573bd2754f
FossilOrigin-Name: 4fb52b4824cbc6d5fa23449bfb998ec9985f1336
380 lines
13 KiB
C
380 lines
13 KiB
C
/*
|
|
** Copyright (c) 1999, 2000 D. Richard Hipp
|
|
**
|
|
** This program is free software; you can redistribute it and/or
|
|
** modify it under the terms of the GNU General Public
|
|
** License as published by the Free Software Foundation; either
|
|
** version 2 of the License, or (at your option) any later version.
|
|
**
|
|
** This program is distributed in the hope that it will be useful,
|
|
** but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
** General Public License for more details.
|
|
**
|
|
** You should have received a copy of the GNU General Public
|
|
** License along with this library; if not, write to the
|
|
** Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
** Boston, MA 02111-1307, USA.
|
|
**
|
|
** Author contact information:
|
|
** drh@hwaci.com
|
|
** http://www.hwaci.com/drh/
|
|
**
|
|
*************************************************************************
|
|
** This module contains C code that generates VDBE code used to process
|
|
** the WHERE clause of SQL statements. Also found here are subroutines
|
|
** to generate VDBE code to evaluate expressions.
|
|
**
|
|
** $Id: where.c,v 1.12 2001/02/19 23:23:39 drh Exp $
|
|
*/
|
|
#include "sqliteInt.h"
|
|
|
|
/*
|
|
** The query generator uses an array of instances of this structure to
|
|
** help it analyze the subexpressions of the WHERE clause. Each WHERE
|
|
** clause subexpression is separated from the others by an AND operator.
|
|
*/
|
|
typedef struct ExprInfo ExprInfo;
|
|
struct ExprInfo {
|
|
Expr *p; /* Pointer to the subexpression */
|
|
int indexable; /* True if this subexprssion is usable by an index */
|
|
int idxLeft; /* p->pLeft is a column in this table number. -1 if
|
|
** p->pLeft is not the column of any table */
|
|
int idxRight; /* p->pRight is a column in this table number. -1 if
|
|
** p->pRight is not the column of any table */
|
|
unsigned prereqLeft; /* Tables referenced by p->pLeft */
|
|
unsigned prereqRight; /* Tables referenced by p->pRight */
|
|
};
|
|
|
|
/*
|
|
** Determine the number of elements in an array.
|
|
*/
|
|
#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
|
|
|
|
/*
|
|
** This routine is used to divide the WHERE expression into subexpressions
|
|
** separated by the AND operator.
|
|
**
|
|
** aSlot[] is an array of subexpressions structures.
|
|
** There are nSlot spaces left in this array. This routine attempts to
|
|
** split pExpr into subexpressions and fills aSlot[] with those subexpressions.
|
|
** The return value is the number of slots filled.
|
|
*/
|
|
static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
|
|
int cnt = 0;
|
|
if( pExpr==0 || nSlot<1 ) return 0;
|
|
if( nSlot==1 || pExpr->op!=TK_AND ){
|
|
aSlot[0].p = pExpr;
|
|
return 1;
|
|
}
|
|
if( pExpr->pLeft->op!=TK_AND ){
|
|
aSlot[0].p = pExpr->pLeft;
|
|
cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
|
|
}else{
|
|
cnt = exprSplit(nSlot, aSlot, pExpr->pRight);
|
|
cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pLeft);
|
|
}
|
|
return cnt;
|
|
}
|
|
|
|
/*
|
|
** This routine walks (recursively) an expression tree and generates
|
|
** a bitmask indicating which tables are used in that expression
|
|
** tree. Bit 0 of the mask is set if table 0 is used. But 1 is set
|
|
** if table 1 is used. And so forth.
|
|
**
|
|
** In order for this routine to work, the calling function must have
|
|
** previously invoked sqliteExprResolveIds() on the expression. See
|
|
** the header comment on that routine for additional information.
|
|
**
|
|
** "base" is the cursor number (the value of the iTable field) that
|
|
** corresponds to the first entry in the table list. This is the
|
|
** same as pParse->nTab.
|
|
*/
|
|
static int exprTableUsage(int base, Expr *p){
|
|
unsigned int mask = 0;
|
|
if( p==0 ) return 0;
|
|
if( p->op==TK_COLUMN ){
|
|
return 1<< (p->iTable - base);
|
|
}
|
|
if( p->pRight ){
|
|
mask = exprTableUsage(base, p->pRight);
|
|
}
|
|
if( p->pLeft ){
|
|
mask |= exprTableUsage(base, p->pLeft);
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
/*
|
|
** The input to this routine is an ExprInfo structure with only the
|
|
** "p" field filled in. The job of this routine is to analyze the
|
|
** subexpression and populate all the other fields of the ExprInfo
|
|
** structure.
|
|
**
|
|
** "base" is the cursor number (the value of the iTable field) that
|
|
** corresponds to the first entyr in the table list. This is the
|
|
** same as pParse->nTab.
|
|
*/
|
|
static void exprAnalyze(int base, ExprInfo *pInfo){
|
|
Expr *pExpr = pInfo->p;
|
|
pInfo->prereqLeft = exprTableUsage(base, pExpr->pLeft);
|
|
pInfo->prereqRight = exprTableUsage(base, pExpr->pRight);
|
|
pInfo->indexable = 0;
|
|
pInfo->idxLeft = -1;
|
|
pInfo->idxRight = -1;
|
|
if( pExpr->op==TK_EQ && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
|
|
if( pExpr->pRight->op==TK_COLUMN ){
|
|
pInfo->idxRight = pExpr->pRight->iTable - base;
|
|
pInfo->indexable = 1;
|
|
}
|
|
if( pExpr->pLeft->op==TK_COLUMN ){
|
|
pInfo->idxLeft = pExpr->pLeft->iTable - base;
|
|
pInfo->indexable = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generating the beginning of the loop used for WHERE clause processing.
|
|
** The return value is a pointer to an (opaque) structure that contains
|
|
** information needed to terminate the loop. Later, the calling routine
|
|
** should invoke sqliteWhereEnd() with the return value of this function
|
|
** in order to complete the WHERE clause processing.
|
|
**
|
|
** If an error occurs, this routine returns NULL.
|
|
*/
|
|
WhereInfo *sqliteWhereBegin(
|
|
Parse *pParse, /* The parser context */
|
|
IdList *pTabList, /* A list of all tables */
|
|
Expr *pWhere, /* The WHERE clause */
|
|
int pushKey /* If TRUE, leave the table key on the stack */
|
|
){
|
|
int i; /* Loop counter */
|
|
WhereInfo *pWInfo; /* Will become the return value of this function */
|
|
Vdbe *v = pParse->pVdbe; /* The virtual database engine */
|
|
int brk, cont; /* Addresses used during code generation */
|
|
int *aOrder; /* Order in which pTabList entries are searched */
|
|
int nExpr; /* Number of subexpressions in the WHERE clause */
|
|
int loopMask; /* One bit set for each outer loop */
|
|
int haveKey; /* True if KEY is on the stack */
|
|
int base; /* First available index for OP_Open opcodes */
|
|
Index *aIdx[32]; /* Index to use on each nested loop. */
|
|
ExprInfo aExpr[50]; /* The WHERE clause is divided into these expressions */
|
|
|
|
/* Allocate space for aOrder[]. */
|
|
aOrder = sqliteMalloc( sizeof(int) * pTabList->nId );
|
|
|
|
/* Allocate and initialize the WhereInfo structure that will become the
|
|
** return value.
|
|
*/
|
|
pWInfo = sqliteMalloc( sizeof(WhereInfo) );
|
|
if( pWInfo==0 ){
|
|
sqliteFree(aOrder);
|
|
return 0;
|
|
}
|
|
pWInfo->pParse = pParse;
|
|
pWInfo->pTabList = pTabList;
|
|
base = pWInfo->base = pParse->nTab;
|
|
|
|
/* Split the WHERE clause into as many as 32 separate subexpressions
|
|
** where each subexpression is separated by an AND operator. Any additional
|
|
** subexpressions are attached in the aExpr[32] and will not enter
|
|
** into the query optimizer computations. 32 is chosen as the cutoff
|
|
** since that is the number of bits in an integer that we use for an
|
|
** expression-used mask.
|
|
*/
|
|
memset(aExpr, 0, sizeof(aExpr));
|
|
nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
|
|
|
|
/* Analyze all of the subexpressions.
|
|
*/
|
|
for(i=0; i<nExpr; i++){
|
|
exprAnalyze(pParse->nTab, &aExpr[i]);
|
|
}
|
|
|
|
/* Figure out a good nesting order for the tables. aOrder[0] will
|
|
** be the index in pTabList of the outermost table. aOrder[1] will
|
|
** be the first nested loop and so on. aOrder[pTabList->nId-1] will
|
|
** be the innermost loop.
|
|
**
|
|
** Someday will put in a good algorithm here to reorder the loops
|
|
** for an effiecient query. But for now, just use whatever order the
|
|
** tables appear in in the pTabList.
|
|
*/
|
|
for(i=0; i<pTabList->nId; i++){
|
|
aOrder[i] = i;
|
|
}
|
|
|
|
/* Figure out what index to use (if any) for each nested loop.
|
|
** Make aIdx[i] point to the index to use for the i-th nested loop
|
|
** where i==0 is the outer loop and i==pTabList->nId-1 is the inner
|
|
** loop.
|
|
**
|
|
** Actually, if there are more than 32 tables in the join, only the
|
|
** first 32 tables are candidates for indices.
|
|
*/
|
|
loopMask = 0;
|
|
for(i=0; i<pTabList->nId && i<ARRAYSIZE(aIdx); i++){
|
|
int idx = aOrder[i];
|
|
Table *pTab = pTabList->a[idx].pTab;
|
|
Index *pIdx;
|
|
Index *pBestIdx = 0;
|
|
|
|
/* Do a search for usable indices. Leave pBestIdx pointing to
|
|
** the most specific usable index.
|
|
**
|
|
** "Most specific" means that pBestIdx is the usable index that
|
|
** has the largest value for nColumn. A usable index is one for
|
|
** which there are subexpressions to compute every column of the
|
|
** index.
|
|
*/
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
int j;
|
|
int columnMask = 0;
|
|
|
|
if( pIdx->nColumn>32 ) continue;
|
|
for(j=0; j<nExpr; j++){
|
|
if( aExpr[j].idxLeft==idx
|
|
&& (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
|
|
int iColumn = aExpr[j].p->pLeft->iColumn;
|
|
int k;
|
|
for(k=0; k<pIdx->nColumn; k++){
|
|
if( pIdx->aiColumn[k]==iColumn ){
|
|
columnMask |= 1<<k;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if( aExpr[j].idxRight==idx
|
|
&& (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
|
|
int iColumn = aExpr[j].p->pRight->iColumn;
|
|
int k;
|
|
for(k=0; k<pIdx->nColumn; k++){
|
|
if( pIdx->aiColumn[k]==iColumn ){
|
|
columnMask |= 1<<k;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if( columnMask + 1 == (1<<pIdx->nColumn) ){
|
|
if( pBestIdx==0 || pBestIdx->nColumn<pIdx->nColumn ){
|
|
pBestIdx = pIdx;
|
|
}
|
|
}
|
|
}
|
|
aIdx[i] = pBestIdx;
|
|
loopMask |= 1<<idx;
|
|
}
|
|
|
|
/* Open all tables in the pTabList and all indices in aIdx[].
|
|
*/
|
|
for(i=0; i<pTabList->nId; i++){
|
|
sqliteVdbeAddOp(v, OP_OpenTbl, base+i, 0, pTabList->a[i].pTab->zName, 0);
|
|
if( i<ARRAYSIZE(aIdx) && aIdx[i]!=0 ){
|
|
sqliteVdbeAddOp(v, OP_OpenIdx, base+pTabList->nId+i, 0, aIdx[i]->zName,0);
|
|
}
|
|
}
|
|
memcpy(pWInfo->aIdx, aIdx, sizeof(aIdx));
|
|
|
|
/* Generate the code to do the search
|
|
*/
|
|
pWInfo->iBreak = brk = sqliteVdbeMakeLabel(v);
|
|
loopMask = 0;
|
|
for(i=0; i<pTabList->nId; i++){
|
|
int j, k;
|
|
int idx = aOrder[i];
|
|
Index *pIdx = i<ARRAYSIZE(aIdx) ? aIdx[i] : 0;
|
|
|
|
cont = sqliteVdbeMakeLabel(v);
|
|
if( pIdx==0 ){
|
|
/* Case 1: There was no usable index. We must do a complete
|
|
** scan of the table.
|
|
*/
|
|
sqliteVdbeAddOp(v, OP_Next, base+idx, brk, 0, cont);
|
|
haveKey = 0;
|
|
}else{
|
|
/* Case 2: We do have a usable index in pIdx.
|
|
*/
|
|
for(j=0; j<pIdx->nColumn; j++){
|
|
for(k=0; k<nExpr; k++){
|
|
if( aExpr[k].p==0 ) continue;
|
|
if( aExpr[k].idxLeft==idx
|
|
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
|
|
&& aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j]
|
|
){
|
|
sqliteExprCode(pParse, aExpr[k].p->pRight);
|
|
aExpr[k].p = 0;
|
|
break;
|
|
}
|
|
if( aExpr[k].idxRight==idx
|
|
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
|
|
&& aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
|
|
){
|
|
sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
|
aExpr[k].p = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
sqliteVdbeAddOp(v, OP_MakeKey, pIdx->nColumn, 0, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_Fetch, base+pTabList->nId+i, 0, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_NextIdx, base+pTabList->nId+i, brk, 0, cont);
|
|
if( i==pTabList->nId-1 && pushKey ){
|
|
haveKey = 1;
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_Fetch, base+idx, 0, 0, 0);
|
|
haveKey = 0;
|
|
}
|
|
}
|
|
loopMask |= 1<<idx;
|
|
|
|
/* Insert code to test every subexpression that can be completely
|
|
** computed using the current set of tables.
|
|
*/
|
|
for(j=0; j<nExpr; j++){
|
|
if( aExpr[j].p==0 ) continue;
|
|
if( (aExpr[j].prereqRight & loopMask)!=aExpr[j].prereqRight ) continue;
|
|
if( (aExpr[j].prereqLeft & loopMask)!=aExpr[j].prereqLeft ) continue;
|
|
if( haveKey ){
|
|
haveKey = 0;
|
|
sqliteVdbeAddOp(v, OP_Fetch, base+idx, 0, 0, 0);
|
|
}
|
|
sqliteExprIfFalse(pParse, aExpr[j].p, cont);
|
|
aExpr[j].p = 0;
|
|
}
|
|
brk = cont;
|
|
}
|
|
pWInfo->iContinue = cont;
|
|
if( pushKey && !haveKey ){
|
|
sqliteVdbeAddOp(v, OP_Key, base, 0, 0, 0);
|
|
}
|
|
sqliteFree(aOrder);
|
|
return pWInfo;
|
|
}
|
|
|
|
/*
|
|
** Generate the end of the WHERE loop.
|
|
*/
|
|
void sqliteWhereEnd(WhereInfo *pWInfo){
|
|
Vdbe *v = pWInfo->pParse->pVdbe;
|
|
int i;
|
|
int brk = pWInfo->iBreak;
|
|
int base = pWInfo->base;
|
|
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, pWInfo->iContinue, 0, 0);
|
|
for(i=0; i<pWInfo->pTabList->nId; i++){
|
|
sqliteVdbeAddOp(v, OP_Close, base+i, 0, 0, brk);
|
|
brk = 0;
|
|
if( i<ARRAYSIZE(pWInfo->aIdx) && pWInfo->aIdx[i]!=0 ){
|
|
sqliteVdbeAddOp(v, OP_Close, base+pWInfo->pTabList->nId+i, 0, 0, 0);
|
|
}
|
|
}
|
|
if( brk!=0 ){
|
|
sqliteVdbeAddOp(v, OP_Noop, 0, 0, 0, brk);
|
|
}
|
|
sqliteFree(pWInfo);
|
|
return;
|
|
}
|