sqlite/src/fkey.c
dan 3606264bc9 Fix a problem with foreign key constraints that map from and IPK column.
FossilOrigin-Name: 84129052623dc6a175c76db602ab07fa3e57f1eb
2009-09-21 18:56:23 +00:00

804 lines
29 KiB
C

/*
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used by the compiler to add foreign key
** support to compiled SQL statements.
*/
#include "sqliteInt.h"
#ifndef SQLITE_OMIT_FOREIGN_KEY
#ifndef SQLITE_OMIT_TRIGGER
/*
** Deferred and Immediate FKs
** --------------------------
**
** Foreign keys in SQLite come in two flavours: deferred and immediate.
** If an immediate foreign key constraint is violated, an OP_Halt is
** executed and the current statement transaction rolled back. If a
** deferred foreign key constraint is violated, no action is taken
** immediately. However if the application attempts to commit the
** transaction before fixing the constraint violation, the attempt fails.
**
** Deferred constraints are implemented using a simple counter associated
** with the database handle. The counter is set to zero each time a
** database transaction is opened. Each time a statement is executed
** that causes a foreign key violation, the counter is incremented. Each
** time a statement is executed that removes an existing violation from
** the database, the counter is decremented. When the transaction is
** committed, the commit fails if the current value of the counter is
** greater than zero. This scheme has two big drawbacks:
**
** * When a commit fails due to a deferred foreign key constraint,
** there is no way to tell which foreign constraint is not satisfied,
** or which row it is not satisfied for.
**
** * If the database contains foreign key violations when the
** transaction is opened, this may cause the mechanism to malfunction.
**
** Despite these problems, this approach is adopted as it seems simpler
** than the alternatives.
**
** INSERT operations:
**
** I.1) For each FK for which the table is the referencing table, search
** the referenced table for a match. If none is found, throw an
** exception for an immediate FK, or increment the counter for a
** deferred FK.
**
** I.2) For each deferred FK for which the table is the referenced table,
** search the referencing table for rows that correspond to the new
** row in the referenced table. Decrement the counter for each row
** found (as the constraint is now satisfied).
**
** DELETE operations:
**
** D.1) For each deferred FK for which the table is the referencing table,
** search the referenced table for a row that corresponds to the
** deleted row in the referencing table. If such a row is not found,
** decrement the counter.
**
** D.2) For each FK for which the table is the referenced table, search
** the referencing table for rows that correspond to the deleted row
** in the referenced table. For each found, throw an exception for an
** immediate FK, or increment the counter for a deferred FK.
**
** UPDATE operations:
**
** An UPDATE command requires that all 4 steps above are taken, but only
** for FK constraints for which the affected columns are actually
** modified (values must be compared at runtime).
**
** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
** This simplifies the implementation a bit.
**
** For the purposes of immediate FK constraints, the OR REPLACE conflict
** resolution is considered to delete rows before the new row is inserted.
** If a delete caused by OR REPLACE violates an FK constraint, an exception
** is thrown, even if the FK constraint would be satisfied after the new
** row is inserted.
**
** TODO: How should dropping a table be handled? How should renaming a
** table be handled?
*/
/*
** Query API Notes
** ---------------
**
** Before coding an UPDATE or DELETE row operation, the code-generator
** for those two operations needs to know whether or not the operation
** requires any FK processing and, if so, which columns of the original
** row are required by the FK processing VDBE code (i.e. if FKs were
** implemented using triggers, which of the old.* columns would be
** accessed). No information is required by the code-generator before
** coding an INSERT operation.
**
*/
/*
** VDBE Calling Convention
** -----------------------
**
** Example:
**
** For the following INSERT statement:
**
** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
** INSERT INTO t1 VALUES(1, 2, 3.1);
**
** Register (x): 2 (type integer)
** Register (x+1): 1 (type integer)
** Register (x+2): NULL (type NULL)
** Register (x+3): 3.1 (type real)
*/
/*
** ON UPDATE and ON DELETE clauses
** -------------------------------
*/
/*
** Externally accessible module functions
** --------------------------------------
**
** sqlite3FkRequired()
** sqlite3FkOldmask()
**
** sqlite3FkCheck()
** sqlite3FkActions()
**
** sqlite3FkDelete()
**
*/
/*
** A foreign key constraint requires that the key columns in the referenced
** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
** Given that pTo is the referenced table for foreign key constraint
** pFKey, check that the columns in pTo are indeed subject to a such a
** constraint. If they are not, return non-zero and leave an error in pParse.
**
** If an error does not occur, return zero.
*/
static int locateFkeyIndex(
Parse *pParse, /* Parse context to store any error in */
Table *pTo, /* Referenced table */
FKey *pFKey, /* Foreign key to find index for */
Index **ppIdx, /* OUT: Unique index on referenced table */
int **paiCol /* OUT: Map of index columns in pFKey */
){
Index *pIdx = 0;
int *aiCol = 0;
int nCol = pFKey->nCol;
char *zFirst = pFKey->aCol[0].zCol;
/* The caller is responsible for zeroing output parameters. */
assert( ppIdx && *ppIdx==0 );
assert( !paiCol || *paiCol==0 );
/* If this is a non-composite (single column) foreign key, check if it
** maps to the INTEGER PRIMARY KEY of table pTo. If so, leave *ppIdx
** and *paiCol set to zero and return early.
**
** Otherwise, for a composite foreign key (more than one column), allocate
** space for the aiCol array (returned via output parameter *paiCol).
** Non-composite foreign keys do not require the aiCol array.
*/
if( nCol==1 ){
/* The FK maps to the IPK if any of the following are true:
**
** 1) The FK is explicitly mapped to "rowid", "oid" or "_rowid_", or
** 2) There is an explicit INTEGER PRIMARY KEY column and the FK is
** implicitly mapped to the primary key of table pTo, or
** 3) The FK is explicitly mapped to a column declared as INTEGER
** PRIMARY KEY.
*/
if( zFirst && sqlite3IsRowid(zFirst) ) return 0;
if( pTo->iPKey>=0 ){
if( !zFirst ) return 0;
if( !sqlite3StrICmp(pTo->aCol[pTo->iPKey].zName, zFirst) ) return 0;
}
}else if( paiCol ){
assert( nCol>1 );
aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int));
if( !aiCol ) return 1;
*paiCol = aiCol;
}
for(pIdx=pTo->pIndex; pIdx; pIdx=pIdx->pNext){
if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){
/* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
** of columns. If each indexed column corresponds to a foreign key
** column of pFKey, then this index is a winner. */
if( zFirst==0 ){
/* If zFirst is NULL, then this foreign key is implicitly mapped to
** the PRIMARY KEY of table pTo. The PRIMARY KEY index may be
** identified by the test (Index.autoIndex==2). */
if( pIdx->autoIndex==2 ){
if( aiCol ) memcpy(aiCol, pIdx->aiColumn, sizeof(int)*nCol);
break;
}
}else{
/* If zFirst is non-NULL, then this foreign key was declared to
** map to an explicit list of columns in table pTo. Check if this
** index matches those columns. */
int i, j;
for(i=0; i<nCol; i++){
char *zIdxCol = pTo->aCol[pIdx->aiColumn[i]].zName;
for(j=0; j<nCol; j++){
if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
break;
}
}
if( j==nCol ) break;
}
if( i==nCol ) break; /* pIdx is usable */
}
}
}
if( pParse && !pIdx ){
sqlite3ErrorMsg(pParse, "foreign key mismatch");
sqlite3DbFree(pParse->db, aiCol);
return 1;
}
*ppIdx = pIdx;
return 0;
}
static void fkCheckReference(
Parse *pParse, /* Parse context */
int iDb, /* Index of database housing pTab */
Table *pTab, /* Table referenced by FK pFKey */
Index *pIdx, /* Index ensuring uniqueness of FK in pTab */
FKey *pFKey, /* Foreign key to check */
int *aiCol, /* Map from FK column to referencing table column */
int regData, /* Address of array containing referencing row */
int nIncr /* If deferred FK, increment counter by this */
){
int i;
Vdbe *v = sqlite3GetVdbe(pParse);
int iCur = pParse->nTab - 1;
int iOk = sqlite3VdbeMakeLabel(v);
assert( pFKey->isDeferred || nIncr==1 );
/* Check if any of the key columns in the referencing table are
** NULL. If any are, then the constraint is satisfied. No need
** to search for a matching row in the referenced table. */
for(i=0; i<pFKey->nCol; i++){
int iReg = aiCol[i] + regData + 1;
sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk);
}
if( pIdx==0 ){
/* If pIdx is NULL, then the foreign key constraint references the
** INTEGER PRIMARY KEY column in the referenced table (table pTab). */
int iReg = pFKey->aCol[0].iFrom + regData + 1;
sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iReg);
sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
}else{
int regRec = sqlite3GetTempReg(pParse);
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF);
if( pFKey->nCol>1 ){
int nCol = pFKey->nCol;
int regTemp = sqlite3GetTempRange(pParse, nCol);
for(i=0; i<nCol; i++){
sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[i]+1+regData, regTemp+i);
}
sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec);
sqlite3ReleaseTempRange(pParse, regTemp, nCol);
}else{
int iReg = aiCol[0] + regData + 1;
sqlite3VdbeAddOp3(v, OP_MakeRecord, iReg, 1, regRec);
sqlite3IndexAffinityStr(v, pIdx);
}
sqlite3VdbeAddOp3(v, OP_Found, iCur, iOk, regRec);
sqlite3ReleaseTempReg(pParse, regRec);
}
if( pFKey->isDeferred ){
assert( nIncr==1 || nIncr==-1 );
sqlite3VdbeAddOp1(v, OP_DeferredCons, nIncr);
}else{
sqlite3HaltConstraint(
pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
);
}
sqlite3VdbeResolveLabel(v, iOk);
}
static void fkScanReferences(
Parse *pParse, /* Parse context */
SrcList *pSrc, /* SrcList containing the table to scan */
Index *pIdx, /* Foreign key index */
FKey *pFKey, /* Foreign key relationship */
int *aiCol, /* Map from FK to referenced table columns */
int regData, /* Referenced table data starts here */
int nIncr /* Amount to increment deferred counter by */
){
sqlite3 *db = pParse->db; /* Database handle */
int i; /* Iterator variable */
Expr *pWhere = 0; /* WHERE clause to scan with */
NameContext sNameContext; /* Context used to resolve WHERE clause */
WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */
for(i=0; i<pFKey->nCol; i++){
Expr *pLeft; /* Value from deleted row */
Expr *pRight; /* Column ref to referencing table */
Expr *pEq; /* Expression (pLeft = pRight) */
int iCol; /* Index of column in referencing table */
const char *zCol; /* Name of column in referencing table */
pLeft = sqlite3Expr(db, TK_REGISTER, 0);
if( pLeft ){
pLeft->iTable = (pIdx ? (regData+pIdx->aiColumn[i]+1) : regData);
}
iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
if( iCol<0 ){
zCol = "rowid";
}else{
zCol = pFKey->pFrom->aCol[iCol].zName;
}
pRight = sqlite3Expr(db, TK_ID, zCol);
pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
pWhere = sqlite3ExprAnd(db, pWhere, pEq);
}
/* Resolve the references in the WHERE clause. */
memset(&sNameContext, 0, sizeof(NameContext));
sNameContext.pSrcList = pSrc;
sNameContext.pParse = pParse;
sqlite3ResolveExprNames(&sNameContext, pWhere);
/* Create VDBE to loop through the entries in pSrc that match the WHERE
** clause. If the constraint is not deferred, throw an exception for
** each row found. Otherwise, for deferred constraints, increment the
** deferred constraint counter by nIncr for each row selected. */
pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0);
if( pFKey->isDeferred && nIncr ){
assert( nIncr==1 || nIncr==-1 );
sqlite3VdbeAddOp1(pParse->pVdbe, OP_DeferredCons, nIncr);
}else{
assert( nIncr==1 || nIncr==0 );
sqlite3HaltConstraint(
pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
);
}
sqlite3WhereEnd(pWInfo);
/* Clean up the WHERE clause constructed above. */
sqlite3ExprDelete(db, pWhere);
}
/*
** This function returns a pointer to the head of a linked list of FK
** constraints that refer to the table passed as an argument. For example,
** given the following schema:
**
** CREATE TABLE t1(a PRIMARY KEY);
** CREATE TABLE t2(b REFERENCES t1(a);
**
** Calling this function with table "t1" as an argument returns a pointer
** to the FKey structure representing the foreign key constraint on table
** "t2". Calling this function with "t2" as the argument would return a
** NULL pointer (as there are no FK constraints that refer to t2).
*/
static FKey *fkRefering(Table *pTab){
int nName = sqlite3Strlen30(pTab->zName);
return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName);
}
static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
if( p ){
TriggerStep *pStep = p->step_list;
sqlite3ExprDelete(dbMem, pStep->pWhere);
sqlite3ExprListDelete(dbMem, pStep->pExprList);
sqlite3DbFree(dbMem, p);
}
}
void sqlite3FkCheck(
Parse *pParse, /* Parse context */
Table *pTab, /* Row is being deleted from this table */
ExprList *pChanges, /* Changed columns if this is an UPDATE */
int regOld, /* Previous row data is stored here */
int regNew /* New row data is stored here */
){
sqlite3 *db = pParse->db; /* Database handle */
Vdbe *v; /* VM to write code to */
FKey *pFKey; /* Used to iterate through FKs */
int iDb; /* Index of database containing pTab */
const char *zDb; /* Name of database containing pTab */
assert( ( pChanges && regOld && regNew) /* UPDATE operation */
|| (!pChanges && !regOld && regNew) /* INSERT operation */
|| (!pChanges && regOld && !regNew) /* DELETE operation */
);
/* If foreign-keys are disabled, this function is a no-op. */
if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
v = sqlite3GetVdbe(pParse);
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
zDb = db->aDb[iDb].zName;
/* Loop through all the foreign key constraints attached to the table. */
for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
Table *pTo; /* Table referenced by this FK */
Index *pIdx = 0; /* Index on key columns in pTo */
int *aiFree = 0;
int *aiCol;
int iCol;
int i;
if( pFKey->isDeferred==0 && regNew==0 ) continue;
/* Find the table this foreign key references. Also find a unique
** index on the referenced table that corresponds to the key columns.
** If either of these things cannot be located, set an error in pParse
** and return early. */
pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ) return;
assert( pFKey->nCol==1 || (aiFree && pIdx) );
/* If the key does not overlap with the pChanges list, skip this FK. */
if( pChanges ){
/* TODO */
}
if( aiFree ){
aiCol = aiFree;
}else{
iCol = pFKey->aCol[0].iFrom;
aiCol = &iCol;
}
for(i=0; i<pFKey->nCol; i++){
if( aiCol[i]==pTab->iPKey ){
aiCol[i] = -1;
}
}
/* Take a shared-cache advisory read-lock on the referenced table.
** Allocate a cursor to use to search the unique index on the FK
** columns in the referenced table. */
sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
pParse->nTab++;
if( regOld!=0 && pFKey->isDeferred ){
fkCheckReference(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1);
}
if( regNew!=0 ){
fkCheckReference(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1);
}
sqlite3DbFree(db, aiFree);
}
/* Loop through all the foreign key constraints that refer to this table */
for(pFKey = fkRefering(pTab); pFKey; pFKey=pFKey->pNextTo){
int iGoto; /* Address of OP_Goto instruction */
Index *pIdx = 0; /* Foreign key index for pFKey */
SrcList *pSrc;
int *aiCol = 0;
/* For immediate constraints, skip this scan if:
**
** 1) this is an INSERT operation, or
** 2) an UPDATE operation and the FK action is a trigger-action, or
** 3) a DELETE operation and the FK action is a trigger-action.
**
** A "trigger-action" is one of CASCADE, SET DEFAULT or SET NULL.
*/
if( pFKey->isDeferred==0 ){
if( regOld==0 ) continue; /* 1 */
if( regNew!=0 && pFKey->updateConf>OE_Restrict ) continue; /* 2 */
if( regNew==0 && pFKey->deleteConf>OE_Restrict ) continue; /* 3 */
}
if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return;
assert( aiCol || pFKey->nCol==1 );
/* Check if this update statement has modified any of the key columns
** for this foreign key constraint. If it has not, there is no need
** to search the referencing table for rows in violation. This is
** just an optimization. Things would work fine without this check. */
if( pChanges ){
/* TODO */
}
/* Create a SrcList structure containing a single table (the table
** the foreign key that refers to this table is attached to). This
** is required for the sqlite3WhereXXX() interface. */
pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
if( !pSrc ) return;
pSrc->a->pTab = pFKey->pFrom;
pSrc->a->pTab->nRef++;
pSrc->a->iCursor = pParse->nTab++;
/* If this is an UPDATE, and none of the columns associated with this
** FK have been modified, do not scan the referencing table. Unlike
** the compile-time test implemented above, this is not just an
** optimization. It is required so that immediate foreign keys do not
** throw exceptions when the user executes a statement like:
**
** UPDATE refd_table SET refd_column = refd_column
*/
if( pChanges ){
int i;
int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
for(i=0; i<pFKey->nCol; i++){
int iOff = (pIdx ? pIdx->aiColumn[i] : -1) + 1;
sqlite3VdbeAddOp3(v, OP_Ne, regOld+iOff, iJump, regNew+iOff);
}
iGoto = sqlite3VdbeAddOp0(v, OP_Goto);
}
if( regNew!=0 && pFKey->isDeferred ){
fkScanReferences(pParse, pSrc, pIdx, pFKey, aiCol, regNew, -1);
}
if( regOld!=0 ){
/* If there is a RESTRICT action configured for the current operation
** on the referenced table of this FK, then throw an exception
** immediately if the FK constraint is violated, even if this is a
** deferred trigger. That's what RESTRICT means. To defer checking
** the constraint, the FK should specify NO ACTION (represented
** using OE_None). NO ACTION is the default. */
fkScanReferences(pParse, pSrc, pIdx, pFKey, aiCol, regOld,
(pChanges!=0 && pFKey->updateConf!=OE_Restrict)
|| (pChanges==0 && pFKey->deleteConf!=OE_Restrict)
);
}
if( pChanges ){
sqlite3VdbeJumpHere(v, iGoto);
}
sqlite3SrcListDelete(db, pSrc);
sqlite3DbFree(db, aiCol);
}
}
#define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
/*
** This function is called before generating code to update or delete a
** row contained in table pTab. If the operation is an update, then
** pChanges is a pointer to the list of columns to modify. If this is a
** delete, then pChanges is NULL.
*/
u32 sqlite3FkOldmask(
Parse *pParse, /* Parse context */
Table *pTab, /* Table being modified */
ExprList *pChanges /* Non-NULL for UPDATE operations */
){
u32 mask = 0;
if( pParse->db->flags&SQLITE_ForeignKeys ){
FKey *p;
int i;
for(p=pTab->pFKey; p; p=p->pNextFrom){
if( pChanges || p->isDeferred ){
for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
}
}
for(p=fkRefering(pTab); p; p=p->pNextTo){
Index *pIdx = 0;
locateFkeyIndex(0, pTab, p, &pIdx, 0);
if( pIdx ){
for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
}
}
}
return mask;
}
/*
** This function is called before generating code to update or delete a
** row contained in table pTab. If the operation is an update, then
** pChanges is a pointer to the list of columns to modify. If this is a
** delete, then pChanges is NULL.
**
** If any foreign key processing will be required, this function returns
** true. If there is no foreign key related processing, this function
** returns false.
*/
int sqlite3FkRequired(
Parse *pParse, /* Parse context */
Table *pTab, /* Table being modified */
ExprList *pChanges /* Non-NULL for UPDATE operations */
){
if( pParse->db->flags&SQLITE_ForeignKeys ){
FKey *p;
for(p=pTab->pFKey; p; p=p->pNextFrom){
if( pChanges || p->isDeferred ) return 1;
}
if( fkRefering(pTab) ) return 1;
}
return 0;
}
static Trigger *fkActionTrigger(
Parse *pParse,
Table *pTab, /* Table being updated or deleted from */
FKey *pFKey, /* Foreign key to get action for */
ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */
){
sqlite3 *db = pParse->db; /* Database handle */
int action;
Trigger *pTrigger;
if( pChanges ){
action = pFKey->updateConf;
pTrigger = pFKey->pOnUpdate;
}else{
action = pFKey->deleteConf;
pTrigger = pFKey->pOnDelete;
}
assert( OE_SetNull>OE_Restrict && OE_SetDflt>OE_Restrict );
assert( OE_Cascade>OE_Restrict && OE_None<OE_Restrict );
if( action>OE_Restrict && !pTrigger ){
char const *zFrom; /* Name of referencing table */
int nFrom; /* Length in bytes of zFrom */
Index *pIdx = 0;
int *aiCol = 0;
TriggerStep *pStep;
sqlite3 *dbMem = pTab->dbMem;
Expr *pWhere = 0;
ExprList *pList = 0;
int i;
if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
assert( aiCol || pFKey->nCol==1 );
assert( dbMem==0 || dbMem==pParse->db );
zFrom = pFKey->pFrom->zName;
nFrom = sqlite3Strlen30(zFrom);
pTrigger = (Trigger *)sqlite3DbMallocZero(dbMem,
sizeof(Trigger) + /* struct Trigger */
sizeof(TriggerStep) + /* Single step in trigger program */
nFrom + 1 /* Space for pStep->target.z */
);
if( !pTrigger ){
pParse->db->mallocFailed = 1;
return 0;
}
pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
pStep->target.z = (char *)&pStep[1];
pStep->target.n = nFrom;
memcpy((char *)pStep->target.z, zFrom, nFrom);
for(i=0; i<pFKey->nCol; i++){
Expr *pEq;
int iFromCol; /* Idx of column in referencing table */
Token tFromCol; /* Name of column in referencing table */
Token tToCol; /* Name of column in referenced table */
Token tOld = { "old", 3 }; /* Literal "old" token */
Token tNew = { "new", 3 }; /* Literal "new" token */
iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid";
tFromCol.z = iFromCol<0 ? "oid" : pFKey->pFrom->aCol[iFromCol].zName;
tToCol.n = sqlite3Strlen30(tToCol.z);
tFromCol.n = sqlite3Strlen30(tFromCol.z);
/* Create the expression "zFromCol = OLD.zToCol" */
pEq = sqlite3PExpr(pParse, TK_EQ,
sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol),
sqlite3PExpr(pParse, TK_DOT,
sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
, 0)
, 0);
pWhere = sqlite3ExprAnd(pParse->db, pWhere, pEq);
if( action!=OE_Cascade || pChanges ){
Expr *pNew;
if( action==OE_Cascade ){
pNew = sqlite3PExpr(pParse, TK_DOT,
sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
, 0);
}else if( action==OE_SetDflt ){
Expr *pDflt = pIdx ? 0 : pTab->aCol[pIdx->aiColumn[i]].pDflt;
if( pDflt ){
pNew = sqlite3ExprDup(db, pDflt, 0);
}else{
pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
}
}else{
pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
}
pList = sqlite3ExprListAppend(pParse, pList, pNew);
sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
}
}
sqlite3DbFree(pParse->db, aiCol);
pStep->pWhere = sqlite3ExprDup(dbMem, pWhere, EXPRDUP_REDUCE);
pStep->pExprList = sqlite3ExprListDup(dbMem, pList, EXPRDUP_REDUCE);
sqlite3ExprDelete(pParse->db, pWhere);
sqlite3ExprListDelete(pParse->db, pList);
pStep->op = (action!=OE_Cascade || pChanges) ? TK_UPDATE : TK_DELETE;
pStep->pTrig = pTrigger;
pTrigger->pSchema = pTab->pSchema;
pTrigger->pTabSchema = pTab->pSchema;
if( pChanges ){
pFKey->pOnUpdate = pTrigger;
pTrigger->op = TK_UPDATE;
pStep->op = TK_UPDATE;
}else{
pFKey->pOnDelete = pTrigger;
pTrigger->op = TK_DELETE;
pStep->op = (action==OE_Cascade)?TK_DELETE:TK_UPDATE;
}
}
return pTrigger;
}
/*
** This function is called when deleting or updating a row to implement
** any required CASCADE, SET NULL or SET DEFAULT actions.
*/
void sqlite3FkActions(
Parse *pParse, /* Parse context */
Table *pTab, /* Table being updated or deleted from */
ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */
int regOld /* Address of array containing old row */
){
/* If foreign-key support is enabled, iterate through all FKs that
** refer to table pTab. If there is an action associated with the FK
** for this operation (either update or delete), invoke the associated
** trigger sub-program. */
if( pParse->db->flags&SQLITE_ForeignKeys ){
FKey *pFKey; /* Iterator variable */
for(pFKey = fkRefering(pTab); pFKey; pFKey=pFKey->pNextTo){
Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges);
if( pAction ){
sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0);
}
}
}
}
#endif /* ifndef SQLITE_OMIT_TRIGGER */
/*
** Free all memory associated with foreign key definitions attached to
** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
** hash table.
*/
void sqlite3FkDelete(Table *pTab){
FKey *pFKey; /* Iterator variable */
FKey *pNext; /* Copy of pFKey->pNextFrom */
for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
/* Remove the FK from the fkeyHash hash table. */
if( pFKey->pPrevTo ){
pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
}else{
void *data = (void *)pFKey->pNextTo;
const char *z = (data ? pFKey->pNextTo->zTo : pFKey->zTo);
sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), data);
}
if( pFKey->pNextTo ){
pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
}
/* Delete any triggers created to implement actions for this FK. */
#ifndef SQLITE_OMIT_TRIGGER
fkTriggerDelete(pTab->dbMem, pFKey->pOnDelete);
fkTriggerDelete(pTab->dbMem, pFKey->pOnUpdate);
#endif
/* Delete the memory allocated for the FK structure. */
pNext = pFKey->pNextFrom;
sqlite3DbFree(pTab->dbMem, pFKey);
}
}
#endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */