804 lines
29 KiB
C
804 lines
29 KiB
C
/*
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains code used by the compiler to add foreign key
|
|
** support to compiled SQL statements.
|
|
*/
|
|
#include "sqliteInt.h"
|
|
|
|
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
|
|
/*
|
|
** Deferred and Immediate FKs
|
|
** --------------------------
|
|
**
|
|
** Foreign keys in SQLite come in two flavours: deferred and immediate.
|
|
** If an immediate foreign key constraint is violated, an OP_Halt is
|
|
** executed and the current statement transaction rolled back. If a
|
|
** deferred foreign key constraint is violated, no action is taken
|
|
** immediately. However if the application attempts to commit the
|
|
** transaction before fixing the constraint violation, the attempt fails.
|
|
**
|
|
** Deferred constraints are implemented using a simple counter associated
|
|
** with the database handle. The counter is set to zero each time a
|
|
** database transaction is opened. Each time a statement is executed
|
|
** that causes a foreign key violation, the counter is incremented. Each
|
|
** time a statement is executed that removes an existing violation from
|
|
** the database, the counter is decremented. When the transaction is
|
|
** committed, the commit fails if the current value of the counter is
|
|
** greater than zero. This scheme has two big drawbacks:
|
|
**
|
|
** * When a commit fails due to a deferred foreign key constraint,
|
|
** there is no way to tell which foreign constraint is not satisfied,
|
|
** or which row it is not satisfied for.
|
|
**
|
|
** * If the database contains foreign key violations when the
|
|
** transaction is opened, this may cause the mechanism to malfunction.
|
|
**
|
|
** Despite these problems, this approach is adopted as it seems simpler
|
|
** than the alternatives.
|
|
**
|
|
** INSERT operations:
|
|
**
|
|
** I.1) For each FK for which the table is the referencing table, search
|
|
** the referenced table for a match. If none is found, throw an
|
|
** exception for an immediate FK, or increment the counter for a
|
|
** deferred FK.
|
|
**
|
|
** I.2) For each deferred FK for which the table is the referenced table,
|
|
** search the referencing table for rows that correspond to the new
|
|
** row in the referenced table. Decrement the counter for each row
|
|
** found (as the constraint is now satisfied).
|
|
**
|
|
** DELETE operations:
|
|
**
|
|
** D.1) For each deferred FK for which the table is the referencing table,
|
|
** search the referenced table for a row that corresponds to the
|
|
** deleted row in the referencing table. If such a row is not found,
|
|
** decrement the counter.
|
|
**
|
|
** D.2) For each FK for which the table is the referenced table, search
|
|
** the referencing table for rows that correspond to the deleted row
|
|
** in the referenced table. For each found, throw an exception for an
|
|
** immediate FK, or increment the counter for a deferred FK.
|
|
**
|
|
** UPDATE operations:
|
|
**
|
|
** An UPDATE command requires that all 4 steps above are taken, but only
|
|
** for FK constraints for which the affected columns are actually
|
|
** modified (values must be compared at runtime).
|
|
**
|
|
** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
|
|
** This simplifies the implementation a bit.
|
|
**
|
|
** For the purposes of immediate FK constraints, the OR REPLACE conflict
|
|
** resolution is considered to delete rows before the new row is inserted.
|
|
** If a delete caused by OR REPLACE violates an FK constraint, an exception
|
|
** is thrown, even if the FK constraint would be satisfied after the new
|
|
** row is inserted.
|
|
**
|
|
** TODO: How should dropping a table be handled? How should renaming a
|
|
** table be handled?
|
|
*/
|
|
|
|
/*
|
|
** Query API Notes
|
|
** ---------------
|
|
**
|
|
** Before coding an UPDATE or DELETE row operation, the code-generator
|
|
** for those two operations needs to know whether or not the operation
|
|
** requires any FK processing and, if so, which columns of the original
|
|
** row are required by the FK processing VDBE code (i.e. if FKs were
|
|
** implemented using triggers, which of the old.* columns would be
|
|
** accessed). No information is required by the code-generator before
|
|
** coding an INSERT operation.
|
|
**
|
|
*/
|
|
|
|
/*
|
|
** VDBE Calling Convention
|
|
** -----------------------
|
|
**
|
|
** Example:
|
|
**
|
|
** For the following INSERT statement:
|
|
**
|
|
** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
|
|
** INSERT INTO t1 VALUES(1, 2, 3.1);
|
|
**
|
|
** Register (x): 2 (type integer)
|
|
** Register (x+1): 1 (type integer)
|
|
** Register (x+2): NULL (type NULL)
|
|
** Register (x+3): 3.1 (type real)
|
|
*/
|
|
|
|
/*
|
|
** ON UPDATE and ON DELETE clauses
|
|
** -------------------------------
|
|
*/
|
|
|
|
/*
|
|
** Externally accessible module functions
|
|
** --------------------------------------
|
|
**
|
|
** sqlite3FkRequired()
|
|
** sqlite3FkOldmask()
|
|
**
|
|
** sqlite3FkCheck()
|
|
** sqlite3FkActions()
|
|
**
|
|
** sqlite3FkDelete()
|
|
**
|
|
*/
|
|
|
|
/*
|
|
** A foreign key constraint requires that the key columns in the referenced
|
|
** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
|
|
** Given that pTo is the referenced table for foreign key constraint
|
|
** pFKey, check that the columns in pTo are indeed subject to a such a
|
|
** constraint. If they are not, return non-zero and leave an error in pParse.
|
|
**
|
|
** If an error does not occur, return zero.
|
|
*/
|
|
static int locateFkeyIndex(
|
|
Parse *pParse, /* Parse context to store any error in */
|
|
Table *pTo, /* Referenced table */
|
|
FKey *pFKey, /* Foreign key to find index for */
|
|
Index **ppIdx, /* OUT: Unique index on referenced table */
|
|
int **paiCol /* OUT: Map of index columns in pFKey */
|
|
){
|
|
Index *pIdx = 0;
|
|
int *aiCol = 0;
|
|
int nCol = pFKey->nCol;
|
|
char *zFirst = pFKey->aCol[0].zCol;
|
|
|
|
/* The caller is responsible for zeroing output parameters. */
|
|
assert( ppIdx && *ppIdx==0 );
|
|
assert( !paiCol || *paiCol==0 );
|
|
|
|
/* If this is a non-composite (single column) foreign key, check if it
|
|
** maps to the INTEGER PRIMARY KEY of table pTo. If so, leave *ppIdx
|
|
** and *paiCol set to zero and return early.
|
|
**
|
|
** Otherwise, for a composite foreign key (more than one column), allocate
|
|
** space for the aiCol array (returned via output parameter *paiCol).
|
|
** Non-composite foreign keys do not require the aiCol array.
|
|
*/
|
|
if( nCol==1 ){
|
|
/* The FK maps to the IPK if any of the following are true:
|
|
**
|
|
** 1) The FK is explicitly mapped to "rowid", "oid" or "_rowid_", or
|
|
** 2) There is an explicit INTEGER PRIMARY KEY column and the FK is
|
|
** implicitly mapped to the primary key of table pTo, or
|
|
** 3) The FK is explicitly mapped to a column declared as INTEGER
|
|
** PRIMARY KEY.
|
|
*/
|
|
if( zFirst && sqlite3IsRowid(zFirst) ) return 0;
|
|
if( pTo->iPKey>=0 ){
|
|
if( !zFirst ) return 0;
|
|
if( !sqlite3StrICmp(pTo->aCol[pTo->iPKey].zName, zFirst) ) return 0;
|
|
}
|
|
}else if( paiCol ){
|
|
assert( nCol>1 );
|
|
aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int));
|
|
if( !aiCol ) return 1;
|
|
*paiCol = aiCol;
|
|
}
|
|
|
|
for(pIdx=pTo->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){
|
|
/* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
|
|
** of columns. If each indexed column corresponds to a foreign key
|
|
** column of pFKey, then this index is a winner. */
|
|
|
|
if( zFirst==0 ){
|
|
/* If zFirst is NULL, then this foreign key is implicitly mapped to
|
|
** the PRIMARY KEY of table pTo. The PRIMARY KEY index may be
|
|
** identified by the test (Index.autoIndex==2). */
|
|
if( pIdx->autoIndex==2 ){
|
|
if( aiCol ) memcpy(aiCol, pIdx->aiColumn, sizeof(int)*nCol);
|
|
break;
|
|
}
|
|
}else{
|
|
/* If zFirst is non-NULL, then this foreign key was declared to
|
|
** map to an explicit list of columns in table pTo. Check if this
|
|
** index matches those columns. */
|
|
int i, j;
|
|
for(i=0; i<nCol; i++){
|
|
char *zIdxCol = pTo->aCol[pIdx->aiColumn[i]].zName;
|
|
for(j=0; j<nCol; j++){
|
|
if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
|
|
if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
|
|
break;
|
|
}
|
|
}
|
|
if( j==nCol ) break;
|
|
}
|
|
if( i==nCol ) break; /* pIdx is usable */
|
|
}
|
|
}
|
|
}
|
|
|
|
if( pParse && !pIdx ){
|
|
sqlite3ErrorMsg(pParse, "foreign key mismatch");
|
|
sqlite3DbFree(pParse->db, aiCol);
|
|
return 1;
|
|
}
|
|
|
|
*ppIdx = pIdx;
|
|
return 0;
|
|
}
|
|
|
|
static void fkCheckReference(
|
|
Parse *pParse, /* Parse context */
|
|
int iDb, /* Index of database housing pTab */
|
|
Table *pTab, /* Table referenced by FK pFKey */
|
|
Index *pIdx, /* Index ensuring uniqueness of FK in pTab */
|
|
FKey *pFKey, /* Foreign key to check */
|
|
int *aiCol, /* Map from FK column to referencing table column */
|
|
int regData, /* Address of array containing referencing row */
|
|
int nIncr /* If deferred FK, increment counter by this */
|
|
){
|
|
int i;
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
int iCur = pParse->nTab - 1;
|
|
int iOk = sqlite3VdbeMakeLabel(v);
|
|
|
|
assert( pFKey->isDeferred || nIncr==1 );
|
|
|
|
/* Check if any of the key columns in the referencing table are
|
|
** NULL. If any are, then the constraint is satisfied. No need
|
|
** to search for a matching row in the referenced table. */
|
|
for(i=0; i<pFKey->nCol; i++){
|
|
int iReg = aiCol[i] + regData + 1;
|
|
sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk);
|
|
}
|
|
|
|
if( pIdx==0 ){
|
|
/* If pIdx is NULL, then the foreign key constraint references the
|
|
** INTEGER PRIMARY KEY column in the referenced table (table pTab). */
|
|
int iReg = pFKey->aCol[0].iFrom + regData + 1;
|
|
sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
|
|
sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iReg);
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
|
|
sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
|
|
}else{
|
|
int regRec = sqlite3GetTempReg(pParse);
|
|
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
|
|
|
|
sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
|
|
sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF);
|
|
|
|
if( pFKey->nCol>1 ){
|
|
int nCol = pFKey->nCol;
|
|
int regTemp = sqlite3GetTempRange(pParse, nCol);
|
|
for(i=0; i<nCol; i++){
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[i]+1+regData, regTemp+i);
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec);
|
|
sqlite3ReleaseTempRange(pParse, regTemp, nCol);
|
|
}else{
|
|
int iReg = aiCol[0] + regData + 1;
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, iReg, 1, regRec);
|
|
sqlite3IndexAffinityStr(v, pIdx);
|
|
}
|
|
|
|
sqlite3VdbeAddOp3(v, OP_Found, iCur, iOk, regRec);
|
|
sqlite3ReleaseTempReg(pParse, regRec);
|
|
}
|
|
|
|
if( pFKey->isDeferred ){
|
|
assert( nIncr==1 || nIncr==-1 );
|
|
sqlite3VdbeAddOp1(v, OP_DeferredCons, nIncr);
|
|
}else{
|
|
sqlite3HaltConstraint(
|
|
pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
|
|
);
|
|
}
|
|
|
|
sqlite3VdbeResolveLabel(v, iOk);
|
|
}
|
|
|
|
static void fkScanReferences(
|
|
Parse *pParse, /* Parse context */
|
|
SrcList *pSrc, /* SrcList containing the table to scan */
|
|
Index *pIdx, /* Foreign key index */
|
|
FKey *pFKey, /* Foreign key relationship */
|
|
int *aiCol, /* Map from FK to referenced table columns */
|
|
int regData, /* Referenced table data starts here */
|
|
int nIncr /* Amount to increment deferred counter by */
|
|
){
|
|
sqlite3 *db = pParse->db; /* Database handle */
|
|
int i; /* Iterator variable */
|
|
Expr *pWhere = 0; /* WHERE clause to scan with */
|
|
NameContext sNameContext; /* Context used to resolve WHERE clause */
|
|
WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */
|
|
|
|
for(i=0; i<pFKey->nCol; i++){
|
|
Expr *pLeft; /* Value from deleted row */
|
|
Expr *pRight; /* Column ref to referencing table */
|
|
Expr *pEq; /* Expression (pLeft = pRight) */
|
|
int iCol; /* Index of column in referencing table */
|
|
const char *zCol; /* Name of column in referencing table */
|
|
|
|
pLeft = sqlite3Expr(db, TK_REGISTER, 0);
|
|
if( pLeft ){
|
|
pLeft->iTable = (pIdx ? (regData+pIdx->aiColumn[i]+1) : regData);
|
|
}
|
|
iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
|
|
if( iCol<0 ){
|
|
zCol = "rowid";
|
|
}else{
|
|
zCol = pFKey->pFrom->aCol[iCol].zName;
|
|
}
|
|
pRight = sqlite3Expr(db, TK_ID, zCol);
|
|
pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
|
|
pWhere = sqlite3ExprAnd(db, pWhere, pEq);
|
|
}
|
|
|
|
/* Resolve the references in the WHERE clause. */
|
|
memset(&sNameContext, 0, sizeof(NameContext));
|
|
sNameContext.pSrcList = pSrc;
|
|
sNameContext.pParse = pParse;
|
|
sqlite3ResolveExprNames(&sNameContext, pWhere);
|
|
|
|
/* Create VDBE to loop through the entries in pSrc that match the WHERE
|
|
** clause. If the constraint is not deferred, throw an exception for
|
|
** each row found. Otherwise, for deferred constraints, increment the
|
|
** deferred constraint counter by nIncr for each row selected. */
|
|
pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0);
|
|
if( pFKey->isDeferred && nIncr ){
|
|
assert( nIncr==1 || nIncr==-1 );
|
|
sqlite3VdbeAddOp1(pParse->pVdbe, OP_DeferredCons, nIncr);
|
|
}else{
|
|
assert( nIncr==1 || nIncr==0 );
|
|
sqlite3HaltConstraint(
|
|
pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
|
|
);
|
|
}
|
|
sqlite3WhereEnd(pWInfo);
|
|
|
|
/* Clean up the WHERE clause constructed above. */
|
|
sqlite3ExprDelete(db, pWhere);
|
|
}
|
|
|
|
/*
|
|
** This function returns a pointer to the head of a linked list of FK
|
|
** constraints that refer to the table passed as an argument. For example,
|
|
** given the following schema:
|
|
**
|
|
** CREATE TABLE t1(a PRIMARY KEY);
|
|
** CREATE TABLE t2(b REFERENCES t1(a);
|
|
**
|
|
** Calling this function with table "t1" as an argument returns a pointer
|
|
** to the FKey structure representing the foreign key constraint on table
|
|
** "t2". Calling this function with "t2" as the argument would return a
|
|
** NULL pointer (as there are no FK constraints that refer to t2).
|
|
*/
|
|
static FKey *fkRefering(Table *pTab){
|
|
int nName = sqlite3Strlen30(pTab->zName);
|
|
return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName);
|
|
}
|
|
|
|
static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
|
|
if( p ){
|
|
TriggerStep *pStep = p->step_list;
|
|
sqlite3ExprDelete(dbMem, pStep->pWhere);
|
|
sqlite3ExprListDelete(dbMem, pStep->pExprList);
|
|
sqlite3DbFree(dbMem, p);
|
|
}
|
|
}
|
|
|
|
void sqlite3FkCheck(
|
|
Parse *pParse, /* Parse context */
|
|
Table *pTab, /* Row is being deleted from this table */
|
|
ExprList *pChanges, /* Changed columns if this is an UPDATE */
|
|
int regOld, /* Previous row data is stored here */
|
|
int regNew /* New row data is stored here */
|
|
){
|
|
sqlite3 *db = pParse->db; /* Database handle */
|
|
Vdbe *v; /* VM to write code to */
|
|
FKey *pFKey; /* Used to iterate through FKs */
|
|
int iDb; /* Index of database containing pTab */
|
|
const char *zDb; /* Name of database containing pTab */
|
|
|
|
assert( ( pChanges && regOld && regNew) /* UPDATE operation */
|
|
|| (!pChanges && !regOld && regNew) /* INSERT operation */
|
|
|| (!pChanges && regOld && !regNew) /* DELETE operation */
|
|
);
|
|
|
|
/* If foreign-keys are disabled, this function is a no-op. */
|
|
if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
zDb = db->aDb[iDb].zName;
|
|
|
|
/* Loop through all the foreign key constraints attached to the table. */
|
|
for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
|
|
Table *pTo; /* Table referenced by this FK */
|
|
Index *pIdx = 0; /* Index on key columns in pTo */
|
|
int *aiFree = 0;
|
|
int *aiCol;
|
|
int iCol;
|
|
int i;
|
|
|
|
if( pFKey->isDeferred==0 && regNew==0 ) continue;
|
|
|
|
/* Find the table this foreign key references. Also find a unique
|
|
** index on the referenced table that corresponds to the key columns.
|
|
** If either of these things cannot be located, set an error in pParse
|
|
** and return early. */
|
|
pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
|
|
if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ) return;
|
|
assert( pFKey->nCol==1 || (aiFree && pIdx) );
|
|
|
|
/* If the key does not overlap with the pChanges list, skip this FK. */
|
|
if( pChanges ){
|
|
/* TODO */
|
|
}
|
|
|
|
if( aiFree ){
|
|
aiCol = aiFree;
|
|
}else{
|
|
iCol = pFKey->aCol[0].iFrom;
|
|
aiCol = &iCol;
|
|
}
|
|
for(i=0; i<pFKey->nCol; i++){
|
|
if( aiCol[i]==pTab->iPKey ){
|
|
aiCol[i] = -1;
|
|
}
|
|
}
|
|
|
|
/* Take a shared-cache advisory read-lock on the referenced table.
|
|
** Allocate a cursor to use to search the unique index on the FK
|
|
** columns in the referenced table. */
|
|
sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
|
|
pParse->nTab++;
|
|
|
|
if( regOld!=0 && pFKey->isDeferred ){
|
|
fkCheckReference(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1);
|
|
}
|
|
if( regNew!=0 ){
|
|
fkCheckReference(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1);
|
|
}
|
|
|
|
sqlite3DbFree(db, aiFree);
|
|
}
|
|
|
|
/* Loop through all the foreign key constraints that refer to this table */
|
|
for(pFKey = fkRefering(pTab); pFKey; pFKey=pFKey->pNextTo){
|
|
int iGoto; /* Address of OP_Goto instruction */
|
|
Index *pIdx = 0; /* Foreign key index for pFKey */
|
|
SrcList *pSrc;
|
|
int *aiCol = 0;
|
|
|
|
/* For immediate constraints, skip this scan if:
|
|
**
|
|
** 1) this is an INSERT operation, or
|
|
** 2) an UPDATE operation and the FK action is a trigger-action, or
|
|
** 3) a DELETE operation and the FK action is a trigger-action.
|
|
**
|
|
** A "trigger-action" is one of CASCADE, SET DEFAULT or SET NULL.
|
|
*/
|
|
if( pFKey->isDeferred==0 ){
|
|
if( regOld==0 ) continue; /* 1 */
|
|
if( regNew!=0 && pFKey->updateConf>OE_Restrict ) continue; /* 2 */
|
|
if( regNew==0 && pFKey->deleteConf>OE_Restrict ) continue; /* 3 */
|
|
}
|
|
|
|
if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return;
|
|
assert( aiCol || pFKey->nCol==1 );
|
|
|
|
/* Check if this update statement has modified any of the key columns
|
|
** for this foreign key constraint. If it has not, there is no need
|
|
** to search the referencing table for rows in violation. This is
|
|
** just an optimization. Things would work fine without this check. */
|
|
if( pChanges ){
|
|
/* TODO */
|
|
}
|
|
|
|
/* Create a SrcList structure containing a single table (the table
|
|
** the foreign key that refers to this table is attached to). This
|
|
** is required for the sqlite3WhereXXX() interface. */
|
|
pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
|
|
if( !pSrc ) return;
|
|
pSrc->a->pTab = pFKey->pFrom;
|
|
pSrc->a->pTab->nRef++;
|
|
pSrc->a->iCursor = pParse->nTab++;
|
|
|
|
/* If this is an UPDATE, and none of the columns associated with this
|
|
** FK have been modified, do not scan the referencing table. Unlike
|
|
** the compile-time test implemented above, this is not just an
|
|
** optimization. It is required so that immediate foreign keys do not
|
|
** throw exceptions when the user executes a statement like:
|
|
**
|
|
** UPDATE refd_table SET refd_column = refd_column
|
|
*/
|
|
if( pChanges ){
|
|
int i;
|
|
int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
|
|
for(i=0; i<pFKey->nCol; i++){
|
|
int iOff = (pIdx ? pIdx->aiColumn[i] : -1) + 1;
|
|
sqlite3VdbeAddOp3(v, OP_Ne, regOld+iOff, iJump, regNew+iOff);
|
|
}
|
|
iGoto = sqlite3VdbeAddOp0(v, OP_Goto);
|
|
}
|
|
|
|
if( regNew!=0 && pFKey->isDeferred ){
|
|
fkScanReferences(pParse, pSrc, pIdx, pFKey, aiCol, regNew, -1);
|
|
}
|
|
if( regOld!=0 ){
|
|
/* If there is a RESTRICT action configured for the current operation
|
|
** on the referenced table of this FK, then throw an exception
|
|
** immediately if the FK constraint is violated, even if this is a
|
|
** deferred trigger. That's what RESTRICT means. To defer checking
|
|
** the constraint, the FK should specify NO ACTION (represented
|
|
** using OE_None). NO ACTION is the default. */
|
|
fkScanReferences(pParse, pSrc, pIdx, pFKey, aiCol, regOld,
|
|
(pChanges!=0 && pFKey->updateConf!=OE_Restrict)
|
|
|| (pChanges==0 && pFKey->deleteConf!=OE_Restrict)
|
|
);
|
|
}
|
|
|
|
if( pChanges ){
|
|
sqlite3VdbeJumpHere(v, iGoto);
|
|
}
|
|
sqlite3SrcListDelete(db, pSrc);
|
|
sqlite3DbFree(db, aiCol);
|
|
}
|
|
}
|
|
|
|
#define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
|
|
|
|
/*
|
|
** This function is called before generating code to update or delete a
|
|
** row contained in table pTab. If the operation is an update, then
|
|
** pChanges is a pointer to the list of columns to modify. If this is a
|
|
** delete, then pChanges is NULL.
|
|
*/
|
|
u32 sqlite3FkOldmask(
|
|
Parse *pParse, /* Parse context */
|
|
Table *pTab, /* Table being modified */
|
|
ExprList *pChanges /* Non-NULL for UPDATE operations */
|
|
){
|
|
u32 mask = 0;
|
|
if( pParse->db->flags&SQLITE_ForeignKeys ){
|
|
FKey *p;
|
|
int i;
|
|
for(p=pTab->pFKey; p; p=p->pNextFrom){
|
|
if( pChanges || p->isDeferred ){
|
|
for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
|
|
}
|
|
}
|
|
for(p=fkRefering(pTab); p; p=p->pNextTo){
|
|
Index *pIdx = 0;
|
|
locateFkeyIndex(0, pTab, p, &pIdx, 0);
|
|
if( pIdx ){
|
|
for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
|
|
}
|
|
}
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
/*
|
|
** This function is called before generating code to update or delete a
|
|
** row contained in table pTab. If the operation is an update, then
|
|
** pChanges is a pointer to the list of columns to modify. If this is a
|
|
** delete, then pChanges is NULL.
|
|
**
|
|
** If any foreign key processing will be required, this function returns
|
|
** true. If there is no foreign key related processing, this function
|
|
** returns false.
|
|
*/
|
|
int sqlite3FkRequired(
|
|
Parse *pParse, /* Parse context */
|
|
Table *pTab, /* Table being modified */
|
|
ExprList *pChanges /* Non-NULL for UPDATE operations */
|
|
){
|
|
if( pParse->db->flags&SQLITE_ForeignKeys ){
|
|
FKey *p;
|
|
for(p=pTab->pFKey; p; p=p->pNextFrom){
|
|
if( pChanges || p->isDeferred ) return 1;
|
|
}
|
|
if( fkRefering(pTab) ) return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static Trigger *fkActionTrigger(
|
|
Parse *pParse,
|
|
Table *pTab, /* Table being updated or deleted from */
|
|
FKey *pFKey, /* Foreign key to get action for */
|
|
ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */
|
|
){
|
|
sqlite3 *db = pParse->db; /* Database handle */
|
|
int action;
|
|
Trigger *pTrigger;
|
|
|
|
if( pChanges ){
|
|
action = pFKey->updateConf;
|
|
pTrigger = pFKey->pOnUpdate;
|
|
}else{
|
|
action = pFKey->deleteConf;
|
|
pTrigger = pFKey->pOnDelete;
|
|
}
|
|
|
|
assert( OE_SetNull>OE_Restrict && OE_SetDflt>OE_Restrict );
|
|
assert( OE_Cascade>OE_Restrict && OE_None<OE_Restrict );
|
|
|
|
if( action>OE_Restrict && !pTrigger ){
|
|
char const *zFrom; /* Name of referencing table */
|
|
int nFrom; /* Length in bytes of zFrom */
|
|
Index *pIdx = 0;
|
|
int *aiCol = 0;
|
|
TriggerStep *pStep;
|
|
sqlite3 *dbMem = pTab->dbMem;
|
|
Expr *pWhere = 0;
|
|
ExprList *pList = 0;
|
|
int i;
|
|
|
|
if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
|
|
assert( aiCol || pFKey->nCol==1 );
|
|
|
|
assert( dbMem==0 || dbMem==pParse->db );
|
|
zFrom = pFKey->pFrom->zName;
|
|
nFrom = sqlite3Strlen30(zFrom);
|
|
pTrigger = (Trigger *)sqlite3DbMallocZero(dbMem,
|
|
sizeof(Trigger) + /* struct Trigger */
|
|
sizeof(TriggerStep) + /* Single step in trigger program */
|
|
nFrom + 1 /* Space for pStep->target.z */
|
|
);
|
|
if( !pTrigger ){
|
|
pParse->db->mallocFailed = 1;
|
|
return 0;
|
|
}
|
|
pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
|
|
pStep->target.z = (char *)&pStep[1];
|
|
pStep->target.n = nFrom;
|
|
memcpy((char *)pStep->target.z, zFrom, nFrom);
|
|
|
|
for(i=0; i<pFKey->nCol; i++){
|
|
Expr *pEq;
|
|
int iFromCol; /* Idx of column in referencing table */
|
|
Token tFromCol; /* Name of column in referencing table */
|
|
Token tToCol; /* Name of column in referenced table */
|
|
Token tOld = { "old", 3 }; /* Literal "old" token */
|
|
Token tNew = { "new", 3 }; /* Literal "new" token */
|
|
|
|
iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
|
|
tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid";
|
|
tFromCol.z = iFromCol<0 ? "oid" : pFKey->pFrom->aCol[iFromCol].zName;
|
|
|
|
tToCol.n = sqlite3Strlen30(tToCol.z);
|
|
tFromCol.n = sqlite3Strlen30(tFromCol.z);
|
|
|
|
/* Create the expression "zFromCol = OLD.zToCol" */
|
|
pEq = sqlite3PExpr(pParse, TK_EQ,
|
|
sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol),
|
|
sqlite3PExpr(pParse, TK_DOT,
|
|
sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
|
|
sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
|
|
, 0)
|
|
, 0);
|
|
pWhere = sqlite3ExprAnd(pParse->db, pWhere, pEq);
|
|
|
|
if( action!=OE_Cascade || pChanges ){
|
|
Expr *pNew;
|
|
if( action==OE_Cascade ){
|
|
pNew = sqlite3PExpr(pParse, TK_DOT,
|
|
sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
|
|
sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
|
|
, 0);
|
|
}else if( action==OE_SetDflt ){
|
|
Expr *pDflt = pIdx ? 0 : pTab->aCol[pIdx->aiColumn[i]].pDflt;
|
|
if( pDflt ){
|
|
pNew = sqlite3ExprDup(db, pDflt, 0);
|
|
}else{
|
|
pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
|
|
}
|
|
}else{
|
|
pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
|
|
}
|
|
pList = sqlite3ExprListAppend(pParse, pList, pNew);
|
|
sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
|
|
}
|
|
}
|
|
sqlite3DbFree(pParse->db, aiCol);
|
|
|
|
pStep->pWhere = sqlite3ExprDup(dbMem, pWhere, EXPRDUP_REDUCE);
|
|
pStep->pExprList = sqlite3ExprListDup(dbMem, pList, EXPRDUP_REDUCE);
|
|
sqlite3ExprDelete(pParse->db, pWhere);
|
|
sqlite3ExprListDelete(pParse->db, pList);
|
|
|
|
pStep->op = (action!=OE_Cascade || pChanges) ? TK_UPDATE : TK_DELETE;
|
|
pStep->pTrig = pTrigger;
|
|
pTrigger->pSchema = pTab->pSchema;
|
|
pTrigger->pTabSchema = pTab->pSchema;
|
|
|
|
if( pChanges ){
|
|
pFKey->pOnUpdate = pTrigger;
|
|
pTrigger->op = TK_UPDATE;
|
|
pStep->op = TK_UPDATE;
|
|
}else{
|
|
pFKey->pOnDelete = pTrigger;
|
|
pTrigger->op = TK_DELETE;
|
|
pStep->op = (action==OE_Cascade)?TK_DELETE:TK_UPDATE;
|
|
}
|
|
}
|
|
|
|
return pTrigger;
|
|
}
|
|
|
|
/*
|
|
** This function is called when deleting or updating a row to implement
|
|
** any required CASCADE, SET NULL or SET DEFAULT actions.
|
|
*/
|
|
void sqlite3FkActions(
|
|
Parse *pParse, /* Parse context */
|
|
Table *pTab, /* Table being updated or deleted from */
|
|
ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */
|
|
int regOld /* Address of array containing old row */
|
|
){
|
|
/* If foreign-key support is enabled, iterate through all FKs that
|
|
** refer to table pTab. If there is an action associated with the FK
|
|
** for this operation (either update or delete), invoke the associated
|
|
** trigger sub-program. */
|
|
if( pParse->db->flags&SQLITE_ForeignKeys ){
|
|
FKey *pFKey; /* Iterator variable */
|
|
for(pFKey = fkRefering(pTab); pFKey; pFKey=pFKey->pNextTo){
|
|
Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges);
|
|
if( pAction ){
|
|
sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* ifndef SQLITE_OMIT_TRIGGER */
|
|
|
|
/*
|
|
** Free all memory associated with foreign key definitions attached to
|
|
** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
|
|
** hash table.
|
|
*/
|
|
void sqlite3FkDelete(Table *pTab){
|
|
FKey *pFKey; /* Iterator variable */
|
|
FKey *pNext; /* Copy of pFKey->pNextFrom */
|
|
|
|
for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
|
|
|
|
/* Remove the FK from the fkeyHash hash table. */
|
|
if( pFKey->pPrevTo ){
|
|
pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
|
|
}else{
|
|
void *data = (void *)pFKey->pNextTo;
|
|
const char *z = (data ? pFKey->pNextTo->zTo : pFKey->zTo);
|
|
sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), data);
|
|
}
|
|
if( pFKey->pNextTo ){
|
|
pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
|
|
}
|
|
|
|
/* Delete any triggers created to implement actions for this FK. */
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
fkTriggerDelete(pTab->dbMem, pFKey->pOnDelete);
|
|
fkTriggerDelete(pTab->dbMem, pFKey->pOnUpdate);
|
|
#endif
|
|
|
|
/* Delete the memory allocated for the FK structure. */
|
|
pNext = pFKey->pNextFrom;
|
|
sqlite3DbFree(pTab->dbMem, pFKey);
|
|
}
|
|
}
|
|
#endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */
|