f2fa084cf1
a (harmless) read of an uninitialized value. FossilOrigin-Name: e2074b24788149562b15022ccd2784d6649f08ebc41410e3bfb2401baf0892e2
4546 lines
139 KiB
C
4546 lines
139 KiB
C
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains code for implementations of the r-tree and r*-tree
|
|
** algorithms packaged as an SQLite virtual table module.
|
|
*/
|
|
|
|
/*
|
|
** Database Format of R-Tree Tables
|
|
** --------------------------------
|
|
**
|
|
** The data structure for a single virtual r-tree table is stored in three
|
|
** native SQLite tables declared as follows. In each case, the '%' character
|
|
** in the table name is replaced with the user-supplied name of the r-tree
|
|
** table.
|
|
**
|
|
** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB)
|
|
** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
|
|
** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...)
|
|
**
|
|
** The data for each node of the r-tree structure is stored in the %_node
|
|
** table. For each node that is not the root node of the r-tree, there is
|
|
** an entry in the %_parent table associating the node with its parent.
|
|
** And for each row of data in the table, there is an entry in the %_rowid
|
|
** table that maps from the entries rowid to the id of the node that it
|
|
** is stored on. If the r-tree contains auxiliary columns, those are stored
|
|
** on the end of the %_rowid table.
|
|
**
|
|
** The root node of an r-tree always exists, even if the r-tree table is
|
|
** empty. The nodeno of the root node is always 1. All other nodes in the
|
|
** table must be the same size as the root node. The content of each node
|
|
** is formatted as follows:
|
|
**
|
|
** 1. If the node is the root node (node 1), then the first 2 bytes
|
|
** of the node contain the tree depth as a big-endian integer.
|
|
** For non-root nodes, the first 2 bytes are left unused.
|
|
**
|
|
** 2. The next 2 bytes contain the number of entries currently
|
|
** stored in the node.
|
|
**
|
|
** 3. The remainder of the node contains the node entries. Each entry
|
|
** consists of a single 8-byte integer followed by an even number
|
|
** of 4-byte coordinates. For leaf nodes the integer is the rowid
|
|
** of a record. For internal nodes it is the node number of a
|
|
** child page.
|
|
*/
|
|
|
|
#if !defined(SQLITE_CORE) \
|
|
|| (defined(SQLITE_ENABLE_RTREE) && !defined(SQLITE_OMIT_VIRTUALTABLE))
|
|
|
|
#ifndef SQLITE_CORE
|
|
#include "sqlite3ext.h"
|
|
SQLITE_EXTENSION_INIT1
|
|
#else
|
|
#include "sqlite3.h"
|
|
#endif
|
|
int sqlite3GetToken(const unsigned char*,int*); /* In the SQLite core */
|
|
|
|
#ifndef SQLITE_AMALGAMATION
|
|
#include "sqlite3rtree.h"
|
|
typedef sqlite3_int64 i64;
|
|
typedef sqlite3_uint64 u64;
|
|
typedef unsigned char u8;
|
|
typedef unsigned short u16;
|
|
typedef unsigned int u32;
|
|
#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
|
|
# define NDEBUG 1
|
|
#endif
|
|
#if defined(NDEBUG) && defined(SQLITE_DEBUG)
|
|
# undef NDEBUG
|
|
#endif
|
|
#endif
|
|
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
|
|
/* The following macro is used to suppress compiler warnings.
|
|
*/
|
|
#ifndef UNUSED_PARAMETER
|
|
# define UNUSED_PARAMETER(x) (void)(x)
|
|
#endif
|
|
|
|
typedef struct Rtree Rtree;
|
|
typedef struct RtreeCursor RtreeCursor;
|
|
typedef struct RtreeNode RtreeNode;
|
|
typedef struct RtreeCell RtreeCell;
|
|
typedef struct RtreeConstraint RtreeConstraint;
|
|
typedef struct RtreeMatchArg RtreeMatchArg;
|
|
typedef struct RtreeGeomCallback RtreeGeomCallback;
|
|
typedef union RtreeCoord RtreeCoord;
|
|
typedef struct RtreeSearchPoint RtreeSearchPoint;
|
|
|
|
/* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
|
|
#define RTREE_MAX_DIMENSIONS 5
|
|
|
|
/* Maximum number of auxiliary columns */
|
|
#define RTREE_MAX_AUX_COLUMN 100
|
|
|
|
/* Size of hash table Rtree.aHash. This hash table is not expected to
|
|
** ever contain very many entries, so a fixed number of buckets is
|
|
** used.
|
|
*/
|
|
#define HASHSIZE 97
|
|
|
|
/* The xBestIndex method of this virtual table requires an estimate of
|
|
** the number of rows in the virtual table to calculate the costs of
|
|
** various strategies. If possible, this estimate is loaded from the
|
|
** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum).
|
|
** Otherwise, if no sqlite_stat1 entry is available, use
|
|
** RTREE_DEFAULT_ROWEST.
|
|
*/
|
|
#define RTREE_DEFAULT_ROWEST 1048576
|
|
#define RTREE_MIN_ROWEST 100
|
|
|
|
/*
|
|
** An rtree virtual-table object.
|
|
*/
|
|
struct Rtree {
|
|
sqlite3_vtab base; /* Base class. Must be first */
|
|
sqlite3 *db; /* Host database connection */
|
|
int iNodeSize; /* Size in bytes of each node in the node table */
|
|
u8 nDim; /* Number of dimensions */
|
|
u8 nDim2; /* Twice the number of dimensions */
|
|
u8 eCoordType; /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */
|
|
u8 nBytesPerCell; /* Bytes consumed per cell */
|
|
u8 inWrTrans; /* True if inside write transaction */
|
|
u8 nAux; /* # of auxiliary columns in %_rowid */
|
|
u8 nAuxNotNull; /* Number of initial not-null aux columns */
|
|
#ifdef SQLITE_DEBUG
|
|
u8 bCorrupt; /* Shadow table corruption detected */
|
|
#endif
|
|
int iDepth; /* Current depth of the r-tree structure */
|
|
char *zDb; /* Name of database containing r-tree table */
|
|
char *zName; /* Name of r-tree table */
|
|
u32 nBusy; /* Current number of users of this structure */
|
|
i64 nRowEst; /* Estimated number of rows in this table */
|
|
u32 nCursor; /* Number of open cursors */
|
|
u32 nNodeRef; /* Number RtreeNodes with positive nRef */
|
|
char *zReadAuxSql; /* SQL for statement to read aux data */
|
|
|
|
/* List of nodes removed during a CondenseTree operation. List is
|
|
** linked together via the pointer normally used for hash chains -
|
|
** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree
|
|
** headed by the node (leaf nodes have RtreeNode.iNode==0).
|
|
*/
|
|
RtreeNode *pDeleted;
|
|
int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */
|
|
|
|
/* Blob I/O on xxx_node */
|
|
sqlite3_blob *pNodeBlob;
|
|
|
|
/* Statements to read/write/delete a record from xxx_node */
|
|
sqlite3_stmt *pWriteNode;
|
|
sqlite3_stmt *pDeleteNode;
|
|
|
|
/* Statements to read/write/delete a record from xxx_rowid */
|
|
sqlite3_stmt *pReadRowid;
|
|
sqlite3_stmt *pWriteRowid;
|
|
sqlite3_stmt *pDeleteRowid;
|
|
|
|
/* Statements to read/write/delete a record from xxx_parent */
|
|
sqlite3_stmt *pReadParent;
|
|
sqlite3_stmt *pWriteParent;
|
|
sqlite3_stmt *pDeleteParent;
|
|
|
|
/* Statement for writing to the "aux:" fields, if there are any */
|
|
sqlite3_stmt *pWriteAux;
|
|
|
|
RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */
|
|
};
|
|
|
|
/* Possible values for Rtree.eCoordType: */
|
|
#define RTREE_COORD_REAL32 0
|
|
#define RTREE_COORD_INT32 1
|
|
|
|
/*
|
|
** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will
|
|
** only deal with integer coordinates. No floating point operations
|
|
** will be done.
|
|
*/
|
|
#ifdef SQLITE_RTREE_INT_ONLY
|
|
typedef sqlite3_int64 RtreeDValue; /* High accuracy coordinate */
|
|
typedef int RtreeValue; /* Low accuracy coordinate */
|
|
# define RTREE_ZERO 0
|
|
#else
|
|
typedef double RtreeDValue; /* High accuracy coordinate */
|
|
typedef float RtreeValue; /* Low accuracy coordinate */
|
|
# define RTREE_ZERO 0.0
|
|
#endif
|
|
|
|
/*
|
|
** Set the Rtree.bCorrupt flag
|
|
*/
|
|
#ifdef SQLITE_DEBUG
|
|
# define RTREE_IS_CORRUPT(X) ((X)->bCorrupt = 1)
|
|
#else
|
|
# define RTREE_IS_CORRUPT(X)
|
|
#endif
|
|
|
|
/*
|
|
** When doing a search of an r-tree, instances of the following structure
|
|
** record intermediate results from the tree walk.
|
|
**
|
|
** The id is always a node-id. For iLevel>=1 the id is the node-id of
|
|
** the node that the RtreeSearchPoint represents. When iLevel==0, however,
|
|
** the id is of the parent node and the cell that RtreeSearchPoint
|
|
** represents is the iCell-th entry in the parent node.
|
|
*/
|
|
struct RtreeSearchPoint {
|
|
RtreeDValue rScore; /* The score for this node. Smallest goes first. */
|
|
sqlite3_int64 id; /* Node ID */
|
|
u8 iLevel; /* 0=entries. 1=leaf node. 2+ for higher */
|
|
u8 eWithin; /* PARTLY_WITHIN or FULLY_WITHIN */
|
|
u8 iCell; /* Cell index within the node */
|
|
};
|
|
|
|
/*
|
|
** The minimum number of cells allowed for a node is a third of the
|
|
** maximum. In Gutman's notation:
|
|
**
|
|
** m = M/3
|
|
**
|
|
** If an R*-tree "Reinsert" operation is required, the same number of
|
|
** cells are removed from the overfull node and reinserted into the tree.
|
|
*/
|
|
#define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3)
|
|
#define RTREE_REINSERT(p) RTREE_MINCELLS(p)
|
|
#define RTREE_MAXCELLS 51
|
|
|
|
/*
|
|
** The smallest possible node-size is (512-64)==448 bytes. And the largest
|
|
** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates).
|
|
** Therefore all non-root nodes must contain at least 3 entries. Since
|
|
** 3^40 is greater than 2^64, an r-tree structure always has a depth of
|
|
** 40 or less.
|
|
*/
|
|
#define RTREE_MAX_DEPTH 40
|
|
|
|
|
|
/*
|
|
** Number of entries in the cursor RtreeNode cache. The first entry is
|
|
** used to cache the RtreeNode for RtreeCursor.sPoint. The remaining
|
|
** entries cache the RtreeNode for the first elements of the priority queue.
|
|
*/
|
|
#define RTREE_CACHE_SZ 5
|
|
|
|
/*
|
|
** An rtree cursor object.
|
|
*/
|
|
struct RtreeCursor {
|
|
sqlite3_vtab_cursor base; /* Base class. Must be first */
|
|
u8 atEOF; /* True if at end of search */
|
|
u8 bPoint; /* True if sPoint is valid */
|
|
u8 bAuxValid; /* True if pReadAux is valid */
|
|
int iStrategy; /* Copy of idxNum search parameter */
|
|
int nConstraint; /* Number of entries in aConstraint */
|
|
RtreeConstraint *aConstraint; /* Search constraints. */
|
|
int nPointAlloc; /* Number of slots allocated for aPoint[] */
|
|
int nPoint; /* Number of slots used in aPoint[] */
|
|
int mxLevel; /* iLevel value for root of the tree */
|
|
RtreeSearchPoint *aPoint; /* Priority queue for search points */
|
|
sqlite3_stmt *pReadAux; /* Statement to read aux-data */
|
|
RtreeSearchPoint sPoint; /* Cached next search point */
|
|
RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */
|
|
u32 anQueue[RTREE_MAX_DEPTH+1]; /* Number of queued entries by iLevel */
|
|
};
|
|
|
|
/* Return the Rtree of a RtreeCursor */
|
|
#define RTREE_OF_CURSOR(X) ((Rtree*)((X)->base.pVtab))
|
|
|
|
/*
|
|
** A coordinate can be either a floating point number or a integer. All
|
|
** coordinates within a single R-Tree are always of the same time.
|
|
*/
|
|
union RtreeCoord {
|
|
RtreeValue f; /* Floating point value */
|
|
int i; /* Integer value */
|
|
u32 u; /* Unsigned for byte-order conversions */
|
|
};
|
|
|
|
/*
|
|
** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
|
|
** formatted as a RtreeDValue (double or int64). This macro assumes that local
|
|
** variable pRtree points to the Rtree structure associated with the
|
|
** RtreeCoord.
|
|
*/
|
|
#ifdef SQLITE_RTREE_INT_ONLY
|
|
# define DCOORD(coord) ((RtreeDValue)coord.i)
|
|
#else
|
|
# define DCOORD(coord) ( \
|
|
(pRtree->eCoordType==RTREE_COORD_REAL32) ? \
|
|
((double)coord.f) : \
|
|
((double)coord.i) \
|
|
)
|
|
#endif
|
|
|
|
/*
|
|
** A search constraint.
|
|
*/
|
|
struct RtreeConstraint {
|
|
int iCoord; /* Index of constrained coordinate */
|
|
int op; /* Constraining operation */
|
|
union {
|
|
RtreeDValue rValue; /* Constraint value. */
|
|
int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*);
|
|
int (*xQueryFunc)(sqlite3_rtree_query_info*);
|
|
} u;
|
|
sqlite3_rtree_query_info *pInfo; /* xGeom and xQueryFunc argument */
|
|
};
|
|
|
|
/* Possible values for RtreeConstraint.op */
|
|
#define RTREE_EQ 0x41 /* A */
|
|
#define RTREE_LE 0x42 /* B */
|
|
#define RTREE_LT 0x43 /* C */
|
|
#define RTREE_GE 0x44 /* D */
|
|
#define RTREE_GT 0x45 /* E */
|
|
#define RTREE_MATCH 0x46 /* F: Old-style sqlite3_rtree_geometry_callback() */
|
|
#define RTREE_QUERY 0x47 /* G: New-style sqlite3_rtree_query_callback() */
|
|
|
|
/* Special operators available only on cursors. Needs to be consecutive
|
|
** with the normal values above, but must be less than RTREE_MATCH. These
|
|
** are used in the cursor for contraints such as x=NULL (RTREE_FALSE) or
|
|
** x<'xyz' (RTREE_TRUE) */
|
|
#define RTREE_TRUE 0x3f /* ? */
|
|
#define RTREE_FALSE 0x40 /* @ */
|
|
|
|
/*
|
|
** An rtree structure node.
|
|
*/
|
|
struct RtreeNode {
|
|
RtreeNode *pParent; /* Parent node */
|
|
i64 iNode; /* The node number */
|
|
int nRef; /* Number of references to this node */
|
|
int isDirty; /* True if the node needs to be written to disk */
|
|
u8 *zData; /* Content of the node, as should be on disk */
|
|
RtreeNode *pNext; /* Next node in this hash collision chain */
|
|
};
|
|
|
|
/* Return the number of cells in a node */
|
|
#define NCELL(pNode) readInt16(&(pNode)->zData[2])
|
|
|
|
/*
|
|
** A single cell from a node, deserialized
|
|
*/
|
|
struct RtreeCell {
|
|
i64 iRowid; /* Node or entry ID */
|
|
RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; /* Bounding box coordinates */
|
|
};
|
|
|
|
|
|
/*
|
|
** This object becomes the sqlite3_user_data() for the SQL functions
|
|
** that are created by sqlite3_rtree_geometry_callback() and
|
|
** sqlite3_rtree_query_callback() and which appear on the right of MATCH
|
|
** operators in order to constrain a search.
|
|
**
|
|
** xGeom and xQueryFunc are the callback functions. Exactly one of
|
|
** xGeom and xQueryFunc fields is non-NULL, depending on whether the
|
|
** SQL function was created using sqlite3_rtree_geometry_callback() or
|
|
** sqlite3_rtree_query_callback().
|
|
**
|
|
** This object is deleted automatically by the destructor mechanism in
|
|
** sqlite3_create_function_v2().
|
|
*/
|
|
struct RtreeGeomCallback {
|
|
int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*);
|
|
int (*xQueryFunc)(sqlite3_rtree_query_info*);
|
|
void (*xDestructor)(void*);
|
|
void *pContext;
|
|
};
|
|
|
|
/*
|
|
** An instance of this structure (in the form of a BLOB) is returned by
|
|
** the SQL functions that sqlite3_rtree_geometry_callback() and
|
|
** sqlite3_rtree_query_callback() create, and is read as the right-hand
|
|
** operand to the MATCH operator of an R-Tree.
|
|
*/
|
|
struct RtreeMatchArg {
|
|
u32 iSize; /* Size of this object */
|
|
RtreeGeomCallback cb; /* Info about the callback functions */
|
|
int nParam; /* Number of parameters to the SQL function */
|
|
sqlite3_value **apSqlParam; /* Original SQL parameter values */
|
|
RtreeDValue aParam[1]; /* Values for parameters to the SQL function */
|
|
};
|
|
|
|
#ifndef MAX
|
|
# define MAX(x,y) ((x) < (y) ? (y) : (x))
|
|
#endif
|
|
#ifndef MIN
|
|
# define MIN(x,y) ((x) > (y) ? (y) : (x))
|
|
#endif
|
|
|
|
/* What version of GCC is being used. 0 means GCC is not being used .
|
|
** Note that the GCC_VERSION macro will also be set correctly when using
|
|
** clang, since clang works hard to be gcc compatible. So the gcc
|
|
** optimizations will also work when compiling with clang.
|
|
*/
|
|
#ifndef GCC_VERSION
|
|
#if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC)
|
|
# define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
|
|
#else
|
|
# define GCC_VERSION 0
|
|
#endif
|
|
#endif
|
|
|
|
/* The testcase() macro should already be defined in the amalgamation. If
|
|
** it is not, make it a no-op.
|
|
*/
|
|
#ifndef SQLITE_AMALGAMATION
|
|
# define testcase(X)
|
|
#endif
|
|
|
|
/*
|
|
** Make sure that the compiler intrinsics we desire are enabled when
|
|
** compiling with an appropriate version of MSVC unless prevented by
|
|
** the SQLITE_DISABLE_INTRINSIC define.
|
|
*/
|
|
#if !defined(SQLITE_DISABLE_INTRINSIC)
|
|
# if defined(_MSC_VER) && _MSC_VER>=1400
|
|
# if !defined(_WIN32_WCE)
|
|
# include <intrin.h>
|
|
# pragma intrinsic(_byteswap_ulong)
|
|
# pragma intrinsic(_byteswap_uint64)
|
|
# else
|
|
# include <cmnintrin.h>
|
|
# endif
|
|
# endif
|
|
#endif
|
|
|
|
/*
|
|
** Macros to determine whether the machine is big or little endian,
|
|
** and whether or not that determination is run-time or compile-time.
|
|
**
|
|
** For best performance, an attempt is made to guess at the byte-order
|
|
** using C-preprocessor macros. If that is unsuccessful, or if
|
|
** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
|
|
** at run-time.
|
|
*/
|
|
#ifndef SQLITE_BYTEORDER
|
|
#if defined(i386) || defined(__i386__) || defined(_M_IX86) || \
|
|
defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \
|
|
defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \
|
|
defined(__arm__)
|
|
# define SQLITE_BYTEORDER 1234
|
|
#elif defined(sparc) || defined(__ppc__)
|
|
# define SQLITE_BYTEORDER 4321
|
|
#else
|
|
# define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */
|
|
#endif
|
|
#endif
|
|
|
|
|
|
/* What version of MSVC is being used. 0 means MSVC is not being used */
|
|
#ifndef MSVC_VERSION
|
|
#if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC)
|
|
# define MSVC_VERSION _MSC_VER
|
|
#else
|
|
# define MSVC_VERSION 0
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
** Functions to deserialize a 16 bit integer, 32 bit real number and
|
|
** 64 bit integer. The deserialized value is returned.
|
|
*/
|
|
static int readInt16(u8 *p){
|
|
return (p[0]<<8) + p[1];
|
|
}
|
|
static void readCoord(u8 *p, RtreeCoord *pCoord){
|
|
assert( ((((char*)p) - (char*)0)&3)==0 ); /* p is always 4-byte aligned */
|
|
#if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
|
|
pCoord->u = _byteswap_ulong(*(u32*)p);
|
|
#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
|
|
pCoord->u = __builtin_bswap32(*(u32*)p);
|
|
#elif SQLITE_BYTEORDER==4321
|
|
pCoord->u = *(u32*)p;
|
|
#else
|
|
pCoord->u = (
|
|
(((u32)p[0]) << 24) +
|
|
(((u32)p[1]) << 16) +
|
|
(((u32)p[2]) << 8) +
|
|
(((u32)p[3]) << 0)
|
|
);
|
|
#endif
|
|
}
|
|
static i64 readInt64(u8 *p){
|
|
#if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
|
|
u64 x;
|
|
memcpy(&x, p, 8);
|
|
return (i64)_byteswap_uint64(x);
|
|
#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
|
|
u64 x;
|
|
memcpy(&x, p, 8);
|
|
return (i64)__builtin_bswap64(x);
|
|
#elif SQLITE_BYTEORDER==4321
|
|
i64 x;
|
|
memcpy(&x, p, 8);
|
|
return x;
|
|
#else
|
|
return (i64)(
|
|
(((u64)p[0]) << 56) +
|
|
(((u64)p[1]) << 48) +
|
|
(((u64)p[2]) << 40) +
|
|
(((u64)p[3]) << 32) +
|
|
(((u64)p[4]) << 24) +
|
|
(((u64)p[5]) << 16) +
|
|
(((u64)p[6]) << 8) +
|
|
(((u64)p[7]) << 0)
|
|
);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Functions to serialize a 16 bit integer, 32 bit real number and
|
|
** 64 bit integer. The value returned is the number of bytes written
|
|
** to the argument buffer (always 2, 4 and 8 respectively).
|
|
*/
|
|
static void writeInt16(u8 *p, int i){
|
|
p[0] = (i>> 8)&0xFF;
|
|
p[1] = (i>> 0)&0xFF;
|
|
}
|
|
static int writeCoord(u8 *p, RtreeCoord *pCoord){
|
|
u32 i;
|
|
assert( ((((char*)p) - (char*)0)&3)==0 ); /* p is always 4-byte aligned */
|
|
assert( sizeof(RtreeCoord)==4 );
|
|
assert( sizeof(u32)==4 );
|
|
#if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
|
|
i = __builtin_bswap32(pCoord->u);
|
|
memcpy(p, &i, 4);
|
|
#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
|
|
i = _byteswap_ulong(pCoord->u);
|
|
memcpy(p, &i, 4);
|
|
#elif SQLITE_BYTEORDER==4321
|
|
i = pCoord->u;
|
|
memcpy(p, &i, 4);
|
|
#else
|
|
i = pCoord->u;
|
|
p[0] = (i>>24)&0xFF;
|
|
p[1] = (i>>16)&0xFF;
|
|
p[2] = (i>> 8)&0xFF;
|
|
p[3] = (i>> 0)&0xFF;
|
|
#endif
|
|
return 4;
|
|
}
|
|
static int writeInt64(u8 *p, i64 i){
|
|
#if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
|
|
i = (i64)__builtin_bswap64((u64)i);
|
|
memcpy(p, &i, 8);
|
|
#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
|
|
i = (i64)_byteswap_uint64((u64)i);
|
|
memcpy(p, &i, 8);
|
|
#elif SQLITE_BYTEORDER==4321
|
|
memcpy(p, &i, 8);
|
|
#else
|
|
p[0] = (i>>56)&0xFF;
|
|
p[1] = (i>>48)&0xFF;
|
|
p[2] = (i>>40)&0xFF;
|
|
p[3] = (i>>32)&0xFF;
|
|
p[4] = (i>>24)&0xFF;
|
|
p[5] = (i>>16)&0xFF;
|
|
p[6] = (i>> 8)&0xFF;
|
|
p[7] = (i>> 0)&0xFF;
|
|
#endif
|
|
return 8;
|
|
}
|
|
|
|
/*
|
|
** Increment the reference count of node p.
|
|
*/
|
|
static void nodeReference(RtreeNode *p){
|
|
if( p ){
|
|
assert( p->nRef>0 );
|
|
p->nRef++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Clear the content of node p (set all bytes to 0x00).
|
|
*/
|
|
static void nodeZero(Rtree *pRtree, RtreeNode *p){
|
|
memset(&p->zData[2], 0, pRtree->iNodeSize-2);
|
|
p->isDirty = 1;
|
|
}
|
|
|
|
/*
|
|
** Given a node number iNode, return the corresponding key to use
|
|
** in the Rtree.aHash table.
|
|
*/
|
|
static unsigned int nodeHash(i64 iNode){
|
|
return ((unsigned)iNode) % HASHSIZE;
|
|
}
|
|
|
|
/*
|
|
** Search the node hash table for node iNode. If found, return a pointer
|
|
** to it. Otherwise, return 0.
|
|
*/
|
|
static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){
|
|
RtreeNode *p;
|
|
for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext);
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Add node pNode to the node hash table.
|
|
*/
|
|
static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){
|
|
int iHash;
|
|
assert( pNode->pNext==0 );
|
|
iHash = nodeHash(pNode->iNode);
|
|
pNode->pNext = pRtree->aHash[iHash];
|
|
pRtree->aHash[iHash] = pNode;
|
|
}
|
|
|
|
/*
|
|
** Remove node pNode from the node hash table.
|
|
*/
|
|
static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){
|
|
RtreeNode **pp;
|
|
if( pNode->iNode!=0 ){
|
|
pp = &pRtree->aHash[nodeHash(pNode->iNode)];
|
|
for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); }
|
|
*pp = pNode->pNext;
|
|
pNode->pNext = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0),
|
|
** indicating that node has not yet been assigned a node number. It is
|
|
** assigned a node number when nodeWrite() is called to write the
|
|
** node contents out to the database.
|
|
*/
|
|
static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){
|
|
RtreeNode *pNode;
|
|
pNode = (RtreeNode *)sqlite3_malloc64(sizeof(RtreeNode) + pRtree->iNodeSize);
|
|
if( pNode ){
|
|
memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize);
|
|
pNode->zData = (u8 *)&pNode[1];
|
|
pNode->nRef = 1;
|
|
pRtree->nNodeRef++;
|
|
pNode->pParent = pParent;
|
|
pNode->isDirty = 1;
|
|
nodeReference(pParent);
|
|
}
|
|
return pNode;
|
|
}
|
|
|
|
/*
|
|
** Clear the Rtree.pNodeBlob object
|
|
*/
|
|
static void nodeBlobReset(Rtree *pRtree){
|
|
if( pRtree->pNodeBlob && pRtree->inWrTrans==0 && pRtree->nCursor==0 ){
|
|
sqlite3_blob *pBlob = pRtree->pNodeBlob;
|
|
pRtree->pNodeBlob = 0;
|
|
sqlite3_blob_close(pBlob);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Check to see if pNode is the same as pParent or any of the parents
|
|
** of pParent.
|
|
*/
|
|
static int nodeInParentChain(const RtreeNode *pNode, const RtreeNode *pParent){
|
|
do{
|
|
if( pNode==pParent ) return 1;
|
|
pParent = pParent->pParent;
|
|
}while( pParent );
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Obtain a reference to an r-tree node.
|
|
*/
|
|
static int nodeAcquire(
|
|
Rtree *pRtree, /* R-tree structure */
|
|
i64 iNode, /* Node number to load */
|
|
RtreeNode *pParent, /* Either the parent node or NULL */
|
|
RtreeNode **ppNode /* OUT: Acquired node */
|
|
){
|
|
int rc = SQLITE_OK;
|
|
RtreeNode *pNode = 0;
|
|
|
|
/* Check if the requested node is already in the hash table. If so,
|
|
** increase its reference count and return it.
|
|
*/
|
|
if( (pNode = nodeHashLookup(pRtree, iNode))!=0 ){
|
|
if( pParent && !pNode->pParent ){
|
|
if( nodeInParentChain(pNode, pParent) ){
|
|
RTREE_IS_CORRUPT(pRtree);
|
|
return SQLITE_CORRUPT_VTAB;
|
|
}
|
|
pParent->nRef++;
|
|
pNode->pParent = pParent;
|
|
}else if( pParent && pNode->pParent && pParent!=pNode->pParent ){
|
|
RTREE_IS_CORRUPT(pRtree);
|
|
return SQLITE_CORRUPT_VTAB;
|
|
}
|
|
pNode->nRef++;
|
|
*ppNode = pNode;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
if( pRtree->pNodeBlob ){
|
|
sqlite3_blob *pBlob = pRtree->pNodeBlob;
|
|
pRtree->pNodeBlob = 0;
|
|
rc = sqlite3_blob_reopen(pBlob, iNode);
|
|
pRtree->pNodeBlob = pBlob;
|
|
if( rc ){
|
|
nodeBlobReset(pRtree);
|
|
if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM;
|
|
}
|
|
}
|
|
if( pRtree->pNodeBlob==0 ){
|
|
char *zTab = sqlite3_mprintf("%s_node", pRtree->zName);
|
|
if( zTab==0 ) return SQLITE_NOMEM;
|
|
rc = sqlite3_blob_open(pRtree->db, pRtree->zDb, zTab, "data", iNode, 0,
|
|
&pRtree->pNodeBlob);
|
|
sqlite3_free(zTab);
|
|
}
|
|
if( rc ){
|
|
nodeBlobReset(pRtree);
|
|
*ppNode = 0;
|
|
/* If unable to open an sqlite3_blob on the desired row, that can only
|
|
** be because the shadow tables hold erroneous data. */
|
|
if( rc==SQLITE_ERROR ){
|
|
rc = SQLITE_CORRUPT_VTAB;
|
|
RTREE_IS_CORRUPT(pRtree);
|
|
}
|
|
}else if( pRtree->iNodeSize==sqlite3_blob_bytes(pRtree->pNodeBlob) ){
|
|
pNode = (RtreeNode *)sqlite3_malloc64(sizeof(RtreeNode)+pRtree->iNodeSize);
|
|
if( !pNode ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
pNode->pParent = pParent;
|
|
pNode->zData = (u8 *)&pNode[1];
|
|
pNode->nRef = 1;
|
|
pRtree->nNodeRef++;
|
|
pNode->iNode = iNode;
|
|
pNode->isDirty = 0;
|
|
pNode->pNext = 0;
|
|
rc = sqlite3_blob_read(pRtree->pNodeBlob, pNode->zData,
|
|
pRtree->iNodeSize, 0);
|
|
}
|
|
}
|
|
|
|
/* If the root node was just loaded, set pRtree->iDepth to the height
|
|
** of the r-tree structure. A height of zero means all data is stored on
|
|
** the root node. A height of one means the children of the root node
|
|
** are the leaves, and so on. If the depth as specified on the root node
|
|
** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt.
|
|
*/
|
|
if( pNode && rc==SQLITE_OK && iNode==1 ){
|
|
pRtree->iDepth = readInt16(pNode->zData);
|
|
if( pRtree->iDepth>RTREE_MAX_DEPTH ){
|
|
rc = SQLITE_CORRUPT_VTAB;
|
|
RTREE_IS_CORRUPT(pRtree);
|
|
}
|
|
}
|
|
|
|
/* If no error has occurred so far, check if the "number of entries"
|
|
** field on the node is too large. If so, set the return code to
|
|
** SQLITE_CORRUPT_VTAB.
|
|
*/
|
|
if( pNode && rc==SQLITE_OK ){
|
|
if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){
|
|
rc = SQLITE_CORRUPT_VTAB;
|
|
RTREE_IS_CORRUPT(pRtree);
|
|
}
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
if( pNode!=0 ){
|
|
nodeReference(pParent);
|
|
nodeHashInsert(pRtree, pNode);
|
|
}else{
|
|
rc = SQLITE_CORRUPT_VTAB;
|
|
RTREE_IS_CORRUPT(pRtree);
|
|
}
|
|
*ppNode = pNode;
|
|
}else{
|
|
if( pNode ){
|
|
pRtree->nNodeRef--;
|
|
sqlite3_free(pNode);
|
|
}
|
|
*ppNode = 0;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Overwrite cell iCell of node pNode with the contents of pCell.
|
|
*/
|
|
static void nodeOverwriteCell(
|
|
Rtree *pRtree, /* The overall R-Tree */
|
|
RtreeNode *pNode, /* The node into which the cell is to be written */
|
|
RtreeCell *pCell, /* The cell to write */
|
|
int iCell /* Index into pNode into which pCell is written */
|
|
){
|
|
int ii;
|
|
u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
|
|
p += writeInt64(p, pCell->iRowid);
|
|
for(ii=0; ii<pRtree->nDim2; ii++){
|
|
p += writeCoord(p, &pCell->aCoord[ii]);
|
|
}
|
|
pNode->isDirty = 1;
|
|
}
|
|
|
|
/*
|
|
** Remove the cell with index iCell from node pNode.
|
|
*/
|
|
static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){
|
|
u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
|
|
u8 *pSrc = &pDst[pRtree->nBytesPerCell];
|
|
int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell;
|
|
memmove(pDst, pSrc, nByte);
|
|
writeInt16(&pNode->zData[2], NCELL(pNode)-1);
|
|
pNode->isDirty = 1;
|
|
}
|
|
|
|
/*
|
|
** Insert the contents of cell pCell into node pNode. If the insert
|
|
** is successful, return SQLITE_OK.
|
|
**
|
|
** If there is not enough free space in pNode, return SQLITE_FULL.
|
|
*/
|
|
static int nodeInsertCell(
|
|
Rtree *pRtree, /* The overall R-Tree */
|
|
RtreeNode *pNode, /* Write new cell into this node */
|
|
RtreeCell *pCell /* The cell to be inserted */
|
|
){
|
|
int nCell; /* Current number of cells in pNode */
|
|
int nMaxCell; /* Maximum number of cells for pNode */
|
|
|
|
nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell;
|
|
nCell = NCELL(pNode);
|
|
|
|
assert( nCell<=nMaxCell );
|
|
if( nCell<nMaxCell ){
|
|
nodeOverwriteCell(pRtree, pNode, pCell, nCell);
|
|
writeInt16(&pNode->zData[2], nCell+1);
|
|
pNode->isDirty = 1;
|
|
}
|
|
|
|
return (nCell==nMaxCell);
|
|
}
|
|
|
|
/*
|
|
** If the node is dirty, write it out to the database.
|
|
*/
|
|
static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){
|
|
int rc = SQLITE_OK;
|
|
if( pNode->isDirty ){
|
|
sqlite3_stmt *p = pRtree->pWriteNode;
|
|
if( pNode->iNode ){
|
|
sqlite3_bind_int64(p, 1, pNode->iNode);
|
|
}else{
|
|
sqlite3_bind_null(p, 1);
|
|
}
|
|
sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC);
|
|
sqlite3_step(p);
|
|
pNode->isDirty = 0;
|
|
rc = sqlite3_reset(p);
|
|
sqlite3_bind_null(p, 2);
|
|
if( pNode->iNode==0 && rc==SQLITE_OK ){
|
|
pNode->iNode = sqlite3_last_insert_rowid(pRtree->db);
|
|
nodeHashInsert(pRtree, pNode);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Release a reference to a node. If the node is dirty and the reference
|
|
** count drops to zero, the node data is written to the database.
|
|
*/
|
|
static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){
|
|
int rc = SQLITE_OK;
|
|
if( pNode ){
|
|
assert( pNode->nRef>0 );
|
|
assert( pRtree->nNodeRef>0 );
|
|
pNode->nRef--;
|
|
if( pNode->nRef==0 ){
|
|
pRtree->nNodeRef--;
|
|
if( pNode->iNode==1 ){
|
|
pRtree->iDepth = -1;
|
|
}
|
|
if( pNode->pParent ){
|
|
rc = nodeRelease(pRtree, pNode->pParent);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
rc = nodeWrite(pRtree, pNode);
|
|
}
|
|
nodeHashDelete(pRtree, pNode);
|
|
sqlite3_free(pNode);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return the 64-bit integer value associated with cell iCell of
|
|
** node pNode. If pNode is a leaf node, this is a rowid. If it is
|
|
** an internal node, then the 64-bit integer is a child page number.
|
|
*/
|
|
static i64 nodeGetRowid(
|
|
Rtree *pRtree, /* The overall R-Tree */
|
|
RtreeNode *pNode, /* The node from which to extract the ID */
|
|
int iCell /* The cell index from which to extract the ID */
|
|
){
|
|
assert( iCell<NCELL(pNode) );
|
|
return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]);
|
|
}
|
|
|
|
/*
|
|
** Return coordinate iCoord from cell iCell in node pNode.
|
|
*/
|
|
static void nodeGetCoord(
|
|
Rtree *pRtree, /* The overall R-Tree */
|
|
RtreeNode *pNode, /* The node from which to extract a coordinate */
|
|
int iCell, /* The index of the cell within the node */
|
|
int iCoord, /* Which coordinate to extract */
|
|
RtreeCoord *pCoord /* OUT: Space to write result to */
|
|
){
|
|
readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord);
|
|
}
|
|
|
|
/*
|
|
** Deserialize cell iCell of node pNode. Populate the structure pointed
|
|
** to by pCell with the results.
|
|
*/
|
|
static void nodeGetCell(
|
|
Rtree *pRtree, /* The overall R-Tree */
|
|
RtreeNode *pNode, /* The node containing the cell to be read */
|
|
int iCell, /* Index of the cell within the node */
|
|
RtreeCell *pCell /* OUT: Write the cell contents here */
|
|
){
|
|
u8 *pData;
|
|
RtreeCoord *pCoord;
|
|
int ii = 0;
|
|
pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell);
|
|
pData = pNode->zData + (12 + pRtree->nBytesPerCell*iCell);
|
|
pCoord = pCell->aCoord;
|
|
do{
|
|
readCoord(pData, &pCoord[ii]);
|
|
readCoord(pData+4, &pCoord[ii+1]);
|
|
pData += 8;
|
|
ii += 2;
|
|
}while( ii<pRtree->nDim2 );
|
|
}
|
|
|
|
|
|
/* Forward declaration for the function that does the work of
|
|
** the virtual table module xCreate() and xConnect() methods.
|
|
*/
|
|
static int rtreeInit(
|
|
sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int
|
|
);
|
|
|
|
/*
|
|
** Rtree virtual table module xCreate method.
|
|
*/
|
|
static int rtreeCreate(
|
|
sqlite3 *db,
|
|
void *pAux,
|
|
int argc, const char *const*argv,
|
|
sqlite3_vtab **ppVtab,
|
|
char **pzErr
|
|
){
|
|
return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1);
|
|
}
|
|
|
|
/*
|
|
** Rtree virtual table module xConnect method.
|
|
*/
|
|
static int rtreeConnect(
|
|
sqlite3 *db,
|
|
void *pAux,
|
|
int argc, const char *const*argv,
|
|
sqlite3_vtab **ppVtab,
|
|
char **pzErr
|
|
){
|
|
return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0);
|
|
}
|
|
|
|
/*
|
|
** Increment the r-tree reference count.
|
|
*/
|
|
static void rtreeReference(Rtree *pRtree){
|
|
pRtree->nBusy++;
|
|
}
|
|
|
|
/*
|
|
** Decrement the r-tree reference count. When the reference count reaches
|
|
** zero the structure is deleted.
|
|
*/
|
|
static void rtreeRelease(Rtree *pRtree){
|
|
pRtree->nBusy--;
|
|
if( pRtree->nBusy==0 ){
|
|
pRtree->inWrTrans = 0;
|
|
assert( pRtree->nCursor==0 );
|
|
nodeBlobReset(pRtree);
|
|
assert( pRtree->nNodeRef==0 || pRtree->bCorrupt );
|
|
sqlite3_finalize(pRtree->pWriteNode);
|
|
sqlite3_finalize(pRtree->pDeleteNode);
|
|
sqlite3_finalize(pRtree->pReadRowid);
|
|
sqlite3_finalize(pRtree->pWriteRowid);
|
|
sqlite3_finalize(pRtree->pDeleteRowid);
|
|
sqlite3_finalize(pRtree->pReadParent);
|
|
sqlite3_finalize(pRtree->pWriteParent);
|
|
sqlite3_finalize(pRtree->pDeleteParent);
|
|
sqlite3_finalize(pRtree->pWriteAux);
|
|
sqlite3_free(pRtree->zReadAuxSql);
|
|
sqlite3_free(pRtree);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Rtree virtual table module xDisconnect method.
|
|
*/
|
|
static int rtreeDisconnect(sqlite3_vtab *pVtab){
|
|
rtreeRelease((Rtree *)pVtab);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Rtree virtual table module xDestroy method.
|
|
*/
|
|
static int rtreeDestroy(sqlite3_vtab *pVtab){
|
|
Rtree *pRtree = (Rtree *)pVtab;
|
|
int rc;
|
|
char *zCreate = sqlite3_mprintf(
|
|
"DROP TABLE '%q'.'%q_node';"
|
|
"DROP TABLE '%q'.'%q_rowid';"
|
|
"DROP TABLE '%q'.'%q_parent';",
|
|
pRtree->zDb, pRtree->zName,
|
|
pRtree->zDb, pRtree->zName,
|
|
pRtree->zDb, pRtree->zName
|
|
);
|
|
if( !zCreate ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
nodeBlobReset(pRtree);
|
|
rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0);
|
|
sqlite3_free(zCreate);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
rtreeRelease(pRtree);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Rtree virtual table module xOpen method.
|
|
*/
|
|
static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
|
|
int rc = SQLITE_NOMEM;
|
|
Rtree *pRtree = (Rtree *)pVTab;
|
|
RtreeCursor *pCsr;
|
|
|
|
pCsr = (RtreeCursor *)sqlite3_malloc64(sizeof(RtreeCursor));
|
|
if( pCsr ){
|
|
memset(pCsr, 0, sizeof(RtreeCursor));
|
|
pCsr->base.pVtab = pVTab;
|
|
rc = SQLITE_OK;
|
|
pRtree->nCursor++;
|
|
}
|
|
*ppCursor = (sqlite3_vtab_cursor *)pCsr;
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Reset a cursor back to its initial state.
|
|
*/
|
|
static void resetCursor(RtreeCursor *pCsr){
|
|
Rtree *pRtree = (Rtree *)(pCsr->base.pVtab);
|
|
int ii;
|
|
sqlite3_stmt *pStmt;
|
|
if( pCsr->aConstraint ){
|
|
int i; /* Used to iterate through constraint array */
|
|
for(i=0; i<pCsr->nConstraint; i++){
|
|
sqlite3_rtree_query_info *pInfo = pCsr->aConstraint[i].pInfo;
|
|
if( pInfo ){
|
|
if( pInfo->xDelUser ) pInfo->xDelUser(pInfo->pUser);
|
|
sqlite3_free(pInfo);
|
|
}
|
|
}
|
|
sqlite3_free(pCsr->aConstraint);
|
|
pCsr->aConstraint = 0;
|
|
}
|
|
for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]);
|
|
sqlite3_free(pCsr->aPoint);
|
|
pStmt = pCsr->pReadAux;
|
|
memset(pCsr, 0, sizeof(RtreeCursor));
|
|
pCsr->base.pVtab = (sqlite3_vtab*)pRtree;
|
|
pCsr->pReadAux = pStmt;
|
|
|
|
}
|
|
|
|
/*
|
|
** Rtree virtual table module xClose method.
|
|
*/
|
|
static int rtreeClose(sqlite3_vtab_cursor *cur){
|
|
Rtree *pRtree = (Rtree *)(cur->pVtab);
|
|
RtreeCursor *pCsr = (RtreeCursor *)cur;
|
|
assert( pRtree->nCursor>0 );
|
|
resetCursor(pCsr);
|
|
sqlite3_finalize(pCsr->pReadAux);
|
|
sqlite3_free(pCsr);
|
|
pRtree->nCursor--;
|
|
nodeBlobReset(pRtree);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Rtree virtual table module xEof method.
|
|
**
|
|
** Return non-zero if the cursor does not currently point to a valid
|
|
** record (i.e if the scan has finished), or zero otherwise.
|
|
*/
|
|
static int rtreeEof(sqlite3_vtab_cursor *cur){
|
|
RtreeCursor *pCsr = (RtreeCursor *)cur;
|
|
return pCsr->atEOF;
|
|
}
|
|
|
|
/*
|
|
** Convert raw bits from the on-disk RTree record into a coordinate value.
|
|
** The on-disk format is big-endian and needs to be converted for little-
|
|
** endian platforms. The on-disk record stores integer coordinates if
|
|
** eInt is true and it stores 32-bit floating point records if eInt is
|
|
** false. a[] is the four bytes of the on-disk record to be decoded.
|
|
** Store the results in "r".
|
|
**
|
|
** There are five versions of this macro. The last one is generic. The
|
|
** other four are various architectures-specific optimizations.
|
|
*/
|
|
#if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
|
|
#define RTREE_DECODE_COORD(eInt, a, r) { \
|
|
RtreeCoord c; /* Coordinate decoded */ \
|
|
c.u = _byteswap_ulong(*(u32*)a); \
|
|
r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
|
|
}
|
|
#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
|
|
#define RTREE_DECODE_COORD(eInt, a, r) { \
|
|
RtreeCoord c; /* Coordinate decoded */ \
|
|
c.u = __builtin_bswap32(*(u32*)a); \
|
|
r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
|
|
}
|
|
#elif SQLITE_BYTEORDER==1234
|
|
#define RTREE_DECODE_COORD(eInt, a, r) { \
|
|
RtreeCoord c; /* Coordinate decoded */ \
|
|
memcpy(&c.u,a,4); \
|
|
c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)| \
|
|
((c.u&0xff)<<24)|((c.u&0xff00)<<8); \
|
|
r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
|
|
}
|
|
#elif SQLITE_BYTEORDER==4321
|
|
#define RTREE_DECODE_COORD(eInt, a, r) { \
|
|
RtreeCoord c; /* Coordinate decoded */ \
|
|
memcpy(&c.u,a,4); \
|
|
r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
|
|
}
|
|
#else
|
|
#define RTREE_DECODE_COORD(eInt, a, r) { \
|
|
RtreeCoord c; /* Coordinate decoded */ \
|
|
c.u = ((u32)a[0]<<24) + ((u32)a[1]<<16) \
|
|
+((u32)a[2]<<8) + a[3]; \
|
|
r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Check the RTree node or entry given by pCellData and p against the MATCH
|
|
** constraint pConstraint.
|
|
*/
|
|
static int rtreeCallbackConstraint(
|
|
RtreeConstraint *pConstraint, /* The constraint to test */
|
|
int eInt, /* True if RTree holding integer coordinates */
|
|
u8 *pCellData, /* Raw cell content */
|
|
RtreeSearchPoint *pSearch, /* Container of this cell */
|
|
sqlite3_rtree_dbl *prScore, /* OUT: score for the cell */
|
|
int *peWithin /* OUT: visibility of the cell */
|
|
){
|
|
sqlite3_rtree_query_info *pInfo = pConstraint->pInfo; /* Callback info */
|
|
int nCoord = pInfo->nCoord; /* No. of coordinates */
|
|
int rc; /* Callback return code */
|
|
RtreeCoord c; /* Translator union */
|
|
sqlite3_rtree_dbl aCoord[RTREE_MAX_DIMENSIONS*2]; /* Decoded coordinates */
|
|
|
|
assert( pConstraint->op==RTREE_MATCH || pConstraint->op==RTREE_QUERY );
|
|
assert( nCoord==2 || nCoord==4 || nCoord==6 || nCoord==8 || nCoord==10 );
|
|
|
|
if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){
|
|
pInfo->iRowid = readInt64(pCellData);
|
|
}
|
|
pCellData += 8;
|
|
#ifndef SQLITE_RTREE_INT_ONLY
|
|
if( eInt==0 ){
|
|
switch( nCoord ){
|
|
case 10: readCoord(pCellData+36, &c); aCoord[9] = c.f;
|
|
readCoord(pCellData+32, &c); aCoord[8] = c.f;
|
|
case 8: readCoord(pCellData+28, &c); aCoord[7] = c.f;
|
|
readCoord(pCellData+24, &c); aCoord[6] = c.f;
|
|
case 6: readCoord(pCellData+20, &c); aCoord[5] = c.f;
|
|
readCoord(pCellData+16, &c); aCoord[4] = c.f;
|
|
case 4: readCoord(pCellData+12, &c); aCoord[3] = c.f;
|
|
readCoord(pCellData+8, &c); aCoord[2] = c.f;
|
|
default: readCoord(pCellData+4, &c); aCoord[1] = c.f;
|
|
readCoord(pCellData, &c); aCoord[0] = c.f;
|
|
}
|
|
}else
|
|
#endif
|
|
{
|
|
switch( nCoord ){
|
|
case 10: readCoord(pCellData+36, &c); aCoord[9] = c.i;
|
|
readCoord(pCellData+32, &c); aCoord[8] = c.i;
|
|
case 8: readCoord(pCellData+28, &c); aCoord[7] = c.i;
|
|
readCoord(pCellData+24, &c); aCoord[6] = c.i;
|
|
case 6: readCoord(pCellData+20, &c); aCoord[5] = c.i;
|
|
readCoord(pCellData+16, &c); aCoord[4] = c.i;
|
|
case 4: readCoord(pCellData+12, &c); aCoord[3] = c.i;
|
|
readCoord(pCellData+8, &c); aCoord[2] = c.i;
|
|
default: readCoord(pCellData+4, &c); aCoord[1] = c.i;
|
|
readCoord(pCellData, &c); aCoord[0] = c.i;
|
|
}
|
|
}
|
|
if( pConstraint->op==RTREE_MATCH ){
|
|
int eWithin = 0;
|
|
rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo,
|
|
nCoord, aCoord, &eWithin);
|
|
if( eWithin==0 ) *peWithin = NOT_WITHIN;
|
|
*prScore = RTREE_ZERO;
|
|
}else{
|
|
pInfo->aCoord = aCoord;
|
|
pInfo->iLevel = pSearch->iLevel - 1;
|
|
pInfo->rScore = pInfo->rParentScore = pSearch->rScore;
|
|
pInfo->eWithin = pInfo->eParentWithin = pSearch->eWithin;
|
|
rc = pConstraint->u.xQueryFunc(pInfo);
|
|
if( pInfo->eWithin<*peWithin ) *peWithin = pInfo->eWithin;
|
|
if( pInfo->rScore<*prScore || *prScore<RTREE_ZERO ){
|
|
*prScore = pInfo->rScore;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Check the internal RTree node given by pCellData against constraint p.
|
|
** If this constraint cannot be satisfied by any child within the node,
|
|
** set *peWithin to NOT_WITHIN.
|
|
*/
|
|
static void rtreeNonleafConstraint(
|
|
RtreeConstraint *p, /* The constraint to test */
|
|
int eInt, /* True if RTree holds integer coordinates */
|
|
u8 *pCellData, /* Raw cell content as appears on disk */
|
|
int *peWithin /* Adjust downward, as appropriate */
|
|
){
|
|
sqlite3_rtree_dbl val; /* Coordinate value convert to a double */
|
|
|
|
/* p->iCoord might point to either a lower or upper bound coordinate
|
|
** in a coordinate pair. But make pCellData point to the lower bound.
|
|
*/
|
|
pCellData += 8 + 4*(p->iCoord&0xfe);
|
|
|
|
assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
|
|
|| p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE
|
|
|| p->op==RTREE_FALSE );
|
|
assert( ((((char*)pCellData) - (char*)0)&3)==0 ); /* 4-byte aligned */
|
|
switch( p->op ){
|
|
case RTREE_TRUE: return; /* Always satisfied */
|
|
case RTREE_FALSE: break; /* Never satisfied */
|
|
case RTREE_LE:
|
|
case RTREE_LT:
|
|
case RTREE_EQ:
|
|
RTREE_DECODE_COORD(eInt, pCellData, val);
|
|
/* val now holds the lower bound of the coordinate pair */
|
|
if( p->u.rValue>=val ) return;
|
|
if( p->op!=RTREE_EQ ) break; /* RTREE_LE and RTREE_LT end here */
|
|
/* Fall through for the RTREE_EQ case */
|
|
|
|
default: /* RTREE_GT or RTREE_GE, or fallthrough of RTREE_EQ */
|
|
pCellData += 4;
|
|
RTREE_DECODE_COORD(eInt, pCellData, val);
|
|
/* val now holds the upper bound of the coordinate pair */
|
|
if( p->u.rValue<=val ) return;
|
|
}
|
|
*peWithin = NOT_WITHIN;
|
|
}
|
|
|
|
/*
|
|
** Check the leaf RTree cell given by pCellData against constraint p.
|
|
** If this constraint is not satisfied, set *peWithin to NOT_WITHIN.
|
|
** If the constraint is satisfied, leave *peWithin unchanged.
|
|
**
|
|
** The constraint is of the form: xN op $val
|
|
**
|
|
** The op is given by p->op. The xN is p->iCoord-th coordinate in
|
|
** pCellData. $val is given by p->u.rValue.
|
|
*/
|
|
static void rtreeLeafConstraint(
|
|
RtreeConstraint *p, /* The constraint to test */
|
|
int eInt, /* True if RTree holds integer coordinates */
|
|
u8 *pCellData, /* Raw cell content as appears on disk */
|
|
int *peWithin /* Adjust downward, as appropriate */
|
|
){
|
|
RtreeDValue xN; /* Coordinate value converted to a double */
|
|
|
|
assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
|
|
|| p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE
|
|
|| p->op==RTREE_FALSE );
|
|
pCellData += 8 + p->iCoord*4;
|
|
assert( ((((char*)pCellData) - (char*)0)&3)==0 ); /* 4-byte aligned */
|
|
RTREE_DECODE_COORD(eInt, pCellData, xN);
|
|
switch( p->op ){
|
|
case RTREE_TRUE: return; /* Always satisfied */
|
|
case RTREE_FALSE: break; /* Never satisfied */
|
|
case RTREE_LE: if( xN <= p->u.rValue ) return; break;
|
|
case RTREE_LT: if( xN < p->u.rValue ) return; break;
|
|
case RTREE_GE: if( xN >= p->u.rValue ) return; break;
|
|
case RTREE_GT: if( xN > p->u.rValue ) return; break;
|
|
default: if( xN == p->u.rValue ) return; break;
|
|
}
|
|
*peWithin = NOT_WITHIN;
|
|
}
|
|
|
|
/*
|
|
** One of the cells in node pNode is guaranteed to have a 64-bit
|
|
** integer value equal to iRowid. Return the index of this cell.
|
|
*/
|
|
static int nodeRowidIndex(
|
|
Rtree *pRtree,
|
|
RtreeNode *pNode,
|
|
i64 iRowid,
|
|
int *piIndex
|
|
){
|
|
int ii;
|
|
int nCell = NCELL(pNode);
|
|
assert( nCell<200 );
|
|
for(ii=0; ii<nCell; ii++){
|
|
if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){
|
|
*piIndex = ii;
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
RTREE_IS_CORRUPT(pRtree);
|
|
return SQLITE_CORRUPT_VTAB;
|
|
}
|
|
|
|
/*
|
|
** Return the index of the cell containing a pointer to node pNode
|
|
** in its parent. If pNode is the root node, return -1.
|
|
*/
|
|
static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){
|
|
RtreeNode *pParent = pNode->pParent;
|
|
if( pParent ){
|
|
return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex);
|
|
}
|
|
*piIndex = -1;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Compare two search points. Return negative, zero, or positive if the first
|
|
** is less than, equal to, or greater than the second.
|
|
**
|
|
** The rScore is the primary key. Smaller rScore values come first.
|
|
** If the rScore is a tie, then use iLevel as the tie breaker with smaller
|
|
** iLevel values coming first. In this way, if rScore is the same for all
|
|
** SearchPoints, then iLevel becomes the deciding factor and the result
|
|
** is a depth-first search, which is the desired default behavior.
|
|
*/
|
|
static int rtreeSearchPointCompare(
|
|
const RtreeSearchPoint *pA,
|
|
const RtreeSearchPoint *pB
|
|
){
|
|
if( pA->rScore<pB->rScore ) return -1;
|
|
if( pA->rScore>pB->rScore ) return +1;
|
|
if( pA->iLevel<pB->iLevel ) return -1;
|
|
if( pA->iLevel>pB->iLevel ) return +1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Interchange two search points in a cursor.
|
|
*/
|
|
static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){
|
|
RtreeSearchPoint t = p->aPoint[i];
|
|
assert( i<j );
|
|
p->aPoint[i] = p->aPoint[j];
|
|
p->aPoint[j] = t;
|
|
i++; j++;
|
|
if( i<RTREE_CACHE_SZ ){
|
|
if( j>=RTREE_CACHE_SZ ){
|
|
nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]);
|
|
p->aNode[i] = 0;
|
|
}else{
|
|
RtreeNode *pTemp = p->aNode[i];
|
|
p->aNode[i] = p->aNode[j];
|
|
p->aNode[j] = pTemp;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the search point with the lowest current score.
|
|
*/
|
|
static RtreeSearchPoint *rtreeSearchPointFirst(RtreeCursor *pCur){
|
|
return pCur->bPoint ? &pCur->sPoint : pCur->nPoint ? pCur->aPoint : 0;
|
|
}
|
|
|
|
/*
|
|
** Get the RtreeNode for the search point with the lowest score.
|
|
*/
|
|
static RtreeNode *rtreeNodeOfFirstSearchPoint(RtreeCursor *pCur, int *pRC){
|
|
sqlite3_int64 id;
|
|
int ii = 1 - pCur->bPoint;
|
|
assert( ii==0 || ii==1 );
|
|
assert( pCur->bPoint || pCur->nPoint );
|
|
if( pCur->aNode[ii]==0 ){
|
|
assert( pRC!=0 );
|
|
id = ii ? pCur->aPoint[0].id : pCur->sPoint.id;
|
|
*pRC = nodeAcquire(RTREE_OF_CURSOR(pCur), id, 0, &pCur->aNode[ii]);
|
|
}
|
|
return pCur->aNode[ii];
|
|
}
|
|
|
|
/*
|
|
** Push a new element onto the priority queue
|
|
*/
|
|
static RtreeSearchPoint *rtreeEnqueue(
|
|
RtreeCursor *pCur, /* The cursor */
|
|
RtreeDValue rScore, /* Score for the new search point */
|
|
u8 iLevel /* Level for the new search point */
|
|
){
|
|
int i, j;
|
|
RtreeSearchPoint *pNew;
|
|
if( pCur->nPoint>=pCur->nPointAlloc ){
|
|
int nNew = pCur->nPointAlloc*2 + 8;
|
|
pNew = sqlite3_realloc64(pCur->aPoint, nNew*sizeof(pCur->aPoint[0]));
|
|
if( pNew==0 ) return 0;
|
|
pCur->aPoint = pNew;
|
|
pCur->nPointAlloc = nNew;
|
|
}
|
|
i = pCur->nPoint++;
|
|
pNew = pCur->aPoint + i;
|
|
pNew->rScore = rScore;
|
|
pNew->iLevel = iLevel;
|
|
assert( iLevel<=RTREE_MAX_DEPTH );
|
|
while( i>0 ){
|
|
RtreeSearchPoint *pParent;
|
|
j = (i-1)/2;
|
|
pParent = pCur->aPoint + j;
|
|
if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break;
|
|
rtreeSearchPointSwap(pCur, j, i);
|
|
i = j;
|
|
pNew = pParent;
|
|
}
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** Allocate a new RtreeSearchPoint and return a pointer to it. Return
|
|
** NULL if malloc fails.
|
|
*/
|
|
static RtreeSearchPoint *rtreeSearchPointNew(
|
|
RtreeCursor *pCur, /* The cursor */
|
|
RtreeDValue rScore, /* Score for the new search point */
|
|
u8 iLevel /* Level for the new search point */
|
|
){
|
|
RtreeSearchPoint *pNew, *pFirst;
|
|
pFirst = rtreeSearchPointFirst(pCur);
|
|
pCur->anQueue[iLevel]++;
|
|
if( pFirst==0
|
|
|| pFirst->rScore>rScore
|
|
|| (pFirst->rScore==rScore && pFirst->iLevel>iLevel)
|
|
){
|
|
if( pCur->bPoint ){
|
|
int ii;
|
|
pNew = rtreeEnqueue(pCur, rScore, iLevel);
|
|
if( pNew==0 ) return 0;
|
|
ii = (int)(pNew - pCur->aPoint) + 1;
|
|
if( ii<RTREE_CACHE_SZ ){
|
|
assert( pCur->aNode[ii]==0 );
|
|
pCur->aNode[ii] = pCur->aNode[0];
|
|
}else{
|
|
nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]);
|
|
}
|
|
pCur->aNode[0] = 0;
|
|
*pNew = pCur->sPoint;
|
|
}
|
|
pCur->sPoint.rScore = rScore;
|
|
pCur->sPoint.iLevel = iLevel;
|
|
pCur->bPoint = 1;
|
|
return &pCur->sPoint;
|
|
}else{
|
|
return rtreeEnqueue(pCur, rScore, iLevel);
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
/* Tracing routines for the RtreeSearchPoint queue */
|
|
static void tracePoint(RtreeSearchPoint *p, int idx, RtreeCursor *pCur){
|
|
if( idx<0 ){ printf(" s"); }else{ printf("%2d", idx); }
|
|
printf(" %d.%05lld.%02d %g %d",
|
|
p->iLevel, p->id, p->iCell, p->rScore, p->eWithin
|
|
);
|
|
idx++;
|
|
if( idx<RTREE_CACHE_SZ ){
|
|
printf(" %p\n", pCur->aNode[idx]);
|
|
}else{
|
|
printf("\n");
|
|
}
|
|
}
|
|
static void traceQueue(RtreeCursor *pCur, const char *zPrefix){
|
|
int ii;
|
|
printf("=== %9s ", zPrefix);
|
|
if( pCur->bPoint ){
|
|
tracePoint(&pCur->sPoint, -1, pCur);
|
|
}
|
|
for(ii=0; ii<pCur->nPoint; ii++){
|
|
if( ii>0 || pCur->bPoint ) printf(" ");
|
|
tracePoint(&pCur->aPoint[ii], ii, pCur);
|
|
}
|
|
}
|
|
# define RTREE_QUEUE_TRACE(A,B) traceQueue(A,B)
|
|
#else
|
|
# define RTREE_QUEUE_TRACE(A,B) /* no-op */
|
|
#endif
|
|
|
|
/* Remove the search point with the lowest current score.
|
|
*/
|
|
static void rtreeSearchPointPop(RtreeCursor *p){
|
|
int i, j, k, n;
|
|
i = 1 - p->bPoint;
|
|
assert( i==0 || i==1 );
|
|
if( p->aNode[i] ){
|
|
nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]);
|
|
p->aNode[i] = 0;
|
|
}
|
|
if( p->bPoint ){
|
|
p->anQueue[p->sPoint.iLevel]--;
|
|
p->bPoint = 0;
|
|
}else if( p->nPoint ){
|
|
p->anQueue[p->aPoint[0].iLevel]--;
|
|
n = --p->nPoint;
|
|
p->aPoint[0] = p->aPoint[n];
|
|
if( n<RTREE_CACHE_SZ-1 ){
|
|
p->aNode[1] = p->aNode[n+1];
|
|
p->aNode[n+1] = 0;
|
|
}
|
|
i = 0;
|
|
while( (j = i*2+1)<n ){
|
|
k = j+1;
|
|
if( k<n && rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[j])<0 ){
|
|
if( rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[i])<0 ){
|
|
rtreeSearchPointSwap(p, i, k);
|
|
i = k;
|
|
}else{
|
|
break;
|
|
}
|
|
}else{
|
|
if( rtreeSearchPointCompare(&p->aPoint[j], &p->aPoint[i])<0 ){
|
|
rtreeSearchPointSwap(p, i, j);
|
|
i = j;
|
|
}else{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Continue the search on cursor pCur until the front of the queue
|
|
** contains an entry suitable for returning as a result-set row,
|
|
** or until the RtreeSearchPoint queue is empty, indicating that the
|
|
** query has completed.
|
|
*/
|
|
static int rtreeStepToLeaf(RtreeCursor *pCur){
|
|
RtreeSearchPoint *p;
|
|
Rtree *pRtree = RTREE_OF_CURSOR(pCur);
|
|
RtreeNode *pNode;
|
|
int eWithin;
|
|
int rc = SQLITE_OK;
|
|
int nCell;
|
|
int nConstraint = pCur->nConstraint;
|
|
int ii;
|
|
int eInt;
|
|
RtreeSearchPoint x;
|
|
|
|
eInt = pRtree->eCoordType==RTREE_COORD_INT32;
|
|
while( (p = rtreeSearchPointFirst(pCur))!=0 && p->iLevel>0 ){
|
|
u8 *pCellData;
|
|
pNode = rtreeNodeOfFirstSearchPoint(pCur, &rc);
|
|
if( rc ) return rc;
|
|
nCell = NCELL(pNode);
|
|
assert( nCell<200 );
|
|
pCellData = pNode->zData + (4+pRtree->nBytesPerCell*p->iCell);
|
|
while( p->iCell<nCell ){
|
|
sqlite3_rtree_dbl rScore = (sqlite3_rtree_dbl)-1;
|
|
eWithin = FULLY_WITHIN;
|
|
for(ii=0; ii<nConstraint; ii++){
|
|
RtreeConstraint *pConstraint = pCur->aConstraint + ii;
|
|
if( pConstraint->op>=RTREE_MATCH ){
|
|
rc = rtreeCallbackConstraint(pConstraint, eInt, pCellData, p,
|
|
&rScore, &eWithin);
|
|
if( rc ) return rc;
|
|
}else if( p->iLevel==1 ){
|
|
rtreeLeafConstraint(pConstraint, eInt, pCellData, &eWithin);
|
|
}else{
|
|
rtreeNonleafConstraint(pConstraint, eInt, pCellData, &eWithin);
|
|
}
|
|
if( eWithin==NOT_WITHIN ){
|
|
p->iCell++;
|
|
pCellData += pRtree->nBytesPerCell;
|
|
break;
|
|
}
|
|
}
|
|
if( eWithin==NOT_WITHIN ) continue;
|
|
p->iCell++;
|
|
x.iLevel = p->iLevel - 1;
|
|
if( x.iLevel ){
|
|
x.id = readInt64(pCellData);
|
|
for(ii=0; ii<pCur->nPoint; ii++){
|
|
if( pCur->aPoint[ii].id==x.id ){
|
|
RTREE_IS_CORRUPT(pRtree);
|
|
return SQLITE_CORRUPT_VTAB;
|
|
}
|
|
}
|
|
x.iCell = 0;
|
|
}else{
|
|
x.id = p->id;
|
|
x.iCell = p->iCell - 1;
|
|
}
|
|
if( p->iCell>=nCell ){
|
|
RTREE_QUEUE_TRACE(pCur, "POP-S:");
|
|
rtreeSearchPointPop(pCur);
|
|
}
|
|
if( rScore<RTREE_ZERO ) rScore = RTREE_ZERO;
|
|
p = rtreeSearchPointNew(pCur, rScore, x.iLevel);
|
|
if( p==0 ) return SQLITE_NOMEM;
|
|
p->eWithin = (u8)eWithin;
|
|
p->id = x.id;
|
|
p->iCell = x.iCell;
|
|
RTREE_QUEUE_TRACE(pCur, "PUSH-S:");
|
|
break;
|
|
}
|
|
if( p->iCell>=nCell ){
|
|
RTREE_QUEUE_TRACE(pCur, "POP-Se:");
|
|
rtreeSearchPointPop(pCur);
|
|
}
|
|
}
|
|
pCur->atEOF = p==0;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Rtree virtual table module xNext method.
|
|
*/
|
|
static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){
|
|
RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
|
|
int rc = SQLITE_OK;
|
|
|
|
/* Move to the next entry that matches the configured constraints. */
|
|
RTREE_QUEUE_TRACE(pCsr, "POP-Nx:");
|
|
if( pCsr->bAuxValid ){
|
|
pCsr->bAuxValid = 0;
|
|
sqlite3_reset(pCsr->pReadAux);
|
|
}
|
|
rtreeSearchPointPop(pCsr);
|
|
rc = rtreeStepToLeaf(pCsr);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Rtree virtual table module xRowid method.
|
|
*/
|
|
static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
|
|
RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
|
|
RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
|
|
int rc = SQLITE_OK;
|
|
RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
|
|
if( rc==SQLITE_OK && p ){
|
|
*pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Rtree virtual table module xColumn method.
|
|
*/
|
|
static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
|
|
Rtree *pRtree = (Rtree *)cur->pVtab;
|
|
RtreeCursor *pCsr = (RtreeCursor *)cur;
|
|
RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
|
|
RtreeCoord c;
|
|
int rc = SQLITE_OK;
|
|
RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
|
|
|
|
if( rc ) return rc;
|
|
if( p==0 ) return SQLITE_OK;
|
|
if( i==0 ){
|
|
sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell));
|
|
}else if( i<=pRtree->nDim2 ){
|
|
nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c);
|
|
#ifndef SQLITE_RTREE_INT_ONLY
|
|
if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
|
|
sqlite3_result_double(ctx, c.f);
|
|
}else
|
|
#endif
|
|
{
|
|
assert( pRtree->eCoordType==RTREE_COORD_INT32 );
|
|
sqlite3_result_int(ctx, c.i);
|
|
}
|
|
}else{
|
|
if( !pCsr->bAuxValid ){
|
|
if( pCsr->pReadAux==0 ){
|
|
rc = sqlite3_prepare_v3(pRtree->db, pRtree->zReadAuxSql, -1, 0,
|
|
&pCsr->pReadAux, 0);
|
|
if( rc ) return rc;
|
|
}
|
|
sqlite3_bind_int64(pCsr->pReadAux, 1,
|
|
nodeGetRowid(pRtree, pNode, p->iCell));
|
|
rc = sqlite3_step(pCsr->pReadAux);
|
|
if( rc==SQLITE_ROW ){
|
|
pCsr->bAuxValid = 1;
|
|
}else{
|
|
sqlite3_reset(pCsr->pReadAux);
|
|
if( rc==SQLITE_DONE ) rc = SQLITE_OK;
|
|
return rc;
|
|
}
|
|
}
|
|
sqlite3_result_value(ctx,
|
|
sqlite3_column_value(pCsr->pReadAux, i - pRtree->nDim2 + 1));
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Use nodeAcquire() to obtain the leaf node containing the record with
|
|
** rowid iRowid. If successful, set *ppLeaf to point to the node and
|
|
** return SQLITE_OK. If there is no such record in the table, set
|
|
** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf
|
|
** to zero and return an SQLite error code.
|
|
*/
|
|
static int findLeafNode(
|
|
Rtree *pRtree, /* RTree to search */
|
|
i64 iRowid, /* The rowid searching for */
|
|
RtreeNode **ppLeaf, /* Write the node here */
|
|
sqlite3_int64 *piNode /* Write the node-id here */
|
|
){
|
|
int rc;
|
|
*ppLeaf = 0;
|
|
sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid);
|
|
if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){
|
|
i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0);
|
|
if( piNode ) *piNode = iNode;
|
|
rc = nodeAcquire(pRtree, iNode, 0, ppLeaf);
|
|
sqlite3_reset(pRtree->pReadRowid);
|
|
}else{
|
|
rc = sqlite3_reset(pRtree->pReadRowid);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This function is called to configure the RtreeConstraint object passed
|
|
** as the second argument for a MATCH constraint. The value passed as the
|
|
** first argument to this function is the right-hand operand to the MATCH
|
|
** operator.
|
|
*/
|
|
static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){
|
|
RtreeMatchArg *pBlob, *pSrc; /* BLOB returned by geometry function */
|
|
sqlite3_rtree_query_info *pInfo; /* Callback information */
|
|
|
|
pSrc = sqlite3_value_pointer(pValue, "RtreeMatchArg");
|
|
if( pSrc==0 ) return SQLITE_ERROR;
|
|
pInfo = (sqlite3_rtree_query_info*)
|
|
sqlite3_malloc64( sizeof(*pInfo)+pSrc->iSize );
|
|
if( !pInfo ) return SQLITE_NOMEM;
|
|
memset(pInfo, 0, sizeof(*pInfo));
|
|
pBlob = (RtreeMatchArg*)&pInfo[1];
|
|
memcpy(pBlob, pSrc, pSrc->iSize);
|
|
pInfo->pContext = pBlob->cb.pContext;
|
|
pInfo->nParam = pBlob->nParam;
|
|
pInfo->aParam = pBlob->aParam;
|
|
pInfo->apSqlParam = pBlob->apSqlParam;
|
|
|
|
if( pBlob->cb.xGeom ){
|
|
pCons->u.xGeom = pBlob->cb.xGeom;
|
|
}else{
|
|
pCons->op = RTREE_QUERY;
|
|
pCons->u.xQueryFunc = pBlob->cb.xQueryFunc;
|
|
}
|
|
pCons->pInfo = pInfo;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Rtree virtual table module xFilter method.
|
|
*/
|
|
static int rtreeFilter(
|
|
sqlite3_vtab_cursor *pVtabCursor,
|
|
int idxNum, const char *idxStr,
|
|
int argc, sqlite3_value **argv
|
|
){
|
|
Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
|
|
RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
|
|
RtreeNode *pRoot = 0;
|
|
int ii;
|
|
int rc = SQLITE_OK;
|
|
int iCell = 0;
|
|
|
|
rtreeReference(pRtree);
|
|
|
|
/* Reset the cursor to the same state as rtreeOpen() leaves it in. */
|
|
resetCursor(pCsr);
|
|
|
|
pCsr->iStrategy = idxNum;
|
|
if( idxNum==1 ){
|
|
/* Special case - lookup by rowid. */
|
|
RtreeNode *pLeaf; /* Leaf on which the required cell resides */
|
|
RtreeSearchPoint *p; /* Search point for the leaf */
|
|
i64 iRowid = sqlite3_value_int64(argv[0]);
|
|
i64 iNode = 0;
|
|
int eType = sqlite3_value_numeric_type(argv[0]);
|
|
if( eType==SQLITE_INTEGER
|
|
|| (eType==SQLITE_FLOAT && sqlite3_value_double(argv[0])==iRowid)
|
|
){
|
|
rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode);
|
|
}else{
|
|
rc = SQLITE_OK;
|
|
pLeaf = 0;
|
|
}
|
|
if( rc==SQLITE_OK && pLeaf!=0 ){
|
|
p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0);
|
|
assert( p!=0 ); /* Always returns pCsr->sPoint */
|
|
pCsr->aNode[0] = pLeaf;
|
|
p->id = iNode;
|
|
p->eWithin = PARTLY_WITHIN;
|
|
rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell);
|
|
p->iCell = (u8)iCell;
|
|
RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:");
|
|
}else{
|
|
pCsr->atEOF = 1;
|
|
}
|
|
}else{
|
|
/* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array
|
|
** with the configured constraints.
|
|
*/
|
|
rc = nodeAcquire(pRtree, 1, 0, &pRoot);
|
|
if( rc==SQLITE_OK && argc>0 ){
|
|
pCsr->aConstraint = sqlite3_malloc64(sizeof(RtreeConstraint)*argc);
|
|
pCsr->nConstraint = argc;
|
|
if( !pCsr->aConstraint ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc);
|
|
memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1));
|
|
assert( (idxStr==0 && argc==0)
|
|
|| (idxStr && (int)strlen(idxStr)==argc*2) );
|
|
for(ii=0; ii<argc; ii++){
|
|
RtreeConstraint *p = &pCsr->aConstraint[ii];
|
|
int eType = sqlite3_value_numeric_type(argv[ii]);
|
|
p->op = idxStr[ii*2];
|
|
p->iCoord = idxStr[ii*2+1]-'0';
|
|
if( p->op>=RTREE_MATCH ){
|
|
/* A MATCH operator. The right-hand-side must be a blob that
|
|
** can be cast into an RtreeMatchArg object. One created using
|
|
** an sqlite3_rtree_geometry_callback() SQL user function.
|
|
*/
|
|
rc = deserializeGeometry(argv[ii], p);
|
|
if( rc!=SQLITE_OK ){
|
|
break;
|
|
}
|
|
p->pInfo->nCoord = pRtree->nDim2;
|
|
p->pInfo->anQueue = pCsr->anQueue;
|
|
p->pInfo->mxLevel = pRtree->iDepth + 1;
|
|
}else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
|
|
#ifdef SQLITE_RTREE_INT_ONLY
|
|
p->u.rValue = sqlite3_value_int64(argv[ii]);
|
|
#else
|
|
p->u.rValue = sqlite3_value_double(argv[ii]);
|
|
#endif
|
|
}else{
|
|
p->u.rValue = RTREE_ZERO;
|
|
if( eType==SQLITE_NULL ){
|
|
p->op = RTREE_FALSE;
|
|
}else if( p->op==RTREE_LT || p->op==RTREE_LE ){
|
|
p->op = RTREE_TRUE;
|
|
}else{
|
|
p->op = RTREE_FALSE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
RtreeSearchPoint *pNew;
|
|
pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, (u8)(pRtree->iDepth+1));
|
|
if( pNew==0 ) return SQLITE_NOMEM;
|
|
pNew->id = 1;
|
|
pNew->iCell = 0;
|
|
pNew->eWithin = PARTLY_WITHIN;
|
|
assert( pCsr->bPoint==1 );
|
|
pCsr->aNode[0] = pRoot;
|
|
pRoot = 0;
|
|
RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:");
|
|
rc = rtreeStepToLeaf(pCsr);
|
|
}
|
|
}
|
|
|
|
nodeRelease(pRtree, pRoot);
|
|
rtreeRelease(pRtree);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Rtree virtual table module xBestIndex method. There are three
|
|
** table scan strategies to choose from (in order from most to
|
|
** least desirable):
|
|
**
|
|
** idxNum idxStr Strategy
|
|
** ------------------------------------------------
|
|
** 1 Unused Direct lookup by rowid.
|
|
** 2 See below R-tree query or full-table scan.
|
|
** ------------------------------------------------
|
|
**
|
|
** If strategy 1 is used, then idxStr is not meaningful. If strategy
|
|
** 2 is used, idxStr is formatted to contain 2 bytes for each
|
|
** constraint used. The first two bytes of idxStr correspond to
|
|
** the constraint in sqlite3_index_info.aConstraintUsage[] with
|
|
** (argvIndex==1) etc.
|
|
**
|
|
** The first of each pair of bytes in idxStr identifies the constraint
|
|
** operator as follows:
|
|
**
|
|
** Operator Byte Value
|
|
** ----------------------
|
|
** = 0x41 ('A')
|
|
** <= 0x42 ('B')
|
|
** < 0x43 ('C')
|
|
** >= 0x44 ('D')
|
|
** > 0x45 ('E')
|
|
** MATCH 0x46 ('F')
|
|
** ----------------------
|
|
**
|
|
** The second of each pair of bytes identifies the coordinate column
|
|
** to which the constraint applies. The leftmost coordinate column
|
|
** is 'a', the second from the left 'b' etc.
|
|
*/
|
|
static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
|
|
Rtree *pRtree = (Rtree*)tab;
|
|
int rc = SQLITE_OK;
|
|
int ii;
|
|
int bMatch = 0; /* True if there exists a MATCH constraint */
|
|
i64 nRow; /* Estimated rows returned by this scan */
|
|
|
|
int iIdx = 0;
|
|
char zIdxStr[RTREE_MAX_DIMENSIONS*8+1];
|
|
memset(zIdxStr, 0, sizeof(zIdxStr));
|
|
|
|
/* Check if there exists a MATCH constraint - even an unusable one. If there
|
|
** is, do not consider the lookup-by-rowid plan as using such a plan would
|
|
** require the VDBE to evaluate the MATCH constraint, which is not currently
|
|
** possible. */
|
|
for(ii=0; ii<pIdxInfo->nConstraint; ii++){
|
|
if( pIdxInfo->aConstraint[ii].op==SQLITE_INDEX_CONSTRAINT_MATCH ){
|
|
bMatch = 1;
|
|
}
|
|
}
|
|
|
|
assert( pIdxInfo->idxStr==0 );
|
|
for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){
|
|
struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii];
|
|
|
|
if( bMatch==0 && p->usable
|
|
&& p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ
|
|
){
|
|
/* We have an equality constraint on the rowid. Use strategy 1. */
|
|
int jj;
|
|
for(jj=0; jj<ii; jj++){
|
|
pIdxInfo->aConstraintUsage[jj].argvIndex = 0;
|
|
pIdxInfo->aConstraintUsage[jj].omit = 0;
|
|
}
|
|
pIdxInfo->idxNum = 1;
|
|
pIdxInfo->aConstraintUsage[ii].argvIndex = 1;
|
|
pIdxInfo->aConstraintUsage[jj].omit = 1;
|
|
|
|
/* This strategy involves a two rowid lookups on an B-Tree structures
|
|
** and then a linear search of an R-Tree node. This should be
|
|
** considered almost as quick as a direct rowid lookup (for which
|
|
** sqlite uses an internal cost of 0.0). It is expected to return
|
|
** a single row.
|
|
*/
|
|
pIdxInfo->estimatedCost = 30.0;
|
|
pIdxInfo->estimatedRows = 1;
|
|
pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_UNIQUE;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
if( p->usable
|
|
&& ((p->iColumn>0 && p->iColumn<=pRtree->nDim2)
|
|
|| p->op==SQLITE_INDEX_CONSTRAINT_MATCH)
|
|
){
|
|
u8 op;
|
|
switch( p->op ){
|
|
case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break;
|
|
case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break;
|
|
case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break;
|
|
case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break;
|
|
case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break;
|
|
case SQLITE_INDEX_CONSTRAINT_MATCH: op = RTREE_MATCH; break;
|
|
default: op = 0; break;
|
|
}
|
|
if( op ){
|
|
zIdxStr[iIdx++] = op;
|
|
zIdxStr[iIdx++] = (char)(p->iColumn - 1 + '0');
|
|
pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2);
|
|
pIdxInfo->aConstraintUsage[ii].omit = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
pIdxInfo->idxNum = 2;
|
|
pIdxInfo->needToFreeIdxStr = 1;
|
|
if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
|
|
nRow = pRtree->nRowEst >> (iIdx/2);
|
|
pIdxInfo->estimatedCost = (double)6.0 * (double)nRow;
|
|
pIdxInfo->estimatedRows = nRow;
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return the N-dimensional volumn of the cell stored in *p.
|
|
*/
|
|
static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){
|
|
RtreeDValue area = (RtreeDValue)1;
|
|
assert( pRtree->nDim>=1 && pRtree->nDim<=5 );
|
|
#ifndef SQLITE_RTREE_INT_ONLY
|
|
if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
|
|
switch( pRtree->nDim ){
|
|
case 5: area = p->aCoord[9].f - p->aCoord[8].f;
|
|
case 4: area *= p->aCoord[7].f - p->aCoord[6].f;
|
|
case 3: area *= p->aCoord[5].f - p->aCoord[4].f;
|
|
case 2: area *= p->aCoord[3].f - p->aCoord[2].f;
|
|
default: area *= p->aCoord[1].f - p->aCoord[0].f;
|
|
}
|
|
}else
|
|
#endif
|
|
{
|
|
switch( pRtree->nDim ){
|
|
case 5: area = (i64)p->aCoord[9].i - (i64)p->aCoord[8].i;
|
|
case 4: area *= (i64)p->aCoord[7].i - (i64)p->aCoord[6].i;
|
|
case 3: area *= (i64)p->aCoord[5].i - (i64)p->aCoord[4].i;
|
|
case 2: area *= (i64)p->aCoord[3].i - (i64)p->aCoord[2].i;
|
|
default: area *= (i64)p->aCoord[1].i - (i64)p->aCoord[0].i;
|
|
}
|
|
}
|
|
return area;
|
|
}
|
|
|
|
/*
|
|
** Return the margin length of cell p. The margin length is the sum
|
|
** of the objects size in each dimension.
|
|
*/
|
|
static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){
|
|
RtreeDValue margin = 0;
|
|
int ii = pRtree->nDim2 - 2;
|
|
do{
|
|
margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
|
|
ii -= 2;
|
|
}while( ii>=0 );
|
|
return margin;
|
|
}
|
|
|
|
/*
|
|
** Store the union of cells p1 and p2 in p1.
|
|
*/
|
|
static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
|
|
int ii = 0;
|
|
if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
|
|
do{
|
|
p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f);
|
|
p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f);
|
|
ii += 2;
|
|
}while( ii<pRtree->nDim2 );
|
|
}else{
|
|
do{
|
|
p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i);
|
|
p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i);
|
|
ii += 2;
|
|
}while( ii<pRtree->nDim2 );
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return true if the area covered by p2 is a subset of the area covered
|
|
** by p1. False otherwise.
|
|
*/
|
|
static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
|
|
int ii;
|
|
int isInt = (pRtree->eCoordType==RTREE_COORD_INT32);
|
|
for(ii=0; ii<pRtree->nDim2; ii+=2){
|
|
RtreeCoord *a1 = &p1->aCoord[ii];
|
|
RtreeCoord *a2 = &p2->aCoord[ii];
|
|
if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f))
|
|
|| ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i))
|
|
){
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Return the amount cell p would grow by if it were unioned with pCell.
|
|
*/
|
|
static RtreeDValue cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){
|
|
RtreeDValue area;
|
|
RtreeCell cell;
|
|
memcpy(&cell, p, sizeof(RtreeCell));
|
|
area = cellArea(pRtree, &cell);
|
|
cellUnion(pRtree, &cell, pCell);
|
|
return (cellArea(pRtree, &cell)-area);
|
|
}
|
|
|
|
static RtreeDValue cellOverlap(
|
|
Rtree *pRtree,
|
|
RtreeCell *p,
|
|
RtreeCell *aCell,
|
|
int nCell
|
|
){
|
|
int ii;
|
|
RtreeDValue overlap = RTREE_ZERO;
|
|
for(ii=0; ii<nCell; ii++){
|
|
int jj;
|
|
RtreeDValue o = (RtreeDValue)1;
|
|
for(jj=0; jj<pRtree->nDim2; jj+=2){
|
|
RtreeDValue x1, x2;
|
|
x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj]));
|
|
x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1]));
|
|
if( x2<x1 ){
|
|
o = (RtreeDValue)0;
|
|
break;
|
|
}else{
|
|
o = o * (x2-x1);
|
|
}
|
|
}
|
|
overlap += o;
|
|
}
|
|
return overlap;
|
|
}
|
|
|
|
|
|
/*
|
|
** This function implements the ChooseLeaf algorithm from Gutman[84].
|
|
** ChooseSubTree in r*tree terminology.
|
|
*/
|
|
static int ChooseLeaf(
|
|
Rtree *pRtree, /* Rtree table */
|
|
RtreeCell *pCell, /* Cell to insert into rtree */
|
|
int iHeight, /* Height of sub-tree rooted at pCell */
|
|
RtreeNode **ppLeaf /* OUT: Selected leaf page */
|
|
){
|
|
int rc;
|
|
int ii;
|
|
RtreeNode *pNode = 0;
|
|
rc = nodeAcquire(pRtree, 1, 0, &pNode);
|
|
|
|
for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){
|
|
int iCell;
|
|
sqlite3_int64 iBest = 0;
|
|
|
|
RtreeDValue fMinGrowth = RTREE_ZERO;
|
|
RtreeDValue fMinArea = RTREE_ZERO;
|
|
|
|
int nCell = NCELL(pNode);
|
|
RtreeCell cell;
|
|
RtreeNode *pChild;
|
|
|
|
RtreeCell *aCell = 0;
|
|
|
|
/* Select the child node which will be enlarged the least if pCell
|
|
** is inserted into it. Resolve ties by choosing the entry with
|
|
** the smallest area.
|
|
*/
|
|
for(iCell=0; iCell<nCell; iCell++){
|
|
int bBest = 0;
|
|
RtreeDValue growth;
|
|
RtreeDValue area;
|
|
nodeGetCell(pRtree, pNode, iCell, &cell);
|
|
growth = cellGrowth(pRtree, &cell, pCell);
|
|
area = cellArea(pRtree, &cell);
|
|
if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){
|
|
bBest = 1;
|
|
}
|
|
if( bBest ){
|
|
fMinGrowth = growth;
|
|
fMinArea = area;
|
|
iBest = cell.iRowid;
|
|
}
|
|
}
|
|
|
|
sqlite3_free(aCell);
|
|
rc = nodeAcquire(pRtree, iBest, pNode, &pChild);
|
|
nodeRelease(pRtree, pNode);
|
|
pNode = pChild;
|
|
}
|
|
|
|
*ppLeaf = pNode;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** A cell with the same content as pCell has just been inserted into
|
|
** the node pNode. This function updates the bounding box cells in
|
|
** all ancestor elements.
|
|
*/
|
|
static int AdjustTree(
|
|
Rtree *pRtree, /* Rtree table */
|
|
RtreeNode *pNode, /* Adjust ancestry of this node. */
|
|
RtreeCell *pCell /* This cell was just inserted */
|
|
){
|
|
RtreeNode *p = pNode;
|
|
int cnt = 0;
|
|
while( p->pParent ){
|
|
RtreeNode *pParent = p->pParent;
|
|
RtreeCell cell;
|
|
int iCell;
|
|
|
|
if( (++cnt)>1000 || nodeParentIndex(pRtree, p, &iCell) ){
|
|
RTREE_IS_CORRUPT(pRtree);
|
|
return SQLITE_CORRUPT_VTAB;
|
|
}
|
|
|
|
nodeGetCell(pRtree, pParent, iCell, &cell);
|
|
if( !cellContains(pRtree, &cell, pCell) ){
|
|
cellUnion(pRtree, &cell, pCell);
|
|
nodeOverwriteCell(pRtree, pParent, &cell, iCell);
|
|
}
|
|
|
|
p = pParent;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Write mapping (iRowid->iNode) to the <rtree>_rowid table.
|
|
*/
|
|
static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){
|
|
sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid);
|
|
sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode);
|
|
sqlite3_step(pRtree->pWriteRowid);
|
|
return sqlite3_reset(pRtree->pWriteRowid);
|
|
}
|
|
|
|
/*
|
|
** Write mapping (iNode->iPar) to the <rtree>_parent table.
|
|
*/
|
|
static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){
|
|
sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode);
|
|
sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar);
|
|
sqlite3_step(pRtree->pWriteParent);
|
|
return sqlite3_reset(pRtree->pWriteParent);
|
|
}
|
|
|
|
static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int);
|
|
|
|
|
|
/*
|
|
** Arguments aIdx, aDistance and aSpare all point to arrays of size
|
|
** nIdx. The aIdx array contains the set of integers from 0 to
|
|
** (nIdx-1) in no particular order. This function sorts the values
|
|
** in aIdx according to the indexed values in aDistance. For
|
|
** example, assuming the inputs:
|
|
**
|
|
** aIdx = { 0, 1, 2, 3 }
|
|
** aDistance = { 5.0, 2.0, 7.0, 6.0 }
|
|
**
|
|
** this function sets the aIdx array to contain:
|
|
**
|
|
** aIdx = { 0, 1, 2, 3 }
|
|
**
|
|
** The aSpare array is used as temporary working space by the
|
|
** sorting algorithm.
|
|
*/
|
|
static void SortByDistance(
|
|
int *aIdx,
|
|
int nIdx,
|
|
RtreeDValue *aDistance,
|
|
int *aSpare
|
|
){
|
|
if( nIdx>1 ){
|
|
int iLeft = 0;
|
|
int iRight = 0;
|
|
|
|
int nLeft = nIdx/2;
|
|
int nRight = nIdx-nLeft;
|
|
int *aLeft = aIdx;
|
|
int *aRight = &aIdx[nLeft];
|
|
|
|
SortByDistance(aLeft, nLeft, aDistance, aSpare);
|
|
SortByDistance(aRight, nRight, aDistance, aSpare);
|
|
|
|
memcpy(aSpare, aLeft, sizeof(int)*nLeft);
|
|
aLeft = aSpare;
|
|
|
|
while( iLeft<nLeft || iRight<nRight ){
|
|
if( iLeft==nLeft ){
|
|
aIdx[iLeft+iRight] = aRight[iRight];
|
|
iRight++;
|
|
}else if( iRight==nRight ){
|
|
aIdx[iLeft+iRight] = aLeft[iLeft];
|
|
iLeft++;
|
|
}else{
|
|
RtreeDValue fLeft = aDistance[aLeft[iLeft]];
|
|
RtreeDValue fRight = aDistance[aRight[iRight]];
|
|
if( fLeft<fRight ){
|
|
aIdx[iLeft+iRight] = aLeft[iLeft];
|
|
iLeft++;
|
|
}else{
|
|
aIdx[iLeft+iRight] = aRight[iRight];
|
|
iRight++;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
/* Check that the sort worked */
|
|
{
|
|
int jj;
|
|
for(jj=1; jj<nIdx; jj++){
|
|
RtreeDValue left = aDistance[aIdx[jj-1]];
|
|
RtreeDValue right = aDistance[aIdx[jj]];
|
|
assert( left<=right );
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Arguments aIdx, aCell and aSpare all point to arrays of size
|
|
** nIdx. The aIdx array contains the set of integers from 0 to
|
|
** (nIdx-1) in no particular order. This function sorts the values
|
|
** in aIdx according to dimension iDim of the cells in aCell. The
|
|
** minimum value of dimension iDim is considered first, the
|
|
** maximum used to break ties.
|
|
**
|
|
** The aSpare array is used as temporary working space by the
|
|
** sorting algorithm.
|
|
*/
|
|
static void SortByDimension(
|
|
Rtree *pRtree,
|
|
int *aIdx,
|
|
int nIdx,
|
|
int iDim,
|
|
RtreeCell *aCell,
|
|
int *aSpare
|
|
){
|
|
if( nIdx>1 ){
|
|
|
|
int iLeft = 0;
|
|
int iRight = 0;
|
|
|
|
int nLeft = nIdx/2;
|
|
int nRight = nIdx-nLeft;
|
|
int *aLeft = aIdx;
|
|
int *aRight = &aIdx[nLeft];
|
|
|
|
SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare);
|
|
SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare);
|
|
|
|
memcpy(aSpare, aLeft, sizeof(int)*nLeft);
|
|
aLeft = aSpare;
|
|
while( iLeft<nLeft || iRight<nRight ){
|
|
RtreeDValue xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]);
|
|
RtreeDValue xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]);
|
|
RtreeDValue xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]);
|
|
RtreeDValue xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]);
|
|
if( (iLeft!=nLeft) && ((iRight==nRight)
|
|
|| (xleft1<xright1)
|
|
|| (xleft1==xright1 && xleft2<xright2)
|
|
)){
|
|
aIdx[iLeft+iRight] = aLeft[iLeft];
|
|
iLeft++;
|
|
}else{
|
|
aIdx[iLeft+iRight] = aRight[iRight];
|
|
iRight++;
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
/* Check that the sort worked */
|
|
{
|
|
int jj;
|
|
for(jj=1; jj<nIdx; jj++){
|
|
RtreeDValue xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2];
|
|
RtreeDValue xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1];
|
|
RtreeDValue xright1 = aCell[aIdx[jj]].aCoord[iDim*2];
|
|
RtreeDValue xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1];
|
|
assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) );
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the R*-tree variant of SplitNode from Beckman[1990].
|
|
*/
|
|
static int splitNodeStartree(
|
|
Rtree *pRtree,
|
|
RtreeCell *aCell,
|
|
int nCell,
|
|
RtreeNode *pLeft,
|
|
RtreeNode *pRight,
|
|
RtreeCell *pBboxLeft,
|
|
RtreeCell *pBboxRight
|
|
){
|
|
int **aaSorted;
|
|
int *aSpare;
|
|
int ii;
|
|
|
|
int iBestDim = 0;
|
|
int iBestSplit = 0;
|
|
RtreeDValue fBestMargin = RTREE_ZERO;
|
|
|
|
sqlite3_int64 nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int));
|
|
|
|
aaSorted = (int **)sqlite3_malloc64(nByte);
|
|
if( !aaSorted ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
|
|
aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell];
|
|
memset(aaSorted, 0, nByte);
|
|
for(ii=0; ii<pRtree->nDim; ii++){
|
|
int jj;
|
|
aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell];
|
|
for(jj=0; jj<nCell; jj++){
|
|
aaSorted[ii][jj] = jj;
|
|
}
|
|
SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare);
|
|
}
|
|
|
|
for(ii=0; ii<pRtree->nDim; ii++){
|
|
RtreeDValue margin = RTREE_ZERO;
|
|
RtreeDValue fBestOverlap = RTREE_ZERO;
|
|
RtreeDValue fBestArea = RTREE_ZERO;
|
|
int iBestLeft = 0;
|
|
int nLeft;
|
|
|
|
for(
|
|
nLeft=RTREE_MINCELLS(pRtree);
|
|
nLeft<=(nCell-RTREE_MINCELLS(pRtree));
|
|
nLeft++
|
|
){
|
|
RtreeCell left;
|
|
RtreeCell right;
|
|
int kk;
|
|
RtreeDValue overlap;
|
|
RtreeDValue area;
|
|
|
|
memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell));
|
|
memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell));
|
|
for(kk=1; kk<(nCell-1); kk++){
|
|
if( kk<nLeft ){
|
|
cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]);
|
|
}else{
|
|
cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]);
|
|
}
|
|
}
|
|
margin += cellMargin(pRtree, &left);
|
|
margin += cellMargin(pRtree, &right);
|
|
overlap = cellOverlap(pRtree, &left, &right, 1);
|
|
area = cellArea(pRtree, &left) + cellArea(pRtree, &right);
|
|
if( (nLeft==RTREE_MINCELLS(pRtree))
|
|
|| (overlap<fBestOverlap)
|
|
|| (overlap==fBestOverlap && area<fBestArea)
|
|
){
|
|
iBestLeft = nLeft;
|
|
fBestOverlap = overlap;
|
|
fBestArea = area;
|
|
}
|
|
}
|
|
|
|
if( ii==0 || margin<fBestMargin ){
|
|
iBestDim = ii;
|
|
fBestMargin = margin;
|
|
iBestSplit = iBestLeft;
|
|
}
|
|
}
|
|
|
|
memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell));
|
|
memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell));
|
|
for(ii=0; ii<nCell; ii++){
|
|
RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight;
|
|
RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight;
|
|
RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]];
|
|
nodeInsertCell(pRtree, pTarget, pCell);
|
|
cellUnion(pRtree, pBbox, pCell);
|
|
}
|
|
|
|
sqlite3_free(aaSorted);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
static int updateMapping(
|
|
Rtree *pRtree,
|
|
i64 iRowid,
|
|
RtreeNode *pNode,
|
|
int iHeight
|
|
){
|
|
int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64);
|
|
xSetMapping = ((iHeight==0)?rowidWrite:parentWrite);
|
|
if( iHeight>0 ){
|
|
RtreeNode *pChild = nodeHashLookup(pRtree, iRowid);
|
|
if( pChild ){
|
|
nodeRelease(pRtree, pChild->pParent);
|
|
nodeReference(pNode);
|
|
pChild->pParent = pNode;
|
|
}
|
|
}
|
|
return xSetMapping(pRtree, iRowid, pNode->iNode);
|
|
}
|
|
|
|
static int SplitNode(
|
|
Rtree *pRtree,
|
|
RtreeNode *pNode,
|
|
RtreeCell *pCell,
|
|
int iHeight
|
|
){
|
|
int i;
|
|
int newCellIsRight = 0;
|
|
|
|
int rc = SQLITE_OK;
|
|
int nCell = NCELL(pNode);
|
|
RtreeCell *aCell;
|
|
int *aiUsed;
|
|
|
|
RtreeNode *pLeft = 0;
|
|
RtreeNode *pRight = 0;
|
|
|
|
RtreeCell leftbbox;
|
|
RtreeCell rightbbox;
|
|
|
|
/* Allocate an array and populate it with a copy of pCell and
|
|
** all cells from node pLeft. Then zero the original node.
|
|
*/
|
|
aCell = sqlite3_malloc64((sizeof(RtreeCell)+sizeof(int))*(nCell+1));
|
|
if( !aCell ){
|
|
rc = SQLITE_NOMEM;
|
|
goto splitnode_out;
|
|
}
|
|
aiUsed = (int *)&aCell[nCell+1];
|
|
memset(aiUsed, 0, sizeof(int)*(nCell+1));
|
|
for(i=0; i<nCell; i++){
|
|
nodeGetCell(pRtree, pNode, i, &aCell[i]);
|
|
}
|
|
nodeZero(pRtree, pNode);
|
|
memcpy(&aCell[nCell], pCell, sizeof(RtreeCell));
|
|
nCell++;
|
|
|
|
if( pNode->iNode==1 ){
|
|
pRight = nodeNew(pRtree, pNode);
|
|
pLeft = nodeNew(pRtree, pNode);
|
|
pRtree->iDepth++;
|
|
pNode->isDirty = 1;
|
|
writeInt16(pNode->zData, pRtree->iDepth);
|
|
}else{
|
|
pLeft = pNode;
|
|
pRight = nodeNew(pRtree, pLeft->pParent);
|
|
pLeft->nRef++;
|
|
}
|
|
|
|
if( !pLeft || !pRight ){
|
|
rc = SQLITE_NOMEM;
|
|
goto splitnode_out;
|
|
}
|
|
|
|
memset(pLeft->zData, 0, pRtree->iNodeSize);
|
|
memset(pRight->zData, 0, pRtree->iNodeSize);
|
|
|
|
rc = splitNodeStartree(pRtree, aCell, nCell, pLeft, pRight,
|
|
&leftbbox, &rightbbox);
|
|
if( rc!=SQLITE_OK ){
|
|
goto splitnode_out;
|
|
}
|
|
|
|
/* Ensure both child nodes have node numbers assigned to them by calling
|
|
** nodeWrite(). Node pRight always needs a node number, as it was created
|
|
** by nodeNew() above. But node pLeft sometimes already has a node number.
|
|
** In this case avoid the all to nodeWrite().
|
|
*/
|
|
if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight))
|
|
|| (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft)))
|
|
){
|
|
goto splitnode_out;
|
|
}
|
|
|
|
rightbbox.iRowid = pRight->iNode;
|
|
leftbbox.iRowid = pLeft->iNode;
|
|
|
|
if( pNode->iNode==1 ){
|
|
rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1);
|
|
if( rc!=SQLITE_OK ){
|
|
goto splitnode_out;
|
|
}
|
|
}else{
|
|
RtreeNode *pParent = pLeft->pParent;
|
|
int iCell;
|
|
rc = nodeParentIndex(pRtree, pLeft, &iCell);
|
|
if( rc==SQLITE_OK ){
|
|
nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell);
|
|
rc = AdjustTree(pRtree, pParent, &leftbbox);
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
goto splitnode_out;
|
|
}
|
|
}
|
|
if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){
|
|
goto splitnode_out;
|
|
}
|
|
|
|
for(i=0; i<NCELL(pRight); i++){
|
|
i64 iRowid = nodeGetRowid(pRtree, pRight, i);
|
|
rc = updateMapping(pRtree, iRowid, pRight, iHeight);
|
|
if( iRowid==pCell->iRowid ){
|
|
newCellIsRight = 1;
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
goto splitnode_out;
|
|
}
|
|
}
|
|
if( pNode->iNode==1 ){
|
|
for(i=0; i<NCELL(pLeft); i++){
|
|
i64 iRowid = nodeGetRowid(pRtree, pLeft, i);
|
|
rc = updateMapping(pRtree, iRowid, pLeft, iHeight);
|
|
if( rc!=SQLITE_OK ){
|
|
goto splitnode_out;
|
|
}
|
|
}
|
|
}else if( newCellIsRight==0 ){
|
|
rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight);
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
rc = nodeRelease(pRtree, pRight);
|
|
pRight = 0;
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
rc = nodeRelease(pRtree, pLeft);
|
|
pLeft = 0;
|
|
}
|
|
|
|
splitnode_out:
|
|
nodeRelease(pRtree, pRight);
|
|
nodeRelease(pRtree, pLeft);
|
|
sqlite3_free(aCell);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** If node pLeaf is not the root of the r-tree and its pParent pointer is
|
|
** still NULL, load all ancestor nodes of pLeaf into memory and populate
|
|
** the pLeaf->pParent chain all the way up to the root node.
|
|
**
|
|
** This operation is required when a row is deleted (or updated - an update
|
|
** is implemented as a delete followed by an insert). SQLite provides the
|
|
** rowid of the row to delete, which can be used to find the leaf on which
|
|
** the entry resides (argument pLeaf). Once the leaf is located, this
|
|
** function is called to determine its ancestry.
|
|
*/
|
|
static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){
|
|
int rc = SQLITE_OK;
|
|
RtreeNode *pChild = pLeaf;
|
|
while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){
|
|
int rc2 = SQLITE_OK; /* sqlite3_reset() return code */
|
|
sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode);
|
|
rc = sqlite3_step(pRtree->pReadParent);
|
|
if( rc==SQLITE_ROW ){
|
|
RtreeNode *pTest; /* Used to test for reference loops */
|
|
i64 iNode; /* Node number of parent node */
|
|
|
|
/* Before setting pChild->pParent, test that we are not creating a
|
|
** loop of references (as we would if, say, pChild==pParent). We don't
|
|
** want to do this as it leads to a memory leak when trying to delete
|
|
** the referenced counted node structures.
|
|
*/
|
|
iNode = sqlite3_column_int64(pRtree->pReadParent, 0);
|
|
for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent);
|
|
if( !pTest ){
|
|
rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent);
|
|
}
|
|
}
|
|
rc = sqlite3_reset(pRtree->pReadParent);
|
|
if( rc==SQLITE_OK ) rc = rc2;
|
|
if( rc==SQLITE_OK && !pChild->pParent ){
|
|
RTREE_IS_CORRUPT(pRtree);
|
|
rc = SQLITE_CORRUPT_VTAB;
|
|
}
|
|
pChild = pChild->pParent;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int deleteCell(Rtree *, RtreeNode *, int, int);
|
|
|
|
static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){
|
|
int rc;
|
|
int rc2;
|
|
RtreeNode *pParent = 0;
|
|
int iCell;
|
|
|
|
assert( pNode->nRef==1 );
|
|
|
|
/* Remove the entry in the parent cell. */
|
|
rc = nodeParentIndex(pRtree, pNode, &iCell);
|
|
if( rc==SQLITE_OK ){
|
|
pParent = pNode->pParent;
|
|
pNode->pParent = 0;
|
|
rc = deleteCell(pRtree, pParent, iCell, iHeight+1);
|
|
}
|
|
rc2 = nodeRelease(pRtree, pParent);
|
|
if( rc==SQLITE_OK ){
|
|
rc = rc2;
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
/* Remove the xxx_node entry. */
|
|
sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode);
|
|
sqlite3_step(pRtree->pDeleteNode);
|
|
if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){
|
|
return rc;
|
|
}
|
|
|
|
/* Remove the xxx_parent entry. */
|
|
sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode);
|
|
sqlite3_step(pRtree->pDeleteParent);
|
|
if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){
|
|
return rc;
|
|
}
|
|
|
|
/* Remove the node from the in-memory hash table and link it into
|
|
** the Rtree.pDeleted list. Its contents will be re-inserted later on.
|
|
*/
|
|
nodeHashDelete(pRtree, pNode);
|
|
pNode->iNode = iHeight;
|
|
pNode->pNext = pRtree->pDeleted;
|
|
pNode->nRef++;
|
|
pRtree->pDeleted = pNode;
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){
|
|
RtreeNode *pParent = pNode->pParent;
|
|
int rc = SQLITE_OK;
|
|
if( pParent ){
|
|
int ii;
|
|
int nCell = NCELL(pNode);
|
|
RtreeCell box; /* Bounding box for pNode */
|
|
nodeGetCell(pRtree, pNode, 0, &box);
|
|
for(ii=1; ii<nCell; ii++){
|
|
RtreeCell cell;
|
|
nodeGetCell(pRtree, pNode, ii, &cell);
|
|
cellUnion(pRtree, &box, &cell);
|
|
}
|
|
box.iRowid = pNode->iNode;
|
|
rc = nodeParentIndex(pRtree, pNode, &ii);
|
|
if( rc==SQLITE_OK ){
|
|
nodeOverwriteCell(pRtree, pParent, &box, ii);
|
|
rc = fixBoundingBox(pRtree, pParent);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Delete the cell at index iCell of node pNode. After removing the
|
|
** cell, adjust the r-tree data structure if required.
|
|
*/
|
|
static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){
|
|
RtreeNode *pParent;
|
|
int rc;
|
|
|
|
if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){
|
|
return rc;
|
|
}
|
|
|
|
/* Remove the cell from the node. This call just moves bytes around
|
|
** the in-memory node image, so it cannot fail.
|
|
*/
|
|
nodeDeleteCell(pRtree, pNode, iCell);
|
|
|
|
/* If the node is not the tree root and now has less than the minimum
|
|
** number of cells, remove it from the tree. Otherwise, update the
|
|
** cell in the parent node so that it tightly contains the updated
|
|
** node.
|
|
*/
|
|
pParent = pNode->pParent;
|
|
assert( pParent || pNode->iNode==1 );
|
|
if( pParent ){
|
|
if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){
|
|
rc = removeNode(pRtree, pNode, iHeight);
|
|
}else{
|
|
rc = fixBoundingBox(pRtree, pNode);
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int Reinsert(
|
|
Rtree *pRtree,
|
|
RtreeNode *pNode,
|
|
RtreeCell *pCell,
|
|
int iHeight
|
|
){
|
|
int *aOrder;
|
|
int *aSpare;
|
|
RtreeCell *aCell;
|
|
RtreeDValue *aDistance;
|
|
int nCell;
|
|
RtreeDValue aCenterCoord[RTREE_MAX_DIMENSIONS];
|
|
int iDim;
|
|
int ii;
|
|
int rc = SQLITE_OK;
|
|
int n;
|
|
|
|
memset(aCenterCoord, 0, sizeof(RtreeDValue)*RTREE_MAX_DIMENSIONS);
|
|
|
|
nCell = NCELL(pNode)+1;
|
|
n = (nCell+1)&(~1);
|
|
|
|
/* Allocate the buffers used by this operation. The allocation is
|
|
** relinquished before this function returns.
|
|
*/
|
|
aCell = (RtreeCell *)sqlite3_malloc64(n * (
|
|
sizeof(RtreeCell) + /* aCell array */
|
|
sizeof(int) + /* aOrder array */
|
|
sizeof(int) + /* aSpare array */
|
|
sizeof(RtreeDValue) /* aDistance array */
|
|
));
|
|
if( !aCell ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
aOrder = (int *)&aCell[n];
|
|
aSpare = (int *)&aOrder[n];
|
|
aDistance = (RtreeDValue *)&aSpare[n];
|
|
|
|
for(ii=0; ii<nCell; ii++){
|
|
if( ii==(nCell-1) ){
|
|
memcpy(&aCell[ii], pCell, sizeof(RtreeCell));
|
|
}else{
|
|
nodeGetCell(pRtree, pNode, ii, &aCell[ii]);
|
|
}
|
|
aOrder[ii] = ii;
|
|
for(iDim=0; iDim<pRtree->nDim; iDim++){
|
|
aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]);
|
|
aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]);
|
|
}
|
|
}
|
|
for(iDim=0; iDim<pRtree->nDim; iDim++){
|
|
aCenterCoord[iDim] = (aCenterCoord[iDim]/(nCell*(RtreeDValue)2));
|
|
}
|
|
|
|
for(ii=0; ii<nCell; ii++){
|
|
aDistance[ii] = RTREE_ZERO;
|
|
for(iDim=0; iDim<pRtree->nDim; iDim++){
|
|
RtreeDValue coord = (DCOORD(aCell[ii].aCoord[iDim*2+1]) -
|
|
DCOORD(aCell[ii].aCoord[iDim*2]));
|
|
aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]);
|
|
}
|
|
}
|
|
|
|
SortByDistance(aOrder, nCell, aDistance, aSpare);
|
|
nodeZero(pRtree, pNode);
|
|
|
|
for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){
|
|
RtreeCell *p = &aCell[aOrder[ii]];
|
|
nodeInsertCell(pRtree, pNode, p);
|
|
if( p->iRowid==pCell->iRowid ){
|
|
if( iHeight==0 ){
|
|
rc = rowidWrite(pRtree, p->iRowid, pNode->iNode);
|
|
}else{
|
|
rc = parentWrite(pRtree, p->iRowid, pNode->iNode);
|
|
}
|
|
}
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
rc = fixBoundingBox(pRtree, pNode);
|
|
}
|
|
for(; rc==SQLITE_OK && ii<nCell; ii++){
|
|
/* Find a node to store this cell in. pNode->iNode currently contains
|
|
** the height of the sub-tree headed by the cell.
|
|
*/
|
|
RtreeNode *pInsert;
|
|
RtreeCell *p = &aCell[aOrder[ii]];
|
|
rc = ChooseLeaf(pRtree, p, iHeight, &pInsert);
|
|
if( rc==SQLITE_OK ){
|
|
int rc2;
|
|
rc = rtreeInsertCell(pRtree, pInsert, p, iHeight);
|
|
rc2 = nodeRelease(pRtree, pInsert);
|
|
if( rc==SQLITE_OK ){
|
|
rc = rc2;
|
|
}
|
|
}
|
|
}
|
|
|
|
sqlite3_free(aCell);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Insert cell pCell into node pNode. Node pNode is the head of a
|
|
** subtree iHeight high (leaf nodes have iHeight==0).
|
|
*/
|
|
static int rtreeInsertCell(
|
|
Rtree *pRtree,
|
|
RtreeNode *pNode,
|
|
RtreeCell *pCell,
|
|
int iHeight
|
|
){
|
|
int rc = SQLITE_OK;
|
|
if( iHeight>0 ){
|
|
RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid);
|
|
if( pChild ){
|
|
nodeRelease(pRtree, pChild->pParent);
|
|
nodeReference(pNode);
|
|
pChild->pParent = pNode;
|
|
}
|
|
}
|
|
if( nodeInsertCell(pRtree, pNode, pCell) ){
|
|
if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){
|
|
rc = SplitNode(pRtree, pNode, pCell, iHeight);
|
|
}else{
|
|
pRtree->iReinsertHeight = iHeight;
|
|
rc = Reinsert(pRtree, pNode, pCell, iHeight);
|
|
}
|
|
}else{
|
|
rc = AdjustTree(pRtree, pNode, pCell);
|
|
if( rc==SQLITE_OK ){
|
|
if( iHeight==0 ){
|
|
rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode);
|
|
}else{
|
|
rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode);
|
|
}
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){
|
|
int ii;
|
|
int rc = SQLITE_OK;
|
|
int nCell = NCELL(pNode);
|
|
|
|
for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){
|
|
RtreeNode *pInsert;
|
|
RtreeCell cell;
|
|
nodeGetCell(pRtree, pNode, ii, &cell);
|
|
|
|
/* Find a node to store this cell in. pNode->iNode currently contains
|
|
** the height of the sub-tree headed by the cell.
|
|
*/
|
|
rc = ChooseLeaf(pRtree, &cell, (int)pNode->iNode, &pInsert);
|
|
if( rc==SQLITE_OK ){
|
|
int rc2;
|
|
rc = rtreeInsertCell(pRtree, pInsert, &cell, (int)pNode->iNode);
|
|
rc2 = nodeRelease(pRtree, pInsert);
|
|
if( rc==SQLITE_OK ){
|
|
rc = rc2;
|
|
}
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Select a currently unused rowid for a new r-tree record.
|
|
*/
|
|
static int rtreeNewRowid(Rtree *pRtree, i64 *piRowid){
|
|
int rc;
|
|
sqlite3_bind_null(pRtree->pWriteRowid, 1);
|
|
sqlite3_bind_null(pRtree->pWriteRowid, 2);
|
|
sqlite3_step(pRtree->pWriteRowid);
|
|
rc = sqlite3_reset(pRtree->pWriteRowid);
|
|
*piRowid = sqlite3_last_insert_rowid(pRtree->db);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Remove the entry with rowid=iDelete from the r-tree structure.
|
|
*/
|
|
static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){
|
|
int rc; /* Return code */
|
|
RtreeNode *pLeaf = 0; /* Leaf node containing record iDelete */
|
|
int iCell; /* Index of iDelete cell in pLeaf */
|
|
RtreeNode *pRoot = 0; /* Root node of rtree structure */
|
|
|
|
|
|
/* Obtain a reference to the root node to initialize Rtree.iDepth */
|
|
rc = nodeAcquire(pRtree, 1, 0, &pRoot);
|
|
|
|
/* Obtain a reference to the leaf node that contains the entry
|
|
** about to be deleted.
|
|
*/
|
|
if( rc==SQLITE_OK ){
|
|
rc = findLeafNode(pRtree, iDelete, &pLeaf, 0);
|
|
}
|
|
|
|
#ifdef CORRUPT_DB
|
|
assert( pLeaf!=0 || rc!=SQLITE_OK || CORRUPT_DB );
|
|
#endif
|
|
|
|
/* Delete the cell in question from the leaf node. */
|
|
if( rc==SQLITE_OK && pLeaf ){
|
|
int rc2;
|
|
rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell);
|
|
if( rc==SQLITE_OK ){
|
|
rc = deleteCell(pRtree, pLeaf, iCell, 0);
|
|
}
|
|
rc2 = nodeRelease(pRtree, pLeaf);
|
|
if( rc==SQLITE_OK ){
|
|
rc = rc2;
|
|
}
|
|
}
|
|
|
|
/* Delete the corresponding entry in the <rtree>_rowid table. */
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete);
|
|
sqlite3_step(pRtree->pDeleteRowid);
|
|
rc = sqlite3_reset(pRtree->pDeleteRowid);
|
|
}
|
|
|
|
/* Check if the root node now has exactly one child. If so, remove
|
|
** it, schedule the contents of the child for reinsertion and
|
|
** reduce the tree height by one.
|
|
**
|
|
** This is equivalent to copying the contents of the child into
|
|
** the root node (the operation that Gutman's paper says to perform
|
|
** in this scenario).
|
|
*/
|
|
if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){
|
|
int rc2;
|
|
RtreeNode *pChild = 0;
|
|
i64 iChild = nodeGetRowid(pRtree, pRoot, 0);
|
|
rc = nodeAcquire(pRtree, iChild, pRoot, &pChild);
|
|
if( rc==SQLITE_OK ){
|
|
rc = removeNode(pRtree, pChild, pRtree->iDepth-1);
|
|
}
|
|
rc2 = nodeRelease(pRtree, pChild);
|
|
if( rc==SQLITE_OK ) rc = rc2;
|
|
if( rc==SQLITE_OK ){
|
|
pRtree->iDepth--;
|
|
writeInt16(pRoot->zData, pRtree->iDepth);
|
|
pRoot->isDirty = 1;
|
|
}
|
|
}
|
|
|
|
/* Re-insert the contents of any underfull nodes removed from the tree. */
|
|
for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){
|
|
if( rc==SQLITE_OK ){
|
|
rc = reinsertNodeContent(pRtree, pLeaf);
|
|
}
|
|
pRtree->pDeleted = pLeaf->pNext;
|
|
pRtree->nNodeRef--;
|
|
sqlite3_free(pLeaf);
|
|
}
|
|
|
|
/* Release the reference to the root node. */
|
|
if( rc==SQLITE_OK ){
|
|
rc = nodeRelease(pRtree, pRoot);
|
|
}else{
|
|
nodeRelease(pRtree, pRoot);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Rounding constants for float->double conversion.
|
|
*/
|
|
#define RNDTOWARDS (1.0 - 1.0/8388608.0) /* Round towards zero */
|
|
#define RNDAWAY (1.0 + 1.0/8388608.0) /* Round away from zero */
|
|
|
|
#if !defined(SQLITE_RTREE_INT_ONLY)
|
|
/*
|
|
** Convert an sqlite3_value into an RtreeValue (presumably a float)
|
|
** while taking care to round toward negative or positive, respectively.
|
|
*/
|
|
static RtreeValue rtreeValueDown(sqlite3_value *v){
|
|
double d = sqlite3_value_double(v);
|
|
float f = (float)d;
|
|
if( f>d ){
|
|
f = (float)(d*(d<0 ? RNDAWAY : RNDTOWARDS));
|
|
}
|
|
return f;
|
|
}
|
|
static RtreeValue rtreeValueUp(sqlite3_value *v){
|
|
double d = sqlite3_value_double(v);
|
|
float f = (float)d;
|
|
if( f<d ){
|
|
f = (float)(d*(d<0 ? RNDTOWARDS : RNDAWAY));
|
|
}
|
|
return f;
|
|
}
|
|
#endif /* !defined(SQLITE_RTREE_INT_ONLY) */
|
|
|
|
/*
|
|
** A constraint has failed while inserting a row into an rtree table.
|
|
** Assuming no OOM error occurs, this function sets the error message
|
|
** (at pRtree->base.zErrMsg) to an appropriate value and returns
|
|
** SQLITE_CONSTRAINT.
|
|
**
|
|
** Parameter iCol is the index of the leftmost column involved in the
|
|
** constraint failure. If it is 0, then the constraint that failed is
|
|
** the unique constraint on the id column. Otherwise, it is the rtree
|
|
** (c1<=c2) constraint on columns iCol and iCol+1 that has failed.
|
|
**
|
|
** If an OOM occurs, SQLITE_NOMEM is returned instead of SQLITE_CONSTRAINT.
|
|
*/
|
|
static int rtreeConstraintError(Rtree *pRtree, int iCol){
|
|
sqlite3_stmt *pStmt = 0;
|
|
char *zSql;
|
|
int rc;
|
|
|
|
assert( iCol==0 || iCol%2 );
|
|
zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", pRtree->zDb, pRtree->zName);
|
|
if( zSql ){
|
|
rc = sqlite3_prepare_v2(pRtree->db, zSql, -1, &pStmt, 0);
|
|
}else{
|
|
rc = SQLITE_NOMEM;
|
|
}
|
|
sqlite3_free(zSql);
|
|
|
|
if( rc==SQLITE_OK ){
|
|
if( iCol==0 ){
|
|
const char *zCol = sqlite3_column_name(pStmt, 0);
|
|
pRtree->base.zErrMsg = sqlite3_mprintf(
|
|
"UNIQUE constraint failed: %s.%s", pRtree->zName, zCol
|
|
);
|
|
}else{
|
|
const char *zCol1 = sqlite3_column_name(pStmt, iCol);
|
|
const char *zCol2 = sqlite3_column_name(pStmt, iCol+1);
|
|
pRtree->base.zErrMsg = sqlite3_mprintf(
|
|
"rtree constraint failed: %s.(%s<=%s)", pRtree->zName, zCol1, zCol2
|
|
);
|
|
}
|
|
}
|
|
|
|
sqlite3_finalize(pStmt);
|
|
return (rc==SQLITE_OK ? SQLITE_CONSTRAINT : rc);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
** The xUpdate method for rtree module virtual tables.
|
|
*/
|
|
static int rtreeUpdate(
|
|
sqlite3_vtab *pVtab,
|
|
int nData,
|
|
sqlite3_value **aData,
|
|
sqlite_int64 *pRowid
|
|
){
|
|
Rtree *pRtree = (Rtree *)pVtab;
|
|
int rc = SQLITE_OK;
|
|
RtreeCell cell; /* New cell to insert if nData>1 */
|
|
int bHaveRowid = 0; /* Set to 1 after new rowid is determined */
|
|
|
|
if( pRtree->nNodeRef ){
|
|
/* Unable to write to the btree while another cursor is reading from it,
|
|
** since the write might do a rebalance which would disrupt the read
|
|
** cursor. */
|
|
return SQLITE_LOCKED_VTAB;
|
|
}
|
|
rtreeReference(pRtree);
|
|
assert(nData>=1);
|
|
|
|
cell.iRowid = 0; /* Used only to suppress a compiler warning */
|
|
|
|
/* Constraint handling. A write operation on an r-tree table may return
|
|
** SQLITE_CONSTRAINT for two reasons:
|
|
**
|
|
** 1. A duplicate rowid value, or
|
|
** 2. The supplied data violates the "x2>=x1" constraint.
|
|
**
|
|
** In the first case, if the conflict-handling mode is REPLACE, then
|
|
** the conflicting row can be removed before proceeding. In the second
|
|
** case, SQLITE_CONSTRAINT must be returned regardless of the
|
|
** conflict-handling mode specified by the user.
|
|
*/
|
|
if( nData>1 ){
|
|
int ii;
|
|
int nn = nData - 4;
|
|
|
|
if( nn > pRtree->nDim2 ) nn = pRtree->nDim2;
|
|
/* Populate the cell.aCoord[] array. The first coordinate is aData[3].
|
|
**
|
|
** NB: nData can only be less than nDim*2+3 if the rtree is mis-declared
|
|
** with "column" that are interpreted as table constraints.
|
|
** Example: CREATE VIRTUAL TABLE bad USING rtree(x,y,CHECK(y>5));
|
|
** This problem was discovered after years of use, so we silently ignore
|
|
** these kinds of misdeclared tables to avoid breaking any legacy.
|
|
*/
|
|
|
|
#ifndef SQLITE_RTREE_INT_ONLY
|
|
if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
|
|
for(ii=0; ii<nn; ii+=2){
|
|
cell.aCoord[ii].f = rtreeValueDown(aData[ii+3]);
|
|
cell.aCoord[ii+1].f = rtreeValueUp(aData[ii+4]);
|
|
if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
|
|
rc = rtreeConstraintError(pRtree, ii+1);
|
|
goto constraint;
|
|
}
|
|
}
|
|
}else
|
|
#endif
|
|
{
|
|
for(ii=0; ii<nn; ii+=2){
|
|
cell.aCoord[ii].i = sqlite3_value_int(aData[ii+3]);
|
|
cell.aCoord[ii+1].i = sqlite3_value_int(aData[ii+4]);
|
|
if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
|
|
rc = rtreeConstraintError(pRtree, ii+1);
|
|
goto constraint;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If a rowid value was supplied, check if it is already present in
|
|
** the table. If so, the constraint has failed. */
|
|
if( sqlite3_value_type(aData[2])!=SQLITE_NULL ){
|
|
cell.iRowid = sqlite3_value_int64(aData[2]);
|
|
if( sqlite3_value_type(aData[0])==SQLITE_NULL
|
|
|| sqlite3_value_int64(aData[0])!=cell.iRowid
|
|
){
|
|
int steprc;
|
|
sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
|
|
steprc = sqlite3_step(pRtree->pReadRowid);
|
|
rc = sqlite3_reset(pRtree->pReadRowid);
|
|
if( SQLITE_ROW==steprc ){
|
|
if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){
|
|
rc = rtreeDeleteRowid(pRtree, cell.iRowid);
|
|
}else{
|
|
rc = rtreeConstraintError(pRtree, 0);
|
|
goto constraint;
|
|
}
|
|
}
|
|
}
|
|
bHaveRowid = 1;
|
|
}
|
|
}
|
|
|
|
/* If aData[0] is not an SQL NULL value, it is the rowid of a
|
|
** record to delete from the r-tree table. The following block does
|
|
** just that.
|
|
*/
|
|
if( sqlite3_value_type(aData[0])!=SQLITE_NULL ){
|
|
rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(aData[0]));
|
|
}
|
|
|
|
/* If the aData[] array contains more than one element, elements
|
|
** (aData[2]..aData[argc-1]) contain a new record to insert into
|
|
** the r-tree structure.
|
|
*/
|
|
if( rc==SQLITE_OK && nData>1 ){
|
|
/* Insert the new record into the r-tree */
|
|
RtreeNode *pLeaf = 0;
|
|
|
|
/* Figure out the rowid of the new row. */
|
|
if( bHaveRowid==0 ){
|
|
rc = rtreeNewRowid(pRtree, &cell.iRowid);
|
|
}
|
|
*pRowid = cell.iRowid;
|
|
|
|
if( rc==SQLITE_OK ){
|
|
rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
int rc2;
|
|
pRtree->iReinsertHeight = -1;
|
|
rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0);
|
|
rc2 = nodeRelease(pRtree, pLeaf);
|
|
if( rc==SQLITE_OK ){
|
|
rc = rc2;
|
|
}
|
|
}
|
|
if( rc==SQLITE_OK && pRtree->nAux ){
|
|
sqlite3_stmt *pUp = pRtree->pWriteAux;
|
|
int jj;
|
|
sqlite3_bind_int64(pUp, 1, *pRowid);
|
|
for(jj=0; jj<pRtree->nAux; jj++){
|
|
sqlite3_bind_value(pUp, jj+2, aData[pRtree->nDim2+3+jj]);
|
|
}
|
|
sqlite3_step(pUp);
|
|
rc = sqlite3_reset(pUp);
|
|
}
|
|
}
|
|
|
|
constraint:
|
|
rtreeRelease(pRtree);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Called when a transaction starts.
|
|
*/
|
|
static int rtreeBeginTransaction(sqlite3_vtab *pVtab){
|
|
Rtree *pRtree = (Rtree *)pVtab;
|
|
assert( pRtree->inWrTrans==0 );
|
|
pRtree->inWrTrans++;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Called when a transaction completes (either by COMMIT or ROLLBACK).
|
|
** The sqlite3_blob object should be released at this point.
|
|
*/
|
|
static int rtreeEndTransaction(sqlite3_vtab *pVtab){
|
|
Rtree *pRtree = (Rtree *)pVtab;
|
|
pRtree->inWrTrans = 0;
|
|
nodeBlobReset(pRtree);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** The xRename method for rtree module virtual tables.
|
|
*/
|
|
static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){
|
|
Rtree *pRtree = (Rtree *)pVtab;
|
|
int rc = SQLITE_NOMEM;
|
|
char *zSql = sqlite3_mprintf(
|
|
"ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";"
|
|
"ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";"
|
|
"ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";"
|
|
, pRtree->zDb, pRtree->zName, zNewName
|
|
, pRtree->zDb, pRtree->zName, zNewName
|
|
, pRtree->zDb, pRtree->zName, zNewName
|
|
);
|
|
if( zSql ){
|
|
nodeBlobReset(pRtree);
|
|
rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0);
|
|
sqlite3_free(zSql);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** The xSavepoint method.
|
|
**
|
|
** This module does not need to do anything to support savepoints. However,
|
|
** it uses this hook to close any open blob handle. This is done because a
|
|
** DROP TABLE command - which fortunately always opens a savepoint - cannot
|
|
** succeed if there are any open blob handles. i.e. if the blob handle were
|
|
** not closed here, the following would fail:
|
|
**
|
|
** BEGIN;
|
|
** INSERT INTO rtree...
|
|
** DROP TABLE <tablename>; -- Would fail with SQLITE_LOCKED
|
|
** COMMIT;
|
|
*/
|
|
static int rtreeSavepoint(sqlite3_vtab *pVtab, int iSavepoint){
|
|
Rtree *pRtree = (Rtree *)pVtab;
|
|
u8 iwt = pRtree->inWrTrans;
|
|
UNUSED_PARAMETER(iSavepoint);
|
|
pRtree->inWrTrans = 0;
|
|
nodeBlobReset(pRtree);
|
|
pRtree->inWrTrans = iwt;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** This function populates the pRtree->nRowEst variable with an estimate
|
|
** of the number of rows in the virtual table. If possible, this is based
|
|
** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST.
|
|
*/
|
|
static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){
|
|
const char *zFmt = "SELECT stat FROM %Q.sqlite_stat1 WHERE tbl = '%q_rowid'";
|
|
char *zSql;
|
|
sqlite3_stmt *p;
|
|
int rc;
|
|
i64 nRow = 0;
|
|
|
|
rc = sqlite3_table_column_metadata(
|
|
db, pRtree->zDb, "sqlite_stat1",0,0,0,0,0,0
|
|
);
|
|
if( rc!=SQLITE_OK ){
|
|
pRtree->nRowEst = RTREE_DEFAULT_ROWEST;
|
|
return rc==SQLITE_ERROR ? SQLITE_OK : rc;
|
|
}
|
|
zSql = sqlite3_mprintf(zFmt, pRtree->zDb, pRtree->zName);
|
|
if( zSql==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
rc = sqlite3_prepare_v2(db, zSql, -1, &p, 0);
|
|
if( rc==SQLITE_OK ){
|
|
if( sqlite3_step(p)==SQLITE_ROW ) nRow = sqlite3_column_int64(p, 0);
|
|
rc = sqlite3_finalize(p);
|
|
}else if( rc!=SQLITE_NOMEM ){
|
|
rc = SQLITE_OK;
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
if( nRow==0 ){
|
|
pRtree->nRowEst = RTREE_DEFAULT_ROWEST;
|
|
}else{
|
|
pRtree->nRowEst = MAX(nRow, RTREE_MIN_ROWEST);
|
|
}
|
|
}
|
|
sqlite3_free(zSql);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Return true if zName is the extension on one of the shadow tables used
|
|
** by this module.
|
|
*/
|
|
static int rtreeShadowName(const char *zName){
|
|
static const char *azName[] = {
|
|
"node", "parent", "rowid"
|
|
};
|
|
unsigned int i;
|
|
for(i=0; i<sizeof(azName)/sizeof(azName[0]); i++){
|
|
if( sqlite3_stricmp(zName, azName[i])==0 ) return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static sqlite3_module rtreeModule = {
|
|
3, /* iVersion */
|
|
rtreeCreate, /* xCreate - create a table */
|
|
rtreeConnect, /* xConnect - connect to an existing table */
|
|
rtreeBestIndex, /* xBestIndex - Determine search strategy */
|
|
rtreeDisconnect, /* xDisconnect - Disconnect from a table */
|
|
rtreeDestroy, /* xDestroy - Drop a table */
|
|
rtreeOpen, /* xOpen - open a cursor */
|
|
rtreeClose, /* xClose - close a cursor */
|
|
rtreeFilter, /* xFilter - configure scan constraints */
|
|
rtreeNext, /* xNext - advance a cursor */
|
|
rtreeEof, /* xEof */
|
|
rtreeColumn, /* xColumn - read data */
|
|
rtreeRowid, /* xRowid - read data */
|
|
rtreeUpdate, /* xUpdate - write data */
|
|
rtreeBeginTransaction, /* xBegin - begin transaction */
|
|
rtreeEndTransaction, /* xSync - sync transaction */
|
|
rtreeEndTransaction, /* xCommit - commit transaction */
|
|
rtreeEndTransaction, /* xRollback - rollback transaction */
|
|
0, /* xFindFunction - function overloading */
|
|
rtreeRename, /* xRename - rename the table */
|
|
rtreeSavepoint, /* xSavepoint */
|
|
0, /* xRelease */
|
|
0, /* xRollbackTo */
|
|
rtreeShadowName /* xShadowName */
|
|
};
|
|
|
|
static int rtreeSqlInit(
|
|
Rtree *pRtree,
|
|
sqlite3 *db,
|
|
const char *zDb,
|
|
const char *zPrefix,
|
|
int isCreate
|
|
){
|
|
int rc = SQLITE_OK;
|
|
|
|
#define N_STATEMENT 8
|
|
static const char *azSql[N_STATEMENT] = {
|
|
/* Write the xxx_node table */
|
|
"INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(?1, ?2)",
|
|
"DELETE FROM '%q'.'%q_node' WHERE nodeno = ?1",
|
|
|
|
/* Read and write the xxx_rowid table */
|
|
"SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = ?1",
|
|
"INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(?1, ?2)",
|
|
"DELETE FROM '%q'.'%q_rowid' WHERE rowid = ?1",
|
|
|
|
/* Read and write the xxx_parent table */
|
|
"SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = ?1",
|
|
"INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(?1, ?2)",
|
|
"DELETE FROM '%q'.'%q_parent' WHERE nodeno = ?1"
|
|
};
|
|
sqlite3_stmt **appStmt[N_STATEMENT];
|
|
int i;
|
|
const int f = SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_NO_VTAB;
|
|
|
|
pRtree->db = db;
|
|
|
|
if( isCreate ){
|
|
char *zCreate;
|
|
sqlite3_str *p = sqlite3_str_new(db);
|
|
int ii;
|
|
sqlite3_str_appendf(p,
|
|
"CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY,nodeno",
|
|
zDb, zPrefix);
|
|
for(ii=0; ii<pRtree->nAux; ii++){
|
|
sqlite3_str_appendf(p,",a%d",ii);
|
|
}
|
|
sqlite3_str_appendf(p,
|
|
");CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY,data);",
|
|
zDb, zPrefix);
|
|
sqlite3_str_appendf(p,
|
|
"CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY,parentnode);",
|
|
zDb, zPrefix);
|
|
sqlite3_str_appendf(p,
|
|
"INSERT INTO \"%w\".\"%w_node\"VALUES(1,zeroblob(%d))",
|
|
zDb, zPrefix, pRtree->iNodeSize);
|
|
zCreate = sqlite3_str_finish(p);
|
|
if( !zCreate ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
rc = sqlite3_exec(db, zCreate, 0, 0, 0);
|
|
sqlite3_free(zCreate);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
appStmt[0] = &pRtree->pWriteNode;
|
|
appStmt[1] = &pRtree->pDeleteNode;
|
|
appStmt[2] = &pRtree->pReadRowid;
|
|
appStmt[3] = &pRtree->pWriteRowid;
|
|
appStmt[4] = &pRtree->pDeleteRowid;
|
|
appStmt[5] = &pRtree->pReadParent;
|
|
appStmt[6] = &pRtree->pWriteParent;
|
|
appStmt[7] = &pRtree->pDeleteParent;
|
|
|
|
rc = rtreeQueryStat1(db, pRtree);
|
|
for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){
|
|
char *zSql;
|
|
const char *zFormat;
|
|
if( i!=3 || pRtree->nAux==0 ){
|
|
zFormat = azSql[i];
|
|
}else {
|
|
/* An UPSERT is very slightly slower than REPLACE, but it is needed
|
|
** if there are auxiliary columns */
|
|
zFormat = "INSERT INTO\"%w\".\"%w_rowid\"(rowid,nodeno)VALUES(?1,?2)"
|
|
"ON CONFLICT(rowid)DO UPDATE SET nodeno=excluded.nodeno";
|
|
}
|
|
zSql = sqlite3_mprintf(zFormat, zDb, zPrefix);
|
|
if( zSql ){
|
|
rc = sqlite3_prepare_v3(db, zSql, -1, f, appStmt[i], 0);
|
|
}else{
|
|
rc = SQLITE_NOMEM;
|
|
}
|
|
sqlite3_free(zSql);
|
|
}
|
|
if( pRtree->nAux ){
|
|
pRtree->zReadAuxSql = sqlite3_mprintf(
|
|
"SELECT * FROM \"%w\".\"%w_rowid\" WHERE rowid=?1",
|
|
zDb, zPrefix);
|
|
if( pRtree->zReadAuxSql==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
sqlite3_str *p = sqlite3_str_new(db);
|
|
int ii;
|
|
char *zSql;
|
|
sqlite3_str_appendf(p, "UPDATE \"%w\".\"%w_rowid\"SET ", zDb, zPrefix);
|
|
for(ii=0; ii<pRtree->nAux; ii++){
|
|
if( ii ) sqlite3_str_append(p, ",", 1);
|
|
if( ii<pRtree->nAuxNotNull ){
|
|
sqlite3_str_appendf(p,"a%d=coalesce(?%d,a%d)",ii,ii+2,ii);
|
|
}else{
|
|
sqlite3_str_appendf(p,"a%d=?%d",ii,ii+2);
|
|
}
|
|
}
|
|
sqlite3_str_appendf(p, " WHERE rowid=?1");
|
|
zSql = sqlite3_str_finish(p);
|
|
if( zSql==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
rc = sqlite3_prepare_v3(db, zSql, -1, f, &pRtree->pWriteAux, 0);
|
|
sqlite3_free(zSql);
|
|
}
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** The second argument to this function contains the text of an SQL statement
|
|
** that returns a single integer value. The statement is compiled and executed
|
|
** using database connection db. If successful, the integer value returned
|
|
** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error
|
|
** code is returned and the value of *piVal after returning is not defined.
|
|
*/
|
|
static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){
|
|
int rc = SQLITE_NOMEM;
|
|
if( zSql ){
|
|
sqlite3_stmt *pStmt = 0;
|
|
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
|
|
if( rc==SQLITE_OK ){
|
|
if( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
*piVal = sqlite3_column_int(pStmt, 0);
|
|
}
|
|
rc = sqlite3_finalize(pStmt);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This function is called from within the xConnect() or xCreate() method to
|
|
** determine the node-size used by the rtree table being created or connected
|
|
** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned.
|
|
** Otherwise, an SQLite error code is returned.
|
|
**
|
|
** If this function is being called as part of an xConnect(), then the rtree
|
|
** table already exists. In this case the node-size is determined by inspecting
|
|
** the root node of the tree.
|
|
**
|
|
** Otherwise, for an xCreate(), use 64 bytes less than the database page-size.
|
|
** This ensures that each node is stored on a single database page. If the
|
|
** database page-size is so large that more than RTREE_MAXCELLS entries
|
|
** would fit in a single node, use a smaller node-size.
|
|
*/
|
|
static int getNodeSize(
|
|
sqlite3 *db, /* Database handle */
|
|
Rtree *pRtree, /* Rtree handle */
|
|
int isCreate, /* True for xCreate, false for xConnect */
|
|
char **pzErr /* OUT: Error message, if any */
|
|
){
|
|
int rc;
|
|
char *zSql;
|
|
if( isCreate ){
|
|
int iPageSize = 0;
|
|
zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb);
|
|
rc = getIntFromStmt(db, zSql, &iPageSize);
|
|
if( rc==SQLITE_OK ){
|
|
pRtree->iNodeSize = iPageSize-64;
|
|
if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){
|
|
pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS;
|
|
}
|
|
}else{
|
|
*pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
|
|
}
|
|
}else{
|
|
zSql = sqlite3_mprintf(
|
|
"SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1",
|
|
pRtree->zDb, pRtree->zName
|
|
);
|
|
rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize);
|
|
if( rc!=SQLITE_OK ){
|
|
*pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
|
|
}else if( pRtree->iNodeSize<(512-64) ){
|
|
rc = SQLITE_CORRUPT_VTAB;
|
|
RTREE_IS_CORRUPT(pRtree);
|
|
*pzErr = sqlite3_mprintf("undersize RTree blobs in \"%q_node\"",
|
|
pRtree->zName);
|
|
}
|
|
}
|
|
|
|
sqlite3_free(zSql);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return the length of a token
|
|
*/
|
|
static int rtreeTokenLength(const char *z){
|
|
int dummy = 0;
|
|
return sqlite3GetToken((const unsigned char*)z,&dummy);
|
|
}
|
|
|
|
/*
|
|
** This function is the implementation of both the xConnect and xCreate
|
|
** methods of the r-tree virtual table.
|
|
**
|
|
** argv[0] -> module name
|
|
** argv[1] -> database name
|
|
** argv[2] -> table name
|
|
** argv[...] -> column names...
|
|
*/
|
|
static int rtreeInit(
|
|
sqlite3 *db, /* Database connection */
|
|
void *pAux, /* One of the RTREE_COORD_* constants */
|
|
int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */
|
|
sqlite3_vtab **ppVtab, /* OUT: New virtual table */
|
|
char **pzErr, /* OUT: Error message, if any */
|
|
int isCreate /* True for xCreate, false for xConnect */
|
|
){
|
|
int rc = SQLITE_OK;
|
|
Rtree *pRtree;
|
|
int nDb; /* Length of string argv[1] */
|
|
int nName; /* Length of string argv[2] */
|
|
int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32);
|
|
sqlite3_str *pSql;
|
|
char *zSql;
|
|
int ii = 4;
|
|
int iErr;
|
|
|
|
const char *aErrMsg[] = {
|
|
0, /* 0 */
|
|
"Wrong number of columns for an rtree table", /* 1 */
|
|
"Too few columns for an rtree table", /* 2 */
|
|
"Too many columns for an rtree table", /* 3 */
|
|
"Auxiliary rtree columns must be last" /* 4 */
|
|
};
|
|
|
|
assert( RTREE_MAX_AUX_COLUMN<256 ); /* Aux columns counted by a u8 */
|
|
if( argc<6 || argc>RTREE_MAX_AUX_COLUMN+3 ){
|
|
*pzErr = sqlite3_mprintf("%s", aErrMsg[2 + (argc>=6)]);
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
|
|
|
|
/* Allocate the sqlite3_vtab structure */
|
|
nDb = (int)strlen(argv[1]);
|
|
nName = (int)strlen(argv[2]);
|
|
pRtree = (Rtree *)sqlite3_malloc64(sizeof(Rtree)+nDb+nName+2);
|
|
if( !pRtree ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
|
|
pRtree->nBusy = 1;
|
|
pRtree->base.pModule = &rtreeModule;
|
|
pRtree->zDb = (char *)&pRtree[1];
|
|
pRtree->zName = &pRtree->zDb[nDb+1];
|
|
pRtree->eCoordType = (u8)eCoordType;
|
|
memcpy(pRtree->zDb, argv[1], nDb);
|
|
memcpy(pRtree->zName, argv[2], nName);
|
|
|
|
|
|
/* Create/Connect to the underlying relational database schema. If
|
|
** that is successful, call sqlite3_declare_vtab() to configure
|
|
** the r-tree table schema.
|
|
*/
|
|
pSql = sqlite3_str_new(db);
|
|
sqlite3_str_appendf(pSql, "CREATE TABLE x(%.*s INT",
|
|
rtreeTokenLength(argv[3]), argv[3]);
|
|
for(ii=4; ii<argc; ii++){
|
|
const char *zArg = argv[ii];
|
|
if( zArg[0]=='+' ){
|
|
pRtree->nAux++;
|
|
sqlite3_str_appendf(pSql, ",%.*s", rtreeTokenLength(zArg+1), zArg+1);
|
|
}else if( pRtree->nAux>0 ){
|
|
break;
|
|
}else{
|
|
static const char *azFormat[] = {",%.*s REAL", ",%.*s INT"};
|
|
pRtree->nDim2++;
|
|
sqlite3_str_appendf(pSql, azFormat[eCoordType],
|
|
rtreeTokenLength(zArg), zArg);
|
|
}
|
|
}
|
|
sqlite3_str_appendf(pSql, ");");
|
|
zSql = sqlite3_str_finish(pSql);
|
|
if( !zSql ){
|
|
rc = SQLITE_NOMEM;
|
|
}else if( ii<argc ){
|
|
*pzErr = sqlite3_mprintf("%s", aErrMsg[4]);
|
|
rc = SQLITE_ERROR;
|
|
}else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
|
|
*pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
|
|
}
|
|
sqlite3_free(zSql);
|
|
if( rc ) goto rtreeInit_fail;
|
|
pRtree->nDim = pRtree->nDim2/2;
|
|
if( pRtree->nDim<1 ){
|
|
iErr = 2;
|
|
}else if( pRtree->nDim2>RTREE_MAX_DIMENSIONS*2 ){
|
|
iErr = 3;
|
|
}else if( pRtree->nDim2 % 2 ){
|
|
iErr = 1;
|
|
}else{
|
|
iErr = 0;
|
|
}
|
|
if( iErr ){
|
|
*pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]);
|
|
goto rtreeInit_fail;
|
|
}
|
|
pRtree->nBytesPerCell = 8 + pRtree->nDim2*4;
|
|
|
|
/* Figure out the node size to use. */
|
|
rc = getNodeSize(db, pRtree, isCreate, pzErr);
|
|
if( rc ) goto rtreeInit_fail;
|
|
rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate);
|
|
if( rc ){
|
|
*pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
|
|
goto rtreeInit_fail;
|
|
}
|
|
|
|
*ppVtab = (sqlite3_vtab *)pRtree;
|
|
return SQLITE_OK;
|
|
|
|
rtreeInit_fail:
|
|
if( rc==SQLITE_OK ) rc = SQLITE_ERROR;
|
|
assert( *ppVtab==0 );
|
|
assert( pRtree->nBusy==1 );
|
|
rtreeRelease(pRtree);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Implementation of a scalar function that decodes r-tree nodes to
|
|
** human readable strings. This can be used for debugging and analysis.
|
|
**
|
|
** The scalar function takes two arguments: (1) the number of dimensions
|
|
** to the rtree (between 1 and 5, inclusive) and (2) a blob of data containing
|
|
** an r-tree node. For a two-dimensional r-tree structure called "rt", to
|
|
** deserialize all nodes, a statement like:
|
|
**
|
|
** SELECT rtreenode(2, data) FROM rt_node;
|
|
**
|
|
** The human readable string takes the form of a Tcl list with one
|
|
** entry for each cell in the r-tree node. Each entry is itself a
|
|
** list, containing the 8-byte rowid/pageno followed by the
|
|
** <num-dimension>*2 coordinates.
|
|
*/
|
|
static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
|
|
RtreeNode node;
|
|
Rtree tree;
|
|
int ii;
|
|
int nData;
|
|
int errCode;
|
|
sqlite3_str *pOut;
|
|
|
|
UNUSED_PARAMETER(nArg);
|
|
memset(&node, 0, sizeof(RtreeNode));
|
|
memset(&tree, 0, sizeof(Rtree));
|
|
tree.nDim = (u8)sqlite3_value_int(apArg[0]);
|
|
if( tree.nDim<1 || tree.nDim>5 ) return;
|
|
tree.nDim2 = tree.nDim*2;
|
|
tree.nBytesPerCell = 8 + 8 * tree.nDim;
|
|
node.zData = (u8 *)sqlite3_value_blob(apArg[1]);
|
|
nData = sqlite3_value_bytes(apArg[1]);
|
|
if( nData<4 ) return;
|
|
if( nData<NCELL(&node)*tree.nBytesPerCell ) return;
|
|
|
|
pOut = sqlite3_str_new(0);
|
|
for(ii=0; ii<NCELL(&node); ii++){
|
|
RtreeCell cell;
|
|
int jj;
|
|
|
|
nodeGetCell(&tree, &node, ii, &cell);
|
|
if( ii>0 ) sqlite3_str_append(pOut, " ", 1);
|
|
sqlite3_str_appendf(pOut, "{%lld", cell.iRowid);
|
|
for(jj=0; jj<tree.nDim2; jj++){
|
|
#ifndef SQLITE_RTREE_INT_ONLY
|
|
sqlite3_str_appendf(pOut, " %g", (double)cell.aCoord[jj].f);
|
|
#else
|
|
sqlite3_str_appendf(pOut, " %d", cell.aCoord[jj].i);
|
|
#endif
|
|
}
|
|
sqlite3_str_append(pOut, "}", 1);
|
|
}
|
|
errCode = sqlite3_str_errcode(pOut);
|
|
sqlite3_result_text(ctx, sqlite3_str_finish(pOut), -1, sqlite3_free);
|
|
sqlite3_result_error_code(ctx, errCode);
|
|
}
|
|
|
|
/* This routine implements an SQL function that returns the "depth" parameter
|
|
** from the front of a blob that is an r-tree node. For example:
|
|
**
|
|
** SELECT rtreedepth(data) FROM rt_node WHERE nodeno=1;
|
|
**
|
|
** The depth value is 0 for all nodes other than the root node, and the root
|
|
** node always has nodeno=1, so the example above is the primary use for this
|
|
** routine. This routine is intended for testing and analysis only.
|
|
*/
|
|
static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
|
|
UNUSED_PARAMETER(nArg);
|
|
if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB
|
|
|| sqlite3_value_bytes(apArg[0])<2
|
|
){
|
|
sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1);
|
|
}else{
|
|
u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]);
|
|
sqlite3_result_int(ctx, readInt16(zBlob));
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Context object passed between the various routines that make up the
|
|
** implementation of integrity-check function rtreecheck().
|
|
*/
|
|
typedef struct RtreeCheck RtreeCheck;
|
|
struct RtreeCheck {
|
|
sqlite3 *db; /* Database handle */
|
|
const char *zDb; /* Database containing rtree table */
|
|
const char *zTab; /* Name of rtree table */
|
|
int bInt; /* True for rtree_i32 table */
|
|
int nDim; /* Number of dimensions for this rtree tbl */
|
|
sqlite3_stmt *pGetNode; /* Statement used to retrieve nodes */
|
|
sqlite3_stmt *aCheckMapping[2]; /* Statements to query %_parent/%_rowid */
|
|
int nLeaf; /* Number of leaf cells in table */
|
|
int nNonLeaf; /* Number of non-leaf cells in table */
|
|
int rc; /* Return code */
|
|
char *zReport; /* Message to report */
|
|
int nErr; /* Number of lines in zReport */
|
|
};
|
|
|
|
#define RTREE_CHECK_MAX_ERROR 100
|
|
|
|
/*
|
|
** Reset SQL statement pStmt. If the sqlite3_reset() call returns an error,
|
|
** and RtreeCheck.rc==SQLITE_OK, set RtreeCheck.rc to the error code.
|
|
*/
|
|
static void rtreeCheckReset(RtreeCheck *pCheck, sqlite3_stmt *pStmt){
|
|
int rc = sqlite3_reset(pStmt);
|
|
if( pCheck->rc==SQLITE_OK ) pCheck->rc = rc;
|
|
}
|
|
|
|
/*
|
|
** The second and subsequent arguments to this function are a format string
|
|
** and printf style arguments. This function formats the string and attempts
|
|
** to compile it as an SQL statement.
|
|
**
|
|
** If successful, a pointer to the new SQL statement is returned. Otherwise,
|
|
** NULL is returned and an error code left in RtreeCheck.rc.
|
|
*/
|
|
static sqlite3_stmt *rtreeCheckPrepare(
|
|
RtreeCheck *pCheck, /* RtreeCheck object */
|
|
const char *zFmt, ... /* Format string and trailing args */
|
|
){
|
|
va_list ap;
|
|
char *z;
|
|
sqlite3_stmt *pRet = 0;
|
|
|
|
va_start(ap, zFmt);
|
|
z = sqlite3_vmprintf(zFmt, ap);
|
|
|
|
if( pCheck->rc==SQLITE_OK ){
|
|
if( z==0 ){
|
|
pCheck->rc = SQLITE_NOMEM;
|
|
}else{
|
|
pCheck->rc = sqlite3_prepare_v2(pCheck->db, z, -1, &pRet, 0);
|
|
}
|
|
}
|
|
|
|
sqlite3_free(z);
|
|
va_end(ap);
|
|
return pRet;
|
|
}
|
|
|
|
/*
|
|
** The second and subsequent arguments to this function are a printf()
|
|
** style format string and arguments. This function formats the string and
|
|
** appends it to the report being accumuated in pCheck.
|
|
*/
|
|
static void rtreeCheckAppendMsg(RtreeCheck *pCheck, const char *zFmt, ...){
|
|
va_list ap;
|
|
va_start(ap, zFmt);
|
|
if( pCheck->rc==SQLITE_OK && pCheck->nErr<RTREE_CHECK_MAX_ERROR ){
|
|
char *z = sqlite3_vmprintf(zFmt, ap);
|
|
if( z==0 ){
|
|
pCheck->rc = SQLITE_NOMEM;
|
|
}else{
|
|
pCheck->zReport = sqlite3_mprintf("%z%s%z",
|
|
pCheck->zReport, (pCheck->zReport ? "\n" : ""), z
|
|
);
|
|
if( pCheck->zReport==0 ){
|
|
pCheck->rc = SQLITE_NOMEM;
|
|
}
|
|
}
|
|
pCheck->nErr++;
|
|
}
|
|
va_end(ap);
|
|
}
|
|
|
|
/*
|
|
** This function is a no-op if there is already an error code stored
|
|
** in the RtreeCheck object indicated by the first argument. NULL is
|
|
** returned in this case.
|
|
**
|
|
** Otherwise, the contents of rtree table node iNode are loaded from
|
|
** the database and copied into a buffer obtained from sqlite3_malloc().
|
|
** If no error occurs, a pointer to the buffer is returned and (*pnNode)
|
|
** is set to the size of the buffer in bytes.
|
|
**
|
|
** Or, if an error does occur, NULL is returned and an error code left
|
|
** in the RtreeCheck object. The final value of *pnNode is undefined in
|
|
** this case.
|
|
*/
|
|
static u8 *rtreeCheckGetNode(RtreeCheck *pCheck, i64 iNode, int *pnNode){
|
|
u8 *pRet = 0; /* Return value */
|
|
|
|
if( pCheck->rc==SQLITE_OK && pCheck->pGetNode==0 ){
|
|
pCheck->pGetNode = rtreeCheckPrepare(pCheck,
|
|
"SELECT data FROM %Q.'%q_node' WHERE nodeno=?",
|
|
pCheck->zDb, pCheck->zTab
|
|
);
|
|
}
|
|
|
|
if( pCheck->rc==SQLITE_OK ){
|
|
sqlite3_bind_int64(pCheck->pGetNode, 1, iNode);
|
|
if( sqlite3_step(pCheck->pGetNode)==SQLITE_ROW ){
|
|
int nNode = sqlite3_column_bytes(pCheck->pGetNode, 0);
|
|
const u8 *pNode = (const u8*)sqlite3_column_blob(pCheck->pGetNode, 0);
|
|
pRet = sqlite3_malloc64(nNode);
|
|
if( pRet==0 ){
|
|
pCheck->rc = SQLITE_NOMEM;
|
|
}else{
|
|
memcpy(pRet, pNode, nNode);
|
|
*pnNode = nNode;
|
|
}
|
|
}
|
|
rtreeCheckReset(pCheck, pCheck->pGetNode);
|
|
if( pCheck->rc==SQLITE_OK && pRet==0 ){
|
|
rtreeCheckAppendMsg(pCheck, "Node %lld missing from database", iNode);
|
|
}
|
|
}
|
|
|
|
return pRet;
|
|
}
|
|
|
|
/*
|
|
** This function is used to check that the %_parent (if bLeaf==0) or %_rowid
|
|
** (if bLeaf==1) table contains a specified entry. The schemas of the
|
|
** two tables are:
|
|
**
|
|
** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
|
|
** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...)
|
|
**
|
|
** In both cases, this function checks that there exists an entry with
|
|
** IPK value iKey and the second column set to iVal.
|
|
**
|
|
*/
|
|
static void rtreeCheckMapping(
|
|
RtreeCheck *pCheck, /* RtreeCheck object */
|
|
int bLeaf, /* True for a leaf cell, false for interior */
|
|
i64 iKey, /* Key for mapping */
|
|
i64 iVal /* Expected value for mapping */
|
|
){
|
|
int rc;
|
|
sqlite3_stmt *pStmt;
|
|
const char *azSql[2] = {
|
|
"SELECT parentnode FROM %Q.'%q_parent' WHERE nodeno=?1",
|
|
"SELECT nodeno FROM %Q.'%q_rowid' WHERE rowid=?1"
|
|
};
|
|
|
|
assert( bLeaf==0 || bLeaf==1 );
|
|
if( pCheck->aCheckMapping[bLeaf]==0 ){
|
|
pCheck->aCheckMapping[bLeaf] = rtreeCheckPrepare(pCheck,
|
|
azSql[bLeaf], pCheck->zDb, pCheck->zTab
|
|
);
|
|
}
|
|
if( pCheck->rc!=SQLITE_OK ) return;
|
|
|
|
pStmt = pCheck->aCheckMapping[bLeaf];
|
|
sqlite3_bind_int64(pStmt, 1, iKey);
|
|
rc = sqlite3_step(pStmt);
|
|
if( rc==SQLITE_DONE ){
|
|
rtreeCheckAppendMsg(pCheck, "Mapping (%lld -> %lld) missing from %s table",
|
|
iKey, iVal, (bLeaf ? "%_rowid" : "%_parent")
|
|
);
|
|
}else if( rc==SQLITE_ROW ){
|
|
i64 ii = sqlite3_column_int64(pStmt, 0);
|
|
if( ii!=iVal ){
|
|
rtreeCheckAppendMsg(pCheck,
|
|
"Found (%lld -> %lld) in %s table, expected (%lld -> %lld)",
|
|
iKey, ii, (bLeaf ? "%_rowid" : "%_parent"), iKey, iVal
|
|
);
|
|
}
|
|
}
|
|
rtreeCheckReset(pCheck, pStmt);
|
|
}
|
|
|
|
/*
|
|
** Argument pCell points to an array of coordinates stored on an rtree page.
|
|
** This function checks that the coordinates are internally consistent (no
|
|
** x1>x2 conditions) and adds an error message to the RtreeCheck object
|
|
** if they are not.
|
|
**
|
|
** Additionally, if pParent is not NULL, then it is assumed to point to
|
|
** the array of coordinates on the parent page that bound the page
|
|
** containing pCell. In this case it is also verified that the two
|
|
** sets of coordinates are mutually consistent and an error message added
|
|
** to the RtreeCheck object if they are not.
|
|
*/
|
|
static void rtreeCheckCellCoord(
|
|
RtreeCheck *pCheck,
|
|
i64 iNode, /* Node id to use in error messages */
|
|
int iCell, /* Cell number to use in error messages */
|
|
u8 *pCell, /* Pointer to cell coordinates */
|
|
u8 *pParent /* Pointer to parent coordinates */
|
|
){
|
|
RtreeCoord c1, c2;
|
|
RtreeCoord p1, p2;
|
|
int i;
|
|
|
|
for(i=0; i<pCheck->nDim; i++){
|
|
readCoord(&pCell[4*2*i], &c1);
|
|
readCoord(&pCell[4*(2*i + 1)], &c2);
|
|
|
|
/* printf("%e, %e\n", c1.u.f, c2.u.f); */
|
|
if( pCheck->bInt ? c1.i>c2.i : c1.f>c2.f ){
|
|
rtreeCheckAppendMsg(pCheck,
|
|
"Dimension %d of cell %d on node %lld is corrupt", i, iCell, iNode
|
|
);
|
|
}
|
|
|
|
if( pParent ){
|
|
readCoord(&pParent[4*2*i], &p1);
|
|
readCoord(&pParent[4*(2*i + 1)], &p2);
|
|
|
|
if( (pCheck->bInt ? c1.i<p1.i : c1.f<p1.f)
|
|
|| (pCheck->bInt ? c2.i>p2.i : c2.f>p2.f)
|
|
){
|
|
rtreeCheckAppendMsg(pCheck,
|
|
"Dimension %d of cell %d on node %lld is corrupt relative to parent"
|
|
, i, iCell, iNode
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Run rtreecheck() checks on node iNode, which is at depth iDepth within
|
|
** the r-tree structure. Argument aParent points to the array of coordinates
|
|
** that bound node iNode on the parent node.
|
|
**
|
|
** If any problems are discovered, an error message is appended to the
|
|
** report accumulated in the RtreeCheck object.
|
|
*/
|
|
static void rtreeCheckNode(
|
|
RtreeCheck *pCheck,
|
|
int iDepth, /* Depth of iNode (0==leaf) */
|
|
u8 *aParent, /* Buffer containing parent coords */
|
|
i64 iNode /* Node to check */
|
|
){
|
|
u8 *aNode = 0;
|
|
int nNode = 0;
|
|
|
|
assert( iNode==1 || aParent!=0 );
|
|
assert( pCheck->nDim>0 );
|
|
|
|
aNode = rtreeCheckGetNode(pCheck, iNode, &nNode);
|
|
if( aNode ){
|
|
if( nNode<4 ){
|
|
rtreeCheckAppendMsg(pCheck,
|
|
"Node %lld is too small (%d bytes)", iNode, nNode
|
|
);
|
|
}else{
|
|
int nCell; /* Number of cells on page */
|
|
int i; /* Used to iterate through cells */
|
|
if( aParent==0 ){
|
|
iDepth = readInt16(aNode);
|
|
if( iDepth>RTREE_MAX_DEPTH ){
|
|
rtreeCheckAppendMsg(pCheck, "Rtree depth out of range (%d)", iDepth);
|
|
sqlite3_free(aNode);
|
|
return;
|
|
}
|
|
}
|
|
nCell = readInt16(&aNode[2]);
|
|
if( (4 + nCell*(8 + pCheck->nDim*2*4))>nNode ){
|
|
rtreeCheckAppendMsg(pCheck,
|
|
"Node %lld is too small for cell count of %d (%d bytes)",
|
|
iNode, nCell, nNode
|
|
);
|
|
}else{
|
|
for(i=0; i<nCell; i++){
|
|
u8 *pCell = &aNode[4 + i*(8 + pCheck->nDim*2*4)];
|
|
i64 iVal = readInt64(pCell);
|
|
rtreeCheckCellCoord(pCheck, iNode, i, &pCell[8], aParent);
|
|
|
|
if( iDepth>0 ){
|
|
rtreeCheckMapping(pCheck, 0, iVal, iNode);
|
|
rtreeCheckNode(pCheck, iDepth-1, &pCell[8], iVal);
|
|
pCheck->nNonLeaf++;
|
|
}else{
|
|
rtreeCheckMapping(pCheck, 1, iVal, iNode);
|
|
pCheck->nLeaf++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
sqlite3_free(aNode);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The second argument to this function must be either "_rowid" or
|
|
** "_parent". This function checks that the number of entries in the
|
|
** %_rowid or %_parent table is exactly nExpect. If not, it adds
|
|
** an error message to the report in the RtreeCheck object indicated
|
|
** by the first argument.
|
|
*/
|
|
static void rtreeCheckCount(RtreeCheck *pCheck, const char *zTbl, i64 nExpect){
|
|
if( pCheck->rc==SQLITE_OK ){
|
|
sqlite3_stmt *pCount;
|
|
pCount = rtreeCheckPrepare(pCheck, "SELECT count(*) FROM %Q.'%q%s'",
|
|
pCheck->zDb, pCheck->zTab, zTbl
|
|
);
|
|
if( pCount ){
|
|
if( sqlite3_step(pCount)==SQLITE_ROW ){
|
|
i64 nActual = sqlite3_column_int64(pCount, 0);
|
|
if( nActual!=nExpect ){
|
|
rtreeCheckAppendMsg(pCheck, "Wrong number of entries in %%%s table"
|
|
" - expected %lld, actual %lld" , zTbl, nExpect, nActual
|
|
);
|
|
}
|
|
}
|
|
pCheck->rc = sqlite3_finalize(pCount);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This function does the bulk of the work for the rtree integrity-check.
|
|
** It is called by rtreecheck(), which is the SQL function implementation.
|
|
*/
|
|
static int rtreeCheckTable(
|
|
sqlite3 *db, /* Database handle to access db through */
|
|
const char *zDb, /* Name of db ("main", "temp" etc.) */
|
|
const char *zTab, /* Name of rtree table to check */
|
|
char **pzReport /* OUT: sqlite3_malloc'd report text */
|
|
){
|
|
RtreeCheck check; /* Common context for various routines */
|
|
sqlite3_stmt *pStmt = 0; /* Used to find column count of rtree table */
|
|
int bEnd = 0; /* True if transaction should be closed */
|
|
int nAux = 0; /* Number of extra columns. */
|
|
|
|
/* Initialize the context object */
|
|
memset(&check, 0, sizeof(check));
|
|
check.db = db;
|
|
check.zDb = zDb;
|
|
check.zTab = zTab;
|
|
|
|
/* If there is not already an open transaction, open one now. This is
|
|
** to ensure that the queries run as part of this integrity-check operate
|
|
** on a consistent snapshot. */
|
|
if( sqlite3_get_autocommit(db) ){
|
|
check.rc = sqlite3_exec(db, "BEGIN", 0, 0, 0);
|
|
bEnd = 1;
|
|
}
|
|
|
|
/* Find the number of auxiliary columns */
|
|
if( check.rc==SQLITE_OK ){
|
|
pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.'%q_rowid'", zDb, zTab);
|
|
if( pStmt ){
|
|
nAux = sqlite3_column_count(pStmt) - 2;
|
|
sqlite3_finalize(pStmt);
|
|
}
|
|
check.rc = SQLITE_OK;
|
|
}
|
|
|
|
/* Find number of dimensions in the rtree table. */
|
|
pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.%Q", zDb, zTab);
|
|
if( pStmt ){
|
|
int rc;
|
|
check.nDim = (sqlite3_column_count(pStmt) - 1 - nAux) / 2;
|
|
if( check.nDim<1 ){
|
|
rtreeCheckAppendMsg(&check, "Schema corrupt or not an rtree");
|
|
}else if( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
check.bInt = (sqlite3_column_type(pStmt, 1)==SQLITE_INTEGER);
|
|
}
|
|
rc = sqlite3_finalize(pStmt);
|
|
if( rc!=SQLITE_CORRUPT ) check.rc = rc;
|
|
}
|
|
|
|
/* Do the actual integrity-check */
|
|
if( check.nDim>=1 ){
|
|
if( check.rc==SQLITE_OK ){
|
|
rtreeCheckNode(&check, 0, 0, 1);
|
|
}
|
|
rtreeCheckCount(&check, "_rowid", check.nLeaf);
|
|
rtreeCheckCount(&check, "_parent", check.nNonLeaf);
|
|
}
|
|
|
|
/* Finalize SQL statements used by the integrity-check */
|
|
sqlite3_finalize(check.pGetNode);
|
|
sqlite3_finalize(check.aCheckMapping[0]);
|
|
sqlite3_finalize(check.aCheckMapping[1]);
|
|
|
|
/* If one was opened, close the transaction */
|
|
if( bEnd ){
|
|
int rc = sqlite3_exec(db, "END", 0, 0, 0);
|
|
if( check.rc==SQLITE_OK ) check.rc = rc;
|
|
}
|
|
*pzReport = check.zReport;
|
|
return check.rc;
|
|
}
|
|
|
|
/*
|
|
** Usage:
|
|
**
|
|
** rtreecheck(<rtree-table>);
|
|
** rtreecheck(<database>, <rtree-table>);
|
|
**
|
|
** Invoking this SQL function runs an integrity-check on the named rtree
|
|
** table. The integrity-check verifies the following:
|
|
**
|
|
** 1. For each cell in the r-tree structure (%_node table), that:
|
|
**
|
|
** a) for each dimension, (coord1 <= coord2).
|
|
**
|
|
** b) unless the cell is on the root node, that the cell is bounded
|
|
** by the parent cell on the parent node.
|
|
**
|
|
** c) for leaf nodes, that there is an entry in the %_rowid
|
|
** table corresponding to the cell's rowid value that
|
|
** points to the correct node.
|
|
**
|
|
** d) for cells on non-leaf nodes, that there is an entry in the
|
|
** %_parent table mapping from the cell's child node to the
|
|
** node that it resides on.
|
|
**
|
|
** 2. That there are the same number of entries in the %_rowid table
|
|
** as there are leaf cells in the r-tree structure, and that there
|
|
** is a leaf cell that corresponds to each entry in the %_rowid table.
|
|
**
|
|
** 3. That there are the same number of entries in the %_parent table
|
|
** as there are non-leaf cells in the r-tree structure, and that
|
|
** there is a non-leaf cell that corresponds to each entry in the
|
|
** %_parent table.
|
|
*/
|
|
static void rtreecheck(
|
|
sqlite3_context *ctx,
|
|
int nArg,
|
|
sqlite3_value **apArg
|
|
){
|
|
if( nArg!=1 && nArg!=2 ){
|
|
sqlite3_result_error(ctx,
|
|
"wrong number of arguments to function rtreecheck()", -1
|
|
);
|
|
}else{
|
|
int rc;
|
|
char *zReport = 0;
|
|
const char *zDb = (const char*)sqlite3_value_text(apArg[0]);
|
|
const char *zTab;
|
|
if( nArg==1 ){
|
|
zTab = zDb;
|
|
zDb = "main";
|
|
}else{
|
|
zTab = (const char*)sqlite3_value_text(apArg[1]);
|
|
}
|
|
rc = rtreeCheckTable(sqlite3_context_db_handle(ctx), zDb, zTab, &zReport);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_result_text(ctx, zReport ? zReport : "ok", -1, SQLITE_TRANSIENT);
|
|
}else{
|
|
sqlite3_result_error_code(ctx, rc);
|
|
}
|
|
sqlite3_free(zReport);
|
|
}
|
|
}
|
|
|
|
/* Conditionally include the geopoly code */
|
|
#ifdef SQLITE_ENABLE_GEOPOLY
|
|
# include "geopoly.c"
|
|
#endif
|
|
|
|
/*
|
|
** Register the r-tree module with database handle db. This creates the
|
|
** virtual table module "rtree" and the debugging/analysis scalar
|
|
** function "rtreenode".
|
|
*/
|
|
int sqlite3RtreeInit(sqlite3 *db){
|
|
const int utf8 = SQLITE_UTF8;
|
|
int rc;
|
|
|
|
rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3_create_function(db, "rtreecheck", -1, utf8, 0,rtreecheck, 0,0);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
#ifdef SQLITE_RTREE_INT_ONLY
|
|
void *c = (void *)RTREE_COORD_INT32;
|
|
#else
|
|
void *c = (void *)RTREE_COORD_REAL32;
|
|
#endif
|
|
rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
void *c = (void *)RTREE_COORD_INT32;
|
|
rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0);
|
|
}
|
|
#ifdef SQLITE_ENABLE_GEOPOLY
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3_geopoly_init(db);
|
|
}
|
|
#endif
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This routine deletes the RtreeGeomCallback object that was attached
|
|
** one of the SQL functions create by sqlite3_rtree_geometry_callback()
|
|
** or sqlite3_rtree_query_callback(). In other words, this routine is the
|
|
** destructor for an RtreeGeomCallback objecct. This routine is called when
|
|
** the corresponding SQL function is deleted.
|
|
*/
|
|
static void rtreeFreeCallback(void *p){
|
|
RtreeGeomCallback *pInfo = (RtreeGeomCallback*)p;
|
|
if( pInfo->xDestructor ) pInfo->xDestructor(pInfo->pContext);
|
|
sqlite3_free(p);
|
|
}
|
|
|
|
/*
|
|
** This routine frees the BLOB that is returned by geomCallback().
|
|
*/
|
|
static void rtreeMatchArgFree(void *pArg){
|
|
int i;
|
|
RtreeMatchArg *p = (RtreeMatchArg*)pArg;
|
|
for(i=0; i<p->nParam; i++){
|
|
sqlite3_value_free(p->apSqlParam[i]);
|
|
}
|
|
sqlite3_free(p);
|
|
}
|
|
|
|
/*
|
|
** Each call to sqlite3_rtree_geometry_callback() or
|
|
** sqlite3_rtree_query_callback() creates an ordinary SQLite
|
|
** scalar function that is implemented by this routine.
|
|
**
|
|
** All this function does is construct an RtreeMatchArg object that
|
|
** contains the geometry-checking callback routines and a list of
|
|
** parameters to this function, then return that RtreeMatchArg object
|
|
** as a BLOB.
|
|
**
|
|
** The R-Tree MATCH operator will read the returned BLOB, deserialize
|
|
** the RtreeMatchArg object, and use the RtreeMatchArg object to figure
|
|
** out which elements of the R-Tree should be returned by the query.
|
|
*/
|
|
static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){
|
|
RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx);
|
|
RtreeMatchArg *pBlob;
|
|
sqlite3_int64 nBlob;
|
|
int memErr = 0;
|
|
|
|
nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue)
|
|
+ nArg*sizeof(sqlite3_value*);
|
|
pBlob = (RtreeMatchArg *)sqlite3_malloc64(nBlob);
|
|
if( !pBlob ){
|
|
sqlite3_result_error_nomem(ctx);
|
|
}else{
|
|
int i;
|
|
pBlob->iSize = nBlob;
|
|
pBlob->cb = pGeomCtx[0];
|
|
pBlob->apSqlParam = (sqlite3_value**)&pBlob->aParam[nArg];
|
|
pBlob->nParam = nArg;
|
|
for(i=0; i<nArg; i++){
|
|
pBlob->apSqlParam[i] = sqlite3_value_dup(aArg[i]);
|
|
if( pBlob->apSqlParam[i]==0 ) memErr = 1;
|
|
#ifdef SQLITE_RTREE_INT_ONLY
|
|
pBlob->aParam[i] = sqlite3_value_int64(aArg[i]);
|
|
#else
|
|
pBlob->aParam[i] = sqlite3_value_double(aArg[i]);
|
|
#endif
|
|
}
|
|
if( memErr ){
|
|
sqlite3_result_error_nomem(ctx);
|
|
rtreeMatchArgFree(pBlob);
|
|
}else{
|
|
sqlite3_result_pointer(ctx, pBlob, "RtreeMatchArg", rtreeMatchArgFree);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Register a new geometry function for use with the r-tree MATCH operator.
|
|
*/
|
|
int sqlite3_rtree_geometry_callback(
|
|
sqlite3 *db, /* Register SQL function on this connection */
|
|
const char *zGeom, /* Name of the new SQL function */
|
|
int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*), /* Callback */
|
|
void *pContext /* Extra data associated with the callback */
|
|
){
|
|
RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */
|
|
|
|
/* Allocate and populate the context object. */
|
|
pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
|
|
if( !pGeomCtx ) return SQLITE_NOMEM;
|
|
pGeomCtx->xGeom = xGeom;
|
|
pGeomCtx->xQueryFunc = 0;
|
|
pGeomCtx->xDestructor = 0;
|
|
pGeomCtx->pContext = pContext;
|
|
return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY,
|
|
(void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback
|
|
);
|
|
}
|
|
|
|
/*
|
|
** Register a new 2nd-generation geometry function for use with the
|
|
** r-tree MATCH operator.
|
|
*/
|
|
int sqlite3_rtree_query_callback(
|
|
sqlite3 *db, /* Register SQL function on this connection */
|
|
const char *zQueryFunc, /* Name of new SQL function */
|
|
int (*xQueryFunc)(sqlite3_rtree_query_info*), /* Callback */
|
|
void *pContext, /* Extra data passed into the callback */
|
|
void (*xDestructor)(void*) /* Destructor for the extra data */
|
|
){
|
|
RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */
|
|
|
|
/* Allocate and populate the context object. */
|
|
pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
|
|
if( !pGeomCtx ) return SQLITE_NOMEM;
|
|
pGeomCtx->xGeom = 0;
|
|
pGeomCtx->xQueryFunc = xQueryFunc;
|
|
pGeomCtx->xDestructor = xDestructor;
|
|
pGeomCtx->pContext = pContext;
|
|
return sqlite3_create_function_v2(db, zQueryFunc, -1, SQLITE_ANY,
|
|
(void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback
|
|
);
|
|
}
|
|
|
|
#if !SQLITE_CORE
|
|
#ifdef _WIN32
|
|
__declspec(dllexport)
|
|
#endif
|
|
int sqlite3_rtree_init(
|
|
sqlite3 *db,
|
|
char **pzErrMsg,
|
|
const sqlite3_api_routines *pApi
|
|
){
|
|
SQLITE_EXTENSION_INIT2(pApi)
|
|
return sqlite3RtreeInit(db);
|
|
}
|
|
#endif
|
|
|
|
#endif
|