sqlite/ext/rtree/rtree1.test
dan 897230eb7a Fix a couple of memory leaks in r-tree that can occur following an OOM condition.
FossilOrigin-Name: 1975a27cdec09e1dad4ca8281a87dd7754c02c3e
2010-08-26 14:15:37 +00:00

420 lines
12 KiB
Plaintext

# 2008 Feb 19
#
# The author disclaims copyright to this source code. In place of
# a legal notice, here is a blessing:
#
# May you do good and not evil.
# May you find forgiveness for yourself and forgive others.
# May you share freely, never taking more than you give.
#
#***********************************************************************
#
# The focus of this file is testing the r-tree extension.
#
if {![info exists testdir]} {
set testdir [file join [file dirname [info script]] .. .. test]
}
source [file join [file dirname [info script]] rtree_util.tcl]
source $testdir/tester.tcl
# Test plan:
#
# rtree-1.*: Creating/destroying r-tree tables.
# rtree-2.*: Test the implicit constraints - unique rowid and
# (coord[N]<=coord[N+1]) for even values of N. Also
# automatic assigning of rowid values.
# rtree-3.*: Linear scans of r-tree data.
# rtree-4.*: Test INSERT
# rtree-5.*: Test DELETE
# rtree-6.*: Test UPDATE
# rtree-7.*: Test renaming an r-tree table.
# rtree-8.*: Test constrained scans of r-tree data.
#
ifcapable !rtree {
finish_test
return
}
#----------------------------------------------------------------------------
# Test cases rtree-1.* test CREATE and DROP table statements.
#
# Test creating and dropping an rtree table.
#
do_test rtree-1.1.1 {
execsql { CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2, y1, y2) }
} {}
do_test rtree-1.1.2 {
execsql { SELECT name FROM sqlite_master ORDER BY name }
} {t1 t1_node t1_parent t1_rowid}
do_test rtree-1.1.3 {
execsql {
DROP TABLE t1;
SELECT name FROM sqlite_master ORDER BY name;
}
} {}
# Test creating and dropping an rtree table with an odd name in
# an attached database.
#
do_test rtree-1.2.1 {
file delete -force test2.db
execsql {
ATTACH 'test2.db' AS aux;
CREATE VIRTUAL TABLE aux.'a" "b' USING rtree(ii, x1, x2, y1, y2);
}
} {}
do_test rtree-1.2.2 {
execsql { SELECT name FROM sqlite_master ORDER BY name }
} {}
do_test rtree-1.2.3 {
execsql { SELECT name FROM aux.sqlite_master ORDER BY name }
} {{a" "b} {a" "b_node} {a" "b_parent} {a" "b_rowid}}
do_test rtree-1.2.4 {
execsql {
DROP TABLE aux.'a" "b';
SELECT name FROM aux.sqlite_master ORDER BY name;
}
} {}
# Test that the logic for checking the number of columns specified
# for an rtree table. Acceptable values are odd numbers between 3 and
# 11, inclusive.
#
set cols [list i1 i2 i3 i4 i5 i6 i7 i8 i9 iA iB iC iD iE iF iG iH iI iJ iK]
for {set nCol 1} {$nCol<[llength $cols]} {incr nCol} {
set columns [join [lrange $cols 0 [expr {$nCol-1}]] ,]
set X {0 {}}
if {$nCol%2 == 0} { set X {1 {Wrong number of columns for an rtree table}} }
if {$nCol < 3} { set X {1 {Too few columns for an rtree table}} }
if {$nCol > 11} { set X {1 {Too many columns for an rtree table}} }
do_test rtree-1.3.$nCol {
catchsql "
CREATE VIRTUAL TABLE t1 USING rtree($columns);
"
} $X
catchsql { DROP TABLE t1 }
}
# Test that it is possible to open an existing database that contains
# r-tree tables.
#
do_test rtree-1.4.1 {
execsql {
CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2);
INSERT INTO t1 VALUES(1, 5.0, 10.0);
INSERT INTO t1 VALUES(2, 15.0, 20.0);
}
} {}
do_test rtree-1.4.2 {
db close
sqlite3 db test.db
execsql { SELECT * FROM t1 ORDER BY ii }
} {1 5.0 10.0 2 15.0 20.0}
do_test rtree-1.4.3 {
execsql { DROP TABLE t1 }
} {}
# Test that it is possible to create an r-tree table with ridiculous
# column names.
#
do_test rtree-1.5.1 {
execsql {
CREATE VIRTUAL TABLE t1 USING rtree("the key", "x dim.", "x2'dim");
INSERT INTO t1 VALUES(1, 2, 3);
SELECT "the key", "x dim.", "x2'dim" FROM t1;
}
} {1 2.0 3.0}
do_test rtree-1.5.1 {
execsql { DROP TABLE t1 }
} {}
# Force the r-tree constructor to fail.
#
do_test rtree-1.6.1 {
execsql { CREATE TABLE t1_rowid(a); }
catchsql {
CREATE VIRTUAL TABLE t1 USING rtree("the key", "x dim.", "x2'dim");
}
} {1 {table "t1_rowid" already exists}}
do_test rtree-1.6.1 {
execsql { DROP TABLE t1_rowid }
} {}
#----------------------------------------------------------------------------
# Test cases rtree-2.*
#
do_test rtree-2.1.1 {
execsql {
CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2, y1, y2);
SELECT * FROM t1;
}
} {}
do_test rtree-2.1.2 {
execsql { INSERT INTO t1 VALUES(NULL, 1, 3, 2, 4) }
execsql { SELECT * FROM t1 }
} {1 1.0 3.0 2.0 4.0}
do_test rtree-2.1.3 {
execsql { INSERT INTO t1 VALUES(NULL, 1, 3, 2, 4) }
execsql { SELECT rowid FROM t1 ORDER BY rowid }
} {1 2}
do_test rtree-2.1.3 {
execsql { INSERT INTO t1 VALUES(NULL, 1, 3, 2, 4) }
execsql { SELECT ii FROM t1 ORDER BY ii }
} {1 2 3}
do_test rtree-2.2.1 {
catchsql { INSERT INTO t1 VALUES(2, 1, 3, 2, 4) }
} {1 {constraint failed}}
do_test rtree-2.2.2 {
catchsql { INSERT INTO t1 VALUES(4, 1, 3, 4, 2) }
} {1 {constraint failed}}
do_test rtree-2.2.3 {
catchsql { INSERT INTO t1 VALUES(4, 3, 1, 2, 4) }
} {1 {constraint failed}}
do_test rtree-2.2.4 {
execsql { SELECT ii FROM t1 ORDER BY ii }
} {1 2 3}
do_test rtree-2.X {
execsql { DROP TABLE t1 }
} {}
#----------------------------------------------------------------------------
# Test cases rtree-3.* test linear scans of r-tree table data. To test
# this we have to insert some data into an r-tree, but that is not the
# focus of these tests.
#
do_test rtree-3.1.1 {
execsql {
CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2, y1, y2);
SELECT * FROM t1;
}
} {}
do_test rtree-3.1.2 {
execsql {
INSERT INTO t1 VALUES(5, 1, 3, 2, 4);
SELECT * FROM t1;
}
} {5 1.0 3.0 2.0 4.0}
do_test rtree-3.1.3 {
execsql {
INSERT INTO t1 VALUES(6, 2, 6, 4, 8);
SELECT * FROM t1;
}
} {5 1.0 3.0 2.0 4.0 6 2.0 6.0 4.0 8.0}
# Test the constraint on the coordinates (c[i]<=c[i+1] where (i%2==0)):
do_test rtree-3.2.1 {
catchsql { INSERT INTO t1 VALUES(7, 2, 6, 4, 3) }
} {1 {constraint failed}}
do_test rtree-3.2.2 {
catchsql { INSERT INTO t1 VALUES(8, 2, 6, 3, 3) }
} {0 {}}
#----------------------------------------------------------------------------
# Test cases rtree-5.* test DELETE operations.
#
do_test rtree-5.1.1 {
execsql { CREATE VIRTUAL TABLE t2 USING rtree(ii, x1, x2) }
} {}
do_test rtree-5.1.2 {
execsql {
INSERT INTO t2 VALUES(1, 10, 20);
INSERT INTO t2 VALUES(2, 30, 40);
INSERT INTO t2 VALUES(3, 50, 60);
SELECT * FROM t2 ORDER BY ii;
}
} {1 10.0 20.0 2 30.0 40.0 3 50.0 60.0}
do_test rtree-5.1.3 {
execsql {
DELETE FROM t2 WHERE ii=2;
SELECT * FROM t2 ORDER BY ii;
}
} {1 10.0 20.0 3 50.0 60.0}
do_test rtree-5.1.4 {
execsql {
DELETE FROM t2 WHERE ii=1;
SELECT * FROM t2 ORDER BY ii;
}
} {3 50.0 60.0}
do_test rtree-5.1.5 {
execsql {
DELETE FROM t2 WHERE ii=3;
SELECT * FROM t2 ORDER BY ii;
}
} {}
do_test rtree-5.1.6 {
execsql { SELECT * FROM t2_rowid }
} {}
#----------------------------------------------------------------------------
# Test cases rtree-5.* test UPDATE operations.
#
do_test rtree-6.1.1 {
execsql { CREATE VIRTUAL TABLE t3 USING rtree(ii, x1, x2, y1, y2) }
} {}
do_test rtree-6.1.2 {
execsql {
INSERT INTO t3 VALUES(1, 2, 3, 4, 5);
UPDATE t3 SET x2=5;
SELECT * FROM t3;
}
} {1 2.0 5.0 4.0 5.0}
do_test rtree-6.1.3 {
execsql { UPDATE t3 SET ii = 2 }
execsql { SELECT * FROM t3 }
} {2 2.0 5.0 4.0 5.0}
#----------------------------------------------------------------------------
# Test cases rtree-7.* test rename operations.
#
do_test rtree-7.1.1 {
execsql {
CREATE VIRTUAL TABLE t4 USING rtree(ii, x1, x2, y1, y2, z1, z2);
INSERT INTO t4 VALUES(1, 2, 3, 4, 5, 6, 7);
}
} {}
do_test rtree-7.1.2 {
execsql { ALTER TABLE t4 RENAME TO t5 }
execsql { SELECT * FROM t5 }
} {1 2.0 3.0 4.0 5.0 6.0 7.0}
do_test rtree-7.1.3 {
db close
sqlite3 db test.db
execsql { SELECT * FROM t5 }
} {1 2.0 3.0 4.0 5.0 6.0 7.0}
do_test rtree-7.1.4 {
execsql { ALTER TABLE t5 RENAME TO 'raisara "one"'''}
execsql { SELECT * FROM "raisara ""one""'" }
} {1 2.0 3.0 4.0 5.0 6.0 7.0}
do_test rtree-7.1.5 {
execsql { SELECT * FROM 'raisara "one"''' }
} {1 2.0 3.0 4.0 5.0 6.0 7.0}
do_test rtree-7.1.6 {
execsql { ALTER TABLE "raisara ""one""'" RENAME TO "abc 123" }
execsql { SELECT * FROM "abc 123" }
} {1 2.0 3.0 4.0 5.0 6.0 7.0}
do_test rtree-7.1.7 {
db close
sqlite3 db test.db
execsql { SELECT * FROM "abc 123" }
} {1 2.0 3.0 4.0 5.0 6.0 7.0}
# An error midway through a rename operation.
do_test rtree-7.2.1 {
execsql {
CREATE TABLE t4_node(a);
}
catchsql { ALTER TABLE "abc 123" RENAME TO t4 }
} {1 {SQL logic error or missing database}}
do_test rtree-7.2.2 {
execsql { SELECT * FROM "abc 123" }
} {1 2.0 3.0 4.0 5.0 6.0 7.0}
do_test rtree-7.2.3 {
execsql {
DROP TABLE t4_node;
CREATE TABLE t4_rowid(a);
}
catchsql { ALTER TABLE "abc 123" RENAME TO t4 }
} {1 {SQL logic error or missing database}}
do_test rtree-7.2.4 {
db close
sqlite3 db test.db
execsql { SELECT * FROM "abc 123" }
} {1 2.0 3.0 4.0 5.0 6.0 7.0}
do_test rtree-7.2.5 {
execsql { DROP TABLE t4_rowid }
execsql { ALTER TABLE "abc 123" RENAME TO t4 }
execsql { SELECT * FROM t4 }
} {1 2.0 3.0 4.0 5.0 6.0 7.0}
#----------------------------------------------------------------------------
# Test cases rtree-8.*
#
# Test that the function to determine if a leaf cell is part of the
# result set works.
do_test rtree-8.1.1 {
execsql {
CREATE VIRTUAL TABLE t6 USING rtree(ii, x1, x2);
INSERT INTO t6 VALUES(1, 3, 7);
INSERT INTO t6 VALUES(2, 4, 6);
}
} {}
do_test rtree-8.1.2 { execsql { SELECT ii FROM t6 WHERE x1>2 } } {1 2}
do_test rtree-8.1.3 { execsql { SELECT ii FROM t6 WHERE x1>3 } } {2}
do_test rtree-8.1.4 { execsql { SELECT ii FROM t6 WHERE x1>4 } } {}
do_test rtree-8.1.5 { execsql { SELECT ii FROM t6 WHERE x1>5 } } {}
do_test rtree-8.1.6 { execsql { SELECT ii FROM t6 WHERE x1<3 } } {}
do_test rtree-8.1.7 { execsql { SELECT ii FROM t6 WHERE x1<4 } } {1}
do_test rtree-8.1.8 { execsql { SELECT ii FROM t6 WHERE x1<5 } } {1 2}
#----------------------------------------------------------------------------
# Test cases rtree-9.*
#
# Test that ticket #3549 is fixed.
do_test rtree-9.1 {
execsql {
CREATE TABLE foo (id INTEGER PRIMARY KEY);
CREATE VIRTUAL TABLE bar USING rtree (id, minX, maxX, minY, maxY);
INSERT INTO foo VALUES (null);
INSERT INTO foo SELECT null FROM foo;
INSERT INTO foo SELECT null FROM foo;
INSERT INTO foo SELECT null FROM foo;
INSERT INTO foo SELECT null FROM foo;
INSERT INTO foo SELECT null FROM foo;
INSERT INTO foo SELECT null FROM foo;
DELETE FROM foo WHERE id > 40;
INSERT INTO bar SELECT NULL, 0, 0, 0, 0 FROM foo;
}
} {}
# This used to crash.
do_test rtree-9.2 {
execsql {
SELECT count(*) FROM bar b1, bar b2, foo s1 WHERE s1.id = b1.id;
}
} {1600}
do_test rtree-9.3 {
execsql {
SELECT count(*) FROM bar b1, bar b2, foo s1
WHERE b1.minX <= b2.maxX AND s1.id = b1.id;
}
} {1600}
#-------------------------------------------------------------------------
# Ticket #3970: Check that the error message is meaningful when a
# keyword is used as a column name.
#
do_test rtree-10.1 {
catchsql { CREATE VIRTUAL TABLE t7 USING rtree(index, x1, y1, x2, y2) }
} {1 {near "index": syntax error}}
#-------------------------------------------------------------------------
# Test last_insert_rowid().
#
do_test rtree-11.1 {
execsql {
CREATE VIRTUAL TABLE t8 USING rtree(idx, x1, x2, y1, y2);
INSERT INTO t8 VALUES(1, 1.0, 1.0, 2.0, 2.0);
SELECT last_insert_rowid();
}
} {1}
do_test rtree-11.2 {
execsql {
INSERT INTO t8 VALUES(NULL, 1.0, 1.0, 2.0, 2.0);
SELECT last_insert_rowid();
}
} {2}
finish_test