /* If p2 is at EOF */
iRes = i1;
}else{
int res = fts5BufferCompare(&p1->term, &p2->term);
if( res==0 ){
assert( i2>i1 );
assert( i2!=0 );
pRes->bTermEq = 1;
if( p1->iRowid==p2->iRowid ){
p1->bDel = p2->bDel;
return i2;
}
res = ((p1->iRowid > p2->iRowid)==pIter->bRev) ? -1 : +1;
}
assert( res!=0 );
if( res<0 ){
iRes = i1;
}else{
iRes = i2;
}
}
pRes->iFirst = iRes;
return 0;
}
/*
** Move the seg-iter so that it points to the first rowid on page iLeafPgno.
** It is an error if leaf iLeafPgno contains no rowid.
*/
static void fts5SegIterGotoPage(
Fts5Index *p, /* FTS5 backend object */
Fts5SegIter *pIter, /* Iterator to advance */
int iLeafPgno
){
assert( iLeafPgno>pIter->iLeafPgno );
if( p->rc==SQLITE_OK ){
pIter->iLeafPgno = iLeafPgno-1;
fts5SegIterNextPage(p, pIter);
assert( p->rc!=SQLITE_OK || pIter->iLeafPgno==iLeafPgno );
}
if( p->rc==SQLITE_OK ){
int iOff;
u8 *a = pIter->pLeaf->p;
int n = pIter->pLeaf->n;
iOff = fts5GetU16(&a[0]);
if( iOff<4 || iOff>=n ){
p->rc = FTS5_CORRUPT;
}else{
iOff += getVarint(&a[iOff], (u64*)&pIter->iRowid);
pIter->iLeafOffset = iOff;
fts5SegIterLoadNPos(p, pIter);
}
}
}
/*
** Advance the iterator passed as the second argument until it is at or
** past rowid iFrom. Regardless of the value of iFrom, the iterator is
** always advanced at least once.
*/
static void fts5SegIterNextFrom(
Fts5Index *p, /* FTS5 backend object */
Fts5SegIter *pIter, /* Iterator to advance */
i64 iMatch /* Advance iterator at least this far */
){
int bRev = (pIter->flags & FTS5_SEGITER_REVERSE);
Fts5DlidxIter *pDlidx = pIter->pDlidx;
int iLeafPgno = pIter->iLeafPgno;
int bMove = 1;
assert( pIter->flags & FTS5_SEGITER_ONETERM );
assert( pIter->pDlidx );
assert( pIter->pLeaf );
if( bRev==0 ){
while( fts5DlidxIterEof(p, pDlidx)==0 && iMatch>pDlidx->iRowid ){
iLeafPgno = pDlidx->iLeafPgno;
fts5DlidxIterNext(pDlidx);
}
assert( iLeafPgno>=pIter->iLeafPgno || p->rc );
if( iLeafPgno>pIter->iLeafPgno ){
fts5SegIterGotoPage(p, pIter, iLeafPgno);
bMove = 0;
}
}else{
assert( iMatch<pIter->iRowid );
while( fts5DlidxIterEof(p, pDlidx)==0 && iMatch<pDlidx->iRowid ){
fts5DlidxIterPrev(pDlidx);
}
iLeafPgno = pDlidx->iLeafPgno;
assert( fts5DlidxIterEof(p, pDlidx) || iLeafPgno<=pIter->iLeafPgno );
if( iLeafPgno<pIter->iLeafPgno ){
pIter->iLeafPgno = iLeafPgno+1;
fts5SegIterReverseNewPage(p, pIter);
bMove = 0;
}
}
while( 1 ){
if( bMove ) fts5SegIterNext(p, pIter, 0);
if( pIter->pLeaf==0 ) break;
if( bRev==0 && pIter->iRowid>=iMatch ) break;
if( bRev!=0 && pIter->iRowid<=iMatch ) break;
bMove = 1;
}
}
/*
** Free the iterator object passed as the second argument.
*/
static void fts5MultiIterFree(Fts5Index *p, Fts5MultiSegIter *pIter){
if( pIter ){
int i;
for(i=0; i<pIter->nSeg; i++){
fts5SegIterClear(&pIter->aSeg[i]);
}
sqlite3_free(pIter);
}
}
static void fts5MultiIterAdvanced(
Fts5Index *p, /* FTS5 backend to iterate within */
Fts5MultiSegIter *pIter, /* Iterator to update aFirst[] array for */
int iChanged, /* Index of sub-iterator just advanced */
int iMinset /* Minimum entry in aFirst[] to set */
){
int i;
for(i=(pIter->nSeg+iChanged)/2; i>=iMinset && p->rc==SQLITE_OK; i=i/2){
int iEq;
if( (iEq = fts5MultiIterDoCompare(pIter, i)) ){
fts5SegIterNext(p, &pIter->aSeg[iEq], 0);
i = pIter->nSeg + iEq;
}
}
}
static int fts5MultiIterAdvanceRowid(
Fts5Index *p, /* FTS5 backend to iterate within */
Fts5MultiSegIter *pIter, /* Iterator to update aFirst[] array for */
int iChanged /* Index of sub-iterator just advanced */
){
int i;
Fts5SegIter *pNew = &pIter->aSeg[iChanged];
Fts5SegIter *pOther = &pIter->aSeg[iChanged ^ 0x0001];
for(i=(pIter->nSeg+iChanged)/2; p->rc==SQLITE_OK; i=i/2){
Fts5CResult *pRes = &pIter->aFirst[i];
assert( pNew->pLeaf );
assert( pRes->bTermEq==0 || pOther->pLeaf );
if( pRes->bTermEq ){
if( pNew->iRowid==pOther->iRowid ){
return 1;
}else if( (pOther->iRowid>pNew->iRowid)==pIter->bRev ){
pNew = pOther;
}
}
pRes->iFirst = (pNew - pIter->aSeg);
if( i==1 ) break;
pOther = &pIter->aSeg[ pIter->aFirst[i ^ 0x0001].iFirst ];
}
return 0;
}
/*
** Move the iterator to the next entry.
**
** If an error occurs, an error code is left in Fts5Index.rc. It is not
** considered an error if the iterator reaches EOF, or if it is already at
** EOF when this function is called.
*/
static void fts5MultiIterNext(
Fts5Index *p,
Fts5MultiSegIter *pIter,
int bFrom, /* True if argument iFrom is valid */
i64 iFrom /* Advance at least as far as this */
){
if( p->rc==SQLITE_OK ){
int bUseFrom = bFrom;
do {
int iFirst = pIter->aFirst[1].iFirst;
int bNewTerm = 0;
Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
if( bUseFrom && pSeg->pDlidx ){
fts5SegIterNextFrom(p, pSeg, iFrom);
}else{
fts5SegIterNext(p, pSeg, &bNewTerm);
}
if( pSeg->pLeaf==0 || bNewTerm
|| fts5MultiIterAdvanceRowid(p, pIter, iFirst)
){
fts5MultiIterAdvanced(p, pIter, iFirst, 1);
}
fts5AssertMultiIterSetup(p, pIter);
bUseFrom = 0;
}while( pIter->bSkipEmpty && fts5MultiIterIsEmpty(p, pIter) );
}
}
/*
** Allocate a new Fts5MultiSegIter object.
**
** The new object will be used to iterate through data in structure pStruct.
** If iLevel is -ve, then all data in all segments is merged. Or, if iLevel
** is zero or greater, data from the first nSegment segments on level iLevel
** is merged.
**
** The iterator initially points to the first term/rowid entry in the
** iterated data.
*/
static void fts5MultiIterNew(
Fts5Index *p, /* FTS5 backend to iterate within */
Fts5Structure *pStruct, /* Structure of specific index */
int iIdx, /* Config.aHash[] index of FTS index */
int bSkipEmpty, /* True to ignore delete-keys */
int flags, /* FTS5INDEX_QUERY_XXX flags */
const u8 *pTerm, int nTerm, /* Term to seek to (or NULL/0) */
int iLevel, /* Level to iterate (-1 for all) */
int nSegment, /* Number of segments to merge (iLevel>=0) */
Fts5MultiSegIter **ppOut /* New object */
){
int nSeg; /* Number of segments merged */
int nSlot; /* Power of two >= nSeg */
int iIter = 0; /* */
int iSeg; /* Used to iterate through segments */
Fts5StructureLevel *pLvl;
Fts5MultiSegIter *pNew;
assert( (pTerm==0 && nTerm==0) || iLevel<0 );
/* Allocate space for the new multi-seg-iterator. */
if( iLevel<0 ){
nSeg = fts5StructureCountSegments(pStruct);
nSeg += (p->apHash ? 1 : 0);
}else{
nSeg = MIN(pStruct->aLevel[iLevel].nSeg, nSegment);
}
for(nSlot=2; nSlot<nSeg; nSlot=nSlot*2);
*ppOut = pNew = fts5IdxMalloc(p,
sizeof(Fts5MultiSegIter) + /* pNew */
sizeof(Fts5SegIter) * nSlot + /* pNew->aSeg[] */
sizeof(Fts5CResult) * nSlot /* pNew->aFirst[] */
);
if( pNew==0 ) return;
pNew->nSeg = nSlot;
pNew->aSeg = (Fts5SegIter*)&pNew[1];
pNew->aFirst = (Fts5CResult*)&pNew->aSeg[nSlot];
pNew->bRev = (0!=(flags & FTS5INDEX_QUERY_DESC));
pNew->bSkipEmpty = bSkipEmpty;
/* Initialize each of the component segment iterators. */
if( iLevel<0 ){
Fts5StructureLevel *pEnd = &pStruct->aLevel[pStruct->nLevel];
if( p->apHash ){
/* Add a segment iterator for the current contents of the hash table. */
Fts5SegIter *pIter = &pNew->aSeg[iIter++];
fts5SegIterHashInit(p, iIdx, pTerm, nTerm, flags, pIter);
}
for(pLvl=&pStruct->aLevel[0]; pLvl<pEnd; pLvl++){
for(iSeg=pLvl->nSeg-1; iSeg>=0; iSeg--){
Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
Fts5SegIter *pIter = &pNew->aSeg[iIter++];
if( pTerm==0 ){
fts5SegIterInit(p, iIdx, pSeg, pIter);
}else{
fts5SegIterSeekInit(p, iIdx, pTerm, nTerm, flags, pSeg, pIter);
}
}
}
}else{
pLvl = &pStruct->aLevel[iLevel];
for(iSeg=nSeg-1; iSeg>=0; iSeg--){
fts5SegIterInit(p, iIdx, &pLvl->aSeg[iSeg], &pNew->aSeg[iIter++]);
}
}
assert( iIter==nSeg );
/* If the above was successful, each component iterators now points
** to the first entry in its segment. In this case initialize the
** aFirst[] array. Or, if an error has occurred, free the iterator
** object and set the output variable to NULL. */
if( p->rc==SQLITE_OK ){
for(iIter=nSlot-1; iIter>0; iIter--){
int iEq;
if( (iEq = fts5MultiIterDoCompare(pNew, iIter)) ){
fts5SegIterNext(p, &pNew->aSeg[iEq], 0);
fts5MultiIterAdvanced(p, pNew, iEq, iIter);
}
}
fts5AssertMultiIterSetup(p, pNew);
if( pNew->bSkipEmpty && fts5MultiIterIsEmpty(p, pNew) ){
fts5MultiIterNext(p, pNew, 0, 0);
}
}else{
fts5MultiIterFree(p, pNew);
*ppOut = 0;
}
}
/*
** Return true if the iterator is at EOF or if an error has occurred.
** False otherwise.
*/
static int fts5MultiIterEof(Fts5Index *p, Fts5MultiSegIter *pIter){
return (p->rc || pIter->aSeg[ pIter->aFirst[1].iFirst ].pLeaf==0);
}
/*
** Return the rowid of the entry that the iterator currently points
** to. If the iterator points to EOF when this function is called the
** results are undefined.
*/
static i64 fts5MultiIterRowid(Fts5MultiSegIter *pIter){
assert( pIter->aSeg[ pIter->aFirst[1].iFirst ].pLeaf );
return pIter->aSeg[ pIter->aFirst[1].iFirst ].iRowid;
}
/*
** Move the iterator to the next entry at or following iMatch.
*/
static void fts5MultiIterNextFrom(
Fts5Index *p,
Fts5MultiSegIter *pIter,
i64 iMatch
){
while( 1 ){
i64 iRowid;
fts5MultiIterNext(p, pIter, 1, iMatch);
if( fts5MultiIterEof(p, pIter) ) break;
iRowid = fts5MultiIterRowid(pIter);
if( pIter->bRev==0 && iRowid>=iMatch ) break;
if( pIter->bRev!=0 && iRowid<=iMatch ) break;
}
}
/*
** Return a pointer to a buffer containing the term associated with the
** entry that the iterator currently points to.
*/
static const u8 *fts5MultiIterTerm(Fts5MultiSegIter *pIter, int *pn){
Fts5SegIter *p = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
*pn = p->term.n;
return p->term.p;
}
/*
** Return true if the chunk iterator passed as the second argument is
** at EOF. Or if an error has already occurred. Otherwise, return false.
*/
static int fts5ChunkIterEof(Fts5Index *p, Fts5ChunkIter *pIter){
return (p->rc || pIter->pLeaf==0);
}
/*
** Advance the chunk-iterator to the next chunk of data to read.
*/
static void fts5ChunkIterNext(Fts5Index *p, Fts5ChunkIter *pIter){
assert( pIter->nRem>=pIter->n );
pIter->nRem -= pIter->n;
fts5DataRelease(pIter->pLeaf);
pIter->pLeaf = 0;
pIter->p = 0;
if( pIter->nRem>0 ){
Fts5Data *pLeaf;
pIter->iLeafRowid++;
pLeaf = pIter->pLeaf = fts5DataRead(p, pIter->iLeafRowid);
if( pLeaf ){
pIter->n = MIN(pIter->nRem, pLeaf->n-4);
pIter->p = pLeaf->p+4;
}
}
}
/*
** Intialize the chunk iterator to read the position list data for which
** the size field is at offset iOff of leaf pLeaf.
*/
static void fts5ChunkIterInit(
Fts5Index *p, /* FTS5 backend object */
Fts5SegIter *pSeg, /* Segment iterator to read poslist from */
Fts5ChunkIter *pIter /* Initialize this object */
){
Fts5Data *pLeaf = pSeg->pLeaf;
int iOff = pSeg->iLeafOffset;
memset(pIter, 0, sizeof(*pIter));
/* If Fts5SegIter.pSeg is NULL, then this iterator iterates through data
** currently stored in a hash table. In this case there is no leaf-rowid
** to calculate. */
if( pSeg->pSeg ){
int iId = pSeg->pSeg->iSegid;
i64 rowid = FTS5_SEGMENT_ROWID(pSeg->iIdx, iId, 0, pSeg->iLeafPgno);
pIter->iLeafRowid = rowid;
}
fts5DataReference(pLeaf);
pIter->pLeaf = pLeaf;
pIter->nRem = pSeg->nPos;
pIter->n = MIN(pLeaf->n - iOff, pIter->nRem);
pIter->p = pLeaf->p + iOff;
if( pIter->n==0 ){
fts5ChunkIterNext(p, pIter);
}
}
static void fts5ChunkIterRelease(Fts5ChunkIter *pIter){
fts5DataRelease(pIter->pLeaf);
pIter->pLeaf = 0;
}
/*
** Read and return the next 32-bit varint from the position-list iterator
** passed as the second argument.
**
** If an error occurs, zero is returned an an error code left in
** Fts5Index.rc. If an error has already occurred when this function is
** called, it is a no-op.
*/
static int fts5PosIterReadVarint(Fts5Index *p, Fts5PosIter *pIter){
int iVal = 0;
if( p->rc==SQLITE_OK ){
if( pIter->iOff>=pIter->chunk.n ){
fts5ChunkIterNext(p, &pIter->chunk);
if( fts5ChunkIterEof(p, &pIter->chunk) ) return 0;
pIter->iOff = 0;
}
pIter->iOff += fts5GetVarint32(&pIter->chunk.p[pIter->iOff], iVal);
}
return iVal;
}
/*
** Advance the position list iterator to the next entry.
*/
static void fts5PosIterNext(Fts5Index *p, Fts5PosIter *pIter){
int iVal;
assert( fts5ChunkIterEof(p, &pIter->chunk)==0 );
iVal = fts5PosIterReadVarint(p, pIter);
if( fts5ChunkIterEof(p, &pIter->chunk)==0 ){
if( iVal==1 ){
pIter->iCol = fts5PosIterReadVarint(p, pIter);
pIter->iPos = fts5PosIterReadVarint(p, pIter) - 2;
}else{
pIter->iPos += (iVal - 2);
}
}
}
/*
** Initialize the Fts5PosIter object passed as the final argument to iterate
** through the position-list associated with the index entry that iterator
** pMulti currently points to.
*/
static void fts5PosIterInit(
Fts5Index *p, /* FTS5 backend object */
Fts5MultiSegIter *pMulti, /* Multi-seg iterator to read pos-list from */
Fts5PosIter *pIter /* Initialize this object */
){
if( p->rc==SQLITE_OK ){
Fts5SegIter *pSeg = &pMulti->aSeg[ pMulti->aFirst[1].iFirst ];
memset(pIter, 0, sizeof(*pIter));
fts5ChunkIterInit(p, pSeg, &pIter->chunk);
if( fts5ChunkIterEof(p, &pIter->chunk)==0 ){
fts5PosIterNext(p, pIter);
}
}
}
/*
** Return true if the position iterator passed as the second argument is
** at EOF. Or if an error has already occurred. Otherwise, return false.
*/
static int fts5PosIterEof(Fts5Index *p, Fts5PosIter *pIter){
return (p->rc || pIter->chunk.pLeaf==0);
}
/*
** Allocate a new segment-id for the structure pStruct.
**
** If an error has already occurred, this function is a no-op. 0 is
** returned in this case.
*/
static int fts5AllocateSegid(Fts5Index *p, Fts5Structure *pStruct){
int i;
if( p->rc!=SQLITE_OK ) return 0;
for(i=0; i<100; i++){
int iSegid;
sqlite3_randomness(sizeof(int), (void*)&iSegid);
iSegid = iSegid & ((1 << FTS5_DATA_ID_B)-1);
if( iSegid ){
int iLvl, iSeg;
for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
if( iSegid==pStruct->aLevel[iLvl].aSeg[iSeg].iSegid ){
iSegid = 0;
}
}
}
}
if( iSegid ) return iSegid;
}
p->rc = SQLITE_ERROR;
return 0;
}
/*
** Discard all data currently cached in the hash-tables.
*/
static void fts5IndexDiscardData(Fts5Index *p){
assert( p->apHash || p->nPendingData==0 );
if( p->apHash ){
Fts5Config *pConfig = p->pConfig;
int i;
for(i=0; i<=pConfig->nPrefix; i++){
if( p->apHash[i] ) sqlite3Fts5HashClear(p->apHash[i]);
}
p->nPendingData = 0;
}
}
/*
** Return the size of the prefix, in bytes, that buffer (nNew/pNew) shares
** with buffer (nOld/pOld).
*/
static int fts5PrefixCompress(
int nOld, const u8 *pOld,
int nNew, const u8 *pNew
){
int i;
for(i=0; i<nNew && i<nOld; i++){
if( pOld[i]!=pNew[i] ) break;
}
return i;
}
/*
** If an "nEmpty" record must be written to the b-tree before the next
** term, write it now.
*/
static void fts5WriteBtreeNEmpty(Fts5Index *p, Fts5SegWriter *pWriter){
if( pWriter->nEmpty ){
int bFlag = 0;
Fts5PageWriter *pPg;
pPg = &pWriter->aWriter[1];
if( pWriter->nEmpty>=FTS5_MIN_DLIDX_SIZE && pWriter->cdlidx.n ){
i64 iKey = FTS5_DOCLIST_IDX_ROWID(
pWriter->iIdx, pWriter->iSegid,
pWriter->aWriter[0].pgno - 1 - pWriter->nEmpty
);
assert( pWriter->cdlidx.n>0 );
fts5DataWrite(p, iKey, pWriter->cdlidx.p, pWriter->cdlidx.n);
bFlag = 1;
}
fts5BufferAppendVarint(&p->rc, &pPg->buf, bFlag);
fts5BufferAppendVarint(&p->rc, &pPg->buf, pWriter->nEmpty);
pWriter->nEmpty = 0;
}
/* Whether or not it was written to disk, zero the doclist index at this
** point */
sqlite3Fts5BufferZero(&pWriter->cdlidx);
pWriter->bDlidxPrevValid = 0;
}
static void fts5WriteBtreeGrow(Fts5Index *p, Fts5SegWriter *pWriter){
if( p->rc==SQLITE_OK ){
Fts5PageWriter *aNew;
Fts5PageWriter *pNew;
int nNew = sizeof(Fts5PageWriter) * (pWriter->nWriter+1);
aNew = (Fts5PageWriter*)sqlite3_realloc(pWriter->aWriter, nNew);
if( aNew==0 ){
p->rc = SQLITE_NOMEM;
return;
}
pNew = &aNew[pWriter->nWriter];
memset(pNew, 0, sizeof(Fts5PageWriter));
pNew->pgno = 1;
fts5BufferAppendVarint(&p->rc, &pNew->buf, 1);
pWriter->nWriter++;
pWriter->aWriter = aNew;
}
}
/*
** This is called once for each leaf page except the first that contains
** at least one term. Argument (nTerm/pTerm) is the split-key - a term that
** is larger than all terms written to earlier leaves, and equal to or
** smaller than the first term on the new leaf.
**
** If an error occurs, an error code is left in Fts5Index.rc. If an error
** has already occurred when this function is called, it is a no-op.
*/
static void fts5WriteBtreeTerm(
Fts5Index *p, /* FTS5 backend object */
Fts5SegWriter *pWriter, /* Writer object */
int nTerm, const u8 *pTerm /* First term on new page */
){
int iHeight;
for(iHeight=1; 1; iHeight++){
Fts5PageWriter *pPage;
if( iHeight>=pWriter->nWriter ){
fts5WriteBtreeGrow(p, pWriter);
if( p->rc ) return;
}
pPage = &pWriter->aWriter[iHeight];
fts5WriteBtreeNEmpty(p, pWriter);
if( pPage->buf.n>=p->pConfig->pgsz ){
/* pPage will be written to disk. The term will be written into the
** parent of pPage. */
i64 iRowid = FTS5_SEGMENT_ROWID(
pWriter->iIdx, pWriter->iSegid, iHeight, pPage->pgno
);
fts5DataWrite(p, iRowid, pPage->buf.p, pPage->buf.n);
fts5BufferZero(&pPage->buf);
fts5BufferZero(&pPage->term);
fts5BufferAppendVarint(&p->rc, &pPage->buf, pPage[-1].pgno);
pPage->pgno++;
}else{
int nPre = fts5PrefixCompress(pPage->term.n, pPage->term.p, nTerm, pTerm);
fts5BufferAppendVarint(&p->rc, &pPage->buf, nPre+2);
fts5BufferAppendVarint(&p->rc, &pPage->buf, nTerm-nPre);
fts5BufferAppendBlob(&p->rc, &pPage->buf, nTerm-nPre, pTerm+nPre);
fts5BufferSet(&p->rc, &pPage->term, nTerm, pTerm);
break;
}
}
}
static void fts5WriteBtreeNoTerm(
Fts5Index *p, /* FTS5 backend object */
Fts5SegWriter *pWriter /* Writer object */
){
if( pWriter->bFirstRowidInPage ){
/* No rowids on this page. Append an 0x00 byte to the current
** doclist-index */
if( pWriter->bDlidxPrevValid==0 ){
i64 iRowid = pWriter->iPrevRowid;
sqlite3Fts5BufferAppendVarint(&p->rc, &pWriter->cdlidx, iRowid);
pWriter->bDlidxPrevValid = 1;
pWriter->iDlidxPrev = iRowid;
}
sqlite3Fts5BufferAppendVarint(&p->rc, &pWriter->cdlidx, 0);
}
pWriter->nEmpty++;
}
/*
** Rowid iRowid has just been appended to the current leaf page. As it is
** the first on its page, append an entry to the current doclist-index.
*/
static void fts5WriteDlidxAppend(
Fts5Index *p,
Fts5SegWriter *pWriter,
i64 iRowid
){
i64 iVal;
if( pWriter->bDlidxPrevValid ){
iVal = iRowid - pWriter->iDlidxPrev;
}else{
sqlite3Fts5BufferAppendVarint(&p->rc, &pWriter->cdlidx, iRowid);
iVal = 1;
}
sqlite3Fts5BufferAppendVarint(&p->rc, &pWriter->cdlidx, iVal);
pWriter->bDlidxPrevValid = 1;
pWriter->iDlidxPrev = iRowid;
}
static void fts5WriteFlushLeaf(Fts5Index *p, Fts5SegWriter *pWriter){
static const u8 zero[] = { 0x00, 0x00, 0x00, 0x00 };
Fts5PageWriter *pPage = &pWriter->aWriter[0];
i64 iRowid;
if( pWriter->bFirstTermInPage ){
/* No term was written to this page. */
assert( 0==fts5GetU16(&pPage->buf.p[2]) );
fts5WriteBtreeNoTerm(p, pWriter);
}
/* Write the current page to the db. */
iRowid = FTS5_SEGMENT_ROWID(pWriter->iIdx, pWriter->iSegid, 0, pPage->pgno);
fts5DataWrite(p, iRowid, pPage->buf.p, pPage->buf.n);
/* Initialize the next page. */
fts5BufferZero(&pPage->buf);
fts5BufferAppendBlob(&p->rc, &pPage->buf, 4, zero);
pPage->pgno++;
/* Increase the leaves written counter */
pWriter->nLeafWritten++;
/* The new leaf holds no terms */
pWriter->bFirstTermInPage = 1;
}
/*
** Append term pTerm/nTerm to the segment being written by the writer passed
** as the second argument.
**
** If an error occurs, set the Fts5Index.rc error code. If an error has
** already occurred, this function is a no-op.
*/
static void fts5WriteAppendTerm(
Fts5Index *p,
Fts5SegWriter *pWriter,
int nTerm, const u8 *pTerm
){
int nPrefix; /* Bytes of prefix compression for term */
Fts5PageWriter *pPage = &pWriter->aWriter[0];
assert( pPage==0 || pPage->buf.n==0 || pPage->buf.n>4 );
if( pPage && pPage->buf.n==0 ){
/* Zero the first term and first docid fields */
static const u8 zero[] = { 0x00, 0x00, 0x00, 0x00 };
fts5BufferAppendBlob(&p->rc, &pPage->buf, 4, zero);
assert( pWriter->bFirstTermInPage );
}
if( p->rc ) return;
if( pWriter->bFirstTermInPage ){
/* Update the "first term" field of the page header. */
assert( pPage->buf.p[2]==0 && pPage->buf.p[3]==0 );
fts5PutU16(&pPage->buf.p[2], pPage->buf.n);
nPrefix = 0;
if( pPage->pgno!=1 ){
/* This is the first term on a leaf that is not the leftmost leaf in
** the segment b-tree. In this case it is necessary to add a term to
** the b-tree hierarchy that is (a) larger than the largest term
** already written to the segment and (b) smaller than or equal to
** this term. In other words, a prefix of (pTerm/nTerm) that is one
** byte longer than the longest prefix (pTerm/nTerm) shares with the
** previous term.
**
** Usually, the previous term is available in pPage->term. The exception
** is if this is the first term written in an incremental-merge step.
** In this case the previous term is not available, so just write a
** copy of (pTerm/nTerm) into the parent node. This is slightly
** inefficient, but still correct. */
int n = nTerm;
if( pPage->term.n ){
n = 1 + fts5PrefixCompress(pPage->term.n, pPage->term.p, nTerm, pTerm);
}
fts5WriteBtreeTerm(p, pWriter, n, pTerm);
pPage = &pWriter->aWriter[0];
}
}else{
nPrefix = fts5PrefixCompress(pPage->term.n, pPage->term.p, nTerm, pTerm);
fts5BufferAppendVarint(&p->rc, &pPage->buf, nPrefix);
}
/* Append the number of bytes of new data, then the term data itself
** to the page. */
fts5BufferAppendVarint(&p->rc, &pPage->buf, nTerm - nPrefix);
fts5BufferAppendBlob(&p->rc, &pPage->buf, nTerm - nPrefix, &pTerm[nPrefix]);
/* Update the Fts5PageWriter.term field. */
fts5BufferSet(&p->rc, &pPage->term, nTerm, pTerm);
pWriter->bFirstTermInPage = 0;
pWriter->bFirstRowidInPage = 0;
pWriter->bFirstRowidInDoclist = 1;
/* If the current leaf page is full, flush it to disk. */
if( pPage->buf.n>=p->pConfig->pgsz ){
fts5WriteFlushLeaf(p, pWriter);
pWriter->bFirstRowidInPage = 1;
}
}
/*
** Append a docid and position-list size field to the writers output.
*/
static void fts5WriteAppendRowid(
Fts5Index *p,
Fts5SegWriter *pWriter,
i64 iRowid,
int nPos
){
if( p->rc==SQLITE_OK ){
Fts5PageWriter *pPage = &pWriter->aWriter[0];
/* If this is to be the first docid written to the page, set the
** docid-pointer in the page-header. Also append a value to the dlidx
** buffer, in case a doclist-index is required. */
if( pWriter->bFirstRowidInPage ){
fts5PutU16(pPage->buf.p, pPage->buf.n);
fts5WriteDlidxAppend(p, pWriter, iRowid);
}
/* Write the docid. */
if( pWriter->bFirstRowidInDoclist || pWriter->bFirstRowidInPage ){
fts5BufferAppendVarint(&p->rc, &pPage->buf, iRowid);
}else{
assert( p->rc || iRowid>pWriter->iPrevRowid );
fts5BufferAppendVarint(&p->rc, &pPage->buf, iRowid - pWriter->iPrevRowid);
}
pWriter->iPrevRowid = iRowid;
pWriter->bFirstRowidInDoclist = 0;
pWriter->bFirstRowidInPage = 0;
fts5BufferAppendVarint(&p->rc, &pPage->buf, nPos);
if( pPage->buf.n>=p->pConfig->pgsz ){
fts5WriteFlushLeaf(p, pWriter);
pWriter->bFirstRowidInPage = 1;
}
}
}
static void fts5WriteAppendPoslistInt(
Fts5Index *p,
Fts5SegWriter *pWriter,
int iVal
){
if( p->rc==SQLITE_OK ){
Fts5PageWriter *pPage = &pWriter->aWriter[0];
fts5BufferAppendVarint(&p->rc, &pPage->buf, iVal);
if( pPage->buf.n>=p->pConfig->pgsz ){
fts5WriteFlushLeaf(p, pWriter);
pWriter->bFirstRowidInPage = 1;
}
}
}
static void fts5WriteAppendPoslistData(
Fts5Index *p,
Fts5SegWriter *pWriter,
const u8 *aData,
int nData
){
Fts5PageWriter *pPage = &pWriter->aWriter[0];
const u8 *a = aData;
int n = nData;
assert( p->pConfig->pgsz>0 );
while( p->rc==SQLITE_OK && (pPage->buf.n + n)>=p->pConfig->pgsz ){
int nReq = p->pConfig->pgsz - pPage->buf.n;
int nCopy = 0;
while( nCopy<nReq ){
i64 dummy;
nCopy += getVarint(&a[nCopy], (u64*)&dummy);
}
fts5BufferAppendBlob(&p->rc, &pPage->buf, nCopy, a);
a += nCopy;
n -= nCopy;
fts5WriteFlushLeaf(p, pWriter);
pWriter->bFirstRowidInPage = 1;
}
if( n>0 ){
fts5BufferAppendBlob(&p->rc, &pPage->buf, n, a);
}
}
static void fts5WriteAppendZerobyte(Fts5Index *p, Fts5SegWriter *pWriter){
fts5BufferAppendVarint(&p->rc, &pWriter->aWriter[0].buf, 0);
}
/*
** Flush any data cached by the writer object to the database. Free any
** allocations associated with the writer.
*/
static void fts5WriteFinish(
Fts5Index *p,
Fts5SegWriter *pWriter, /* Writer object */
int *pnHeight, /* OUT: Height of the b-tree */
int *pnLeaf /* OUT: Number of leaf pages in b-tree */
){
int i;
if( p->rc==SQLITE_OK ){
Fts5PageWriter *pLeaf = &pWriter->aWriter[0];
if( pLeaf->pgno==1 && pLeaf->buf.n==0 ){
*pnLeaf = 0;
*pnHeight = 0;
}else{
if( pLeaf->buf.n>4 ){
fts5WriteFlushLeaf(p, pWriter);
}
*pnLeaf = pLeaf->pgno-1;
if( pWriter->nWriter==1 && pWriter->nEmpty>=FTS5_MIN_DLIDX_SIZE ){
fts5WriteBtreeGrow(p, pWriter);
}
if( pWriter->nWriter>1 ){
fts5WriteBtreeNEmpty(p, pWriter);
}
*pnHeight = pWriter->nWriter;
for(i=1; i<pWriter->nWriter; i++){
Fts5PageWriter *pPg = &pWriter->aWriter[i];
fts5DataWrite(p,
FTS5_SEGMENT_ROWID(pWriter->iIdx, pWriter->iSegid, i, pPg->pgno),
pPg->buf.p, pPg->buf.n
);
}
}
}
for(i=0; i<pWriter->nWriter; i++){
Fts5PageWriter *pPg = &pWriter->aWriter[i];
assert( pPg || p->rc!=SQLITE_OK );
if( pPg ){
fts5BufferFree(&pPg->term);
fts5BufferFree(&pPg->buf);
}
}
sqlite3_free(pWriter->aWriter);
sqlite3Fts5BufferFree(&pWriter->cdlidx);
}
static void fts5WriteInit(
Fts5Index *p,
Fts5SegWriter *pWriter,
int iIdx, int iSegid
){
memset(pWriter, 0, sizeof(Fts5SegWriter));
pWriter->iIdx = iIdx;
pWriter->iSegid = iSegid;
pWriter->aWriter = (Fts5PageWriter*)fts5IdxMalloc(p,sizeof(Fts5PageWriter));
if( pWriter->aWriter==0 ) return;
pWriter->nWriter = 1;
pWriter->aWriter[0].pgno = 1;
pWriter->bFirstTermInPage = 1;
}
static void fts5WriteInitForAppend(
Fts5Index *p, /* FTS5 backend object */
Fts5SegWriter *pWriter, /* Writer to initialize */
int iIdx, /* Index segment is a part of */
Fts5StructureSegment *pSeg /* Segment object to append to */
){
int nByte = pSeg->nHeight * sizeof(Fts5PageWriter);
memset(pWriter, 0, sizeof(Fts5SegWriter));
pWriter->iIdx = iIdx;
pWriter->iSegid = pSeg->iSegid;
pWriter->aWriter = (Fts5PageWriter*)fts5IdxMalloc(p, nByte);
pWriter->nWriter = pSeg->nHeight;
if( p->rc==SQLITE_OK ){
int pgno = 1;
int i;
pWriter->aWriter[0].pgno = pSeg->pgnoLast+1;
for(i=pSeg->nHeight-1; i>0; i--){
i64 iRowid = FTS5_SEGMENT_ROWID(pWriter->iIdx, pWriter->iSegid, i, pgno);
Fts5PageWriter *pPg = &pWriter->aWriter[i];
pPg->pgno = pgno;
fts5DataBuffer(p, &pPg->buf, iRowid);
if( p->rc==SQLITE_OK ){
Fts5NodeIter ss;
fts5NodeIterInit(pPg->buf.p, pPg->buf.n, &ss);
while( ss.aData ) fts5NodeIterNext(&p->rc, &ss);
fts5BufferSet(&p->rc, &pPg->term, ss.term.n, ss.term.p);
pgno = ss.iChild;
fts5NodeIterFree(&ss);
}
}
if( pSeg->nHeight==1 ){
pWriter->nEmpty = pSeg->pgnoLast-1;
}
assert( (pgno+pWriter->nEmpty)==pSeg->pgnoLast );
pWriter->bFirstTermInPage = 1;
assert( pWriter->aWriter[0].term.n==0 );
}
}
/*
** Iterator pIter was used to iterate through the input segments of on an
** incremental merge operation. This function is called if the incremental
** merge step has finished but the input has not been completely exhausted.
*/
static void fts5TrimSegments(Fts5Index *p, Fts5MultiSegIter *pIter){
int i;
Fts5Buffer buf;
memset(&buf, 0, sizeof(Fts5Buffer));
for(i=0; i<pIter->nSeg; i++){
Fts5SegIter *pSeg = &pIter->aSeg[i];
if( pSeg->pSeg==0 ){
/* no-op */
}else if( pSeg->pLeaf==0 ){
/* All keys from this input segment have been transfered to the output.
** Set both the first and last page-numbers to 0 to indicate that the
** segment is now empty. */
pSeg->pSeg->pgnoLast = 0;
pSeg->pSeg->pgnoFirst = 0;
}else{
int iOff = pSeg->iTermLeafOffset; /* Offset on new first leaf page */
i64 iLeafRowid;
Fts5Data *pData;
int iId = pSeg->pSeg->iSegid;
u8 aHdr[4] = {0x00, 0x00, 0x00, 0x04};
iLeafRowid = FTS5_SEGMENT_ROWID(pSeg->iIdx, iId, 0, pSeg->iTermLeafPgno);
pData = fts5DataRead(p, iLeafRowid);
if( pData ){
fts5BufferZero(&buf);
fts5BufferAppendBlob(&p->rc, &buf, sizeof(aHdr), aHdr);
fts5BufferAppendVarint(&p->rc, &buf, pSeg->term.n);
fts5BufferAppendBlob(&p->rc, &buf, pSeg->term.n, pSeg->term.p);
fts5BufferAppendBlob(&p->rc, &buf, pData->n - iOff, &pData->p[iOff]);
fts5DataRelease(pData);
pSeg->pSeg->pgnoFirst = pSeg->iTermLeafPgno;
fts5DataDelete(p, FTS5_SEGMENT_ROWID(pSeg->iIdx, iId, 0, 1),iLeafRowid);
fts5DataWrite(p, iLeafRowid, buf.p, buf.n);
}
}
}
fts5BufferFree(&buf);
}
/*
**
*/
static void fts5IndexMergeLevel(
Fts5Index *p, /* FTS5 backend object */
int iIdx, /* Index to work on */
Fts5Structure **ppStruct, /* IN/OUT: Stucture of index iIdx */
int iLvl, /* Level to read input from */
int *pnRem /* Write up to this many output leaves */
){
Fts5Structure *pStruct = *ppStruct;
Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
Fts5StructureLevel *pLvlOut;
Fts5MultiSegIter *pIter = 0; /* Iterator to read input data */
int nRem = pnRem ? *pnRem : 0; /* Output leaf pages left to write */
int nInput; /* Number of input segments */
Fts5SegWriter writer; /* Writer object */
Fts5StructureSegment *pSeg; /* Output segment */
Fts5Buffer term;
int bRequireDoclistTerm = 0; /* Doclist terminator (0x00) required */
int bOldest; /* True if the output segment is the oldest */
assert( iLvl<pStruct->nLevel );
assert( pLvl->nMerge<=pLvl->nSeg );
memset(&writer, 0, sizeof(Fts5SegWriter));
memset(&term, 0, sizeof(Fts5Buffer));
writer.iIdx = iIdx;
if( pLvl->nMerge ){
pLvlOut = &pStruct->aLevel[iLvl+1];
assert( pLvlOut->nSeg>0 );
nInput = pLvl->nMerge;
fts5WriteInitForAppend(p, &writer, iIdx, &pLvlOut->aSeg[pLvlOut->nSeg-1]);
pSeg = &pLvlOut->aSeg[pLvlOut->nSeg-1];
}else{
int iSegid = fts5AllocateSegid(p, pStruct);
/* Extend the Fts5Structure object as required to ensure the output
** segment exists. */
if( iLvl==pStruct->nLevel-1 ){
fts5StructureAddLevel(&p->rc, ppStruct);
pStruct = *ppStruct;
}
fts5StructureExtendLevel(&p->rc, pStruct, iLvl+1, 1, 0);
if( p->rc ) return;
pLvl = &pStruct->aLevel[iLvl];
pLvlOut = &pStruct->aLevel[iLvl+1];
fts5WriteInit(p, &writer, iIdx, iSegid);
/* Add the new segment to the output level */
if( iLvl+1==pStruct->nLevel ) pStruct->nLevel++;
pSeg = &pLvlOut->aSeg[pLvlOut->nSeg];
pLvlOut->nSeg++;
pSeg->pgnoFirst = 1;
pSeg->iSegid = iSegid;
/* Read input from all segments in the input level */
nInput = pLvl->nSeg;
}
bOldest = (pLvlOut->nSeg==1 && pStruct->nLevel==iLvl+2);
#if 0
fprintf(stdout, "merging %d segments from level %d!", nInput, iLvl);
fflush(stdout);
#endif
assert( iLvl>=0 );
for(fts5MultiIterNew(p, pStruct, iIdx, 0, 0, 0, 0, iLvl, nInput, &pIter);
fts5MultiIterEof(p, pIter)==0;
fts5MultiIterNext(p, pIter, 0, 0)
){
Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
Fts5ChunkIter sPos; /* Used to iterate through position list */
int nPos; /* position-list size field value */
int nTerm;
const u8 *pTerm;
/* Check for key annihilation. */
if( pSeg->nPos==0 && (bOldest || pSeg->bDel==0) ) continue;
fts5ChunkIterInit(p, pSeg, &sPos);
pTerm = fts5MultiIterTerm(pIter, &nTerm);
if( nTerm!=term.n || memcmp(pTerm, term.p, nTerm) ){
if( pnRem && writer.nLeafWritten>nRem ){
fts5ChunkIterRelease(&sPos);
break;
}
/* This is a new term. Append a term to the output segment. */
if( bRequireDoclistTerm ){
fts5WriteAppendZerobyte(p, &writer);
}
fts5WriteAppendTerm(p, &writer, nTerm, pTerm);
fts5BufferSet(&p->rc, &term, nTerm, pTerm);
bRequireDoclistTerm = 1;
}
/* Append the rowid to the output */
/* WRITEPOSLISTSIZE */
nPos = pSeg->nPos*2 + pSeg->bDel;
fts5WriteAppendRowid(p, &writer, fts5MultiIterRowid(pIter), nPos);
for(/* noop */; !fts5ChunkIterEof(p, &sPos); fts5ChunkIterNext(p, &sPos)){
fts5WriteAppendPoslistData(p, &writer, sPos.p, sPos.n);
}
fts5ChunkIterRelease(&sPos);
}
/* Flush the last leaf page to disk. Set the output segment b-tree height
** and last leaf page number at the same time. */
fts5WriteFinish(p, &writer, &pSeg->nHeight, &pSeg->pgnoLast);
if( fts5MultiIterEof(p, pIter) ){
int i;
/* Remove the redundant segments from the %_data table */
for(i=0; i<nInput; i++){
fts5DataRemoveSegment(p, iIdx, pLvl->aSeg[i].iSegid);
}
/* Remove the redundant segments from the input level */
if( pLvl->nSeg!=nInput ){
int nMove = (pLvl->nSeg - nInput) * sizeof(Fts5StructureSegment);
memmove(pLvl->aSeg, &pLvl->aSeg[nInput], nMove);
}
pLvl->nSeg -= nInput;
pLvl->nMerge = 0;
if( pSeg->pgnoLast==0 ){
pLvlOut->nSeg--;
}
}else{
assert( pSeg->nHeight>0 && pSeg->pgnoLast>0 );
fts5TrimSegments(p, pIter);
pLvl->nMerge = nInput;
}
fts5MultiIterFree(p, pIter);
fts5BufferFree(&term);
if( pnRem ) *pnRem -= writer.nLeafWritten;
}
/*
** A total of nLeaf leaf pages of data has just been flushed to a level-0
** segments in index iIdx with structure pStruct. This function updates the
** write-counter accordingly and, if necessary, performs incremental merge
** work.
**
** If an error occurs, set the Fts5Index.rc error code. If an error has
** already occurred, this function is a no-op.
*/
static void fts5IndexWork(
Fts5Index *p, /* FTS5 backend object */
int iIdx, /* Index to work on */
Fts5Structure **ppStruct, /* IN/OUT: Current structure of index */
int nLeaf /* Number of output leaves just written */
){
if( p->rc==SQLITE_OK ){
Fts5Structure *pStruct = *ppStruct;
i64 nWrite; /* Initial value of write-counter */
int nWork; /* Number of work-quanta to perform */
int nRem; /* Number of leaf pages left to write */
/* Update the write-counter. While doing so, set nWork. */
nWrite = pStruct->nWriteCounter;
nWork = ((nWrite + nLeaf) / p->nWorkUnit) - (nWrite / p->nWorkUnit);
pStruct->nWriteCounter += nLeaf;
nRem = p->nWorkUnit * nWork * pStruct->nLevel;
while( nRem>0 ){
int iLvl; /* To iterate through levels */
int iBestLvl = 0; /* Level offering the most input segments */
int nBest = 0; /* Number of input segments on best level */
/* Set iBestLvl to the level to read input segments from. */
assert( pStruct->nLevel>0 );
for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
if( pLvl->nMerge ){
if( pLvl->nMerge>nBest ){
iBestLvl = iLvl;
nBest = pLvl->nMerge;
}
break;
}
if( pLvl->nSeg>nBest ){
nBest = pLvl->nSeg;
iBestLvl = iLvl;
}
}
/* If nBest is still 0, then the index must be empty. */
#ifdef SQLITE_DEBUG
for(iLvl=0; nBest==0 && iLvl<pStruct->nLevel; iLvl++){
assert( pStruct->aLevel[iLvl].nSeg==0 );
}
#endif
if( nBest<p->pConfig->nAutomerge
&& pStruct->aLevel[iBestLvl].nMerge==0
){
break;
}
fts5IndexMergeLevel(p, iIdx, &pStruct, iBestLvl, &nRem);
assert( nRem==0 || p->rc==SQLITE_OK );
if( p->rc==SQLITE_OK && pStruct->aLevel[iBestLvl].nMerge==0 ){
fts5StructurePromote(p, iBestLvl+1, pStruct);
}
*ppStruct = pStruct;
}
}
}
static void fts5IndexCrisisMerge(
Fts5Index *p, /* FTS5 backend object */
int iIdx, /* Index to work on */
Fts5Structure **ppStruct /* IN/OUT: Current structure of index */
){
Fts5Structure *pStruct = *ppStruct;
int iLvl = 0;
while( p->rc==SQLITE_OK
&& iLvl<pStruct->nLevel
&& pStruct->aLevel[iLvl].nSeg>=p->pConfig->nCrisisMerge
){
fts5IndexMergeLevel(p, iIdx, &pStruct, iLvl, 0);
fts5StructurePromote(p, iLvl+1, pStruct);
iLvl++;
}
*ppStruct = pStruct;
}
static int fts5IndexReturn(Fts5Index *p){
int rc = p->rc;
p->rc = SQLITE_OK;
return rc;
}
typedef struct Fts5FlushCtx Fts5FlushCtx;
struct Fts5FlushCtx {
Fts5Index *pIdx;
Fts5SegWriter writer;
};
/*
** Buffer aBuf[] contains a list of varints, all small enough to fit
** in a 32-bit integer. Return the size of the largest prefix of this
** list nMax bytes or less in size.
*/
static int fts5PoslistPrefix(const u8 *aBuf, int nMax){
int ret;
u32 dummy;
ret = fts5GetVarint32(aBuf, dummy);
while( 1 ){
int i = fts5GetVarint32(&aBuf[ret], dummy);
if( (ret + i) > nMax ) break;
ret += i;
}
return ret;
}
#define fts5BufferSafeAppendBlob(pBuf, pBlob, nBlob) { \
assert( pBuf->nSpace>=(pBuf->n+nBlob) ); \
memcpy(&pBuf->p[pBuf->n], pBlob, nBlob); \
pBuf->n += nBlob; \
}
/*
** Flush the contents of in-memory hash table iHash to a new level-0
** segment on disk. Also update the corresponding structure record.
**
** If an error occurs, set the Fts5Index.rc error code. If an error has
** already occurred, this function is a no-op.
*/
static void fts5FlushOneHash(Fts5Index *p, int iHash, int *pnLeaf){
Fts5Hash *pHash = p->apHash[iHash];
Fts5Structure *pStruct;
int iSegid;
int pgnoLast = 0; /* Last leaf page number in segment */
/* Obtain a reference to the index structure and allocate a new segment-id
** for the new level-0 segment. */
pStruct = fts5StructureRead(p, iHash);
iSegid = fts5AllocateSegid(p, pStruct);
if( iSegid ){
const int pgsz = p->pConfig->pgsz;
Fts5StructureSegment *pSeg; /* New segment within pStruct */
int nHeight; /* Height of new segment b-tree */
Fts5Buffer *pBuf; /* Buffer in which to assemble leaf page */
const u8 *zPrev = 0;
Fts5SegWriter writer;
fts5WriteInit(p, &writer, iHash, iSegid);
/* Pre-allocate the buffer used to assemble leaf pages to the target
** page size. */
assert( pgsz>0 );
pBuf = &writer.aWriter[0].buf;
fts5BufferGrow(&p->rc, pBuf, pgsz + 20);
/* Begin scanning through hash table entries. */
if( p->rc==SQLITE_OK ){
memset(pBuf->p, 0, 4);
pBuf->n = 4;
p->rc = sqlite3Fts5HashScanInit(pHash, 0, 0);
}
while( p->rc==SQLITE_OK && 0==sqlite3Fts5HashScanEof(pHash) ){
const char *zTerm;
int nTerm;
const u8 *pDoclist;
int nDoclist;
int nSuffix; /* Size of term suffix */
sqlite3Fts5HashScanEntry(pHash, &zTerm, &pDoclist, &nDoclist);
nTerm = strlen(zTerm);
/* Decide if the term will fit on the current leaf. If it will not,
** flush the leaf to disk here. */
if( (pBuf->n + nTerm + 2) > pgsz ){
fts5WriteFlushLeaf(p, &writer);
pBuf = &writer.aWriter[0].buf;
if( (nTerm + 32) > pBuf->nSpace ){
fts5BufferGrow(&p->rc, pBuf, nTerm + 32 - pBuf->n);
if( p->rc ) break;
}
}
/* Write the term to the leaf. And push it up into the b-tree hierarchy */
if( writer.bFirstTermInPage==0 ){
int nPre = fts5PrefixCompress(nTerm, zPrev, nTerm, (const u8*)zTerm);
pBuf->n += sqlite3PutVarint(&pBuf->p[pBuf->n], nPre);
nSuffix = nTerm - nPre;
}else{
fts5PutU16(&pBuf->p[2], pBuf->n);
writer.bFirstTermInPage = 0;
if( writer.aWriter[0].pgno!=1 ){
int nPre = fts5PrefixCompress(nTerm, zPrev, nTerm, (const u8*)zTerm);
fts5WriteBtreeTerm(p, &writer, nPre+1, (const u8*)zTerm);
pBuf = &writer.aWriter[0].buf;
assert( nPre<nTerm );
}
nSuffix = nTerm;
}
pBuf->n += sqlite3PutVarint(&pBuf->p[pBuf->n], nSuffix);
fts5BufferSafeAppendBlob(pBuf, (const u8*)&zTerm[nTerm-nSuffix], nSuffix);
if( pgsz>=(pBuf->n + nDoclist + 1) ){
/* The entire doclist will fit on the current leaf. */
fts5BufferSafeAppendBlob(pBuf, pDoclist, nDoclist);
}else{
i64 iRowid = 0;
i64 iDelta = 0;
int iOff = 0;
int bFirstDocid = 0;
/* The entire doclist will not fit on this leaf. The following
** loop iterates through the poslists that make up the current
** doclist. */
while( iOff<nDoclist ){
int nPos;
int nCopy;
int bDummy;
iOff += getVarint(&pDoclist[iOff], (u64*)&iDelta);
nCopy = fts5GetPoslistSize(&pDoclist[iOff], &nPos, &bDummy);
nCopy += nPos;
iRowid += iDelta;
if( bFirstDocid ){
fts5PutU16(&pBuf->p[0], pBuf->n); /* first docid on page */
pBuf->n += sqlite3PutVarint(&pBuf->p[pBuf->n], iRowid);
bFirstDocid = 0;
fts5WriteDlidxAppend(p, &writer, iRowid);
}else{
pBuf->n += sqlite3PutVarint(&pBuf->p[pBuf->n], iDelta);
}
assert( pBuf->n<=pBuf->nSpace );
if( (pBuf->n + nCopy) <= pgsz ){
/* The entire poslist will fit on the current leaf. So copy
** it in one go. */
fts5BufferSafeAppendBlob(pBuf, &pDoclist[iOff], nCopy);
}else{
/* The entire poslist will not fit on this leaf. So it needs
** to be broken into sections. The only qualification being
** that each varint must be stored contiguously. */
const u8 *pPoslist = &pDoclist[iOff];
int iPos = 0;
while( 1 ){
int nSpace = pgsz - pBuf->n;
int n = 0;
if( (nCopy - iPos)<=nSpace ){
n = nCopy - iPos;
}else{
n = fts5PoslistPrefix(&pPoslist[iPos], nSpace);
assert( n>=nSpace );
}
assert( n>0 );
fts5BufferSafeAppendBlob(pBuf, &pPoslist[iPos], n);
iPos += n;
if( pBuf->n>=pgsz ){
fts5WriteFlushLeaf(p, &writer);
pBuf = &writer.aWriter[0].buf;
}
if( iPos>=nCopy ) break;
}
bFirstDocid = 1;
}
iOff += nCopy;
}
}
pBuf->p[pBuf->n++] = '\0';
assert( pBuf->n<=pBuf->nSpace );
zPrev = (const u8*)zTerm;
sqlite3Fts5HashScanNext(pHash);
}
sqlite3Fts5HashClear(pHash);
fts5WriteFinish(p, &writer, &nHeight, &pgnoLast);
/* Update the Fts5Structure. It is written back to the database by the
** fts5StructureRelease() call below. */
if( pStruct->nLevel==0 ){
fts5StructureAddLevel(&p->rc, &pStruct);
}
fts5StructureExtendLevel(&p->rc, pStruct, 0, 1, 0);
if( p->rc==SQLITE_OK ){
pSeg = &pStruct->aLevel[0].aSeg[ pStruct->aLevel[0].nSeg++ ];
pSeg->iSegid = iSegid;
pSeg->nHeight = nHeight;
pSeg->pgnoFirst = 1;
pSeg->pgnoLast = pgnoLast;
}
fts5StructurePromote(p, 0, pStruct);
}
if( p->pConfig->nAutomerge>0 ) fts5IndexWork(p, iHash, &pStruct, pgnoLast);
fts5IndexCrisisMerge(p, iHash, &pStruct);
fts5StructureWrite(p, iHash, pStruct);
fts5StructureRelease(pStruct);
}
/*
** Flush any data stored in the in-memory hash tables to the database.
*/
static void fts5IndexFlush(Fts5Index *p){
Fts5Config *pConfig = p->pConfig;
int i; /* Used to iterate through indexes */
int nLeaf = 0; /* Number of leaves written */
/* If an error has already occured this call is a no-op. */
if( p->rc!=SQLITE_OK || p->nPendingData==0 ) return;
assert( p->apHash );
/* Flush the terms and each prefix index to disk */
for(i=0; i<=pConfig->nPrefix; i++){
fts5FlushOneHash(p, i, &nLeaf);
}
p->nPendingData = 0;
}
int sqlite3Fts5IndexOptimize(Fts5Index *p){
Fts5Config *pConfig = p->pConfig;
int i;
fts5IndexFlush(p);
for(i=0; i<=pConfig->nPrefix; i++){
Fts5Structure *pStruct = fts5StructureRead(p, i);
Fts5Structure *pNew = 0;
int nSeg = 0;
if( pStruct ){
nSeg = fts5StructureCountSegments(pStruct);
if( nSeg>1 ){
int nByte = sizeof(Fts5Structure);
nByte += (pStruct->nLevel+1) * sizeof(Fts5StructureLevel);
pNew = (Fts5Structure*)sqlite3Fts5MallocZero(&p->rc, nByte);
}
}
if( pNew ){
Fts5StructureLevel *pLvl;
int nByte = nSeg * sizeof(Fts5StructureSegment);
pNew->nLevel = pStruct->nLevel+1;
pNew->nWriteCounter = pStruct->nWriteCounter;
pLvl = &pNew->aLevel[pStruct->nLevel];
pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(&p->rc, nByte);
if( pLvl->aSeg ){
int iLvl, iSeg;
int iSegOut = 0;
for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
pLvl->aSeg[iSegOut] = pStruct->aLevel[iLvl].aSeg[iSeg];
iSegOut++;
}
}
pLvl->nSeg = nSeg;
}else{
sqlite3_free(pNew);
pNew = 0;
}
}
if( pNew ){
int iLvl = pNew->nLevel-1;
while( p->rc==SQLITE_OK && pNew->aLevel[iLvl].nSeg>0 ){
int nRem = FTS5_OPT_WORK_UNIT;
fts5IndexMergeLevel(p, i, &pNew, iLvl, &nRem);
}
fts5StructureWrite(p, i, pNew);
fts5StructureRelease(pNew);
}
fts5StructureRelease(pStruct);
}
return fts5IndexReturn(p);
}
/*
** Return a simple checksum value based on the arguments.
*/
static u64 fts5IndexEntryCksum(
i64 iRowid,
int iCol,
int iPos,
const char *pTerm,
int nTerm
){
int i;
u64 ret = iRowid;
ret += (ret<<3) + iCol;
ret += (ret<<3) + iPos;
for(i=0; i<nTerm; i++) ret += (ret<<3) + pTerm[i];
return ret;
}
static void fts5BtreeIterInit(
Fts5Index *p,
int iIdx,
Fts5StructureSegment *pSeg,
Fts5BtreeIter *pIter
){
int nByte;
int i;
nByte = sizeof(pIter->aLvl[0]) * (pSeg->nHeight-1);
memset(pIter, 0, sizeof(*pIter));
if( nByte ){
pIter->aLvl = (Fts5BtreeIterLevel*)fts5IdxMalloc(p, nByte);
}
if( p->rc==SQLITE_OK ){
pIter->nLvl = pSeg->nHeight-1;
pIter->iIdx = iIdx;
pIter->p = p;
pIter->pSeg = pSeg;
}
for(i=0; p->rc==SQLITE_OK && i<pIter->nLvl; i++){
i64 iRowid = FTS5_SEGMENT_ROWID(iIdx, pSeg->iSegid, i+1, 1);
Fts5Data *pData;
pIter->aLvl[i].pData = pData = fts5DataRead(p, iRowid);
if( pData ){
fts5NodeIterInit(pData->p, pData->n, &pIter->aLvl[i].s);
}
}
if( pIter->nLvl==0 || p->rc ){
pIter->bEof = 1;
pIter->iLeaf = pSeg->pgnoLast;
}else{
pIter->nEmpty = pIter->aLvl[0].s.nEmpty;
pIter->iLeaf = pIter->aLvl[0].s.iChild;
pIter->bDlidx = pIter->aLvl[0].s.bDlidx;
}
}
static void fts5BtreeIterNext(Fts5BtreeIter *pIter){
Fts5Index *p = pIter->p;
int i;
assert( pIter->bEof==0 && pIter->aLvl[0].s.aData );
for(i=0; i<pIter->nLvl && p->rc==SQLITE_OK; i++){
Fts5BtreeIterLevel *pLvl = &pIter->aLvl[i];
fts5NodeIterNext(&p->rc, &pLvl->s);
if( pLvl->s.aData ){
fts5BufferSet(&p->rc, &pIter->term, pLvl->s.term.n, pLvl->s.term.p);
break;
}else{
fts5NodeIterFree(&pLvl->s);
fts5DataRelease(pLvl->pData);
pLvl->pData = 0;
}
}
if( i==pIter->nLvl || p->rc ){
pIter->bEof = 1;
}else{
int iSegid = pIter->pSeg->iSegid;
for(i--; i>=0; i--){
Fts5BtreeIterLevel *pLvl = &pIter->aLvl[i];
i64 iRowid = FTS5_SEGMENT_ROWID(pIter->iIdx,iSegid,i+1,pLvl[1].s.iChild);
pLvl->pData = fts5DataRead(p, iRowid);
if( pLvl->pData ){
fts5NodeIterInit(pLvl->pData->p, pLvl->pData->n, &pLvl->s);
}
}
}
pIter->nEmpty = pIter->aLvl[0].s.nEmpty;
pIter->bDlidx = pIter->aLvl[0].s.bDlidx;
pIter->iLeaf = pIter->aLvl[0].s.iChild;
assert( p->rc==SQLITE_OK || pIter->bEof );
}
static void fts5BtreeIterFree(Fts5BtreeIter *pIter){
int i;
for(i=0; i<pIter->nLvl; i++){
Fts5BtreeIterLevel *pLvl = &pIter->aLvl[i];
fts5NodeIterFree(&pLvl->s);
if( pLvl->pData ){
fts5DataRelease(pLvl->pData);
pLvl->pData = 0;
}
}
sqlite3_free(pIter->aLvl);
fts5BufferFree(&pIter->term);
}
/*
** This function is purely an internal test. It does not contribute to
** FTS functionality, or even the integrity-check, in any way.
**
** Instead, it tests that the same set of pgno/rowid combinations are
** visited regardless of whether the doclist-index identified by parameters
** iIdx/iSegid/iLeaf is iterated in forwards or reverse order.
*/
#ifdef SQLITE_DEBUG
static void fts5DlidxIterTestReverse(
Fts5Index *p,
int iIdx, /* Index to load doclist-index from */
int iSegid, /* Segment id to load from */
int iLeaf /* Load doclist-index for this leaf */
){
Fts5DlidxIter *pDlidx = 0;
i64 cksum1 = 13;
i64 cksum2 = 13;
for(pDlidx=fts5DlidxIterInit(p, 0, iIdx, iSegid, iLeaf);
fts5DlidxIterEof(p, pDlidx)==0;
fts5DlidxIterNext(pDlidx)
){
assert( pDlidx->iLeafPgno>iLeaf );
cksum1 = (cksum1 ^ ( (i64)(pDlidx->iLeafPgno) << 32 ));
cksum1 = (cksum1 ^ pDlidx->iRowid);
}
fts5DlidxIterFree(pDlidx);
pDlidx = 0;
for(pDlidx=fts5DlidxIterInit(p, 1, iIdx, iSegid, iLeaf);
fts5DlidxIterEof(p, pDlidx)==0;
fts5DlidxIterPrev(pDlidx)
){
assert( pDlidx->iLeafPgno>iLeaf );
cksum2 = (cksum2 ^ ( (i64)(pDlidx->iLeafPgno) << 32 ));
cksum2 = (cksum2 ^ pDlidx->iRowid);
}
fts5DlidxIterFree(pDlidx);
pDlidx = 0;
if( p->rc==SQLITE_OK && cksum1!=cksum2 ) p->rc = FTS5_CORRUPT;
}
#else
# define fts5DlidxIterTestReverse(w,x,y,z)
#endif
static void fts5IndexIntegrityCheckSegment(
Fts5Index *p, /* FTS5 backend object */
int iIdx, /* Index that pSeg is a part of */
Fts5StructureSegment *pSeg /* Segment to check internal consistency */
){
Fts5BtreeIter iter; /* Used to iterate through b-tree hierarchy */
/* Iterate through the b-tree hierarchy. */
for(fts5BtreeIterInit(p, iIdx, pSeg, &iter);
iter.bEof==0;
fts5BtreeIterNext(&iter)
){
i64 iRow; /* Rowid for this leaf */
Fts5Data *pLeaf; /* Data for this leaf */
int iOff; /* Offset of first term on leaf */
int i; /* Used to iterate through empty leaves */
/* If the leaf in question has already been trimmed from the segment,
** ignore this b-tree entry. Otherwise, load it into memory. */
if( iter.iLeaf<pSeg->pgnoFirst ) continue;
iRow = FTS5_SEGMENT_ROWID(iIdx, pSeg->iSegid, 0, iter.iLeaf);
pLeaf = fts5DataRead(p, iRow);
if( pLeaf==0 ) break;
/* Check that the leaf contains at least one term, and that it is equal
** to or larger than the split-key in iter.term. */
iOff = fts5GetU16(&pLeaf->p[2]);
if( iOff==0 ){
p->rc = FTS5_CORRUPT;
}else{
int nTerm; /* Size of term on leaf in bytes */
int res; /* Comparison of term and split-key */
iOff += fts5GetVarint32(&pLeaf->p[iOff], nTerm);
res = memcmp(&pLeaf->p[iOff], iter.term.p, MIN(nTerm, iter.term.n));
if( res==0 ) res = nTerm - iter.term.n;
if( res<0 ){
p->rc = FTS5_CORRUPT;
}
}
fts5DataRelease(pLeaf);
if( p->rc ) break;
/* Now check that the iter.nEmpty leaves following the current leaf
** (a) exist and (b) contain no terms. */
for(i=1; p->rc==SQLITE_OK && i<=iter.nEmpty; i++){
pLeaf = fts5DataRead(p, iRow+i);
if( pLeaf && 0!=fts5GetU16(&pLeaf->p[2]) ){
p->rc = FTS5_CORRUPT;
}
fts5DataRelease(pLeaf);
}
/* If there is a doclist-index, check that it looks right. */
if( iter.bDlidx ){
Fts5DlidxIter *pDlidx = 0; /* For iterating through doclist index */
int iPrevLeaf = iter.iLeaf;
int iSegid = pSeg->iSegid;
int iPg;
i64 iKey;
for(pDlidx=fts5DlidxIterInit(p, 0, iIdx, iSegid, iter.iLeaf);
fts5DlidxIterEof(p, pDlidx)==0;
fts5DlidxIterNext(pDlidx)
){
/* Check any rowid-less pages that occur before the current leaf. */
for(iPg=iPrevLeaf+1; iPg<pDlidx->iLeafPgno; iPg++){
iKey = FTS5_SEGMENT_ROWID(iIdx, iSegid, 0, iPg);
pLeaf = fts5DataRead(p, iKey);
if( pLeaf ){
if( fts5GetU16(&pLeaf->p[0])!=0 ) p->rc = FTS5_CORRUPT;
fts5DataRelease(pLeaf);
}
}
iPrevLeaf = pDlidx->iLeafPgno;
/* Check that the leaf page indicated by the iterator really does
** contain the rowid suggested by the same. */
iKey = FTS5_SEGMENT_ROWID(iIdx, iSegid, 0, pDlidx->iLeafPgno);
pLeaf = fts5DataRead(p, iKey);
if( pLeaf ){
i64 iRowid;
int iRowidOff = fts5GetU16(&pLeaf->p[0]);
getVarint(&pLeaf->p[iRowidOff], (u64*)&iRowid);
if( iRowid!=pDlidx->iRowid ) p->rc = FTS5_CORRUPT;
fts5DataRelease(pLeaf);
}
}
for(iPg=iPrevLeaf+1; iPg<=(iter.iLeaf + iter.nEmpty); iPg++){
iKey = FTS5_SEGMENT_ROWID(iIdx, iSegid, 0, iPg);
pLeaf = fts5DataRead(p, iKey);
if( pLeaf ){
if( fts5GetU16(&pLeaf->p[0])!=0 ) p->rc = FTS5_CORRUPT;
fts5DataRelease(pLeaf);
}
}
fts5DlidxIterFree(pDlidx);
fts5DlidxIterTestReverse(p, iIdx, iSegid, iter.iLeaf);
}
}
/* Either iter.iLeaf must be the rightmost leaf-page in the segment, or
** else the segment has been completely emptied by an ongoing merge
** operation. */
if( p->rc==SQLITE_OK
&& iter.iLeaf!=pSeg->pgnoLast
&& (pSeg->pgnoFirst || pSeg->pgnoLast)
){
p->rc = FTS5_CORRUPT;
}
fts5BtreeIterFree(&iter);
}
/*
** Iterator pMulti currently points to a valid entry (not EOF). This
** function appends a copy of the position-list of the entry pMulti
** currently points to to buffer pBuf.
**
** If an error occurs, an error code is left in p->rc. It is assumed
** no error has already occurred when this function is called.
*/
static void fts5MultiIterPoslist(
Fts5Index *p,
Fts5MultiSegIter *pMulti,
int bSz,
Fts5Buffer *pBuf
){
if( p->rc==SQLITE_OK ){
Fts5ChunkIter iter;
Fts5SegIter *pSeg = &pMulti->aSeg[ pMulti->aFirst[1].iFirst ];
assert( fts5MultiIterEof(p, pMulti)==0 );
fts5ChunkIterInit(p, pSeg, &iter);
if( fts5ChunkIterEof(p, &iter)==0 ){
if( bSz ){
/* WRITEPOSLISTSIZE */
fts5BufferAppendVarint(&p->rc, pBuf, iter.nRem * 2);
}
while( fts5ChunkIterEof(p, &iter)==0 ){
fts5BufferAppendBlob(&p->rc, pBuf, iter.n, iter.p);
fts5ChunkIterNext(p, &iter);
}
}
fts5ChunkIterRelease(&iter);
}
}
static void fts5DoclistIterNext(Fts5DoclistIter *pIter){
if( pIter->i<pIter->n ){
int bDummy;
if( pIter->i ){
i64 iDelta;
pIter->i += getVarint(&pIter->a[pIter->i], (u64*)&iDelta);
if( pIter->bDesc ){
pIter->iRowid -= iDelta;
}else{
pIter->iRowid += iDelta;
}
}else{
pIter->i += getVarint(&pIter->a[pIter->i], (u64*)&pIter->iRowid);
}
pIter->i += fts5GetPoslistSize(
&pIter->a[pIter->i], &pIter->nPoslist, &bDummy
);
pIter->aPoslist = &pIter->a[pIter->i];
pIter->i += pIter->nPoslist;
}else{
pIter->aPoslist = 0;
}
}
static void fts5DoclistIterInit(
Fts5Buffer *pBuf,
int bDesc,
Fts5DoclistIter *pIter
){
memset(pIter, 0, sizeof(*pIter));
pIter->a = pBuf->p;
pIter->n = pBuf->n;
pIter->bDesc = bDesc;
fts5DoclistIterNext(pIter);
}
/*
** Append a doclist to buffer pBuf.
*/
static void fts5MergeAppendDocid(
int *pRc, /* IN/OUT: Error code */
int bDesc,
Fts5Buffer *pBuf, /* Buffer to write to */
i64 *piLastRowid, /* IN/OUT: Previous rowid written (if any) */
i64 iRowid /* Rowid to append */
){
if( pBuf->n==0 ){
fts5BufferAppendVarint(pRc, pBuf, iRowid);
}else if( bDesc ){
fts5BufferAppendVarint(pRc, pBuf, *piLastRowid - iRowid);
}else{
fts5BufferAppendVarint(pRc, pBuf, iRowid - *piLastRowid);
}
*piLastRowid = iRowid;
}
/*
** Buffers p1 and p2 contain doclists. This function merges the content
** of the two doclists together and sets buffer p1 to the result before
** returning.
**
** If an error occurs, an error code is left in p->rc. If an error has
** already occurred, this function is a no-op.
*/
static void fts5MergePrefixLists(
Fts5Index *p, /* FTS5 backend object */
int bDesc,
Fts5Buffer *p1, /* First list to merge */
Fts5Buffer *p2 /* Second list to merge */
){
if( p2->n ){
i64 iLastRowid = 0;
Fts5DoclistIter i1;
Fts5DoclistIter i2;
Fts5Buffer out;
Fts5Buffer tmp;
memset(&out, 0, sizeof(out));
memset(&tmp, 0, sizeof(tmp));
fts5DoclistIterInit(p1, bDesc, &i1);
fts5DoclistIterInit(p2, bDesc, &i2);
while( p->rc==SQLITE_OK && (i1.aPoslist!=0 || i2.aPoslist!=0) ){
if( i2.aPoslist==0 || (i1.aPoslist &&
( (bDesc && i1.iRowid>i2.iRowid) || (!bDesc && i1.iRowid<i2.iRowid) )
)){
/* Copy entry from i1 */
fts5MergeAppendDocid(&p->rc, bDesc, &out, &iLastRowid, i1.iRowid);
/* WRITEPOSLISTSIZE */
fts5BufferAppendVarint(&p->rc, &out, i1.nPoslist * 2);
fts5BufferAppendBlob(&p->rc, &out, i1.nPoslist, i1.aPoslist);
fts5DoclistIterNext(&i1);
}
else if( i1.aPoslist==0 || i2.iRowid!=i1.iRowid ){
/* Copy entry from i2 */
fts5MergeAppendDocid(&p->rc, bDesc, &out, &iLastRowid, i2.iRowid);
/* WRITEPOSLISTSIZE */
fts5BufferAppendVarint(&p->rc, &out, i2.nPoslist * 2);
fts5BufferAppendBlob(&p->rc, &out, i2.nPoslist, i2.aPoslist);
fts5DoclistIterNext(&i2);
}
else{
Fts5PoslistReader r1;
Fts5PoslistReader r2;
Fts5PoslistWriter writer;
memset(&writer, 0, sizeof(writer));
/* Merge the two position lists. */
fts5MergeAppendDocid(&p->rc, bDesc, &out, &iLastRowid, i2.iRowid);
fts5BufferZero(&tmp);
sqlite3Fts5PoslistReaderInit(-1, i1.aPoslist, i1.nPoslist, &r1);
sqlite3Fts5PoslistReaderInit(-1, i2.aPoslist, i2.nPoslist, &r2);
while( p->rc==SQLITE_OK && (r1.bEof==0 || r2.bEof==0) ){
i64 iNew;
if( r2.bEof || (r1.bEof==0 && r1.iPos<r2.iPos) ){
iNew = r1.iPos;
sqlite3Fts5PoslistReaderNext(&r1);
}else{
iNew = r2.iPos;
sqlite3Fts5PoslistReaderNext(&r2);
if( r1.iPos==r2.iPos ) sqlite3Fts5PoslistReaderNext(&r1);
}
p->rc = sqlite3Fts5PoslistWriterAppend(&tmp, &writer, iNew);
}
/* WRITEPOSLISTSIZE */
fts5BufferAppendVarint(&p->rc, &out, tmp.n * 2);
fts5BufferAppendBlob(&p->rc, &out, tmp.n, tmp.p);
fts5DoclistIterNext(&i1);
fts5DoclistIterNext(&i2);
}
}
fts5BufferSet(&p->rc, p1, out.n, out.p);
fts5BufferFree(&tmp);
fts5BufferFree(&out);
}
}
static void fts5BufferSwap(Fts5Buffer *p1, Fts5Buffer *p2){
Fts5Buffer tmp = *p1;
*p1 = *p2;
*p2 = tmp;
}
static void fts5SetupPrefixIter(
Fts5Index *p, /* Index to read from */
int bDesc, /* True for "ORDER BY rowid DESC" */
const u8 *pToken, /* Buffer containing prefix to match */
int nToken, /* Size of buffer pToken in bytes */
Fts5IndexIter *pIter /* Populate this object */
){
Fts5Structure *pStruct;
Fts5Buffer *aBuf;
const int nBuf = 32;
aBuf = (Fts5Buffer*)fts5IdxMalloc(p, sizeof(Fts5Buffer)*nBuf);
pStruct = fts5StructureRead(p, 0);
if( aBuf && pStruct ){
Fts5DoclistIter *pDoclist;
int i;
i64 iLastRowid = 0;
Fts5MultiSegIter *p1 = 0; /* Iterator used to gather data from index */
Fts5Buffer doclist;
memset(&doclist, 0, sizeof(doclist));
for(fts5MultiIterNew(p, pStruct, 0, 1, 1, pToken, nToken, -1, 0, &p1);
fts5MultiIterEof(p, p1)==0;
fts5MultiIterNext(p, p1, 0, 0)
){
i64 iRowid = fts5MultiIterRowid(p1);
int nTerm;
const u8 *pTerm = fts5MultiIterTerm(p1, &nTerm);
assert( memcmp(pToken, pTerm, MIN(nToken, nTerm))<=0 );
if( nTerm<nToken || memcmp(pToken, pTerm, nToken) ) break;
if( doclist.n>0
&& ((!bDesc && iRowid<=iLastRowid) || (bDesc && iRowid>=iLastRowid))
){
for(i=0; p->rc==SQLITE_OK && doclist.n; i++){
assert( i<nBuf );
if( aBuf[i].n==0 ){
fts5BufferSwap(&doclist, &aBuf[i]);
fts5BufferZero(&doclist);
}else{
fts5MergePrefixLists(p, bDesc, &doclist, &aBuf[i]);
fts5BufferZero(&aBuf[i]);
}
}
}
if( doclist.n==0 ){
fts5BufferAppendVarint(&p->rc, &doclist, iRowid);
}else if( bDesc ){
fts5BufferAppendVarint(&p->rc, &doclist, iLastRowid - iRowid);
}else{
fts5BufferAppendVarint(&p->rc, &doclist, iRowid - iLastRowid);
}
iLastRowid = iRowid;
fts5MultiIterPoslist(p, p1, 1, &doclist);
}
for(i=0; i<nBuf; i++){
fts5MergePrefixLists(p, bDesc, &doclist, &aBuf[i]);
fts5BufferFree(&aBuf[i]);
}
fts5MultiIterFree(p, p1);
pDoclist = (Fts5DoclistIter*)fts5IdxMalloc(p, sizeof(Fts5DoclistIter));
if( !pDoclist ){
fts5BufferFree(&doclist);
}else{
pIter->pDoclist = pDoclist;
fts5DoclistIterInit(&doclist, bDesc, pIter->pDoclist);
}
}
fts5StructureRelease(pStruct);
sqlite3_free(aBuf);
}
static int fts5QueryCksum(
Fts5Index *p,
const char *z,
int n,
int flags,
u64 *pCksum
){
u64 cksum = *pCksum;
Fts5IndexIter *pIdxIter = 0;
int rc = sqlite3Fts5IndexQuery(p, z, n, flags, &pIdxIter);
while( rc==SQLITE_OK && 0==sqlite3Fts5IterEof(pIdxIter) ){
const u8 *pPos;
int nPos;
i64 rowid = sqlite3Fts5IterRowid(pIdxIter);
rc = sqlite3Fts5IterPoslist(pIdxIter, &pPos, &nPos);
if( rc==SQLITE_OK ){
Fts5PoslistReader sReader;
for(sqlite3Fts5PoslistReaderInit(-1, pPos, nPos, &sReader);
sReader.bEof==0;
sqlite3Fts5PoslistReaderNext(&sReader)
){
int iCol = FTS5_POS2COLUMN(sReader.iPos);
int iOff = FTS5_POS2OFFSET(sReader.iPos);
cksum ^= fts5IndexEntryCksum(rowid, iCol, iOff, z, n);
}
rc = sqlite3Fts5IterNext(pIdxIter);
}
}
sqlite3Fts5IterClose(pIdxIter);
*pCksum = cksum;
return rc;
}
/*
** Run internal checks to ensure that the FTS index (a) is internally
** consistent and (b) contains entries for which the XOR of the checksums
** as calculated by fts5IndexEntryCksum() is cksum.
**
** Return SQLITE_CORRUPT if any of the internal checks fail, or if the
** checksum does not match. Return SQLITE_OK if all checks pass without
** error, or some other SQLite error code if another error (e.g. OOM)
** occurs.
*/
int sqlite3Fts5IndexIntegrityCheck(Fts5Index *p, u64 cksum){
Fts5Config *pConfig = p->pConfig;
int iIdx; /* Used to iterate through indexes */
u64 cksum2 = 0; /* Checksum based on contents of indexes */
u64 cksum3 = 0; /* Checksum based on contents of indexes */
Fts5Buffer term = {0,0,0}; /* Buffer used to hold most recent term */
/* Check that the internal nodes of each segment match the leaves */
for(iIdx=0; p->rc==SQLITE_OK && iIdx<=pConfig->nPrefix; iIdx++){
Fts5Structure *pStruct = fts5StructureRead(p, iIdx);
if( pStruct ){
int iLvl, iSeg;
for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
Fts5StructureSegment *pSeg = &pStruct->aLevel[iLvl].aSeg[iSeg];
fts5IndexIntegrityCheckSegment(p, iIdx, pSeg);
}
}
}
fts5StructureRelease(pStruct);
}
/* The cksum argument passed to this function is a checksum calculated
** based on all expected entries in the FTS index (including prefix index
** entries). This block checks that a checksum calculated based on the
** actual contents of FTS index is identical.
**
** Two versions of the same checksum are calculated. The first (stack
** variable cksum2) based on entries extracted from the full-text index
** while doing a linear scan of each individual index in turn.
**
** As each term visited by the linear scans, a separate query for the
** same term is performed. cksum3 is calculated based on the entries
** extracted by these queries.
*/
for(iIdx=0; iIdx<=pConfig->nPrefix; iIdx++){
Fts5MultiSegIter *pIter;
Fts5Structure *pStruct = fts5StructureRead(p, iIdx);
for(fts5MultiIterNew(p, pStruct, iIdx, 0, 0, 0, 0, -1, 0, &pIter);
fts5MultiIterEof(p, pIter)==0;
fts5MultiIterNext(p, pIter, 0, 0)
){
Fts5PosIter sPos; /* Used to iterate through position list */
int n; /* Size of term in bytes */
i64 iRowid = fts5MultiIterRowid(pIter);
char *z = (char*)fts5MultiIterTerm(pIter, &n);
/* Update cksum2 with the entries associated with the current term
** and rowid. */
for(fts5PosIterInit(p, pIter, &sPos);
fts5PosIterEof(p, &sPos)==0;
fts5PosIterNext(p, &sPos)
){
cksum2 ^= fts5IndexEntryCksum(iRowid, sPos.iCol, sPos.iPos, z, n);
}
/* If this is a new term, query for it. Update cksum3 with the results. */
if( p->rc==SQLITE_OK && (term.n!=n || memcmp(term.p, z, n)) ){
int rc;
int flags = (iIdx==0 ? 0 : FTS5INDEX_QUERY_PREFIX);
u64 ck1 = 0;
u64 ck2 = 0;
/* Check that the results returned for ASC and DESC queries are
** the same. If not, call this corruption. */
rc = fts5QueryCksum(p, z, n, flags, &ck1);
if( rc==SQLITE_OK ){
rc = fts5QueryCksum(p, z, n, flags|FTS5INDEX_QUERY_DESC, &ck2);
}
if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT;
/* If this is a prefix query, check that the results returned if the
** the index is disabled are the same. In both ASC and DESC order. */
if( iIdx>0 && rc==SQLITE_OK ){
int f = flags|FTS5INDEX_QUERY_TEST_NOIDX;
ck2 = 0;
rc = fts5QueryCksum(p, z, n, f, &ck2);
if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT;
}
if( iIdx>0 && rc==SQLITE_OK ){
int f = flags|FTS5INDEX_QUERY_TEST_NOIDX|FTS5INDEX_QUERY_DESC;
ck2 = 0;
rc = fts5QueryCksum(p, z, n, f, &ck2);
if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT;
}
cksum3 ^= ck1;
fts5BufferSet(&rc, &term, n, (const u8*)z);
p->rc = rc;
}
}
fts5MultiIterFree(p, pIter);
fts5StructureRelease(pStruct);
}
if( p->rc==SQLITE_OK && cksum!=cksum2 ) p->rc = FTS5_CORRUPT;
if( p->rc==SQLITE_OK && cksum!=cksum3 ) p->rc = FTS5_CORRUPT;
fts5BufferFree(&term);
return fts5IndexReturn(p);
}
/*
** Indicate that all subsequent calls to sqlite3Fts5IndexWrite() pertain
** to the document with rowid iRowid.
*/
int sqlite3Fts5IndexBeginWrite(Fts5Index *p, i64 iRowid){
assert( p->rc==SQLITE_OK );
/* Allocate hash tables if they have not already been allocated */
if( p->apHash==0 ){
int i;
int rc = SQLITE_OK;
int nHash = p->pConfig->nPrefix + 1;
Fts5Hash **apNew;
apNew = (Fts5Hash**)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Hash*)*nHash);
for(i=0; rc==SQLITE_OK && i<nHash; i++){
rc = sqlite3Fts5HashNew(&apNew[i], &p->nPendingData);
}
if( rc==SQLITE_OK ){
p->apHash = apNew;
}else{
if( apNew ){
for(i=0; i<nHash; i++){
sqlite3Fts5HashFree(apNew[i]);
}
sqlite3_free(apNew);
}
return rc;
}
}
if( iRowid<=p->iWriteRowid || (p->nPendingData > p->nMaxPendingData) ){
fts5IndexFlush(p);
}
p->iWriteRowid = iRowid;
return fts5IndexReturn(p);
}
/*
** Commit data to disk.
*/
int sqlite3Fts5IndexSync(Fts5Index *p, int bCommit){
assert( p->rc==SQLITE_OK );
fts5IndexFlush(p);
if( bCommit ) fts5CloseReader(p);
return fts5IndexReturn(p);
}
/*
** Discard any data stored in the in-memory hash tables. Do not write it
** to the database. Additionally, assume that the contents of the %_data
** table may have changed on disk. So any in-memory caches of %_data
** records must be invalidated.
*/
int sqlite3Fts5IndexRollback(Fts5Index *p){
fts5CloseReader(p);
fts5IndexDiscardData(p);
assert( p->rc==SQLITE_OK );
return SQLITE_OK;
}
/*
** The %_data table is completely empty when this function is called. This
** function populates it with the initial structure objects for each index,
** and the initial version of the "averages" record (a zero-byte blob).
*/
int sqlite3Fts5IndexReinit(Fts5Index *p){
int i;
Fts5Structure s;
memset(&s, 0, sizeof(Fts5Structure));
for(i=0; i<p->pConfig->nPrefix+1; i++){
fts5StructureWrite(p, i, &s);
}
if( p->rc==SQLITE_OK ){
p->rc = sqlite3Fts5IndexSetAverages(p, (const u8*)"", 0);
}
return fts5IndexReturn(p);
}
/*
** Open a new Fts5Index handle. If the bCreate argument is true, create
** and initialize the underlying %_data table.
**
** If successful, set *pp to point to the new object and return SQLITE_OK.
** Otherwise, set *pp to NULL and return an SQLite error code.
*/
int sqlite3Fts5IndexOpen(
Fts5Config *pConfig,
int bCreate,
Fts5Index **pp,
char **pzErr
){
int rc = SQLITE_OK;
Fts5Index *p; /* New object */
*pp = p = (Fts5Index*)sqlite3_malloc(sizeof(Fts5Index));
if( !p ) return SQLITE_NOMEM;
memset(p, 0, sizeof(Fts5Index));
p->pConfig = pConfig;
p->nWorkUnit = FTS5_WORK_UNIT;
p->nMaxPendingData = 1024*1024;
p->zDataTbl = sqlite3_mprintf("%s_data", pConfig->zName);
if( p->zDataTbl==0 ){
rc = SQLITE_NOMEM;
}else if( bCreate ){
rc = sqlite3Fts5CreateTable(
pConfig, "data", "id INTEGER PRIMARY KEY, block BLOB", 0, pzErr
);
if( rc==SQLITE_OK ){
rc = sqlite3Fts5IndexReinit(p);
}
}
assert( p->rc==SQLITE_OK || rc!=SQLITE_OK );
if( rc ){
sqlite3Fts5IndexClose(p, 0);
*pp = 0;
}
return rc;
}
/*
** Close a handle opened by an earlier call to sqlite3Fts5IndexOpen().
*/
int sqlite3Fts5IndexClose(Fts5Index *p, int bDestroy){
int rc = SQLITE_OK;
if( p ){
if( bDestroy ){
rc = sqlite3Fts5DropTable(p->pConfig, "data");
}
assert( p->pReader==0 );
sqlite3_finalize(p->pWriter);
sqlite3_finalize(p->pDeleter);
if( p->apHash ){
int i;
for(i=0; i<=p->pConfig->nPrefix; i++){
sqlite3Fts5HashFree(p->apHash[i]);
}
sqlite3_free(p->apHash);
}
sqlite3_free(p->zDataTbl);
sqlite3_free(p);
}
return rc;
}
/*
** Argument p points to a buffer containing utf-8 text that is n bytes in
** size. Return the number of bytes in the nChar character prefix of the
** buffer, or 0 if there are less than nChar characters in total.
*/
static int fts5IndexCharlenToBytelen(const char *p, int nByte, int nChar){
int n = 0;
int i;
for(i=0; i<nChar; i++){
if( n>=nByte ) return 0; /* Input contains fewer than nChar chars */
if( (unsigned char)p[n++]>=0xc0 ){
while( (p[n] & 0xc0)==0x80 ) n++;
}
}
return n;
}
/*
** pIn is a UTF-8 encoded string, nIn bytes in size. Return the number of
** unicode characters in the string.
*/
int fts5IndexCharlen(const char *pIn, int nIn){
int nChar = 0;
int i = 0;
while( i<nIn ){
if( (unsigned char)pIn[i++]>=0xc0 ){
while( i<nIn && (pIn[i] & 0xc0)==0x80 ) i++;
}
nChar++;
}
return nChar;
}
/*
** Calculate and return a checksum that is the XOR of the index entry
** checksum of all entries that would be generated by the token specified
** by the final 5 arguments.
*/
u64 sqlite3Fts5IndexCksum(
Fts5Config *pConfig, /* Configuration object */
i64 iRowid, /* Document term appears in */
int iCol, /* Column term appears in */
int iPos, /* Position term appears in */
const char *pTerm, int nTerm /* Term at iPos */
){
u64 ret = 0; /* Return value */
int iIdx; /* For iterating through indexes */
ret = fts5IndexEntryCksum(iRowid, iCol, iPos, pTerm, nTerm);
for(iIdx=0; iIdx<pConfig->nPrefix; iIdx++){
int nByte = fts5IndexCharlenToBytelen(pTerm, nTerm, pConfig->aPrefix[iIdx]);
if( nByte ){
ret ^= fts5IndexEntryCksum(iRowid, iCol, iPos, pTerm, nByte);
}
}
return ret;
}
/*
** Insert or remove data to or from the index. Each time a document is
** added to or removed from the index, this function is called one or more
** times.
**
** For an insert, it must be called once for each token in the new document.
** If the operation is a delete, it must be called (at least) once for each
** unique token in the document with an iCol value less than zero. The iPos
** argument is ignored for a delete.
*/
int sqlite3Fts5IndexWrite(
Fts5Index *p, /* Index to write to */
int iCol, /* Column token appears in (-ve -> delete) */
int iPos, /* Position of token within column */
const char *pToken, int nToken /* Token to add or remove to or from index */
){
int i; /* Used to iterate through indexes */
int rc; /* Return code */
Fts5Config *pConfig = p->pConfig;
assert( p->rc==SQLITE_OK );
/* Add the new token to the main terms hash table. And to each of the
** prefix hash tables that it is large enough for. */
rc = sqlite3Fts5HashWrite(
p->apHash[0], p->iWriteRowid, iCol, iPos, pToken, nToken
);
for(i=0; i<pConfig->nPrefix && rc==SQLITE_OK; i++){
int nByte = fts5IndexCharlenToBytelen(pToken, nToken, pConfig->aPrefix[i]);
if( nByte ){
rc = sqlite3Fts5HashWrite(
p->apHash[i+1], p->iWriteRowid, iCol, iPos, pToken, nByte
);
}
}
return rc;
}
/*
** Open a new iterator to iterate though all docids that match the
** specified token or token prefix.
*/
int sqlite3Fts5IndexQuery(
Fts5Index *p, /* FTS index to query */
const char *pToken, int nToken, /* Token (or prefix) to query for */
int flags, /* Mask of FTS5INDEX_QUERY_X flags */
Fts5IndexIter **ppIter /* OUT: New iterator object */
){
Fts5Config *pConfig = p->pConfig;
Fts5IndexIter *pRet;
int iIdx = 0;
if( flags & FTS5INDEX_QUERY_PREFIX ){
if( flags & FTS5INDEX_QUERY_TEST_NOIDX ){
iIdx = 1+pConfig->nPrefix;
}else{
int nChar = fts5IndexCharlen(pToken, nToken);
for(iIdx=1; iIdx<=pConfig->nPrefix; iIdx++){
if( pConfig->aPrefix[iIdx-1]==nChar ) break;
}
}
}
pRet = (Fts5IndexIter*)sqlite3Fts5MallocZero(&p->rc, sizeof(Fts5IndexIter));
if( pRet ){
memset(pRet, 0, sizeof(Fts5IndexIter));
pRet->pIndex = p;
if( iIdx<=pConfig->nPrefix ){
pRet->pStruct = fts5StructureRead(p, iIdx);
if( pRet->pStruct ){
fts5MultiIterNew(p, pRet->pStruct,
iIdx, 1, flags, (const u8*)pToken, nToken, -1, 0, &pRet->pMulti
);
}
}else{
int bDesc = (flags & FTS5INDEX_QUERY_DESC)!=0;
fts5SetupPrefixIter(p, bDesc, (const u8*)pToken, nToken, pRet);
}
}
if( p->rc ){
sqlite3Fts5IterClose(pRet);
pRet = 0;
}
*ppIter = pRet;
return fts5IndexReturn(p);
}
/*
** Return true if the iterator passed as the only argument is at EOF.
*/
int sqlite3Fts5IterEof(Fts5IndexIter *pIter){
assert( pIter->pIndex->rc==SQLITE_OK );
if( pIter->pDoclist ){
return pIter->pDoclist->aPoslist==0;
}else{
return fts5MultiIterEof(pIter->pIndex, pIter->pMulti);
}
}
/*
** Move to the next matching rowid.
*/
int sqlite3Fts5IterNext(Fts5IndexIter *pIter){
assert( pIter->pIndex->rc==SQLITE_OK );
if( pIter->pDoclist ){
fts5DoclistIterNext(pIter->pDoclist);
}else{
fts5BufferZero(&pIter->poslist);
fts5MultiIterNext(pIter->pIndex, pIter->pMulti, 0, 0);
}
return fts5IndexReturn(pIter->pIndex);
}
/*
** Move the doclist-iter passed as the first argument to the next
** matching rowid that occurs at or after iMatch. The definition of "at
** or after" depends on whether this iterator iterates in ascending or
** descending rowid order.
*/
static void fts5DoclistIterNextFrom(Fts5DoclistIter *p, i64 iMatch){
do{
i64 iRowid = p->iRowid;
if( p->bDesc==0 && iRowid>=iMatch ) break;
if( p->bDesc!=0 && iRowid<=iMatch ) break;
fts5DoclistIterNext(p);
}while( p->aPoslist );
}
/*
** Move to the next matching rowid that occurs at or after iMatch. The
** definition of "at or after" depends on whether this iterator iterates
** in ascending or descending rowid order.
*/
int sqlite3Fts5IterNextFrom(Fts5IndexIter *pIter, i64 iMatch){
if( pIter->pDoclist ){
fts5DoclistIterNextFrom(pIter->pDoclist, iMatch);
}else{
fts5MultiIterNextFrom(pIter->pIndex, pIter->pMulti, iMatch);
}
return fts5IndexReturn(pIter->pIndex);
}
/*
** Return the current rowid.
*/
i64 sqlite3Fts5IterRowid(Fts5IndexIter *pIter){
if( pIter->pDoclist ){
return pIter->pDoclist->iRowid;
}else{
return fts5MultiIterRowid(pIter->pMulti);
}
}
/*
** Return a pointer to a buffer containing a copy of the position list for
** the current entry. Output variable *pn is set to the size of the buffer
** in bytes before returning.
**
** The returned position list does not include the "number of bytes" varint
** field that starts the position list on disk.
*/
int sqlite3Fts5IterPoslist(Fts5IndexIter *pIter, const u8 **pp, int *pn){
assert( pIter->pIndex->rc==SQLITE_OK );
if( pIter->pDoclist ){
*pn = pIter->pDoclist->nPoslist;
*pp = pIter->pDoclist->aPoslist;
}else{
Fts5Index *p = pIter->pIndex;
fts5BufferZero(&pIter->poslist);
fts5MultiIterPoslist(p, pIter->pMulti, 0, &pIter->poslist);
*pn = pIter->poslist.n;
*pp = pIter->poslist.p;
}
return fts5IndexReturn(pIter->pIndex);
}
/*
** Close an iterator opened by an earlier call to sqlite3Fts5IndexQuery().
*/
void sqlite3Fts5IterClose(Fts5IndexIter *pIter){
if( pIter ){
if( pIter->pDoclist ){
sqlite3_free(pIter->pDoclist->a);
sqlite3_free(pIter->pDoclist);
}else{
fts5MultiIterFree(pIter->pIndex, pIter->pMulti);
fts5StructureRelease(pIter->pStruct);
fts5BufferFree(&pIter->poslist);
}
fts5CloseReader(pIter->pIndex);
sqlite3_free(pIter);
}
}
/*
** Read the "averages" record into the buffer supplied as the second
** argument. Return SQLITE_OK if successful, or an SQLite error code
** if an error occurs.
*/
int sqlite3Fts5IndexGetAverages(Fts5Index *p, Fts5Buffer *pBuf){
assert( p->rc==SQLITE_OK );
fts5DataReadOrBuffer(p, pBuf, FTS5_AVERAGES_ROWID);
return fts5IndexReturn(p);
}
/*
** Replace the current "averages" record with the contents of the buffer
** supplied as the second argument.
*/
int sqlite3Fts5IndexSetAverages(Fts5Index *p, const u8 *pData, int nData){
assert( p->rc==SQLITE_OK );
fts5DataWrite(p, FTS5_AVERAGES_ROWID, pData, nData);
return fts5IndexReturn(p);
}
/*
** Return the total number of blocks this module has read from the %_data
** table since it was created.
*/
int sqlite3Fts5IndexReads(Fts5Index *p){
return p->nRead;
}
/*
** Set the 32-bit cookie value stored at the start of all structure
** records to the value passed as the second argument.
**
** Return SQLITE_OK if successful, or an SQLite error code if an error
** occurs.
*/
int sqlite3Fts5IndexSetCookie(Fts5Index *p, int iNew){
int rc = SQLITE_OK;
Fts5Config *pConfig = p->pConfig;
u8 aCookie[4];
int i;
assert( p->rc==SQLITE_OK );
sqlite3Fts5Put32(aCookie, iNew);
for(i=0; rc==SQLITE_OK && i<=pConfig->nPrefix; i++){
sqlite3_blob *pBlob = 0;
i64 iRowid = FTS5_STRUCTURE_ROWID(i);
rc = sqlite3_blob_open(
pConfig->db, pConfig->zDb, p->zDataTbl, "block", iRowid, 1, &pBlob
);
if( rc==SQLITE_OK ){
sqlite3_blob_write(pBlob, aCookie, 4, 0);
rc = sqlite3_blob_close(pBlob);
}
}
return rc;
}
int sqlite3Fts5IndexLoadConfig(Fts5Index *p){
Fts5Structure *pStruct;
pStruct = fts5StructureRead(p, 0);
fts5StructureRelease(pStruct);
return fts5IndexReturn(p);
}
/*************************************************************************
**************************************************************************
** Below this point is the implementation of the fts5_decode() scalar
** function only.
*/
/*
** Decode a segment-data rowid from the %_data table. This function is
** the opposite of macro FTS5_SEGMENT_ROWID().
*/
static void fts5DecodeRowid(
i64 iRowid, /* Rowid from %_data table */
int *piIdx, /* OUT: Index */
int *piSegid, /* OUT: Segment id */
int *piHeight, /* OUT: Height */
int *piPgno /* OUT: Page number */
){
*piPgno = (int)(iRowid & (((i64)1 << FTS5_DATA_PAGE_B) - 1));
iRowid >>= FTS5_DATA_PAGE_B;
*piHeight = (int)(iRowid & (((i64)1 << FTS5_DATA_HEIGHT_B) - 1));
iRowid >>= FTS5_DATA_HEIGHT_B;
*piSegid = (int)(iRowid & (((i64)1 << FTS5_DATA_ID_B) - 1));
iRowid >>= FTS5_DATA_ID_B;
*piIdx = (int)(iRowid & (((i64)1 << FTS5_DATA_IDX_B) - 1));
}
static void fts5DebugRowid(int *pRc, Fts5Buffer *pBuf, i64 iKey){
int iIdx,iSegid,iHeight,iPgno; /* Rowid compenents */
fts5DecodeRowid(iKey, &iIdx, &iSegid, &iHeight, &iPgno);
if( iSegid==0 ){
if( iKey==FTS5_AVERAGES_ROWID ){
sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "(averages) ");
}else{
sqlite3Fts5BufferAppendPrintf(pRc, pBuf,
"{structure idx=%d}", (int)(iKey-10)
);
}
}
else if( iHeight==FTS5_SEGMENT_MAX_HEIGHT ){
sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "(dlidx idx=%d segid=%d pgno=%d)",
iIdx, iSegid, iPgno
);
}else{
sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "(idx=%d segid=%d h=%d pgno=%d)",
iIdx, iSegid, iHeight, iPgno
);
}
}
static void fts5DebugStructure(
int *pRc, /* IN/OUT: error code */
Fts5Buffer *pBuf,
Fts5Structure *p
){
int iLvl, iSeg; /* Iterate through levels, segments */
for(iLvl=0; iLvl<p->nLevel; iLvl++){
Fts5StructureLevel *pLvl = &p->aLevel[iLvl];
sqlite3Fts5BufferAppendPrintf(pRc, pBuf,
" {lvl=%d nMerge=%d", iLvl, pLvl->nMerge
);
for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){
Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
sqlite3Fts5BufferAppendPrintf(pRc, pBuf,
" {id=%d h=%d leaves=%d..%d}", pSeg->iSegid, pSeg->nHeight,
pSeg->pgnoFirst, pSeg->pgnoLast
);
}
sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "}");
}
}
/*
** This is part of the fts5_decode() debugging aid.
**
** Arguments pBlob/nBlob contain a serialized Fts5Structure object. This
** function appends a human-readable representation of the same object
** to the buffer passed as the second argument.
*/
static void fts5DecodeStructure(
int *pRc, /* IN/OUT: error code */
Fts5Buffer *pBuf,
const u8 *pBlob, int nBlob
){
int rc; /* Return code */
Fts5Structure *p = 0; /* Decoded structure object */
rc = fts5StructureDecode(pBlob, nBlob, 0, &p);
if( rc!=SQLITE_OK ){
*pRc = rc;
return;
}
fts5DebugStructure(pRc, pBuf, p);
fts5StructureRelease(p);
}
/*
** Buffer (a/n) is assumed to contain a list of serialized varints. Read
** each varint and append its string representation to buffer pBuf. Return
** after either the input buffer is exhausted or a 0 value is read.
**
** The return value is the number of bytes read from the input buffer.
*/
static int fts5DecodePoslist(int *pRc, Fts5Buffer *pBuf, const u8 *a, int n){
int iOff = 0;
while( iOff<n ){
int iVal;
iOff += fts5GetVarint32(&a[iOff], iVal);
sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " %d", iVal);
}
return iOff;
}
/*
** The start of buffer (a/n) contains the start of a doclist. The doclist
** may or may not finish within the buffer. This function appends a text
** representation of the part of the doclist that is present to buffer
** pBuf.
**
** The return value is the number of bytes read from the input buffer.
*/
static int fts5DecodeDoclist(int *pRc, Fts5Buffer *pBuf, const u8 *a, int n){
i64 iDocid;
int iOff = 0;
if( iOff<n ){
iOff += sqlite3GetVarint(&a[iOff], (u64*)&iDocid);
sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " rowid=%lld", iDocid);
}
while( iOff<n ){
int nPos;
int bDummy;
iOff += fts5GetPoslistSize(&a[iOff], &nPos, &bDummy);
iOff += fts5DecodePoslist(pRc, pBuf, &a[iOff], MIN(n-iOff, nPos));
if( iOff<n ){
i64 iDelta;
iOff += sqlite3GetVarint(&a[iOff], (u64*)&iDelta);
if( iDelta==0 ) return iOff;
iDocid += iDelta;
sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " rowid=%lld", iDocid);
}
}
return iOff;
}
/*
** The implementation of user-defined scalar function fts5_decode().
*/
static void fts5DecodeFunction(
sqlite3_context *pCtx, /* Function call context */
int nArg, /* Number of args (always 2) */
sqlite3_value **apVal /* Function arguments */
){
i64 iRowid; /* Rowid for record being decoded */
int iIdx,iSegid,iHeight,iPgno; /* Rowid components */
const u8 *aBlob; int n; /* Record to decode */
u8 *a = 0;
Fts5Buffer s; /* Build up text to return here */
int rc = SQLITE_OK; /* Return code */
int nSpace = 0;
assert( nArg==2 );
memset(&s, 0, sizeof(Fts5Buffer));
iRowid = sqlite3_value_int64(apVal[0]);
n = sqlite3_value_bytes(apVal[1]);
aBlob = sqlite3_value_blob(apVal[1]);
nSpace = n + FTS5_DATA_ZERO_PADDING;
a = (u8*)sqlite3Fts5MallocZero(&rc, nSpace);
if( a==0 ) goto decode_out;
memcpy(a, aBlob, n);
fts5DecodeRowid(iRowid, &iIdx, &iSegid, &iHeight, &iPgno);
fts5DebugRowid(&rc, &s, iRowid);
if( iHeight==FTS5_SEGMENT_MAX_HEIGHT ){
Fts5Data dlidx;
Fts5DlidxIter iter;
dlidx.p = a;
dlidx.n = n;
dlidx.nRef = 2;
memset(&iter, 0, sizeof(Fts5DlidxIter));
iter.pData = &dlidx;
iter.iLeafPgno = iPgno;
for(fts5DlidxIterFirst(&iter); iter.bEof==0; fts5DlidxIterNext(&iter)){
sqlite3Fts5BufferAppendPrintf(&rc, &s,
" %d(%lld)", iter.iLeafPgno, iter.iRowid
);
}
}else if( iSegid==0 ){
if( iRowid==FTS5_AVERAGES_ROWID ){
/* todo */
}else{
fts5DecodeStructure(&rc, &s, a, n);
}
}else{
Fts5Buffer term;
memset(&term, 0, sizeof(Fts5Buffer));
if( iHeight==0 ){
int iTermOff = 0;
int iRowidOff = 0;
int iOff;
int nKeep = 0;
if( n>=4 ){
iRowidOff = fts5GetU16(&a[0]);
iTermOff = fts5GetU16(&a[2]);
}else{
sqlite3Fts5BufferSet(&rc, &s, 8, (const u8*)"corrupt");
goto decode_out;
}
if( iRowidOff ){
iOff = iRowidOff;
}else if( iTermOff ){
iOff = iTermOff;
}else{
iOff = n;
}
fts5DecodePoslist(&rc, &s, &a[4], iOff-4);
assert( iRowidOff==0 || iOff==iRowidOff );
if( iRowidOff ){
iOff += fts5DecodeDoclist(&rc, &s, &a[iOff], n-iOff);
}
assert( iTermOff==0 || iOff==iTermOff );
while( iOff<n ){
int nByte;
iOff += fts5GetVarint32(&a[iOff], nByte);
term.n= nKeep;
fts5BufferAppendBlob(&rc, &term, nByte, &a[iOff]);
iOff += nByte;
sqlite3Fts5BufferAppendPrintf(
&rc, &s, " term=%.*s", term.n, (const char*)term.p
);
iOff += fts5DecodeDoclist(&rc, &s, &a[iOff], n-iOff);
if( iOff<n ){
iOff += fts5GetVarint32(&a[iOff], nKeep);
}
}
fts5BufferFree(&term);
}else{
Fts5NodeIter ss;
for(fts5NodeIterInit(a, n, &ss); ss.aData; fts5NodeIterNext(&rc, &ss)){
if( ss.term.n==0 ){
sqlite3Fts5BufferAppendPrintf(&rc, &s, " left=%d", ss.iChild);
}else{
sqlite3Fts5BufferAppendPrintf(&rc,&s, " \"%.*s\"",
ss.term.n, ss.term.p
);
}
if( ss.nEmpty ){
sqlite3Fts5BufferAppendPrintf(&rc, &s, " empty=%d%s", ss.nEmpty,
ss.bDlidx ? "*" : ""
);
}
}
fts5NodeIterFree(&ss);
}
}
decode_out:
sqlite3_free(a);
if( rc==SQLITE_OK ){
sqlite3_result_text(pCtx, (const char*)s.p, s.n, SQLITE_TRANSIENT);
}else{
sqlite3_result_error_code(pCtx, rc);
}
fts5BufferFree(&s);
}
/*
** The implementation of user-defined scalar function fts5_rowid().
*/
static void fts5RowidFunction(
sqlite3_context *pCtx, /* Function call context */
int nArg, /* Number of args (always 2) */
sqlite3_value **apVal /* Function arguments */
){
const char *zArg;
if( nArg==0 ){
sqlite3_result_error(pCtx, "should be: fts5_rowid(subject, ....)", -1);
}else{
zArg = (const char*)sqlite3_value_text(apVal[0]);
if( 0==sqlite3_stricmp(zArg, "segment") ){
i64 iRowid;
int idx, segid, height, pgno;
if( nArg!=5 ){
sqlite3_result_error(pCtx,
"should be: fts5_rowid('segment', idx, segid, height, pgno))", -1
);
}else{
idx = sqlite3_value_int(apVal[1]);
segid = sqlite3_value_int(apVal[2]);
height = sqlite3_value_int(apVal[3]);
pgno = sqlite3_value_int(apVal[4]);
iRowid = FTS5_SEGMENT_ROWID(idx, segid, height, pgno);
sqlite3_result_int64(pCtx, iRowid);
}
}else if( 0==sqlite3_stricmp(zArg, "start-of-index") ){
i64 iRowid;
int idx;
if( nArg!=2 ){
sqlite3_result_error(pCtx,
"should be: fts5_rowid('start-of-index', idx)", -1
);
}else{
idx = sqlite3_value_int(apVal[1]);
iRowid = FTS5_SEGMENT_ROWID(idx, 1, 0, 0);
sqlite3_result_int64(pCtx, iRowid);
}
}else {
sqlite3_result_error(pCtx,
"first arg to fts5_rowid() must be 'segment' "
"or 'start-of-index'"
, -1
);
}
}
}
/*
** This is called as part of registering the FTS5 module with database
** connection db. It registers several user-defined scalar functions useful
** with FTS5.
**
** If successful, SQLITE_OK is returned. If an error occurs, some other
** SQLite error code is returned instead.
*/
int sqlite3Fts5IndexInit(sqlite3 *db){
int rc = sqlite3_create_function(
db, "fts5_decode", 2, SQLITE_UTF8, 0, fts5DecodeFunction, 0, 0
);
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(
db, "fts5_rowid", -1, SQLITE_UTF8, 0, fts5RowidFunction, 0, 0
);
}
return rc;
}
#endif /* SQLITE_ENABLE_FTS5 */