4e013284a0
FossilOrigin-Name: e3776796f55574f357eb429e20399389092a68e9ca00aa104ed33eb559ae0de5
586 lines
17 KiB
C
586 lines
17 KiB
C
/*
|
|
** 2007 October 14
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains the C functions that implement a memory
|
|
** allocation subsystem for use by SQLite.
|
|
**
|
|
** This version of the memory allocation subsystem omits all
|
|
** use of malloc(). The application gives SQLite a block of memory
|
|
** before calling sqlite3_initialize() from which allocations
|
|
** are made and returned by the xMalloc() and xRealloc()
|
|
** implementations. Once sqlite3_initialize() has been called,
|
|
** the amount of memory available to SQLite is fixed and cannot
|
|
** be changed.
|
|
**
|
|
** This version of the memory allocation subsystem is included
|
|
** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
|
|
**
|
|
** This memory allocator uses the following algorithm:
|
|
**
|
|
** 1. All memory allocation sizes are rounded up to a power of 2.
|
|
**
|
|
** 2. If two adjacent free blocks are the halves of a larger block,
|
|
** then the two blocks are coalesced into the single larger block.
|
|
**
|
|
** 3. New memory is allocated from the first available free block.
|
|
**
|
|
** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
|
|
** Concerning Dynamic Storage Allocation". Journal of the Association for
|
|
** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499.
|
|
**
|
|
** Let n be the size of the largest allocation divided by the minimum
|
|
** allocation size (after rounding all sizes up to a power of 2.) Let M
|
|
** be the maximum amount of memory ever outstanding at one time. Let
|
|
** N be the total amount of memory available for allocation. Robson
|
|
** proved that this memory allocator will never breakdown due to
|
|
** fragmentation as long as the following constraint holds:
|
|
**
|
|
** N >= M*(1 + log2(n)/2) - n + 1
|
|
**
|
|
** The sqlite3_status() logic tracks the maximum values of n and M so
|
|
** that an application can, at any time, verify this constraint.
|
|
*/
|
|
#include "sqliteInt.h"
|
|
|
|
/*
|
|
** This version of the memory allocator is used only when
|
|
** SQLITE_ENABLE_MEMSYS5 is defined.
|
|
*/
|
|
#ifdef SQLITE_ENABLE_MEMSYS5
|
|
|
|
/*
|
|
** A minimum allocation is an instance of the following structure.
|
|
** Larger allocations are an array of these structures where the
|
|
** size of the array is a power of 2.
|
|
**
|
|
** The size of this object must be a power of two. That fact is
|
|
** verified in memsys5Init().
|
|
*/
|
|
typedef struct Mem5Link Mem5Link;
|
|
struct Mem5Link {
|
|
int next; /* Index of next free chunk */
|
|
int prev; /* Index of previous free chunk */
|
|
};
|
|
|
|
/*
|
|
** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since
|
|
** mem5.szAtom is always at least 8 and 32-bit integers are used,
|
|
** it is not actually possible to reach this limit.
|
|
*/
|
|
#define LOGMAX 30
|
|
|
|
/*
|
|
** Masks used for mem5.aCtrl[] elements.
|
|
*/
|
|
#define CTRL_LOGSIZE 0x1f /* Log2 Size of this block */
|
|
#define CTRL_FREE 0x20 /* True if not checked out */
|
|
|
|
/*
|
|
** All of the static variables used by this module are collected
|
|
** into a single structure named "mem5". This is to keep the
|
|
** static variables organized and to reduce namespace pollution
|
|
** when this module is combined with other in the amalgamation.
|
|
*/
|
|
static SQLITE_WSD struct Mem5Global {
|
|
/*
|
|
** Memory available for allocation
|
|
*/
|
|
int szAtom; /* Smallest possible allocation in bytes */
|
|
int nBlock; /* Number of szAtom sized blocks in zPool */
|
|
u8 *zPool; /* Memory available to be allocated */
|
|
|
|
/*
|
|
** Mutex to control access to the memory allocation subsystem.
|
|
*/
|
|
sqlite3_mutex *mutex;
|
|
|
|
#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
|
|
/*
|
|
** Performance statistics
|
|
*/
|
|
u64 nAlloc; /* Total number of calls to malloc */
|
|
u64 totalAlloc; /* Total of all malloc calls - includes internal frag */
|
|
u64 totalExcess; /* Total internal fragmentation */
|
|
u32 currentOut; /* Current checkout, including internal fragmentation */
|
|
u32 currentCount; /* Current number of distinct checkouts */
|
|
u32 maxOut; /* Maximum instantaneous currentOut */
|
|
u32 maxCount; /* Maximum instantaneous currentCount */
|
|
u32 maxRequest; /* Largest allocation (exclusive of internal frag) */
|
|
#endif
|
|
|
|
/*
|
|
** Lists of free blocks. aiFreelist[0] is a list of free blocks of
|
|
** size mem5.szAtom. aiFreelist[1] holds blocks of size szAtom*2.
|
|
** aiFreelist[2] holds free blocks of size szAtom*4. And so forth.
|
|
*/
|
|
int aiFreelist[LOGMAX+1];
|
|
|
|
/*
|
|
** Space for tracking which blocks are checked out and the size
|
|
** of each block. One byte per block.
|
|
*/
|
|
u8 *aCtrl;
|
|
|
|
} mem5;
|
|
|
|
/*
|
|
** Access the static variable through a macro for SQLITE_OMIT_WSD.
|
|
*/
|
|
#define mem5 GLOBAL(struct Mem5Global, mem5)
|
|
|
|
/*
|
|
** Assuming mem5.zPool is divided up into an array of Mem5Link
|
|
** structures, return a pointer to the idx-th such link.
|
|
*/
|
|
#define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom]))
|
|
|
|
/*
|
|
** Unlink the chunk at mem5.aPool[i] from list it is currently
|
|
** on. It should be found on mem5.aiFreelist[iLogsize].
|
|
*/
|
|
static void memsys5Unlink(int i, int iLogsize){
|
|
int next, prev;
|
|
assert( i>=0 && i<mem5.nBlock );
|
|
assert( iLogsize>=0 && iLogsize<=LOGMAX );
|
|
assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
|
|
|
|
next = MEM5LINK(i)->next;
|
|
prev = MEM5LINK(i)->prev;
|
|
if( prev<0 ){
|
|
mem5.aiFreelist[iLogsize] = next;
|
|
}else{
|
|
MEM5LINK(prev)->next = next;
|
|
}
|
|
if( next>=0 ){
|
|
MEM5LINK(next)->prev = prev;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Link the chunk at mem5.aPool[i] so that is on the iLogsize
|
|
** free list.
|
|
*/
|
|
static void memsys5Link(int i, int iLogsize){
|
|
int x;
|
|
assert( sqlite3_mutex_held(mem5.mutex) );
|
|
assert( i>=0 && i<mem5.nBlock );
|
|
assert( iLogsize>=0 && iLogsize<=LOGMAX );
|
|
assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
|
|
|
|
x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
|
|
MEM5LINK(i)->prev = -1;
|
|
if( x>=0 ){
|
|
assert( x<mem5.nBlock );
|
|
MEM5LINK(x)->prev = i;
|
|
}
|
|
mem5.aiFreelist[iLogsize] = i;
|
|
}
|
|
|
|
/*
|
|
** Obtain or release the mutex needed to access global data structures.
|
|
*/
|
|
static void memsys5Enter(void){
|
|
sqlite3_mutex_enter(mem5.mutex);
|
|
}
|
|
static void memsys5Leave(void){
|
|
sqlite3_mutex_leave(mem5.mutex);
|
|
}
|
|
|
|
/*
|
|
** Return the size of an outstanding allocation, in bytes.
|
|
** This only works for chunks that are currently checked out.
|
|
*/
|
|
static int memsys5Size(void *p){
|
|
int iSize, i;
|
|
assert( p!=0 );
|
|
i = (int)(((u8 *)p-mem5.zPool)/mem5.szAtom);
|
|
assert( i>=0 && i<mem5.nBlock );
|
|
iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
|
|
return iSize;
|
|
}
|
|
|
|
/*
|
|
** Return a block of memory of at least nBytes in size.
|
|
** Return NULL if unable. Return NULL if nBytes==0.
|
|
**
|
|
** The caller guarantees that nByte is positive.
|
|
**
|
|
** The caller has obtained a mutex prior to invoking this
|
|
** routine so there is never any chance that two or more
|
|
** threads can be in this routine at the same time.
|
|
*/
|
|
static void *memsys5MallocUnsafe(int nByte){
|
|
int i; /* Index of a mem5.aPool[] slot */
|
|
int iBin; /* Index into mem5.aiFreelist[] */
|
|
int iFullSz; /* Size of allocation rounded up to power of 2 */
|
|
int iLogsize; /* Log2 of iFullSz/POW2_MIN */
|
|
|
|
/* nByte must be a positive */
|
|
assert( nByte>0 );
|
|
|
|
/* No more than 1GiB per allocation */
|
|
if( nByte > 0x40000000 ) return 0;
|
|
|
|
#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
|
|
/* Keep track of the maximum allocation request. Even unfulfilled
|
|
** requests are counted */
|
|
if( (u32)nByte>mem5.maxRequest ){
|
|
mem5.maxRequest = nByte;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Round nByte up to the next valid power of two */
|
|
for(iFullSz=mem5.szAtom,iLogsize=0; iFullSz<nByte; iFullSz*=2,iLogsize++){}
|
|
|
|
/* Make sure mem5.aiFreelist[iLogsize] contains at least one free
|
|
** block. If not, then split a block of the next larger power of
|
|
** two in order to create a new free block of size iLogsize.
|
|
*/
|
|
for(iBin=iLogsize; iBin<=LOGMAX && mem5.aiFreelist[iBin]<0; iBin++){}
|
|
if( iBin>LOGMAX ){
|
|
testcase( sqlite3GlobalConfig.xLog!=0 );
|
|
sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte);
|
|
return 0;
|
|
}
|
|
i = mem5.aiFreelist[iBin];
|
|
memsys5Unlink(i, iBin);
|
|
while( iBin>iLogsize ){
|
|
int newSize;
|
|
|
|
iBin--;
|
|
newSize = 1 << iBin;
|
|
mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
|
|
memsys5Link(i+newSize, iBin);
|
|
}
|
|
mem5.aCtrl[i] = iLogsize;
|
|
|
|
#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
|
|
/* Update allocator performance statistics. */
|
|
mem5.nAlloc++;
|
|
mem5.totalAlloc += iFullSz;
|
|
mem5.totalExcess += iFullSz - nByte;
|
|
mem5.currentCount++;
|
|
mem5.currentOut += iFullSz;
|
|
if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
|
|
if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/* Make sure the allocated memory does not assume that it is set to zero
|
|
** or retains a value from a previous allocation */
|
|
memset(&mem5.zPool[i*mem5.szAtom], 0xAA, iFullSz);
|
|
#endif
|
|
|
|
/* Return a pointer to the allocated memory. */
|
|
return (void*)&mem5.zPool[i*mem5.szAtom];
|
|
}
|
|
|
|
/*
|
|
** Free an outstanding memory allocation.
|
|
*/
|
|
static void memsys5FreeUnsafe(void *pOld){
|
|
u32 size, iLogsize;
|
|
int iBlock;
|
|
|
|
/* Set iBlock to the index of the block pointed to by pOld in
|
|
** the array of mem5.szAtom byte blocks pointed to by mem5.zPool.
|
|
*/
|
|
iBlock = (int)(((u8 *)pOld-mem5.zPool)/mem5.szAtom);
|
|
|
|
/* Check that the pointer pOld points to a valid, non-free block. */
|
|
assert( iBlock>=0 && iBlock<mem5.nBlock );
|
|
assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 );
|
|
assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
|
|
|
|
iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
|
|
size = 1<<iLogsize;
|
|
assert( iBlock+size-1<(u32)mem5.nBlock );
|
|
|
|
mem5.aCtrl[iBlock] |= CTRL_FREE;
|
|
mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
|
|
|
|
#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
|
|
assert( mem5.currentCount>0 );
|
|
assert( mem5.currentOut>=(size*mem5.szAtom) );
|
|
mem5.currentCount--;
|
|
mem5.currentOut -= size*mem5.szAtom;
|
|
assert( mem5.currentOut>0 || mem5.currentCount==0 );
|
|
assert( mem5.currentCount>0 || mem5.currentOut==0 );
|
|
#endif
|
|
|
|
mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
|
|
while( ALWAYS(iLogsize<LOGMAX) ){
|
|
int iBuddy;
|
|
if( (iBlock>>iLogsize) & 1 ){
|
|
iBuddy = iBlock - size;
|
|
assert( iBuddy>=0 );
|
|
}else{
|
|
iBuddy = iBlock + size;
|
|
if( iBuddy>=mem5.nBlock ) break;
|
|
}
|
|
if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
|
|
memsys5Unlink(iBuddy, iLogsize);
|
|
iLogsize++;
|
|
if( iBuddy<iBlock ){
|
|
mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
|
|
mem5.aCtrl[iBlock] = 0;
|
|
iBlock = iBuddy;
|
|
}else{
|
|
mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
|
|
mem5.aCtrl[iBuddy] = 0;
|
|
}
|
|
size *= 2;
|
|
}
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/* Overwrite freed memory with the 0x55 bit pattern to verify that it is
|
|
** not used after being freed */
|
|
memset(&mem5.zPool[iBlock*mem5.szAtom], 0x55, size);
|
|
#endif
|
|
|
|
memsys5Link(iBlock, iLogsize);
|
|
}
|
|
|
|
/*
|
|
** Allocate nBytes of memory.
|
|
*/
|
|
static void *memsys5Malloc(int nBytes){
|
|
sqlite3_int64 *p = 0;
|
|
if( nBytes>0 ){
|
|
memsys5Enter();
|
|
p = memsys5MallocUnsafe(nBytes);
|
|
memsys5Leave();
|
|
}
|
|
return (void*)p;
|
|
}
|
|
|
|
/*
|
|
** Free memory.
|
|
**
|
|
** The outer layer memory allocator prevents this routine from
|
|
** being called with pPrior==0.
|
|
*/
|
|
static void memsys5Free(void *pPrior){
|
|
assert( pPrior!=0 );
|
|
memsys5Enter();
|
|
memsys5FreeUnsafe(pPrior);
|
|
memsys5Leave();
|
|
}
|
|
|
|
/*
|
|
** Change the size of an existing memory allocation.
|
|
**
|
|
** The outer layer memory allocator prevents this routine from
|
|
** being called with pPrior==0.
|
|
**
|
|
** nBytes is always a value obtained from a prior call to
|
|
** memsys5Round(). Hence nBytes is always a non-negative power
|
|
** of two. If nBytes==0 that means that an oversize allocation
|
|
** (an allocation larger than 0x40000000) was requested and this
|
|
** routine should return 0 without freeing pPrior.
|
|
*/
|
|
static void *memsys5Realloc(void *pPrior, int nBytes){
|
|
int nOld;
|
|
void *p;
|
|
assert( pPrior!=0 );
|
|
assert( (nBytes&(nBytes-1))==0 ); /* EV: R-46199-30249 */
|
|
assert( nBytes>=0 );
|
|
if( nBytes==0 ){
|
|
return 0;
|
|
}
|
|
nOld = memsys5Size(pPrior);
|
|
if( nBytes<=nOld ){
|
|
return pPrior;
|
|
}
|
|
p = memsys5Malloc(nBytes);
|
|
if( p ){
|
|
memcpy(p, pPrior, nOld);
|
|
memsys5Free(pPrior);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Round up a request size to the next valid allocation size. If
|
|
** the allocation is too large to be handled by this allocation system,
|
|
** return 0.
|
|
**
|
|
** All allocations must be a power of two and must be expressed by a
|
|
** 32-bit signed integer. Hence the largest allocation is 0x40000000
|
|
** or 1073741824 bytes.
|
|
*/
|
|
static int memsys5Roundup(int n){
|
|
int iFullSz;
|
|
if( n<=mem5.szAtom*2 ){
|
|
if( n<=mem5.szAtom ) return mem5.szAtom;
|
|
return mem5.szAtom*2;
|
|
}
|
|
if( n>0x10000000 ){
|
|
if( n>0x40000000 ) return 0;
|
|
if( n>0x20000000 ) return 0x40000000;
|
|
return 0x20000000;
|
|
}
|
|
for(iFullSz=mem5.szAtom*8; iFullSz<n; iFullSz *= 4);
|
|
if( (iFullSz/2)>=(i64)n ) return iFullSz/2;
|
|
return iFullSz;
|
|
}
|
|
|
|
/*
|
|
** Return the ceiling of the logarithm base 2 of iValue.
|
|
**
|
|
** Examples: memsys5Log(1) -> 0
|
|
** memsys5Log(2) -> 1
|
|
** memsys5Log(4) -> 2
|
|
** memsys5Log(5) -> 3
|
|
** memsys5Log(8) -> 3
|
|
** memsys5Log(9) -> 4
|
|
*/
|
|
static int memsys5Log(int iValue){
|
|
int iLog;
|
|
for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++);
|
|
return iLog;
|
|
}
|
|
|
|
/*
|
|
** Initialize the memory allocator.
|
|
**
|
|
** This routine is not threadsafe. The caller must be holding a mutex
|
|
** to prevent multiple threads from entering at the same time.
|
|
*/
|
|
static int memsys5Init(void *NotUsed){
|
|
int ii; /* Loop counter */
|
|
int nByte; /* Number of bytes of memory available to this allocator */
|
|
u8 *zByte; /* Memory usable by this allocator */
|
|
int nMinLog; /* Log base 2 of minimum allocation size in bytes */
|
|
int iOffset; /* An offset into mem5.aCtrl[] */
|
|
|
|
UNUSED_PARAMETER(NotUsed);
|
|
|
|
/* For the purposes of this routine, disable the mutex */
|
|
mem5.mutex = 0;
|
|
|
|
/* The size of a Mem5Link object must be a power of two. Verify that
|
|
** this is case.
|
|
*/
|
|
assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 );
|
|
|
|
nByte = sqlite3GlobalConfig.nHeap;
|
|
zByte = (u8*)sqlite3GlobalConfig.pHeap;
|
|
assert( zByte!=0 ); /* sqlite3_config() does not allow otherwise */
|
|
|
|
/* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */
|
|
nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
|
|
mem5.szAtom = (1<<nMinLog);
|
|
while( (int)sizeof(Mem5Link)>mem5.szAtom ){
|
|
mem5.szAtom = mem5.szAtom << 1;
|
|
}
|
|
|
|
mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8)));
|
|
mem5.zPool = zByte;
|
|
mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom];
|
|
|
|
for(ii=0; ii<=LOGMAX; ii++){
|
|
mem5.aiFreelist[ii] = -1;
|
|
}
|
|
|
|
iOffset = 0;
|
|
for(ii=LOGMAX; ii>=0; ii--){
|
|
int nAlloc = (1<<ii);
|
|
if( (iOffset+nAlloc)<=mem5.nBlock ){
|
|
mem5.aCtrl[iOffset] = ii | CTRL_FREE;
|
|
memsys5Link(iOffset, ii);
|
|
iOffset += nAlloc;
|
|
}
|
|
assert((iOffset+nAlloc)>mem5.nBlock);
|
|
}
|
|
|
|
/* If a mutex is required for normal operation, allocate one */
|
|
if( sqlite3GlobalConfig.bMemstat==0 ){
|
|
mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
|
|
}
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Deinitialize this module.
|
|
*/
|
|
static void memsys5Shutdown(void *NotUsed){
|
|
UNUSED_PARAMETER(NotUsed);
|
|
mem5.mutex = 0;
|
|
return;
|
|
}
|
|
|
|
#ifdef SQLITE_TEST
|
|
/*
|
|
** Open the file indicated and write a log of all unfreed memory
|
|
** allocations into that log.
|
|
*/
|
|
void sqlite3Memsys5Dump(const char *zFilename){
|
|
FILE *out;
|
|
int i, j, n;
|
|
int nMinLog;
|
|
|
|
if( zFilename==0 || zFilename[0]==0 ){
|
|
out = stdout;
|
|
}else{
|
|
out = fopen(zFilename, "w");
|
|
if( out==0 ){
|
|
fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
|
|
zFilename);
|
|
return;
|
|
}
|
|
}
|
|
memsys5Enter();
|
|
nMinLog = memsys5Log(mem5.szAtom);
|
|
for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
|
|
for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
|
|
fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n);
|
|
}
|
|
fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc);
|
|
fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc);
|
|
fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess);
|
|
fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut);
|
|
fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
|
|
fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut);
|
|
fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount);
|
|
fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest);
|
|
memsys5Leave();
|
|
if( out==stdout ){
|
|
fflush(stdout);
|
|
}else{
|
|
fclose(out);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** This routine is the only routine in this file with external
|
|
** linkage. It returns a pointer to a static sqlite3_mem_methods
|
|
** struct populated with the memsys5 methods.
|
|
*/
|
|
const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
|
|
static const sqlite3_mem_methods memsys5Methods = {
|
|
memsys5Malloc,
|
|
memsys5Free,
|
|
memsys5Realloc,
|
|
memsys5Size,
|
|
memsys5Roundup,
|
|
memsys5Init,
|
|
memsys5Shutdown,
|
|
0
|
|
};
|
|
return &memsys5Methods;
|
|
}
|
|
|
|
#endif /* SQLITE_ENABLE_MEMSYS5 */
|