5314c4d7ab
FossilOrigin-Name: 960f55f3ecbef4581c8cb7be860023ba10de4e96
2639 lines
82 KiB
C
2639 lines
82 KiB
C
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains C code routines that are called by the SQLite parser
|
|
** when syntax rules are reduced. The routines in this file handle the
|
|
** following kinds of SQL syntax:
|
|
**
|
|
** CREATE TABLE
|
|
** DROP TABLE
|
|
** CREATE INDEX
|
|
** DROP INDEX
|
|
** creating ID lists
|
|
** BEGIN TRANSACTION
|
|
** COMMIT
|
|
** ROLLBACK
|
|
** PRAGMA
|
|
**
|
|
** $Id: build.c,v 1.222 2004/06/18 06:02:35 danielk1977 Exp $
|
|
*/
|
|
#include "sqliteInt.h"
|
|
#include <ctype.h>
|
|
|
|
/*
|
|
** This routine is called when a new SQL statement is beginning to
|
|
** be parsed. Check to see if the schema for the database needs
|
|
** to be read from the SQLITE_MASTER and SQLITE_TEMP_MASTER tables.
|
|
** If it does, then read it.
|
|
*/
|
|
void sqlite3BeginParse(Parse *pParse, int explainFlag){
|
|
sqlite *db = pParse->db;
|
|
int i;
|
|
pParse->explain = explainFlag;
|
|
#if 0
|
|
if((db->flags & SQLITE_Initialized)==0 && db->init.busy==0 ){
|
|
int rc = sqlite3Init(db, &pParse->zErrMsg);
|
|
if( rc!=SQLITE_OK ){
|
|
pParse->rc = rc;
|
|
pParse->nErr++;
|
|
}
|
|
}
|
|
#endif
|
|
for(i=0; i<db->nDb; i++){
|
|
DbClearProperty(db, i, DB_Locked);
|
|
if( !db->aDb[i].inTrans ){
|
|
DbClearProperty(db, i, DB_Cookie);
|
|
}
|
|
}
|
|
pParse->nVar = 0;
|
|
}
|
|
|
|
/*
|
|
** This routine is called after a single SQL statement has been
|
|
** parsed and a VDBE program to execute that statement has been
|
|
** prepared. This routine puts the finishing touches on the
|
|
** VDBE program and resets the pParse structure for the next
|
|
** parse.
|
|
**
|
|
** Note that if an error occurred, it might be the case that
|
|
** no VDBE code was generated.
|
|
*/
|
|
void sqlite3FinishCoding(Parse *pParse){
|
|
sqlite *db;
|
|
Vdbe *v;
|
|
|
|
if( sqlite3_malloc_failed ) return;
|
|
|
|
/* Begin by generating some termination code at the end of the
|
|
** vdbe program
|
|
*/
|
|
db = pParse->db;
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
sqlite3VdbeAddOp(v, OP_Halt, 0, 0);
|
|
if( pParse->cookieMask!=0 ){
|
|
u32 mask;
|
|
int iDb;
|
|
sqlite3VdbeChangeP2(v, pParse->cookieGoto, sqlite3VdbeCurrentAddr(v));
|
|
for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
|
|
if( (mask & pParse->cookieMask)==0 ) continue;
|
|
sqlite3VdbeAddOp(v, OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
|
|
if( iDb!=1 ){
|
|
sqlite3VdbeAddOp(v, OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
|
|
}
|
|
}
|
|
sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->cookieGoto+1);
|
|
}
|
|
}
|
|
|
|
/* Get the VDBE program ready for execution
|
|
*/
|
|
if( v && pParse->nErr==0 ){
|
|
FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
|
|
sqlite3VdbeTrace(v, trace);
|
|
sqlite3VdbeMakeReady(v, pParse->nVar, pParse->explain);
|
|
pParse->rc = pParse->nErr ? SQLITE_ERROR : SQLITE_DONE;
|
|
pParse->colNamesSet = 0;
|
|
}else if( pParse->rc==SQLITE_OK ){
|
|
pParse->rc = SQLITE_ERROR;
|
|
}
|
|
pParse->nTab = 0;
|
|
pParse->nMem = 0;
|
|
pParse->nSet = 0;
|
|
pParse->nAgg = 0;
|
|
pParse->nVar = 0;
|
|
pParse->cookieMask = 0;
|
|
}
|
|
|
|
/*
|
|
** Locate the in-memory structure that describes
|
|
** a particular database table given the name
|
|
** of that table and (optionally) the name of the database
|
|
** containing the table. Return NULL if not found.
|
|
**
|
|
** If zDatabase is 0, all databases are searched for the
|
|
** table and the first matching table is returned. (No checking
|
|
** for duplicate table names is done.) The search order is
|
|
** TEMP first, then MAIN, then any auxiliary databases added
|
|
** using the ATTACH command.
|
|
**
|
|
** See also sqlite3LocateTable().
|
|
*/
|
|
Table *sqlite3FindTable(sqlite *db, const char *zName, const char *zDatabase){
|
|
Table *p = 0;
|
|
int i;
|
|
int rc = sqlite3ReadSchema(db, 0);
|
|
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
|
|
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
|
if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
|
|
p = sqlite3HashFind(&db->aDb[j].tblHash, zName, strlen(zName)+1);
|
|
if( p ) break;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Locate the in-memory structure that describes
|
|
** a particular database table given the name
|
|
** of that table and (optionally) the name of the database
|
|
** containing the table. Return NULL if not found.
|
|
** Also leave an error message in pParse->zErrMsg.
|
|
**
|
|
** The difference between this routine and sqlite3FindTable()
|
|
** is that this routine leaves an error message in pParse->zErrMsg
|
|
** where sqlite3FindTable() does not.
|
|
*/
|
|
Table *sqlite3LocateTable(Parse *pParse, const char *zName, const char *zDbase){
|
|
Table *p;
|
|
|
|
p = sqlite3FindTable(pParse->db, zName, zDbase);
|
|
if( p==0 ){
|
|
if( zDbase ){
|
|
sqlite3ErrorMsg(pParse, "no such table: %s.%s", zDbase, zName);
|
|
}else if( sqlite3FindTable(pParse->db, zName, 0)!=0 ){
|
|
sqlite3ErrorMsg(pParse, "table \"%s\" is not in database \"%s\"",
|
|
zName, zDbase);
|
|
}else{
|
|
sqlite3ErrorMsg(pParse, "no such table: %s", zName);
|
|
}
|
|
pParse->checkSchema = 1;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Locate the in-memory structure that describes
|
|
** a particular index given the name of that index
|
|
** and the name of the database that contains the index.
|
|
** Return NULL if not found.
|
|
**
|
|
** If zDatabase is 0, all databases are searched for the
|
|
** table and the first matching index is returned. (No checking
|
|
** for duplicate index names is done.) The search order is
|
|
** TEMP first, then MAIN, then any auxiliary databases added
|
|
** using the ATTACH command.
|
|
*/
|
|
Index *sqlite3FindIndex(sqlite *db, const char *zName, const char *zDb){
|
|
Index *p = 0;
|
|
int i;
|
|
int rc = sqlite3ReadSchema(db, 0);
|
|
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
|
|
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
|
if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
|
|
p = sqlite3HashFind(&db->aDb[j].idxHash, zName, strlen(zName)+1);
|
|
if( p ) break;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Remove the given index from the index hash table, and free
|
|
** its memory structures.
|
|
**
|
|
** The index is removed from the database hash tables but
|
|
** it is not unlinked from the Table that it indexes.
|
|
** Unlinking from the Table must be done by the calling function.
|
|
*/
|
|
static void sqliteDeleteIndex(sqlite *db, Index *p){
|
|
Index *pOld;
|
|
|
|
assert( db!=0 && p->zName!=0 );
|
|
pOld = sqlite3HashInsert(&db->aDb[p->iDb].idxHash, p->zName,
|
|
strlen(p->zName)+1, 0);
|
|
if( pOld!=0 && pOld!=p ){
|
|
sqlite3HashInsert(&db->aDb[p->iDb].idxHash, pOld->zName,
|
|
strlen(pOld->zName)+1, pOld);
|
|
}
|
|
if( p->zColAff ){
|
|
sqliteFree(p->zColAff);
|
|
}
|
|
sqliteFree(p);
|
|
}
|
|
|
|
/*
|
|
** Unlink the given index from its table, then remove
|
|
** the index from the index hash table and free its memory
|
|
** structures.
|
|
*/
|
|
void sqlite3UnlinkAndDeleteIndex(sqlite *db, Index *pIndex){
|
|
if( pIndex->pTable->pIndex==pIndex ){
|
|
pIndex->pTable->pIndex = pIndex->pNext;
|
|
}else{
|
|
Index *p;
|
|
for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
|
|
if( p && p->pNext==pIndex ){
|
|
p->pNext = pIndex->pNext;
|
|
}
|
|
}
|
|
sqliteDeleteIndex(db, pIndex);
|
|
}
|
|
|
|
/*
|
|
** Erase all schema information from the in-memory hash tables of
|
|
** database connection. This routine is called to reclaim memory
|
|
** before the connection closes. It is also called during a rollback
|
|
** if there were schema changes during the transaction.
|
|
**
|
|
** If iDb<=0 then reset the internal schema tables for all database
|
|
** files. If iDb>=2 then reset the internal schema for only the
|
|
** single file indicated.
|
|
*/
|
|
void sqlite3ResetInternalSchema(sqlite *db, int iDb){
|
|
HashElem *pElem;
|
|
Hash temp1;
|
|
Hash temp2;
|
|
int i, j;
|
|
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
db->flags &= ~SQLITE_Initialized;
|
|
for(i=iDb; i<db->nDb; i++){
|
|
Db *pDb = &db->aDb[i];
|
|
temp1 = pDb->tblHash;
|
|
temp2 = pDb->trigHash;
|
|
sqlite3HashInit(&pDb->trigHash, SQLITE_HASH_STRING, 0);
|
|
sqlite3HashClear(&pDb->aFKey);
|
|
sqlite3HashClear(&pDb->idxHash);
|
|
for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
|
|
Trigger *pTrigger = sqliteHashData(pElem);
|
|
sqlite3DeleteTrigger(pTrigger);
|
|
}
|
|
sqlite3HashClear(&temp2);
|
|
sqlite3HashInit(&pDb->tblHash, SQLITE_HASH_STRING, 0);
|
|
for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
|
|
Table *pTab = sqliteHashData(pElem);
|
|
sqlite3DeleteTable(db, pTab);
|
|
}
|
|
sqlite3HashClear(&temp1);
|
|
DbClearProperty(db, i, DB_SchemaLoaded);
|
|
if( iDb>0 ) return;
|
|
}
|
|
assert( iDb==0 );
|
|
db->flags &= ~SQLITE_InternChanges;
|
|
|
|
/* If one or more of the auxiliary database files has been closed,
|
|
** then remove then from the auxiliary database list. We take the
|
|
** opportunity to do this here since we have just deleted all of the
|
|
** schema hash tables and therefore do not have to make any changes
|
|
** to any of those tables.
|
|
*/
|
|
for(i=0; i<db->nDb; i++){
|
|
struct Db *pDb = &db->aDb[i];
|
|
if( pDb->pBt==0 ){
|
|
if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
|
|
pDb->pAux = 0;
|
|
}
|
|
}
|
|
for(i=j=2; i<db->nDb; i++){
|
|
struct Db *pDb = &db->aDb[i];
|
|
if( pDb->pBt==0 ){
|
|
sqliteFree(pDb->zName);
|
|
pDb->zName = 0;
|
|
continue;
|
|
}
|
|
if( j<i ){
|
|
db->aDb[j] = db->aDb[i];
|
|
}
|
|
j++;
|
|
}
|
|
memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
|
|
db->nDb = j;
|
|
if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
|
|
memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
|
|
sqliteFree(db->aDb);
|
|
db->aDb = db->aDbStatic;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine is called whenever a rollback occurs. If there were
|
|
** schema changes during the transaction, then we have to reset the
|
|
** internal hash tables and reload them from disk.
|
|
*/
|
|
void sqlite3RollbackInternalChanges(sqlite *db){
|
|
if( db->flags & SQLITE_InternChanges ){
|
|
sqlite3ResetInternalSchema(db, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine is called when a commit occurs.
|
|
*/
|
|
void sqlite3CommitInternalChanges(sqlite *db){
|
|
db->aDb[0].schema_cookie = db->next_cookie;
|
|
db->flags &= ~SQLITE_InternChanges;
|
|
}
|
|
|
|
/*
|
|
** Remove the memory data structures associated with the given
|
|
** Table. No changes are made to disk by this routine.
|
|
**
|
|
** This routine just deletes the data structure. It does not unlink
|
|
** the table data structure from the hash table. Nor does it remove
|
|
** foreign keys from the sqlite.aFKey hash table. But it does destroy
|
|
** memory structures of the indices and foreign keys associated with
|
|
** the table.
|
|
**
|
|
** Indices associated with the table are unlinked from the "db"
|
|
** data structure if db!=NULL. If db==NULL, indices attached to
|
|
** the table are deleted, but it is assumed they have already been
|
|
** unlinked.
|
|
*/
|
|
void sqlite3DeleteTable(sqlite *db, Table *pTable){
|
|
int i;
|
|
Index *pIndex, *pNext;
|
|
FKey *pFKey, *pNextFKey;
|
|
|
|
if( pTable==0 ) return;
|
|
|
|
/* Delete all indices associated with this table
|
|
*/
|
|
for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
|
|
pNext = pIndex->pNext;
|
|
assert( pIndex->iDb==pTable->iDb || (pTable->iDb==0 && pIndex->iDb==1) );
|
|
sqliteDeleteIndex(db, pIndex);
|
|
}
|
|
|
|
/* Delete all foreign keys associated with this table. The keys
|
|
** should have already been unlinked from the db->aFKey hash table
|
|
*/
|
|
for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
|
|
pNextFKey = pFKey->pNextFrom;
|
|
assert( pTable->iDb<db->nDb );
|
|
assert( sqlite3HashFind(&db->aDb[pTable->iDb].aFKey,
|
|
pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
|
|
sqliteFree(pFKey);
|
|
}
|
|
|
|
/* Delete the Table structure itself.
|
|
*/
|
|
for(i=0; i<pTable->nCol; i++){
|
|
sqliteFree(pTable->aCol[i].zName);
|
|
sqliteFree(pTable->aCol[i].zDflt);
|
|
sqliteFree(pTable->aCol[i].zType);
|
|
}
|
|
sqliteFree(pTable->zName);
|
|
sqliteFree(pTable->aCol);
|
|
if( pTable->zColAff ){
|
|
sqliteFree(pTable->zColAff);
|
|
}
|
|
sqlite3SelectDelete(pTable->pSelect);
|
|
sqliteFree(pTable);
|
|
}
|
|
|
|
/*
|
|
** Unlink the given table from the hash tables and the delete the
|
|
** table structure with all its indices and foreign keys.
|
|
*/
|
|
static void sqliteUnlinkAndDeleteTable(sqlite *db, Table *p){
|
|
Table *pOld;
|
|
FKey *pF1, *pF2;
|
|
int i = p->iDb;
|
|
assert( db!=0 );
|
|
pOld = sqlite3HashInsert(&db->aDb[i].tblHash, p->zName, strlen(p->zName)+1, 0);
|
|
assert( pOld==0 || pOld==p );
|
|
for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
|
|
int nTo = strlen(pF1->zTo) + 1;
|
|
pF2 = sqlite3HashFind(&db->aDb[i].aFKey, pF1->zTo, nTo);
|
|
if( pF2==pF1 ){
|
|
sqlite3HashInsert(&db->aDb[i].aFKey, pF1->zTo, nTo, pF1->pNextTo);
|
|
}else{
|
|
while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
|
|
if( pF2 ){
|
|
pF2->pNextTo = pF1->pNextTo;
|
|
}
|
|
}
|
|
}
|
|
sqlite3DeleteTable(db, p);
|
|
}
|
|
|
|
/*
|
|
** Construct the name of a user table or index from a token.
|
|
**
|
|
** Space to hold the name is obtained from sqliteMalloc() and must
|
|
** be freed by the calling function.
|
|
*/
|
|
char *sqlite3TableNameFromToken(Token *pName){
|
|
char *zName = sqliteStrNDup(pName->z, pName->n);
|
|
sqlite3Dequote(zName);
|
|
return zName;
|
|
}
|
|
|
|
/*
|
|
** Open the sqlite_master table stored in database number iDb for
|
|
** writing. The table is opened using cursor 0.
|
|
*/
|
|
void sqlite3OpenMasterTable(Vdbe *v, int iDb){
|
|
sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
|
|
sqlite3VdbeAddOp(v, OP_OpenWrite, 0, MASTER_ROOT);
|
|
sqlite3VdbeAddOp(v, OP_SetNumColumns, 0, 5); /* sqlite_master has 5 columns */
|
|
}
|
|
|
|
/*
|
|
** The token *pName contains the name of a database (either "main" or
|
|
** "temp" or the name of an attached db). This routine returns the
|
|
** index of the named database in db->aDb[], or -1 if the named db
|
|
** does not exist.
|
|
*/
|
|
int findDb(sqlite3 *db, Token *pName){
|
|
int i;
|
|
for(i=0; i<db->nDb; i++){
|
|
if( pName->n==strlen(db->aDb[i].zName) &&
|
|
0==sqlite3StrNICmp(db->aDb[i].zName, pName->z, pName->n) ){
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int sqlite3TwoPartName(
|
|
Parse *pParse,
|
|
Token *pName1,
|
|
Token *pName2,
|
|
Token **pUnqual
|
|
){
|
|
int iDb;
|
|
sqlite3 *db = pParse->db;
|
|
|
|
if( pName2 && pName2->n>0 ){
|
|
assert( !db->init.busy );
|
|
*pUnqual = pName2;
|
|
iDb = findDb(db, pName1);
|
|
if( iDb<0 ){
|
|
sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
|
|
pParse->nErr++;
|
|
return -1;
|
|
}
|
|
}else{
|
|
assert( db->init.iDb==0 || db->init.busy );
|
|
iDb = db->init.iDb;
|
|
*pUnqual = pName1;
|
|
}
|
|
return iDb;
|
|
}
|
|
|
|
/*
|
|
** This routine is used to check if the UTF-8 string zName is a legal
|
|
** unqualified name for a new schema object (table, index, view or
|
|
** trigger). All names are legal except those that begin with the string
|
|
** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
|
|
** is reserved for internal use.
|
|
*/
|
|
int sqlite3CheckObjectName(Parse *pParse, const char *zName){
|
|
if( !pParse->db->init.busy && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
|
|
sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
|
|
return SQLITE_ERROR;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Begin constructing a new table representation in memory. This is
|
|
** the first of several action routines that get called in response
|
|
** to a CREATE TABLE statement. In particular, this routine is called
|
|
** after seeing tokens "CREATE" and "TABLE" and the table name. The
|
|
** pStart token is the CREATE and pName is the table name. The isTemp
|
|
** flag is true if the table should be stored in the auxiliary database
|
|
** file instead of in the main database file. This is normally the case
|
|
** when the "TEMP" or "TEMPORARY" keyword occurs in between
|
|
** CREATE and TABLE.
|
|
**
|
|
** The new table record is initialized and put in pParse->pNewTable.
|
|
** As more of the CREATE TABLE statement is parsed, additional action
|
|
** routines will be called to add more information to this record.
|
|
** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
|
|
** is called to complete the construction of the new table record.
|
|
*/
|
|
void sqlite3StartTable(
|
|
Parse *pParse, /* Parser context */
|
|
Token *pStart, /* The "CREATE" token */
|
|
Token *pName1, /* First part of the name of the table or view */
|
|
Token *pName2, /* Second part of the name of the table or view */
|
|
int isTemp, /* True if this is a TEMP table */
|
|
int isView /* True if this is a VIEW */
|
|
){
|
|
Table *pTable;
|
|
Index *pIdx;
|
|
char *zName;
|
|
sqlite *db = pParse->db;
|
|
Vdbe *v;
|
|
int iDb; /* Database number to create the table in */
|
|
Token *pName; /* Unqualified name of the table to create */
|
|
|
|
/* The table or view name to create is passed to this routine via tokens
|
|
** pName1 and pName2. If the table name was fully qualified, for example:
|
|
**
|
|
** CREATE TABLE xxx.yyy (...);
|
|
**
|
|
** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
|
|
** the table name is not fully qualified, i.e.:
|
|
**
|
|
** CREATE TABLE yyy(...);
|
|
**
|
|
** Then pName1 is set to "yyy" and pName2 is "".
|
|
**
|
|
** The call below sets the pName pointer to point at the token (pName1 or
|
|
** pName2) that stores the unqualified table name. The variable iDb is
|
|
** set to the index of the database that the table or view is to be
|
|
** created in.
|
|
*/
|
|
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
|
if( iDb<0 ) return;
|
|
if( isTemp && iDb>1 ){
|
|
/* If creating a temp table, the name may not be qualified */
|
|
sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
|
|
pParse->nErr++;
|
|
return;
|
|
}
|
|
if( isTemp ) iDb = 1;
|
|
|
|
pParse->sNameToken = *pName;
|
|
zName = sqlite3TableNameFromToken(pName);
|
|
if( zName==0 ) return;
|
|
if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
|
|
sqliteFree(zName);
|
|
return;
|
|
}
|
|
if( db->init.iDb==1 ) isTemp = 1;
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
assert( (isTemp & 1)==isTemp );
|
|
{
|
|
int code;
|
|
char *zDb = db->aDb[iDb].zName;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
|
|
sqliteFree(zName);
|
|
return;
|
|
}
|
|
if( isView ){
|
|
if( isTemp ){
|
|
code = SQLITE_CREATE_TEMP_VIEW;
|
|
}else{
|
|
code = SQLITE_CREATE_VIEW;
|
|
}
|
|
}else{
|
|
if( isTemp ){
|
|
code = SQLITE_CREATE_TEMP_TABLE;
|
|
}else{
|
|
code = SQLITE_CREATE_TABLE;
|
|
}
|
|
}
|
|
if( sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
|
|
sqliteFree(zName);
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Before trying to create a temporary table, make sure the Btree for
|
|
** holding temporary tables is open.
|
|
*/
|
|
if( isTemp && db->aDb[1].pBt==0 && !pParse->explain ){
|
|
int rc = sqlite3BtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3ErrorMsg(pParse, "unable to open a temporary database "
|
|
"file for storing temporary tables");
|
|
pParse->nErr++;
|
|
sqliteFree(zName);
|
|
return;
|
|
}
|
|
if( db->flags & !db->autoCommit ){
|
|
rc = sqlite3BtreeBeginTrans(db->aDb[1].pBt, 1, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3ErrorMsg(pParse, "unable to get a write lock on "
|
|
"the temporary database file");
|
|
sqliteFree(zName);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Make sure the new table name does not collide with an existing
|
|
** index or table name in the same database. Issue an error message if
|
|
** it does.
|
|
*/
|
|
pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
|
|
if( pTable ){
|
|
sqlite3ErrorMsg(pParse, "table %T already exists", pName);
|
|
sqliteFree(zName);
|
|
return;
|
|
}
|
|
if( (pIdx = sqlite3FindIndex(db, zName, 0))!=0 &&
|
|
(pIdx->iDb==0 || !db->init.busy) ){
|
|
sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
|
|
sqliteFree(zName);
|
|
return;
|
|
}
|
|
pTable = sqliteMalloc( sizeof(Table) );
|
|
if( pTable==0 ){
|
|
pParse->rc = SQLITE_NOMEM;
|
|
pParse->nErr++;
|
|
sqliteFree(zName);
|
|
return;
|
|
}
|
|
pTable->zName = zName;
|
|
pTable->nCol = 0;
|
|
pTable->aCol = 0;
|
|
pTable->iPKey = -1;
|
|
pTable->pIndex = 0;
|
|
pTable->iDb = iDb;
|
|
if( pParse->pNewTable ) sqlite3DeleteTable(db, pParse->pNewTable);
|
|
pParse->pNewTable = pTable;
|
|
|
|
/* Begin generating the code that will insert the table record into
|
|
** the SQLITE_MASTER table. Note in particular that we must go ahead
|
|
** and allocate the record number for the table entry now. Before any
|
|
** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
|
|
** indices to be created and the table record must come before the
|
|
** indices. Hence, the record number for the table must be allocated
|
|
** now.
|
|
*/
|
|
if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
if( !isTemp ){
|
|
/* Every time a new table is created the file-format
|
|
** and encoding meta-values are set in the database, in
|
|
** case this is the first table created.
|
|
*/
|
|
sqlite3VdbeAddOp(v, OP_Integer, db->file_format, 0);
|
|
sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1);
|
|
sqlite3VdbeAddOp(v, OP_Integer, db->enc, 0);
|
|
sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 4);
|
|
}
|
|
sqlite3OpenMasterTable(v, iDb);
|
|
sqlite3VdbeAddOp(v, OP_NewRecno, 0, 0);
|
|
sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
|
|
sqlite3VdbeAddOp(v, OP_String8, 0, 0);
|
|
sqlite3VdbeAddOp(v, OP_PutIntKey, 0, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Add a new column to the table currently being constructed.
|
|
**
|
|
** The parser calls this routine once for each column declaration
|
|
** in a CREATE TABLE statement. sqlite3StartTable() gets called
|
|
** first to get things going. Then this routine is called for each
|
|
** column.
|
|
*/
|
|
void sqlite3AddColumn(Parse *pParse, Token *pName){
|
|
Table *p;
|
|
int i;
|
|
char *z = 0;
|
|
Column *pCol;
|
|
if( (p = pParse->pNewTable)==0 ) return;
|
|
sqlite3SetNString(&z, pName->z, pName->n, 0);
|
|
if( z==0 ) return;
|
|
sqlite3Dequote(z);
|
|
for(i=0; i<p->nCol; i++){
|
|
if( sqlite3StrICmp(z, p->aCol[i].zName)==0 ){
|
|
sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
|
|
sqliteFree(z);
|
|
return;
|
|
}
|
|
}
|
|
if( (p->nCol & 0x7)==0 ){
|
|
Column *aNew;
|
|
aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0]));
|
|
if( aNew==0 ) return;
|
|
p->aCol = aNew;
|
|
}
|
|
pCol = &p->aCol[p->nCol];
|
|
memset(pCol, 0, sizeof(p->aCol[0]));
|
|
pCol->zName = z;
|
|
|
|
/* If there is no type specified, columns have the default affinity
|
|
** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
|
|
** be called next to set pCol->affinity correctly.
|
|
*/
|
|
pCol->affinity = SQLITE_AFF_NONE;
|
|
pCol->pColl = pParse->db->pDfltColl;
|
|
p->nCol++;
|
|
}
|
|
|
|
/*
|
|
** This routine is called by the parser while in the middle of
|
|
** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
|
|
** been seen on a column. This routine sets the notNull flag on
|
|
** the column currently under construction.
|
|
*/
|
|
void sqlite3AddNotNull(Parse *pParse, int onError){
|
|
Table *p;
|
|
int i;
|
|
if( (p = pParse->pNewTable)==0 ) return;
|
|
i = p->nCol-1;
|
|
if( i>=0 ) p->aCol[i].notNull = onError;
|
|
}
|
|
|
|
/*
|
|
** This routine is called by the parser while in the middle of
|
|
** parsing a CREATE TABLE statement. The pFirst token is the first
|
|
** token in the sequence of tokens that describe the type of the
|
|
** column currently under construction. pLast is the last token
|
|
** in the sequence. Use this information to construct a string
|
|
** that contains the typename of the column and store that string
|
|
** in zType.
|
|
*/
|
|
void sqlite3AddColumnType(Parse *pParse, Token *pFirst, Token *pLast){
|
|
Table *p;
|
|
int i, j;
|
|
int n;
|
|
char *z, **pz;
|
|
Column *pCol;
|
|
if( (p = pParse->pNewTable)==0 ) return;
|
|
i = p->nCol-1;
|
|
if( i<0 ) return;
|
|
pCol = &p->aCol[i];
|
|
pz = &pCol->zType;
|
|
n = pLast->n + Addr(pLast->z) - Addr(pFirst->z);
|
|
sqlite3SetNString(pz, pFirst->z, n, 0);
|
|
z = *pz;
|
|
if( z==0 ) return;
|
|
for(i=j=0; z[i]; i++){
|
|
int c = z[i];
|
|
if( isspace(c) ) continue;
|
|
z[j++] = c;
|
|
}
|
|
z[j] = 0;
|
|
pCol->affinity = sqlite3AffinityType(z, n);
|
|
}
|
|
|
|
/*
|
|
** The given token is the default value for the last column added to
|
|
** the table currently under construction. If "minusFlag" is true, it
|
|
** means the value token was preceded by a minus sign.
|
|
**
|
|
** This routine is called by the parser while in the middle of
|
|
** parsing a CREATE TABLE statement.
|
|
*/
|
|
void sqlite3AddDefaultValue(Parse *pParse, Token *pVal, int minusFlag){
|
|
Table *p;
|
|
int i;
|
|
char **pz;
|
|
if( (p = pParse->pNewTable)==0 ) return;
|
|
i = p->nCol-1;
|
|
if( i<0 ) return;
|
|
pz = &p->aCol[i].zDflt;
|
|
if( minusFlag ){
|
|
sqlite3SetNString(pz, "-", 1, pVal->z, pVal->n, 0);
|
|
}else{
|
|
sqlite3SetNString(pz, pVal->z, pVal->n, 0);
|
|
}
|
|
sqlite3Dequote(*pz);
|
|
}
|
|
|
|
/*
|
|
** Designate the PRIMARY KEY for the table. pList is a list of names
|
|
** of columns that form the primary key. If pList is NULL, then the
|
|
** most recently added column of the table is the primary key.
|
|
**
|
|
** A table can have at most one primary key. If the table already has
|
|
** a primary key (and this is the second primary key) then create an
|
|
** error.
|
|
**
|
|
** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
|
|
** then we will try to use that column as the row id. (Exception:
|
|
** For backwards compatibility with older databases, do not do this
|
|
** if the file format version number is less than 1.) Set the Table.iPKey
|
|
** field of the table under construction to be the index of the
|
|
** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
|
|
** no INTEGER PRIMARY KEY.
|
|
**
|
|
** If the key is not an INTEGER PRIMARY KEY, then create a unique
|
|
** index for the key. No index is created for INTEGER PRIMARY KEYs.
|
|
*/
|
|
void sqlite3AddPrimaryKey(Parse *pParse, ExprList *pList, int onError){
|
|
Table *pTab = pParse->pNewTable;
|
|
char *zType = 0;
|
|
int iCol = -1, i;
|
|
if( pTab==0 ) goto primary_key_exit;
|
|
if( pTab->hasPrimKey ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"table \"%s\" has more than one primary key", pTab->zName);
|
|
goto primary_key_exit;
|
|
}
|
|
pTab->hasPrimKey = 1;
|
|
if( pList==0 ){
|
|
iCol = pTab->nCol - 1;
|
|
pTab->aCol[iCol].isPrimKey = 1;
|
|
}else{
|
|
for(i=0; i<pList->nExpr; i++){
|
|
for(iCol=0; iCol<pTab->nCol; iCol++){
|
|
if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
|
|
break;
|
|
}
|
|
}
|
|
if( iCol<pTab->nCol ) pTab->aCol[iCol].isPrimKey = 1;
|
|
}
|
|
if( pList->nExpr>1 ) iCol = -1;
|
|
}
|
|
if( iCol>=0 && iCol<pTab->nCol ){
|
|
zType = pTab->aCol[iCol].zType;
|
|
}
|
|
if( zType && sqlite3StrICmp(zType, "INTEGER")==0 ){
|
|
pTab->iPKey = iCol;
|
|
pTab->keyConf = onError;
|
|
}else{
|
|
sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0);
|
|
pList = 0;
|
|
}
|
|
|
|
primary_key_exit:
|
|
sqlite3ExprListDelete(pList);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** Set the collation function of the most recently parsed table column
|
|
** to the CollSeq given.
|
|
*/
|
|
void sqlite3AddCollateType(Parse *pParse, const char *zType, int nType){
|
|
Table *p;
|
|
Index *pIdx;
|
|
CollSeq *pColl;
|
|
int i;
|
|
|
|
if( (p = pParse->pNewTable)==0 ) return;
|
|
i = p->nCol-1;
|
|
|
|
pColl = sqlite3LocateCollSeq(pParse, zType, nType);
|
|
p->aCol[i].pColl = pColl;
|
|
|
|
/* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
|
|
** then an index may have been created on this column before the
|
|
** collation type was added. Correct this if it is the case.
|
|
*/
|
|
for(pIdx = p->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
assert( pIdx->nColumn==1 );
|
|
if( pIdx->aiColumn[0]==i ) pIdx->keyInfo.aColl[0] = pColl;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Locate and return an entry from the db.aCollSeq hash table. If the entry
|
|
** specified by zName and nName is not found and parameter 'create' is
|
|
** true, then create a new entry. Otherwise return NULL.
|
|
**
|
|
** Each pointer stored in the sqlite3.aCollSeq hash table contains an
|
|
** array of three CollSeq structures. The first is the collation sequence
|
|
** prefferred for UTF-8, the second UTF-16le, and the third UTF-16be.
|
|
**
|
|
** Stored immediately after the three collation sequences is a copy of
|
|
** the collation sequence name. A pointer to this string is stored in
|
|
** each collation sequence structure.
|
|
*/
|
|
static CollSeq * findCollSeqEntry(
|
|
sqlite *db,
|
|
const char *zName,
|
|
int nName,
|
|
int create
|
|
){
|
|
CollSeq *pColl;
|
|
if( nName<0 ) nName = strlen(zName);
|
|
pColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
|
|
|
|
if( 0==pColl && create ){
|
|
pColl = sqliteMalloc( 3*sizeof(*pColl) + nName + 1 );
|
|
if( pColl ){
|
|
pColl[0].zName = (char*)&pColl[3];
|
|
pColl[0].enc = SQLITE_UTF8;
|
|
pColl[1].zName = (char*)&pColl[3];
|
|
pColl[1].enc = SQLITE_UTF16LE;
|
|
pColl[2].zName = (char*)&pColl[3];
|
|
pColl[2].enc = SQLITE_UTF16BE;
|
|
memcpy(pColl[0].zName, zName, nName);
|
|
pColl[0].zName[nName] = 0;
|
|
sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, nName, pColl);
|
|
}
|
|
}
|
|
return pColl;
|
|
}
|
|
|
|
/*
|
|
** Parameter zName points to a UTF-8 encoded string nName bytes long.
|
|
** Return the CollSeq* pointer for the collation sequence named zName
|
|
** for the encoding 'enc' from the database 'db'.
|
|
**
|
|
** If the entry specified is not found and 'create' is true, then create a
|
|
** new entry. Otherwise return NULL.
|
|
*/
|
|
CollSeq *sqlite3FindCollSeq(
|
|
sqlite *db,
|
|
u8 enc,
|
|
const char *zName,
|
|
int nName,
|
|
int create
|
|
){
|
|
CollSeq *pColl = findCollSeqEntry(db, zName, nName, create);
|
|
if( pColl ) switch( enc ){
|
|
case SQLITE_UTF8:
|
|
break;
|
|
case SQLITE_UTF16LE:
|
|
pColl = &pColl[1];
|
|
break;
|
|
case SQLITE_UTF16BE:
|
|
pColl = &pColl[2];
|
|
break;
|
|
default:
|
|
assert(!"Cannot happen");
|
|
}
|
|
return pColl;
|
|
}
|
|
|
|
static void callCollNeeded(sqlite *db, const char *zName, int nName){
|
|
/* No collation sequence of this type for this encoding is registered.
|
|
** Call the collation factory to see if it can supply us with one.
|
|
*/
|
|
char const *zExternal = 0;
|
|
assert( !db->xCollNeeded || !db->xCollNeeded16 );
|
|
if( nName<0 ) nName = strlen(zName);
|
|
if( db->xCollNeeded ){
|
|
zExternal = sqliteStrNDup(zName, nName);
|
|
if( !zExternal ) return;
|
|
db->xCollNeeded(db->pCollNeededArg, db, (int)db->enc, zExternal);
|
|
}
|
|
if( db->xCollNeeded16 ){
|
|
sqlite3_value *pTmp = sqlite3GetTransientValue(db);
|
|
sqlite3ValueSetStr(pTmp, -1, zName, SQLITE_UTF8, SQLITE_STATIC);
|
|
zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE);
|
|
if( !zExternal ) return;
|
|
db->xCollNeeded16(db->pCollNeededArg, db, (int)db->enc, zExternal);
|
|
}
|
|
}
|
|
|
|
static int synthCollSeq(Parse *pParse, CollSeq *pColl){
|
|
/* The collation factory failed to deliver a function but there may be
|
|
** other versions of this collation function (for other text encodings)
|
|
** available. Use one of these instead. Avoid a UTF-8 <-> UTF-16
|
|
** conversion if possible.
|
|
*/
|
|
CollSeq *pColl2 = 0;
|
|
char *z = pColl->zName;
|
|
int n = strlen(z);
|
|
switch( pParse->db->enc ){
|
|
case SQLITE_UTF16LE:
|
|
pColl2 = sqlite3FindCollSeq(pParse->db, SQLITE_UTF16BE, z, n, 0);
|
|
assert( pColl2 );
|
|
if( pColl2->xCmp ) break;
|
|
pColl2 = sqlite3FindCollSeq(pParse->db, SQLITE_UTF8, z, n, 0);
|
|
assert( pColl2 );
|
|
break;
|
|
|
|
case SQLITE_UTF16BE:
|
|
pColl2 = sqlite3FindCollSeq(pParse->db,SQLITE_UTF16LE, z, n, 0);
|
|
assert( pColl2 );
|
|
if( pColl2->xCmp ) break;
|
|
pColl2 = sqlite3FindCollSeq(pParse->db,SQLITE_UTF8, z, n, 0);
|
|
assert( pColl2 );
|
|
break;
|
|
|
|
case SQLITE_UTF8:
|
|
pColl2 = sqlite3FindCollSeq(pParse->db,SQLITE_UTF16BE, z, n, 0);
|
|
assert( pColl2 );
|
|
if( pColl2->xCmp ) break;
|
|
pColl2 = sqlite3FindCollSeq(pParse->db,SQLITE_UTF16LE, z, n, 0);
|
|
assert( pColl2 );
|
|
break;
|
|
}
|
|
if( pColl2->xCmp ){
|
|
memcpy(pColl, pColl2, sizeof(CollSeq));
|
|
}else{
|
|
if( pParse->nErr==0 ){
|
|
sqlite3SetNString(&pParse->zErrMsg, "no such collation sequence: ",
|
|
-1, z, n, 0);
|
|
}
|
|
pParse->nErr++;
|
|
return SQLITE_ERROR;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** This routine is called on a collation sequence before it is used to
|
|
** check that it is defined. An undefined collation sequence exists when
|
|
** a database is loaded that contains references to collation sequences
|
|
** that have not been defined by sqlite3_create_collation() etc.
|
|
**
|
|
** If required, this routine calls the 'collation needed' callback to
|
|
** request a definition of the collating sequence. If this doesn't work,
|
|
** an equivalent collating sequence that uses a text encoding different
|
|
** from the main database is substituted, if one is available.
|
|
*/
|
|
int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){
|
|
if( pColl && !pColl->xCmp ){
|
|
callCollNeeded(pParse->db, pColl->zName, strlen(pColl->zName));
|
|
if( !pColl->xCmp && synthCollSeq(pParse, pColl) ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
int sqlite3CheckIndexCollSeq(Parse *pParse, Index *pIdx){
|
|
if( pIdx ){
|
|
int i;
|
|
for(i=0; i<pIdx->nColumn; i++){
|
|
if( sqlite3CheckCollSeq(pParse, pIdx->keyInfo.aColl[i]) ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
}
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** This function returns the collation sequence for database native text
|
|
** encoding identified by the string zName, length nName.
|
|
**
|
|
** If the requested collation sequence is not available, or not available
|
|
** in the database native encoding, the collation factory is invoked to
|
|
** request it. If the collation factory does not supply such a sequence,
|
|
** and the sequence is available in another text encoding, then that is
|
|
** returned instead.
|
|
**
|
|
** If no versions of the requested collations sequence are available, or
|
|
** another error occurs, NULL is returned and an error message written into
|
|
** pParse.
|
|
*/
|
|
CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){
|
|
u8 enc = pParse->db->enc;
|
|
u8 initbusy = pParse->db->init.busy;
|
|
CollSeq *pColl = sqlite3FindCollSeq(pParse->db, enc, zName, nName, initbusy);
|
|
if( !initbusy && (!pColl || !pColl->xCmp) ){
|
|
/* No collation sequence of this type for this encoding is registered.
|
|
** Call the collation factory to see if it can supply us with one.
|
|
*/
|
|
callCollNeeded(pParse->db, zName, nName);
|
|
pColl = sqlite3FindCollSeq(pParse->db, enc, zName, nName, 0);
|
|
if( pColl && !pColl->xCmp ){
|
|
/* There may be a version of the collation sequence that requires
|
|
** translation between encodings. Search for it with synthCollSeq().
|
|
*/
|
|
if( synthCollSeq(pParse, pColl) ){
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If nothing has been found, write the error message into pParse */
|
|
if( !initbusy && (!pColl || !pColl->xCmp) ){
|
|
if( pParse->nErr==0 ){
|
|
sqlite3SetNString(&pParse->zErrMsg, "no such collation sequence: ", -1,
|
|
zName, nName, 0);
|
|
}
|
|
pParse->nErr++;
|
|
pColl = 0;
|
|
}
|
|
return pColl;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
** Scan the column type name zType (length nType) and return the
|
|
** associated affinity type.
|
|
*/
|
|
char sqlite3AffinityType(const char *zType, int nType){
|
|
int n, i;
|
|
struct {
|
|
const char *zSub; /* Keywords substring to search for */
|
|
int nSub; /* length of zSub */
|
|
char affinity; /* Affinity to return if it matches */
|
|
} substrings[] = {
|
|
{"INT", 3, SQLITE_AFF_INTEGER},
|
|
{"CHAR", 4, SQLITE_AFF_TEXT},
|
|
{"CLOB", 4, SQLITE_AFF_TEXT},
|
|
{"TEXT", 4, SQLITE_AFF_TEXT},
|
|
{"BLOB", 4, SQLITE_AFF_NONE},
|
|
};
|
|
|
|
if( nType==0 ){
|
|
return SQLITE_AFF_NONE;
|
|
}
|
|
for(i=0; i<sizeof(substrings)/sizeof(substrings[0]); i++){
|
|
int c1 = substrings[i].zSub[0];
|
|
int c2 = tolower(c1);
|
|
int limit = nType - substrings[i].nSub;
|
|
const char *z = substrings[i].zSub;
|
|
for(n=0; n<=limit; n++){
|
|
int c = zType[n];
|
|
if( (c==c1 || c==c2)
|
|
&& 0==sqlite3StrNICmp(&zType[n], z, substrings[i].nSub) ){
|
|
return substrings[i].affinity;
|
|
}
|
|
}
|
|
}
|
|
return SQLITE_AFF_NUMERIC;
|
|
}
|
|
|
|
/*
|
|
** Come up with a new random value for the schema cookie. Make sure
|
|
** the new value is different from the old.
|
|
**
|
|
** The schema cookie is used to determine when the schema for the
|
|
** database changes. After each schema change, the cookie value
|
|
** changes. When a process first reads the schema it records the
|
|
** cookie. Thereafter, whenever it goes to access the database,
|
|
** it checks the cookie to make sure the schema has not changed
|
|
** since it was last read.
|
|
**
|
|
** This plan is not completely bullet-proof. It is possible for
|
|
** the schema to change multiple times and for the cookie to be
|
|
** set back to prior value. But schema changes are infrequent
|
|
** and the probability of hitting the same cookie value is only
|
|
** 1 chance in 2^32. So we're safe enough.
|
|
*/
|
|
void sqlite3ChangeCookie(sqlite *db, Vdbe *v, int iDb){
|
|
unsigned char r;
|
|
int *pSchemaCookie = &(db->aDb[iDb].schema_cookie);
|
|
|
|
sqlite3Randomness(1, &r);
|
|
*pSchemaCookie = *pSchemaCookie + r + 1;
|
|
db->flags |= SQLITE_InternChanges;
|
|
sqlite3VdbeAddOp(v, OP_Integer, *pSchemaCookie, 0);
|
|
sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 0);
|
|
}
|
|
|
|
/*
|
|
** Measure the number of characters needed to output the given
|
|
** identifier. The number returned includes any quotes used
|
|
** but does not include the null terminator.
|
|
*/
|
|
static int identLength(const char *z){
|
|
int n;
|
|
int needQuote = 0;
|
|
for(n=0; *z; n++, z++){
|
|
if( *z=='\'' ){ n++; needQuote=1; }
|
|
}
|
|
return n + needQuote*2;
|
|
}
|
|
|
|
/*
|
|
** Write an identifier onto the end of the given string. Add
|
|
** quote characters as needed.
|
|
*/
|
|
static void identPut(char *z, int *pIdx, char *zIdent){
|
|
int i, j, needQuote;
|
|
i = *pIdx;
|
|
for(j=0; zIdent[j]; j++){
|
|
if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
|
|
}
|
|
needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
|
|
|| sqlite3KeywordCode(zIdent, j)!=TK_ID;
|
|
if( needQuote ) z[i++] = '\'';
|
|
for(j=0; zIdent[j]; j++){
|
|
z[i++] = zIdent[j];
|
|
if( zIdent[j]=='\'' ) z[i++] = '\'';
|
|
}
|
|
if( needQuote ) z[i++] = '\'';
|
|
z[i] = 0;
|
|
*pIdx = i;
|
|
}
|
|
|
|
/*
|
|
** Generate a CREATE TABLE statement appropriate for the given
|
|
** table. Memory to hold the text of the statement is obtained
|
|
** from sqliteMalloc() and must be freed by the calling function.
|
|
*/
|
|
static char *createTableStmt(Table *p){
|
|
int i, k, n;
|
|
char *zStmt;
|
|
char *zSep, *zSep2, *zEnd;
|
|
n = 0;
|
|
for(i=0; i<p->nCol; i++){
|
|
n += identLength(p->aCol[i].zName);
|
|
if( p->aCol[i].zType ){
|
|
n += (strlen(p->aCol[i].zType) + 1);
|
|
}
|
|
}
|
|
n += identLength(p->zName);
|
|
if( n<40 ){
|
|
zSep = "";
|
|
zSep2 = ",";
|
|
zEnd = ")";
|
|
}else{
|
|
zSep = "\n ";
|
|
zSep2 = ",\n ";
|
|
zEnd = "\n)";
|
|
}
|
|
n += 35 + 6*p->nCol;
|
|
zStmt = sqliteMallocRaw( n );
|
|
if( zStmt==0 ) return 0;
|
|
strcpy(zStmt, p->iDb==1 ? "CREATE TEMP TABLE " : "CREATE TABLE ");
|
|
k = strlen(zStmt);
|
|
identPut(zStmt, &k, p->zName);
|
|
zStmt[k++] = '(';
|
|
for(i=0; i<p->nCol; i++){
|
|
strcpy(&zStmt[k], zSep);
|
|
k += strlen(&zStmt[k]);
|
|
zSep = zSep2;
|
|
identPut(zStmt, &k, p->aCol[i].zName);
|
|
if( p->aCol[i].zType ){
|
|
zStmt[k++] = ' ';
|
|
strcpy(&zStmt[k], p->aCol[i].zType);
|
|
k += strlen(p->aCol[i].zType);
|
|
}
|
|
}
|
|
strcpy(&zStmt[k], zEnd);
|
|
return zStmt;
|
|
}
|
|
|
|
/*
|
|
** This routine is called to report the final ")" that terminates
|
|
** a CREATE TABLE statement.
|
|
**
|
|
** The table structure that other action routines have been building
|
|
** is added to the internal hash tables, assuming no errors have
|
|
** occurred.
|
|
**
|
|
** An entry for the table is made in the master table on disk, unless
|
|
** this is a temporary table or db->init.busy==1. When db->init.busy==1
|
|
** it means we are reading the sqlite_master table because we just
|
|
** connected to the database or because the sqlite_master table has
|
|
** recently changes, so the entry for this table already exists in
|
|
** the sqlite_master table. We do not want to create it again.
|
|
**
|
|
** If the pSelect argument is not NULL, it means that this routine
|
|
** was called to create a table generated from a
|
|
** "CREATE TABLE ... AS SELECT ..." statement. The column names of
|
|
** the new table will match the result set of the SELECT.
|
|
*/
|
|
void sqlite3EndTable(Parse *pParse, Token *pEnd, Select *pSelect){
|
|
Table *p;
|
|
sqlite *db = pParse->db;
|
|
|
|
if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite3_malloc_failed ) return;
|
|
p = pParse->pNewTable;
|
|
if( p==0 ) return;
|
|
|
|
assert( !db->init.busy || !pSelect );
|
|
|
|
/* If the table is generated from a SELECT, then construct the
|
|
** list of columns and the text of the table.
|
|
*/
|
|
if( pSelect ){
|
|
}
|
|
|
|
/* If the db->init.busy is 1 it means we are reading the SQL off the
|
|
** "sqlite_master" or "sqlite_temp_master" table on the disk.
|
|
** So do not write to the disk again. Extract the root page number
|
|
** for the table from the db->init.newTnum field. (The page number
|
|
** should have been put there by the sqliteOpenCb routine.)
|
|
*/
|
|
if( db->init.busy ){
|
|
p->tnum = db->init.newTnum;
|
|
}
|
|
|
|
/* If not initializing, then create a record for the new table
|
|
** in the SQLITE_MASTER table of the database. The record number
|
|
** for the new table entry should already be on the stack.
|
|
**
|
|
** If this is a TEMPORARY table, write the entry into the auxiliary
|
|
** file instead of into the main database file.
|
|
*/
|
|
if( !db->init.busy ){
|
|
int n;
|
|
Vdbe *v;
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) return;
|
|
|
|
if( p->pSelect==0 ){
|
|
/* A regular table */
|
|
sqlite3VdbeOp3(v, OP_CreateTable, 0, p->iDb, (char*)&p->tnum, P3_POINTER);
|
|
}else{
|
|
/* A view */
|
|
sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
|
|
}
|
|
p->tnum = 0;
|
|
|
|
sqlite3VdbeAddOp(v, OP_Close, 0, 0);
|
|
|
|
/* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
|
|
** statement to populate the new table. The root-page number for the
|
|
** new table is on the top of the vdbe stack.
|
|
**
|
|
** Once the SELECT has been coded by sqlite3Select(), it is in a
|
|
** suitable state to query for the column names and types to be used
|
|
** by the new table.
|
|
*/
|
|
if( pSelect ){
|
|
Table *pSelTab;
|
|
sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
|
|
sqlite3VdbeAddOp(v, OP_Integer, p->iDb, 0);
|
|
sqlite3VdbeAddOp(v, OP_OpenWrite, 1, 0);
|
|
pParse->nTab = 2;
|
|
sqlite3Select(pParse, pSelect, SRT_Table, 1, 0, 0, 0, 0);
|
|
sqlite3VdbeAddOp(v, OP_Close, 1, 0);
|
|
if( pParse->nErr==0 ){
|
|
pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
|
|
if( pSelTab==0 ) return;
|
|
assert( p->aCol==0 );
|
|
p->nCol = pSelTab->nCol;
|
|
p->aCol = pSelTab->aCol;
|
|
pSelTab->nCol = 0;
|
|
pSelTab->aCol = 0;
|
|
sqlite3DeleteTable(0, pSelTab);
|
|
}
|
|
}
|
|
|
|
sqlite3OpenMasterTable(v, p->iDb);
|
|
|
|
sqlite3VdbeOp3(v, OP_String8, 0, 0, p->pSelect==0?"table":"view",P3_STATIC);
|
|
sqlite3VdbeOp3(v, OP_String8, 0, 0, p->zName, 0);
|
|
sqlite3VdbeOp3(v, OP_String8, 0, 0, p->zName, 0);
|
|
sqlite3VdbeAddOp(v, OP_Pull, 3, 0);
|
|
|
|
if( pSelect ){
|
|
char *z = createTableStmt(p);
|
|
n = z ? strlen(z) : 0;
|
|
sqlite3VdbeAddOp(v, OP_String8, 0, 0);
|
|
sqlite3VdbeChangeP3(v, -1, z, n);
|
|
sqliteFree(z);
|
|
}else{
|
|
if( p->pSelect ){
|
|
sqlite3VdbeOp3(v, OP_String8, 0, 0, "CREATE VIEW ", P3_STATIC);
|
|
}else{
|
|
sqlite3VdbeOp3(v, OP_String8, 0, 0, "CREATE TABLE ", P3_STATIC);
|
|
}
|
|
assert( pEnd!=0 );
|
|
n = Addr(pEnd->z) - Addr(pParse->sNameToken.z) + 1;
|
|
sqlite3VdbeAddOp(v, OP_String8, 0, 0);
|
|
sqlite3VdbeChangeP3(v, -1, pParse->sNameToken.z, n);
|
|
sqlite3VdbeAddOp(v, OP_Concat, 2, 0);
|
|
}
|
|
sqlite3VdbeOp3(v, OP_MakeRecord, 5, 0, "tttit", P3_STATIC);
|
|
sqlite3VdbeAddOp(v, OP_PutIntKey, 0, 0);
|
|
if( p->iDb!=1 ){
|
|
sqlite3ChangeCookie(db, v, p->iDb);
|
|
}
|
|
sqlite3VdbeAddOp(v, OP_Close, 0, 0);
|
|
|
|
sqlite3EndWriteOperation(pParse);
|
|
}
|
|
|
|
/* Add the table to the in-memory representation of the database.
|
|
*/
|
|
if( pParse->explain==0 && pParse->nErr==0 ){
|
|
Table *pOld;
|
|
FKey *pFKey;
|
|
pOld = sqlite3HashInsert(&db->aDb[p->iDb].tblHash,
|
|
p->zName, strlen(p->zName)+1, p);
|
|
if( pOld ){
|
|
assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
|
|
return;
|
|
}
|
|
for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
|
|
int nTo = strlen(pFKey->zTo) + 1;
|
|
pFKey->pNextTo = sqlite3HashFind(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo);
|
|
sqlite3HashInsert(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo, pFKey);
|
|
}
|
|
pParse->pNewTable = 0;
|
|
db->nTable++;
|
|
db->flags |= SQLITE_InternChanges;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The parser calls this routine in order to create a new VIEW
|
|
*/
|
|
void sqlite3CreateView(
|
|
Parse *pParse, /* The parsing context */
|
|
Token *pBegin, /* The CREATE token that begins the statement */
|
|
Token *pName1, /* The token that holds the name of the view */
|
|
Token *pName2, /* The token that holds the name of the view */
|
|
Select *pSelect, /* A SELECT statement that will become the new view */
|
|
int isTemp /* TRUE for a TEMPORARY view */
|
|
){
|
|
Table *p;
|
|
int n;
|
|
const char *z;
|
|
Token sEnd;
|
|
DbFixer sFix;
|
|
Token *pName;
|
|
|
|
sqlite3StartTable(pParse, pBegin, pName1, pName2, isTemp, 1);
|
|
p = pParse->pNewTable;
|
|
if( p==0 || pParse->nErr ){
|
|
sqlite3SelectDelete(pSelect);
|
|
return;
|
|
}
|
|
sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
|
if( sqlite3FixInit(&sFix, pParse, p->iDb, "view", pName)
|
|
&& sqlite3FixSelect(&sFix, pSelect)
|
|
){
|
|
sqlite3SelectDelete(pSelect);
|
|
return;
|
|
}
|
|
|
|
/* Make a copy of the entire SELECT statement that defines the view.
|
|
** This will force all the Expr.token.z values to be dynamically
|
|
** allocated rather than point to the input string - which means that
|
|
** they will persist after the current sqlite3_exec() call returns.
|
|
*/
|
|
p->pSelect = sqlite3SelectDup(pSelect);
|
|
sqlite3SelectDelete(pSelect);
|
|
if( !pParse->db->init.busy ){
|
|
sqlite3ViewGetColumnNames(pParse, p);
|
|
}
|
|
|
|
/* Locate the end of the CREATE VIEW statement. Make sEnd point to
|
|
** the end.
|
|
*/
|
|
sEnd = pParse->sLastToken;
|
|
if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
|
|
sEnd.z += sEnd.n;
|
|
}
|
|
sEnd.n = 0;
|
|
n = ((int)sEnd.z) - (int)pBegin->z;
|
|
z = pBegin->z;
|
|
while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
|
|
sEnd.z = &z[n-1];
|
|
sEnd.n = 1;
|
|
|
|
/* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
|
|
sqlite3EndTable(pParse, &sEnd, 0);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** The Table structure pTable is really a VIEW. Fill in the names of
|
|
** the columns of the view in the pTable structure. Return the number
|
|
** of errors. If an error is seen leave an error message in pParse->zErrMsg.
|
|
*/
|
|
int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
|
|
ExprList *pEList;
|
|
Select *pSel;
|
|
Table *pSelTab;
|
|
int nErr = 0;
|
|
|
|
assert( pTable );
|
|
|
|
/* A positive nCol means the columns names for this view are
|
|
** already known.
|
|
*/
|
|
if( pTable->nCol>0 ) return 0;
|
|
|
|
/* A negative nCol is a special marker meaning that we are currently
|
|
** trying to compute the column names. If we enter this routine with
|
|
** a negative nCol, it means two or more views form a loop, like this:
|
|
**
|
|
** CREATE VIEW one AS SELECT * FROM two;
|
|
** CREATE VIEW two AS SELECT * FROM one;
|
|
**
|
|
** Actually, this error is caught previously and so the following test
|
|
** should always fail. But we will leave it in place just to be safe.
|
|
*/
|
|
if( pTable->nCol<0 ){
|
|
sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
|
|
return 1;
|
|
}
|
|
|
|
/* If we get this far, it means we need to compute the table names.
|
|
*/
|
|
assert( pTable->pSelect ); /* If nCol==0, then pTable must be a VIEW */
|
|
pSel = pTable->pSelect;
|
|
|
|
/* Note that the call to sqlite3ResultSetOfSelect() will expand any
|
|
** "*" elements in this list. But we will need to restore the list
|
|
** back to its original configuration afterwards, so we save a copy of
|
|
** the original in pEList.
|
|
*/
|
|
pEList = pSel->pEList;
|
|
pSel->pEList = sqlite3ExprListDup(pEList);
|
|
if( pSel->pEList==0 ){
|
|
pSel->pEList = pEList;
|
|
return 1; /* Malloc failed */
|
|
}
|
|
pTable->nCol = -1;
|
|
pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
|
|
if( pSelTab ){
|
|
assert( pTable->aCol==0 );
|
|
pTable->nCol = pSelTab->nCol;
|
|
pTable->aCol = pSelTab->aCol;
|
|
pSelTab->nCol = 0;
|
|
pSelTab->aCol = 0;
|
|
sqlite3DeleteTable(0, pSelTab);
|
|
DbSetProperty(pParse->db, pTable->iDb, DB_UnresetViews);
|
|
}else{
|
|
pTable->nCol = 0;
|
|
nErr++;
|
|
}
|
|
sqlite3SelectUnbind(pSel);
|
|
sqlite3ExprListDelete(pSel->pEList);
|
|
pSel->pEList = pEList;
|
|
return nErr;
|
|
}
|
|
|
|
/*
|
|
** Clear the column names from the VIEW pTable.
|
|
**
|
|
** This routine is called whenever any other table or view is modified.
|
|
** The view passed into this routine might depend directly or indirectly
|
|
** on the modified or deleted table so we need to clear the old column
|
|
** names so that they will be recomputed.
|
|
*/
|
|
static void sqliteViewResetColumnNames(Table *pTable){
|
|
int i;
|
|
Column *pCol;
|
|
assert( pTable!=0 && pTable->pSelect!=0 );
|
|
for(i=0, pCol=pTable->aCol; i<pTable->nCol; i++, pCol++){
|
|
sqliteFree(pCol->zName);
|
|
sqliteFree(pCol->zDflt);
|
|
sqliteFree(pCol->zType);
|
|
}
|
|
sqliteFree(pTable->aCol);
|
|
pTable->aCol = 0;
|
|
pTable->nCol = 0;
|
|
}
|
|
|
|
/*
|
|
** Clear the column names from every VIEW in database idx.
|
|
*/
|
|
static void sqliteViewResetAll(sqlite *db, int idx){
|
|
HashElem *i;
|
|
if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
|
|
for(i=sqliteHashFirst(&db->aDb[idx].tblHash); i; i=sqliteHashNext(i)){
|
|
Table *pTab = sqliteHashData(i);
|
|
if( pTab->pSelect ){
|
|
sqliteViewResetColumnNames(pTab);
|
|
}
|
|
}
|
|
DbClearProperty(db, idx, DB_UnresetViews);
|
|
}
|
|
|
|
/*
|
|
** Given a token, look up a table with that name. If not found, leave
|
|
** an error for the parser to find and return NULL.
|
|
*/
|
|
Table *sqlite3TableFromToken(Parse *pParse, Token *pTok){
|
|
char *zName;
|
|
Table *pTab;
|
|
zName = sqlite3TableNameFromToken(pTok);
|
|
if( zName==0 ) return 0;
|
|
pTab = sqlite3FindTable(pParse->db, zName, 0);
|
|
sqliteFree(zName);
|
|
if( pTab==0 ){
|
|
sqlite3ErrorMsg(pParse, "no such table: %T", pTok);
|
|
pParse->checkSchema = 1;
|
|
}
|
|
return pTab;
|
|
}
|
|
|
|
/*
|
|
** This routine is called to do the work of a DROP TABLE statement.
|
|
** pName is the name of the table to be dropped.
|
|
*/
|
|
void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView){
|
|
Table *pTab;
|
|
Vdbe *v;
|
|
int base;
|
|
sqlite *db = pParse->db;
|
|
int iDb;
|
|
|
|
if( pParse->nErr || sqlite3_malloc_failed ) goto exit_drop_table;
|
|
assert( pName->nSrc==1 );
|
|
pTab = sqlite3LocateTable(pParse, pName->a[0].zName, pName->a[0].zDatabase);
|
|
|
|
if( pTab==0 ) goto exit_drop_table;
|
|
iDb = pTab->iDb;
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
{
|
|
int code;
|
|
const char *zTab = SCHEMA_TABLE(pTab->iDb);
|
|
const char *zDb = db->aDb[pTab->iDb].zName;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
|
|
goto exit_drop_table;
|
|
}
|
|
if( isView ){
|
|
if( iDb==1 ){
|
|
code = SQLITE_DROP_TEMP_VIEW;
|
|
}else{
|
|
code = SQLITE_DROP_VIEW;
|
|
}
|
|
}else{
|
|
if( iDb==1 ){
|
|
code = SQLITE_DROP_TEMP_TABLE;
|
|
}else{
|
|
code = SQLITE_DROP_TABLE;
|
|
}
|
|
}
|
|
if( sqlite3AuthCheck(pParse, code, pTab->zName, 0, zDb) ){
|
|
goto exit_drop_table;
|
|
}
|
|
if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
|
|
goto exit_drop_table;
|
|
}
|
|
}
|
|
#endif
|
|
if( pTab->readOnly ){
|
|
sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
|
|
pParse->nErr++;
|
|
goto exit_drop_table;
|
|
}
|
|
if( isView && pTab->pSelect==0 ){
|
|
sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
|
|
goto exit_drop_table;
|
|
}
|
|
if( !isView && pTab->pSelect ){
|
|
sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
|
|
goto exit_drop_table;
|
|
}
|
|
|
|
/* Generate code to remove the table from the master table
|
|
** on disk.
|
|
*/
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
static VdbeOpList dropTable[] = {
|
|
{ OP_Rewind, 0, ADDR(13), 0},
|
|
{ OP_String8, 0, 0, 0}, /* 1 */
|
|
{ OP_MemStore, 1, 1, 0},
|
|
{ OP_MemLoad, 1, 0, 0}, /* 3 */
|
|
{ OP_Column, 0, 2, 0}, /* sqlite_master.tbl_name */
|
|
{ OP_Ne, 0, ADDR(12), 0},
|
|
{ OP_String8, 0, 0, "trigger"},
|
|
{ OP_Column, 0, 2, 0}, /* sqlite_master.type */
|
|
{ OP_Eq, 0, ADDR(12), 0},
|
|
{ OP_Delete, 0, 0, 0},
|
|
{ OP_Rewind, 0, ADDR(13), 0},
|
|
{ OP_Goto, 0, ADDR(3), 0},
|
|
{ OP_Next, 0, ADDR(3), 0}, /* 12 */
|
|
};
|
|
Index *pIdx;
|
|
Trigger *pTrigger;
|
|
sqlite3BeginWriteOperation(pParse, 0, pTab->iDb);
|
|
|
|
/* Drop all triggers associated with the table being dropped. Code
|
|
** is generated to remove entries from sqlite_master and/or
|
|
** sqlite_temp_master if required.
|
|
*/
|
|
pTrigger = pTab->pTrigger;
|
|
while( pTrigger ){
|
|
assert( pTrigger->iDb==pTab->iDb || pTrigger->iDb==1 );
|
|
sqlite3DropTriggerPtr(pParse, pTrigger, 1);
|
|
if( pParse->explain ){
|
|
pTrigger = pTrigger->pNext;
|
|
}else{
|
|
pTrigger = pTab->pTrigger;
|
|
}
|
|
}
|
|
|
|
/* Drop all SQLITE_MASTER table and index entries that refer to the
|
|
** table. The program name loops through the master table and deletes
|
|
** every row that refers to a table of the same name as the one being
|
|
** dropped. Triggers are handled seperately because a trigger can be
|
|
** created in the temp database that refers to a table in another
|
|
** database.
|
|
*/
|
|
sqlite3OpenMasterTable(v, pTab->iDb);
|
|
base = sqlite3VdbeAddOpList(v, ArraySize(dropTable), dropTable);
|
|
sqlite3VdbeChangeP3(v, base+1, pTab->zName, 0);
|
|
sqlite3ChangeCookie(db, v, pTab->iDb);
|
|
sqlite3VdbeAddOp(v, OP_Close, 0, 0);
|
|
if( !isView ){
|
|
sqlite3VdbeAddOp(v, OP_Destroy, pTab->tnum, pTab->iDb);
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
sqlite3VdbeAddOp(v, OP_Destroy, pIdx->tnum, pIdx->iDb);
|
|
}
|
|
}
|
|
sqlite3EndWriteOperation(pParse);
|
|
}
|
|
|
|
/* Delete the in-memory description of the table.
|
|
**
|
|
** Exception: if the SQL statement began with the EXPLAIN keyword,
|
|
** then no changes should be made.
|
|
*/
|
|
if( !pParse->explain ){
|
|
sqliteUnlinkAndDeleteTable(db, pTab);
|
|
db->flags |= SQLITE_InternChanges;
|
|
}
|
|
sqliteViewResetAll(db, iDb);
|
|
|
|
exit_drop_table:
|
|
sqlite3SrcListDelete(pName);
|
|
}
|
|
|
|
/*
|
|
** This routine is called to create a new foreign key on the table
|
|
** currently under construction. pFromCol determines which columns
|
|
** in the current table point to the foreign key. If pFromCol==0 then
|
|
** connect the key to the last column inserted. pTo is the name of
|
|
** the table referred to. pToCol is a list of tables in the other
|
|
** pTo table that the foreign key points to. flags contains all
|
|
** information about the conflict resolution algorithms specified
|
|
** in the ON DELETE, ON UPDATE and ON INSERT clauses.
|
|
**
|
|
** An FKey structure is created and added to the table currently
|
|
** under construction in the pParse->pNewTable field. The new FKey
|
|
** is not linked into db->aFKey at this point - that does not happen
|
|
** until sqlite3EndTable().
|
|
**
|
|
** The foreign key is set for IMMEDIATE processing. A subsequent call
|
|
** to sqlite3DeferForeignKey() might change this to DEFERRED.
|
|
*/
|
|
void sqlite3CreateForeignKey(
|
|
Parse *pParse, /* Parsing context */
|
|
ExprList *pFromCol, /* Columns in this table that point to other table */
|
|
Token *pTo, /* Name of the other table */
|
|
ExprList *pToCol, /* Columns in the other table */
|
|
int flags /* Conflict resolution algorithms. */
|
|
){
|
|
Table *p = pParse->pNewTable;
|
|
int nByte;
|
|
int i;
|
|
int nCol;
|
|
char *z;
|
|
FKey *pFKey = 0;
|
|
|
|
assert( pTo!=0 );
|
|
if( p==0 || pParse->nErr ) goto fk_end;
|
|
if( pFromCol==0 ){
|
|
int iCol = p->nCol-1;
|
|
if( iCol<0 ) goto fk_end;
|
|
if( pToCol && pToCol->nExpr!=1 ){
|
|
sqlite3ErrorMsg(pParse, "foreign key on %s"
|
|
" should reference only one column of table %T",
|
|
p->aCol[iCol].zName, pTo);
|
|
goto fk_end;
|
|
}
|
|
nCol = 1;
|
|
}else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"number of columns in foreign key does not match the number of "
|
|
"columns in the referenced table");
|
|
goto fk_end;
|
|
}else{
|
|
nCol = pFromCol->nExpr;
|
|
}
|
|
nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
|
|
if( pToCol ){
|
|
for(i=0; i<pToCol->nExpr; i++){
|
|
nByte += strlen(pToCol->a[i].zName) + 1;
|
|
}
|
|
}
|
|
pFKey = sqliteMalloc( nByte );
|
|
if( pFKey==0 ) goto fk_end;
|
|
pFKey->pFrom = p;
|
|
pFKey->pNextFrom = p->pFKey;
|
|
z = (char*)&pFKey[1];
|
|
pFKey->aCol = (struct sColMap*)z;
|
|
z += sizeof(struct sColMap)*nCol;
|
|
pFKey->zTo = z;
|
|
memcpy(z, pTo->z, pTo->n);
|
|
z[pTo->n] = 0;
|
|
z += pTo->n+1;
|
|
pFKey->pNextTo = 0;
|
|
pFKey->nCol = nCol;
|
|
if( pFromCol==0 ){
|
|
pFKey->aCol[0].iFrom = p->nCol-1;
|
|
}else{
|
|
for(i=0; i<nCol; i++){
|
|
int j;
|
|
for(j=0; j<p->nCol; j++){
|
|
if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
|
|
pFKey->aCol[i].iFrom = j;
|
|
break;
|
|
}
|
|
}
|
|
if( j>=p->nCol ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"unknown column \"%s\" in foreign key definition",
|
|
pFromCol->a[i].zName);
|
|
goto fk_end;
|
|
}
|
|
}
|
|
}
|
|
if( pToCol ){
|
|
for(i=0; i<nCol; i++){
|
|
int n = strlen(pToCol->a[i].zName);
|
|
pFKey->aCol[i].zCol = z;
|
|
memcpy(z, pToCol->a[i].zName, n);
|
|
z[n] = 0;
|
|
z += n+1;
|
|
}
|
|
}
|
|
pFKey->isDeferred = 0;
|
|
pFKey->deleteConf = flags & 0xff;
|
|
pFKey->updateConf = (flags >> 8 ) & 0xff;
|
|
pFKey->insertConf = (flags >> 16 ) & 0xff;
|
|
|
|
/* Link the foreign key to the table as the last step.
|
|
*/
|
|
p->pFKey = pFKey;
|
|
pFKey = 0;
|
|
|
|
fk_end:
|
|
sqliteFree(pFKey);
|
|
sqlite3ExprListDelete(pFromCol);
|
|
sqlite3ExprListDelete(pToCol);
|
|
}
|
|
|
|
/*
|
|
** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
|
|
** clause is seen as part of a foreign key definition. The isDeferred
|
|
** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
|
|
** The behavior of the most recently created foreign key is adjusted
|
|
** accordingly.
|
|
*/
|
|
void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
|
|
Table *pTab;
|
|
FKey *pFKey;
|
|
if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
|
|
pFKey->isDeferred = isDeferred;
|
|
}
|
|
|
|
/*
|
|
** Create a new index for an SQL table. pIndex is the name of the index
|
|
** and pTable is the name of the table that is to be indexed. Both will
|
|
** be NULL for a primary key or an index that is created to satisfy a
|
|
** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
|
|
** as the table to be indexed. pParse->pNewTable is a table that is
|
|
** currently being constructed by a CREATE TABLE statement.
|
|
**
|
|
** pList is a list of columns to be indexed. pList will be NULL if this
|
|
** is a primary key or unique-constraint on the most recent column added
|
|
** to the table currently under construction.
|
|
*/
|
|
void sqlite3CreateIndex(
|
|
Parse *pParse, /* All information about this parse */
|
|
Token *pName1, /* First part of index name. May be NULL */
|
|
Token *pName2, /* Second part of index name. May be NULL */
|
|
SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
|
|
ExprList *pList, /* A list of columns to be indexed */
|
|
int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
|
|
Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */
|
|
Token *pEnd /* The ")" that closes the CREATE INDEX statement */
|
|
){
|
|
Table *pTab = 0; /* Table to be indexed */
|
|
Index *pIndex = 0; /* The index to be created */
|
|
char *zName = 0;
|
|
int i, j;
|
|
Token nullId; /* Fake token for an empty ID list */
|
|
DbFixer sFix; /* For assigning database names to pTable */
|
|
int isTemp; /* True for a temporary index */
|
|
sqlite *db = pParse->db;
|
|
|
|
int iDb; /* Index of the database that is being written */
|
|
Token *pName = 0; /* Unqualified name of the index to create */
|
|
|
|
if( pParse->nErr || sqlite3_malloc_failed ) goto exit_create_index;
|
|
|
|
/*
|
|
** Find the table that is to be indexed. Return early if not found.
|
|
*/
|
|
if( pTblName!=0 ){
|
|
|
|
/* Use the two-part index name to determine the database
|
|
** to search for the table. 'Fix' the table name to this db
|
|
** before looking up the table.
|
|
*/
|
|
assert( pName1 && pName2 );
|
|
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
|
if( iDb<0 ) goto exit_create_index;
|
|
|
|
/* If the index name was unqualified, check if the the table
|
|
** is a temp table. If so, set the database to 1.
|
|
*/
|
|
pTab = sqlite3SrcListLookup(pParse, pTblName);
|
|
if( pName2 && pName2->n==0 && pTab && pTab->iDb==1 ){
|
|
iDb = 1;
|
|
}
|
|
|
|
if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
|
|
sqlite3FixSrcList(&sFix, pTblName)
|
|
){
|
|
goto exit_create_index;
|
|
}
|
|
pTab = sqlite3LocateTable(pParse, pTblName->a[0].zName,
|
|
pTblName->a[0].zDatabase);
|
|
if( !pTab ) goto exit_create_index;
|
|
assert( iDb==pTab->iDb );
|
|
}else{
|
|
assert( pName==0 );
|
|
pTab = pParse->pNewTable;
|
|
iDb = pTab->iDb;
|
|
}
|
|
|
|
if( pTab==0 || pParse->nErr ) goto exit_create_index;
|
|
if( pTab->readOnly ){
|
|
sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
|
|
goto exit_create_index;
|
|
}
|
|
if( pTab->pSelect ){
|
|
sqlite3ErrorMsg(pParse, "views may not be indexed");
|
|
goto exit_create_index;
|
|
}
|
|
isTemp = pTab->iDb==1;
|
|
|
|
/*
|
|
** Find the name of the index. Make sure there is not already another
|
|
** index or table with the same name.
|
|
**
|
|
** Exception: If we are reading the names of permanent indices from the
|
|
** sqlite_master table (because some other process changed the schema) and
|
|
** one of the index names collides with the name of a temporary table or
|
|
** index, then we will continue to process this index.
|
|
**
|
|
** If pName==0 it means that we are
|
|
** dealing with a primary key or UNIQUE constraint. We have to invent our
|
|
** own name.
|
|
*/
|
|
if( pName ){
|
|
zName = sqlite3TableNameFromToken(pName);
|
|
if( zName==0 ) goto exit_create_index;
|
|
if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
|
|
goto exit_create_index;
|
|
}
|
|
if( !db->init.busy ){
|
|
Index *pISameName; /* Another index with the same name */
|
|
Table *pTSameName; /* A table with same name as the index */
|
|
if( (pISameName = sqlite3FindIndex(db, zName, db->aDb[iDb].zName))!=0 ){
|
|
sqlite3ErrorMsg(pParse, "index %s already exists", zName);
|
|
goto exit_create_index;
|
|
}
|
|
if( (pTSameName = sqlite3FindTable(db, zName, 0))!=0 ){
|
|
sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
|
|
goto exit_create_index;
|
|
}
|
|
}
|
|
}else if( pName==0 ){
|
|
char zBuf[30];
|
|
int n;
|
|
Index *pLoop;
|
|
for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
|
|
sprintf(zBuf,"_%d",n);
|
|
zName = 0;
|
|
sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0);
|
|
if( zName==0 ) goto exit_create_index;
|
|
}
|
|
|
|
/* Check for authorization to create an index.
|
|
*/
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
{
|
|
const char *zDb = db->aDb[pTab->iDb].zName;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
|
|
goto exit_create_index;
|
|
}
|
|
i = SQLITE_CREATE_INDEX;
|
|
if( isTemp ) i = SQLITE_CREATE_TEMP_INDEX;
|
|
if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
|
|
goto exit_create_index;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* If pList==0, it means this routine was called to make a primary
|
|
** key out of the last column added to the table under construction.
|
|
** So create a fake list to simulate this.
|
|
*/
|
|
if( pList==0 ){
|
|
nullId.z = pTab->aCol[pTab->nCol-1].zName;
|
|
nullId.n = strlen(nullId.z);
|
|
pList = sqlite3ExprListAppend(0, 0, &nullId);
|
|
if( pList==0 ) goto exit_create_index;
|
|
}
|
|
|
|
/*
|
|
** Allocate the index structure.
|
|
*/
|
|
pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 +
|
|
(sizeof(int) + sizeof(CollSeq*))*pList->nExpr );
|
|
if( pIndex==0 ) goto exit_create_index;
|
|
pIndex->aiColumn = (int*)&pIndex->keyInfo.aColl[pList->nExpr];
|
|
pIndex->zName = (char*)&pIndex->aiColumn[pList->nExpr];
|
|
strcpy(pIndex->zName, zName);
|
|
pIndex->pTable = pTab;
|
|
pIndex->nColumn = pList->nExpr;
|
|
pIndex->onError = onError;
|
|
pIndex->autoIndex = pName==0;
|
|
pIndex->iDb = iDb;
|
|
|
|
/* Scan the names of the columns of the table to be indexed and
|
|
** load the column indices into the Index structure. Report an error
|
|
** if any column is not found.
|
|
*/
|
|
for(i=0; i<pList->nExpr; i++){
|
|
for(j=0; j<pTab->nCol; j++){
|
|
if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break;
|
|
}
|
|
if( j>=pTab->nCol ){
|
|
sqlite3ErrorMsg(pParse, "table %s has no column named %s",
|
|
pTab->zName, pList->a[i].zName);
|
|
goto exit_create_index;
|
|
}
|
|
pIndex->aiColumn[i] = j;
|
|
if( pList->a[i].pExpr ){
|
|
assert( pList->a[i].pExpr->pColl );
|
|
pIndex->keyInfo.aColl[i] = pList->a[i].pExpr->pColl;
|
|
}else{
|
|
pIndex->keyInfo.aColl[i] = pTab->aCol[j].pColl;
|
|
}
|
|
assert( pIndex->keyInfo.aColl[i] );
|
|
if( !db->init.busy &&
|
|
sqlite3CheckCollSeq(pParse, pIndex->keyInfo.aColl[i])
|
|
){
|
|
goto exit_create_index;
|
|
}
|
|
}
|
|
pIndex->keyInfo.nField = pList->nExpr;
|
|
|
|
if( pTab==pParse->pNewTable ){
|
|
/* This routine has been called to create an automatic index as a
|
|
** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
|
|
** a PRIMARY KEY or UNIQUE clause following the column definitions.
|
|
** i.e. one of:
|
|
**
|
|
** CREATE TABLE t(x PRIMARY KEY, y);
|
|
** CREATE TABLE t(x, y, UNIQUE(x, y));
|
|
**
|
|
** Either way, check to see if the table already has such an index. If
|
|
** so, don't bother creating this one. This only applies to
|
|
** automatically created indices. Users can do as they wish with
|
|
** explicit indices.
|
|
*/
|
|
Index *pIdx;
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
int k;
|
|
assert( pIdx->onError!=OE_None );
|
|
assert( pIdx->autoIndex );
|
|
assert( pIndex->onError!=OE_None );
|
|
|
|
if( pIdx->nColumn!=pIndex->nColumn ) continue;
|
|
for(k=0; k<pIdx->nColumn; k++){
|
|
if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
|
|
if( pIdx->keyInfo.aColl[k]!=pIndex->keyInfo.aColl[k] ) break;
|
|
}
|
|
if( k==pIdx->nColumn ){
|
|
if( pIdx->onError!=pIndex->onError ){
|
|
/* This constraint creates the same index as a previous
|
|
** constraint specified somewhere in the CREATE TABLE statement.
|
|
** However the ON CONFLICT clauses are different. If both this
|
|
** constraint and the previous equivalent constraint have explicit
|
|
** ON CONFLICT clauses this is an error. Otherwise, use the
|
|
** explicitly specified behaviour for the index.
|
|
*/
|
|
if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"conflicting ON CONFLICT clauses specified", 0);
|
|
}
|
|
if( pIdx->onError==OE_Default ){
|
|
pIdx->onError = pIndex->onError;
|
|
}
|
|
}
|
|
goto exit_create_index;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Link the new Index structure to its table and to the other
|
|
** in-memory database structures.
|
|
*/
|
|
if( !pParse->explain ){
|
|
Index *p;
|
|
p = sqlite3HashInsert(&db->aDb[pIndex->iDb].idxHash,
|
|
pIndex->zName, strlen(pIndex->zName)+1, pIndex);
|
|
if( p ){
|
|
assert( p==pIndex ); /* Malloc must have failed */
|
|
goto exit_create_index;
|
|
}
|
|
db->flags |= SQLITE_InternChanges;
|
|
}
|
|
|
|
/* If the db->init.busy is 1 it means we are reading the SQL off the
|
|
** "sqlite_master" table on the disk. So do not write to the disk
|
|
** again. Extract the table number from the db->init.newTnum field.
|
|
*/
|
|
if( db->init.busy && pTblName!=0 ){
|
|
pIndex->tnum = db->init.newTnum;
|
|
}
|
|
|
|
/* If the db->init.busy is 0 then create the index on disk. This
|
|
** involves writing the index into the master table and filling in the
|
|
** index with the current table contents.
|
|
**
|
|
** The db->init.busy is 0 when the user first enters a CREATE INDEX
|
|
** command. db->init.busy is 1 when a database is opened and
|
|
** CREATE INDEX statements are read out of the master table. In
|
|
** the latter case the index already exists on disk, which is why
|
|
** we don't want to recreate it.
|
|
**
|
|
** If pTblName==0 it means this index is generated as a primary key
|
|
** or UNIQUE constraint of a CREATE TABLE statement. Since the table
|
|
** has just been created, it contains no data and the index initialization
|
|
** step can be skipped.
|
|
*/
|
|
else if( db->init.busy==0 ){
|
|
int n;
|
|
Vdbe *v;
|
|
int lbl1, lbl2;
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) goto exit_create_index;
|
|
if( pTblName!=0 ){
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
sqlite3OpenMasterTable(v, iDb);
|
|
}
|
|
sqlite3VdbeAddOp(v, OP_NewRecno, 0, 0);
|
|
sqlite3VdbeOp3(v, OP_String8, 0, 0, "index", P3_STATIC);
|
|
sqlite3VdbeOp3(v, OP_String8, 0, 0, pIndex->zName, 0);
|
|
sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
|
|
sqlite3VdbeOp3(v, OP_CreateIndex, 0, iDb,(char*)&pIndex->tnum,P3_POINTER);
|
|
pIndex->tnum = 0;
|
|
if( pTblName ){
|
|
sqlite3VdbeCode(v,
|
|
OP_Dup, 0, 0,
|
|
OP_Integer, iDb, 0,
|
|
0);
|
|
sqlite3VdbeOp3(v, OP_OpenWrite, 1, 0,
|
|
(char*)&pIndex->keyInfo, P3_KEYINFO);
|
|
}
|
|
sqlite3VdbeAddOp(v, OP_String8, 0, 0);
|
|
if( pStart && pEnd ){
|
|
if( onError==OE_None ){
|
|
sqlite3VdbeChangeP3(v, -1, "CREATE INDEX ", P3_STATIC);
|
|
}else{
|
|
sqlite3VdbeChangeP3(v, -1, "CREATE UNIQUE INDEX ", P3_STATIC);
|
|
}
|
|
sqlite3VdbeAddOp(v, OP_String8, 0, 0);
|
|
n = Addr(pEnd->z) - Addr(pName->z) + 1;
|
|
sqlite3VdbeChangeP3(v, -1, pName->z, n);
|
|
sqlite3VdbeAddOp(v, OP_Concat, 2, 0);
|
|
}
|
|
sqlite3VdbeOp3(v, OP_MakeRecord, 5, 0, "tttit", P3_STATIC);
|
|
sqlite3VdbeAddOp(v, OP_PutIntKey, 0, 0);
|
|
if( pTblName ){
|
|
sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0);
|
|
sqlite3VdbeAddOp(v, OP_OpenRead, 2, pTab->tnum);
|
|
/* VdbeComment((v, "%s", pTab->zName)); */
|
|
sqlite3VdbeAddOp(v, OP_SetNumColumns, 2, pTab->nCol);
|
|
lbl2 = sqlite3VdbeMakeLabel(v);
|
|
sqlite3VdbeAddOp(v, OP_Rewind, 2, lbl2);
|
|
lbl1 = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3GenerateIndexKey(v, pIndex, 2);
|
|
sqlite3VdbeOp3(v, OP_IdxPut, 1, pIndex->onError!=OE_None,
|
|
"indexed columns are not unique", P3_STATIC);
|
|
sqlite3VdbeAddOp(v, OP_Next, 2, lbl1);
|
|
sqlite3VdbeResolveLabel(v, lbl2);
|
|
sqlite3VdbeAddOp(v, OP_Close, 2, 0);
|
|
sqlite3VdbeAddOp(v, OP_Close, 1, 0);
|
|
}
|
|
if( pTblName!=0 ){
|
|
if( !isTemp ){
|
|
sqlite3ChangeCookie(db, v, iDb);
|
|
}
|
|
sqlite3VdbeAddOp(v, OP_Close, 0, 0);
|
|
sqlite3EndWriteOperation(pParse);
|
|
}
|
|
}
|
|
|
|
/* When adding an index to the list of indices for a table, make
|
|
** sure all indices labeled OE_Replace come after all those labeled
|
|
** OE_Ignore. This is necessary for the correct operation of UPDATE
|
|
** and INSERT.
|
|
*/
|
|
if( onError!=OE_Replace || pTab->pIndex==0
|
|
|| pTab->pIndex->onError==OE_Replace){
|
|
pIndex->pNext = pTab->pIndex;
|
|
pTab->pIndex = pIndex;
|
|
}else{
|
|
Index *pOther = pTab->pIndex;
|
|
while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
|
|
pOther = pOther->pNext;
|
|
}
|
|
pIndex->pNext = pOther->pNext;
|
|
pOther->pNext = pIndex;
|
|
}
|
|
pIndex = 0;
|
|
|
|
/* Clean up before exiting */
|
|
exit_create_index:
|
|
if( pIndex ) sqliteFree(pIndex);
|
|
sqlite3ExprListDelete(pList);
|
|
sqlite3SrcListDelete(pTblName);
|
|
sqliteFree(zName);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** This routine will drop an existing named index. This routine
|
|
** implements the DROP INDEX statement.
|
|
*/
|
|
void sqlite3DropIndex(Parse *pParse, SrcList *pName){
|
|
Index *pIndex;
|
|
Vdbe *v;
|
|
sqlite *db = pParse->db;
|
|
|
|
if( pParse->nErr || sqlite3_malloc_failed ) return;
|
|
assert( pName->nSrc==1 );
|
|
pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
|
|
if( pIndex==0 ){
|
|
sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
|
|
pParse->checkSchema = 1;
|
|
goto exit_drop_index;
|
|
}
|
|
if( pIndex->autoIndex ){
|
|
sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
|
|
"or PRIMARY KEY constraint cannot be dropped", 0);
|
|
goto exit_drop_index;
|
|
}
|
|
/*
|
|
if( pIndex->iDb>1 ){
|
|
sqlite3ErrorMsg(pParse, "cannot alter schema of attached "
|
|
"databases", 0);
|
|
goto exit_drop_index;
|
|
}
|
|
*/
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
{
|
|
int code = SQLITE_DROP_INDEX;
|
|
Table *pTab = pIndex->pTable;
|
|
const char *zDb = db->aDb[pIndex->iDb].zName;
|
|
const char *zTab = SCHEMA_TABLE(pIndex->iDb);
|
|
if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
|
|
goto exit_drop_index;
|
|
}
|
|
if( pIndex->iDb ) code = SQLITE_DROP_TEMP_INDEX;
|
|
if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
|
|
goto exit_drop_index;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Generate code to remove the index and from the master table */
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
static VdbeOpList dropIndex[] = {
|
|
{ OP_Rewind, 0, ADDR(9), 0},
|
|
{ OP_String8, 0, 0, 0}, /* 1 */
|
|
{ OP_MemStore, 1, 1, 0},
|
|
{ OP_MemLoad, 1, 0, 0}, /* 3 */
|
|
{ OP_Column, 0, 1, 0},
|
|
{ OP_Eq, 0, ADDR(8), 0},
|
|
{ OP_Next, 0, ADDR(3), 0},
|
|
{ OP_Goto, 0, ADDR(9), 0},
|
|
{ OP_Delete, 0, 0, 0}, /* 8 */
|
|
};
|
|
int base;
|
|
|
|
sqlite3BeginWriteOperation(pParse, 0, pIndex->iDb);
|
|
sqlite3OpenMasterTable(v, pIndex->iDb);
|
|
base = sqlite3VdbeAddOpList(v, ArraySize(dropIndex), dropIndex);
|
|
sqlite3VdbeChangeP3(v, base+1, pIndex->zName, 0);
|
|
if( pIndex->iDb!=1 ){
|
|
sqlite3ChangeCookie(db, v, pIndex->iDb);
|
|
}
|
|
sqlite3VdbeAddOp(v, OP_Close, 0, 0);
|
|
sqlite3VdbeAddOp(v, OP_Destroy, pIndex->tnum, pIndex->iDb);
|
|
sqlite3EndWriteOperation(pParse);
|
|
}
|
|
|
|
/* Delete the in-memory description of this index.
|
|
*/
|
|
if( !pParse->explain ){
|
|
sqlite3UnlinkAndDeleteIndex(db, pIndex);
|
|
db->flags |= SQLITE_InternChanges;
|
|
}
|
|
|
|
exit_drop_index:
|
|
sqlite3SrcListDelete(pName);
|
|
}
|
|
|
|
/*
|
|
** Append a new element to the given IdList. Create a new IdList if
|
|
** need be.
|
|
**
|
|
** A new IdList is returned, or NULL if malloc() fails.
|
|
*/
|
|
IdList *sqlite3IdListAppend(IdList *pList, Token *pToken){
|
|
if( pList==0 ){
|
|
pList = sqliteMalloc( sizeof(IdList) );
|
|
if( pList==0 ) return 0;
|
|
pList->nAlloc = 0;
|
|
}
|
|
if( pList->nId>=pList->nAlloc ){
|
|
struct IdList_item *a;
|
|
pList->nAlloc = pList->nAlloc*2 + 5;
|
|
a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]) );
|
|
if( a==0 ){
|
|
sqlite3IdListDelete(pList);
|
|
return 0;
|
|
}
|
|
pList->a = a;
|
|
}
|
|
memset(&pList->a[pList->nId], 0, sizeof(pList->a[0]));
|
|
if( pToken ){
|
|
char **pz = &pList->a[pList->nId].zName;
|
|
sqlite3SetNString(pz, pToken->z, pToken->n, 0);
|
|
if( *pz==0 ){
|
|
sqlite3IdListDelete(pList);
|
|
return 0;
|
|
}else{
|
|
sqlite3Dequote(*pz);
|
|
}
|
|
}
|
|
pList->nId++;
|
|
return pList;
|
|
}
|
|
|
|
/*
|
|
** Append a new table name to the given SrcList. Create a new SrcList if
|
|
** need be. A new entry is created in the SrcList even if pToken is NULL.
|
|
**
|
|
** A new SrcList is returned, or NULL if malloc() fails.
|
|
**
|
|
** If pDatabase is not null, it means that the table has an optional
|
|
** database name prefix. Like this: "database.table". The pDatabase
|
|
** points to the table name and the pTable points to the database name.
|
|
** The SrcList.a[].zName field is filled with the table name which might
|
|
** come from pTable (if pDatabase is NULL) or from pDatabase.
|
|
** SrcList.a[].zDatabase is filled with the database name from pTable,
|
|
** or with NULL if no database is specified.
|
|
**
|
|
** In other words, if call like this:
|
|
**
|
|
** sqlite3SrcListAppend(A,B,0);
|
|
**
|
|
** Then B is a table name and the database name is unspecified. If called
|
|
** like this:
|
|
**
|
|
** sqlite3SrcListAppend(A,B,C);
|
|
**
|
|
** Then C is the table name and B is the database name.
|
|
*/
|
|
SrcList *sqlite3SrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){
|
|
if( pList==0 ){
|
|
pList = sqliteMalloc( sizeof(SrcList) );
|
|
if( pList==0 ) return 0;
|
|
pList->nAlloc = 1;
|
|
}
|
|
if( pList->nSrc>=pList->nAlloc ){
|
|
SrcList *pNew;
|
|
pList->nAlloc *= 2;
|
|
pNew = sqliteRealloc(pList,
|
|
sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
|
|
if( pNew==0 ){
|
|
sqlite3SrcListDelete(pList);
|
|
return 0;
|
|
}
|
|
pList = pNew;
|
|
}
|
|
memset(&pList->a[pList->nSrc], 0, sizeof(pList->a[0]));
|
|
if( pDatabase && pDatabase->z==0 ){
|
|
pDatabase = 0;
|
|
}
|
|
if( pDatabase && pTable ){
|
|
Token *pTemp = pDatabase;
|
|
pDatabase = pTable;
|
|
pTable = pTemp;
|
|
}
|
|
if( pTable ){
|
|
char **pz = &pList->a[pList->nSrc].zName;
|
|
sqlite3SetNString(pz, pTable->z, pTable->n, 0);
|
|
if( *pz==0 ){
|
|
sqlite3SrcListDelete(pList);
|
|
return 0;
|
|
}else{
|
|
sqlite3Dequote(*pz);
|
|
}
|
|
}
|
|
if( pDatabase ){
|
|
char **pz = &pList->a[pList->nSrc].zDatabase;
|
|
sqlite3SetNString(pz, pDatabase->z, pDatabase->n, 0);
|
|
if( *pz==0 ){
|
|
sqlite3SrcListDelete(pList);
|
|
return 0;
|
|
}else{
|
|
sqlite3Dequote(*pz);
|
|
}
|
|
}
|
|
pList->a[pList->nSrc].iCursor = -1;
|
|
pList->nSrc++;
|
|
return pList;
|
|
}
|
|
|
|
/*
|
|
** Assign cursors to all tables in a SrcList
|
|
*/
|
|
void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
|
|
int i;
|
|
for(i=0; i<pList->nSrc; i++){
|
|
if( pList->a[i].iCursor<0 ){
|
|
pList->a[i].iCursor = pParse->nTab++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Add an alias to the last identifier on the given identifier list.
|
|
*/
|
|
void sqlite3SrcListAddAlias(SrcList *pList, Token *pToken){
|
|
if( pList && pList->nSrc>0 ){
|
|
int i = pList->nSrc - 1;
|
|
sqlite3SetNString(&pList->a[i].zAlias, pToken->z, pToken->n, 0);
|
|
sqlite3Dequote(pList->a[i].zAlias);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Delete an IdList.
|
|
*/
|
|
void sqlite3IdListDelete(IdList *pList){
|
|
int i;
|
|
if( pList==0 ) return;
|
|
for(i=0; i<pList->nId; i++){
|
|
sqliteFree(pList->a[i].zName);
|
|
}
|
|
sqliteFree(pList->a);
|
|
sqliteFree(pList);
|
|
}
|
|
|
|
/*
|
|
** Return the index in pList of the identifier named zId. Return -1
|
|
** if not found.
|
|
*/
|
|
int sqlite3IdListIndex(IdList *pList, const char *zName){
|
|
int i;
|
|
if( pList==0 ) return -1;
|
|
for(i=0; i<pList->nId; i++){
|
|
if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
** Delete an entire SrcList including all its substructure.
|
|
*/
|
|
void sqlite3SrcListDelete(SrcList *pList){
|
|
int i;
|
|
if( pList==0 ) return;
|
|
for(i=0; i<pList->nSrc; i++){
|
|
sqliteFree(pList->a[i].zDatabase);
|
|
sqliteFree(pList->a[i].zName);
|
|
sqliteFree(pList->a[i].zAlias);
|
|
if( pList->a[i].pTab && pList->a[i].pTab->isTransient ){
|
|
sqlite3DeleteTable(0, pList->a[i].pTab);
|
|
}
|
|
sqlite3SelectDelete(pList->a[i].pSelect);
|
|
sqlite3ExprDelete(pList->a[i].pOn);
|
|
sqlite3IdListDelete(pList->a[i].pUsing);
|
|
}
|
|
sqliteFree(pList);
|
|
}
|
|
|
|
/*
|
|
** Begin a transaction
|
|
*/
|
|
void sqlite3BeginTransaction(Parse *pParse){
|
|
sqlite *db;
|
|
Vdbe *v;
|
|
|
|
if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
|
if( pParse->nErr || sqlite3_malloc_failed ) return;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( !v ) return;
|
|
sqlite3VdbeAddOp(v, OP_AutoCommit, 0, 0);
|
|
}
|
|
|
|
/*
|
|
** Commit a transaction
|
|
*/
|
|
void sqlite3CommitTransaction(Parse *pParse){
|
|
sqlite *db;
|
|
Vdbe *v;
|
|
|
|
if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
|
if( pParse->nErr || sqlite3_malloc_failed ) return;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Rollback a transaction
|
|
*/
|
|
void sqlite3RollbackTransaction(Parse *pParse){
|
|
sqlite *db;
|
|
Vdbe *v;
|
|
|
|
if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
|
if( pParse->nErr || sqlite3_malloc_failed ) return;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate VDBE code that will verify the schema cookie and start
|
|
** a read-transaction for all named database files.
|
|
**
|
|
** It is important that all schema cookies be verified and all
|
|
** read transactions be started before anything else happens in
|
|
** the VDBE program. But this routine can be called after much other
|
|
** code has been generated. So here is what we do:
|
|
**
|
|
** The first time this routine is called, we code an OP_Gosub that
|
|
** will jump to a subroutine at the end of the program. Then we
|
|
** record every database that needs its schema verified in the
|
|
** pParse->cookieMask field. Later, after all other code has been
|
|
** generated, the subroutine that does the cookie verifications and
|
|
** starts the transactions will be coded and the OP_Gosub P2 value
|
|
** will be made to point to that subroutine. The generation of the
|
|
** cookie verification subroutine code happens in sqlite3FinishCoding().
|
|
*/
|
|
void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
|
|
sqlite *db;
|
|
Vdbe *v;
|
|
int mask;
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) return; /* This only happens if there was a prior error */
|
|
db = pParse->db;
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
assert( db->aDb[iDb].pBt!=0 || iDb==1 );
|
|
assert( iDb<32 );
|
|
if( pParse->cookieMask==0 ){
|
|
pParse->cookieGoto = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
|
|
}
|
|
mask = 1<<iDb;
|
|
if( (pParse->cookieMask & mask)==0 ){
|
|
pParse->cookieMask |= mask;
|
|
pParse->cookieValue[iDb] = db->aDb[iDb].schema_cookie;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate VDBE code that prepares for doing an operation that
|
|
** might change the database.
|
|
**
|
|
** This routine starts a new transaction if we are not already within
|
|
** a transaction. If we are already within a transaction, then a checkpoint
|
|
** is set if the setStatement parameter is true. A checkpoint should
|
|
** be set for operations that might fail (due to a constraint) part of
|
|
** the way through and which will need to undo some writes without having to
|
|
** rollback the whole transaction. For operations where all constraints
|
|
** can be checked before any changes are made to the database, it is never
|
|
** necessary to undo a write and the checkpoint should not be set.
|
|
**
|
|
** Only database iDb and the temp database are made writable by this call.
|
|
** If iDb==0, then the main and temp databases are made writable. If
|
|
** iDb==1 then only the temp database is made writable. If iDb>1 then the
|
|
** specified auxiliary database and the temp database are made writable.
|
|
*/
|
|
void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) return;
|
|
sqlite3CodeVerifySchema(pParse, iDb);
|
|
pParse->writeMask |= 1<<iDb;
|
|
if( setStatement ){
|
|
sqlite3VdbeAddOp(v, OP_Statement, iDb, 0);
|
|
}
|
|
if( iDb!=1 ){
|
|
sqlite3BeginWriteOperation(pParse, setStatement, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code that concludes an operation that may have changed
|
|
** the database. If a statement transaction was started, then emit
|
|
** an OP_Commit that will cause the changes to be committed to disk.
|
|
**
|
|
** Note that checkpoints are automatically committed at the end of
|
|
** a statement. Note also that there can be multiple calls to
|
|
** sqlite3BeginWriteOperation() but there should only be a single
|
|
** call to sqlite3EndWriteOperation() at the conclusion of the statement.
|
|
*/
|
|
void sqlite3EndWriteOperation(Parse *pParse){
|
|
/* Delete me! */
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** Return the transient sqlite3_value object used for encoding conversions
|
|
** during SQL compilation.
|
|
*/
|
|
sqlite3_value *sqlite3GetTransientValue(sqlite *db){
|
|
if( !db->pValue ){
|
|
db->pValue = sqlite3ValueNew();
|
|
}
|
|
return db->pValue;
|
|
}
|
|
|