sqlite/test/wal.test
mistachkin 4ec0100f35 Merge updates from trunk.
FossilOrigin-Name: 224c65e4a5c6ede076c364c93933cedd17f1e70b
2012-05-17 21:04:26 +00:00

1576 lines
44 KiB
Plaintext

# 2010 April 13
#
# The author disclaims copyright to this source code. In place of
# a legal notice, here is a blessing:
#
# May you do good and not evil.
# May you find forgiveness for yourself and forgive others.
# May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library. The
# focus of this file is testing the operation of the library in
# "PRAGMA journal_mode=WAL" mode.
#
set testdir [file dirname $argv0]
source $testdir/tester.tcl
source $testdir/lock_common.tcl
source $testdir/malloc_common.tcl
source $testdir/wal_common.tcl
set testprefix wal
ifcapable !wal {finish_test ; return }
proc reopen_db {} {
catch { db close }
forcedelete test.db test.db-wal test.db-wal-summary
sqlite3_wal db test.db
}
set ::blobcnt 0
proc blob {nByte} {
incr ::blobcnt
return [string range [string repeat "${::blobcnt}x" $nByte] 1 $nByte]
}
proc sqlite3_wal {args} {
eval sqlite3 $args
[lindex $args 0] eval { PRAGMA auto_vacuum = 0 }
[lindex $args 0] eval { PRAGMA page_size = 1024 }
[lindex $args 0] eval { PRAGMA journal_mode = wal }
[lindex $args 0] eval { PRAGMA synchronous = normal }
[lindex $args 0] function blob blob
}
proc log_deleted {logfile} {
return [expr [file exists $logfile]==0]
}
#
# These are 'warm-body' tests used while developing the WAL code. They
# serve to prove that a few really simple cases work:
#
# wal-1.*: Read and write the database.
# wal-2.*: Test MVCC with one reader, one writer.
# wal-3.*: Test transaction rollback.
# wal-4.*: Test savepoint/statement rollback.
# wal-5.*: Test the temp database.
# wal-6.*: Test creating databases with different page sizes.
#
#
#
do_test wal-0.1 {
execsql { PRAGMA auto_vacuum = 0 }
execsql { PRAGMA synchronous = normal }
execsql { PRAGMA journal_mode = wal }
} {wal}
do_test wal-0.2 {
file size test.db
} {1024}
do_test wal-1.0 {
execsql {
BEGIN;
CREATE TABLE t1(a, b);
}
list [file exists test.db-journal] \
[file exists test.db-wal] \
[file size test.db]
} {0 1 1024}
do_test wal-1.1 {
execsql COMMIT
list [file exists test.db-journal] [file exists test.db-wal]
} {0 1}
do_test wal-1.2 {
# There are now two pages in the log.
file size test.db-wal
} [wal_file_size 2 1024]
do_test wal-1.3 {
execsql { SELECT * FROM sqlite_master }
} {table t1 t1 2 {CREATE TABLE t1(a, b)}}
do_test wal-1.4 {
execsql { INSERT INTO t1 VALUES(1, 2) }
execsql { INSERT INTO t1 VALUES(3, 4) }
execsql { INSERT INTO t1 VALUES(5, 6) }
execsql { INSERT INTO t1 VALUES(7, 8) }
execsql { INSERT INTO t1 VALUES(9, 10) }
} {}
do_test wal-1.5 {
execsql { SELECT * FROM t1 }
} {1 2 3 4 5 6 7 8 9 10}
do_test wal-2.1 {
sqlite3_wal db2 ./test.db
execsql { BEGIN; SELECT * FROM t1 } db2
} {1 2 3 4 5 6 7 8 9 10}
do_test wal-2.2 {
execsql { INSERT INTO t1 VALUES(11, 12) }
execsql { SELECT * FROM t1 }
} {1 2 3 4 5 6 7 8 9 10 11 12}
do_test wal-2.3 {
execsql { SELECT * FROM t1 } db2
} {1 2 3 4 5 6 7 8 9 10}
do_test wal-2.4 {
execsql { INSERT INTO t1 VALUES(13, 14) }
execsql { SELECT * FROM t1 }
} {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
do_test wal-2.5 {
execsql { SELECT * FROM t1 } db2
} {1 2 3 4 5 6 7 8 9 10}
do_test wal-2.6 {
execsql { COMMIT; SELECT * FROM t1 } db2
} {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
do_test wal-3.1 {
execsql { BEGIN; DELETE FROM t1 }
execsql { SELECT * FROM t1 }
} {}
do_test wal-3.2 {
execsql { SELECT * FROM t1 } db2
} {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
do_test wal-3.3 {
execsql { ROLLBACK }
execsql { SELECT * FROM t1 }
} {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
db2 close
#-------------------------------------------------------------------------
# The following tests, wal-4.*, test that savepoints work with WAL
# databases.
#
do_test wal-4.1 {
execsql {
DELETE FROM t1;
BEGIN;
INSERT INTO t1 VALUES('a', 'b');
SAVEPOINT sp;
INSERT INTO t1 VALUES('c', 'd');
SELECT * FROM t1;
}
} {a b c d}
do_test wal-4.2 {
execsql {
ROLLBACK TO sp;
SELECT * FROM t1;
}
} {a b}
do_test wal-4.3 {
execsql {
COMMIT;
SELECT * FROM t1;
}
} {a b}
do_test wal-4.4.1 {
db close
sqlite3 db test.db
db func blob blob
list [execsql { SELECT * FROM t1 }] [file size test.db-wal]
} {{a b} 0}
do_test wal-4.4.2 {
execsql { PRAGMA cache_size = 10 }
execsql {
CREATE TABLE t2(a, b);
INSERT INTO t2 VALUES(blob(400), blob(400));
SAVEPOINT tr;
INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 2 */
INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 4 */
INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 8 */
INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 16 */
INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 32 */
INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 2 */
INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 4 */
INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 8 */
INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 16 */
INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 32 */
SELECT count(*) FROM t2;
}
} {32}
do_test wal-4.4.3 {
execsql { ROLLBACK TO tr }
} {}
do_test wal-4.4.4 {
set logsize [file size test.db-wal]
execsql {
INSERT INTO t1 VALUES('x', 'y');
RELEASE tr;
}
expr { $logsize == [file size test.db-wal] }
} {1}
do_test wal-4.4.5 {
execsql { SELECT count(*) FROM t2 }
} {1}
do_test wal-4.4.6 {
forcecopy test.db test2.db
forcecopy test.db-wal test2.db-wal
sqlite3 db2 test2.db
execsql { SELECT count(*) FROM t2 ; SELECT count(*) FROM t1 } db2
} {1 2}
do_test wal-4.4.7 {
execsql { PRAGMA integrity_check } db2
} {ok}
db2 close
do_test wal-4.5.1 {
reopen_db
db func blob blob
execsql {
PRAGMA journal_mode = WAL;
CREATE TABLE t1(a, b);
INSERT INTO t1 VALUES('a', 'b');
}
sqlite3 db test.db
db func blob blob
list [execsql { SELECT * FROM t1 }] [file size test.db-wal]
} {{a b} 0}
do_test wal-4.5.2 {
execsql { PRAGMA cache_size = 10 }
execsql {
CREATE TABLE t2(a, b);
BEGIN;
INSERT INTO t2 VALUES(blob(400), blob(400));
SAVEPOINT tr;
INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 2 */
INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 4 */
INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 8 */
INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 16 */
INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 32 */
INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 2 */
INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 4 */
INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 8 */
INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 16 */
INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 32 */
SELECT count(*) FROM t2;
}
} {32}
do_test wal-4.5.3 {
execsql { ROLLBACK TO tr }
} {}
do_test wal-4.5.4 {
set logsize [file size test.db-wal]
execsql {
INSERT INTO t1 VALUES('x', 'y');
RELEASE tr;
COMMIT;
}
expr { $logsize == [file size test.db-wal] }
} {1}
do_test wal-4.5.5 {
execsql { SELECT count(*) FROM t2 ; SELECT count(*) FROM t1 }
} {1 2}
do_test wal-4.5.6 {
forcecopy test.db test2.db
forcecopy test.db-wal test2.db-wal
sqlite3 db2 test2.db
execsql { SELECT count(*) FROM t2 ; SELECT count(*) FROM t1 } db2
} {1 2}
do_test wal-4.5.7 {
execsql { PRAGMA integrity_check } db2
} {ok}
db2 close
do_test wal-4.6.1 {
execsql {
DELETE FROM t2;
PRAGMA wal_checkpoint;
BEGIN;
INSERT INTO t2 VALUES('w', 'x');
SAVEPOINT save;
INSERT INTO t2 VALUES('y', 'z');
ROLLBACK TO save;
COMMIT;
}
execsql { SELECT * FROM t2 }
} {w x}
reopen_db
do_test wal-5.1 {
execsql {
CREATE TEMP TABLE t2(a, b);
INSERT INTO t2 VALUES(1, 2);
}
} {}
do_test wal-5.2 {
execsql {
BEGIN;
INSERT INTO t2 VALUES(3, 4);
SELECT * FROM t2;
}
} {1 2 3 4}
do_test wal-5.3 {
execsql {
ROLLBACK;
SELECT * FROM t2;
}
} {1 2}
do_test wal-5.4 {
execsql {
CREATE TEMP TABLE t3(x UNIQUE);
BEGIN;
INSERT INTO t2 VALUES(3, 4);
INSERT INTO t3 VALUES('abc');
}
catchsql { INSERT INTO t3 VALUES('abc') }
} {1 {column x is not unique}}
do_test wal-5.5 {
execsql {
COMMIT;
SELECT * FROM t2;
}
} {1 2 3 4}
db close
foreach sector {512 4096} {
sqlite3_simulate_device -sectorsize $sector
foreach pgsz {512 1024 2048 4096} {
forcedelete test.db test.db-wal
do_test wal-6.$sector.$pgsz.1 {
sqlite3 db test.db -vfs devsym
execsql "
PRAGMA page_size = $pgsz;
PRAGMA auto_vacuum = 0;
PRAGMA journal_mode = wal;
"
execsql "
CREATE TABLE t1(a, b);
INSERT INTO t1 VALUES(1, 2);
"
db close
file size test.db
} [expr $pgsz*2]
do_test wal-6.$sector.$pgsz.2 {
log_deleted test.db-wal
} {1}
}
}
do_test wal-7.1 {
forcedelete test.db test.db-wal
sqlite3_wal db test.db
execsql {
PRAGMA page_size = 1024;
CREATE TABLE t1(a, b);
INSERT INTO t1 VALUES(1, 2);
}
list [file size test.db] [file size test.db-wal]
} [list 1024 [wal_file_size 3 1024]]
do_test wal-7.2 {
execsql { PRAGMA wal_checkpoint }
list [file size test.db] [file size test.db-wal]
} [list 2048 [wal_file_size 3 1024]]
# Execute some transactions in auto-vacuum mode to test database file
# truncation.
#
do_test wal-8.1 {
reopen_db
catch { db close }
forcedelete test.db test.db-wal
sqlite3 db test.db
db function blob blob
execsql {
PRAGMA auto_vacuum = 1;
PRAGMA journal_mode = wal;
PRAGMA auto_vacuum;
}
} {wal 1}
do_test wal-8.2 {
execsql {
PRAGMA page_size = 1024;
CREATE TABLE t1(x);
INSERT INTO t1 VALUES(blob(900));
INSERT INTO t1 VALUES(blob(900));
INSERT INTO t1 SELECT blob(900) FROM t1; /* 4 */
INSERT INTO t1 SELECT blob(900) FROM t1; /* 8 */
INSERT INTO t1 SELECT blob(900) FROM t1; /* 16 */
INSERT INTO t1 SELECT blob(900) FROM t1; /* 32 */
INSERT INTO t1 SELECT blob(900) FROM t1; /* 64 */
PRAGMA wal_checkpoint;
}
file size test.db
} [expr 68*1024]
do_test wal-8.3 {
execsql {
DELETE FROM t1 WHERE rowid<54;
PRAGMA wal_checkpoint;
}
file size test.db
} [expr 14*1024]
# Run some "warm-body" tests to ensure that log-summary files with more
# than 256 entries (log summaries that contain index blocks) work Ok.
#
do_test wal-9.1 {
reopen_db
execsql {
PRAGMA cache_size=2000;
CREATE TABLE t1(x PRIMARY KEY);
INSERT INTO t1 VALUES(blob(900));
INSERT INTO t1 VALUES(blob(900));
INSERT INTO t1 SELECT blob(900) FROM t1; /* 4 */
INSERT INTO t1 SELECT blob(900) FROM t1; /* 8 */
INSERT INTO t1 SELECT blob(900) FROM t1; /* 16 */
INSERT INTO t1 SELECT blob(900) FROM t1; /* 32 */
INSERT INTO t1 SELECT blob(900) FROM t1; /* 64 */
INSERT INTO t1 SELECT blob(900) FROM t1; /* 128 */
INSERT INTO t1 SELECT blob(900) FROM t1; /* 256 */
}
file size test.db
} 1024
do_test wal-9.2 {
sqlite3_wal db2 test.db
execsql {PRAGMA integrity_check } db2
} {ok}
do_test wal-9.3 {
forcedelete test2.db test2.db-wal
copy_file test.db test2.db
copy_file test.db-wal test2.db-wal
sqlite3_wal db3 test2.db
execsql {PRAGMA integrity_check } db3
} {ok}
db3 close
do_test wal-9.4 {
execsql { PRAGMA wal_checkpoint }
db2 close
sqlite3_wal db2 test.db
execsql {PRAGMA integrity_check } db2
} {ok}
foreach handle {db db2 db3} { catch { $handle close } }
unset handle
#-------------------------------------------------------------------------
# The following block of tests - wal-10.* - test that the WAL locking
# scheme works in simple cases. This block of tests is run twice. Once
# using multiple connections in the address space of the current process,
# and once with all connections except one running in external processes.
#
do_multiclient_test tn {
# Initialize the database schema and contents.
#
do_test wal-10.$tn.1 {
execsql {
PRAGMA auto_vacuum = 0;
PRAGMA journal_mode = wal;
CREATE TABLE t1(a, b);
INSERT INTO t1 VALUES(1, 2);
SELECT * FROM t1;
}
} {wal 1 2}
# Open a transaction and write to the database using [db]. Check that [db2]
# is still able to read the snapshot before the transaction was opened.
#
do_test wal-10.$tn.2 {
execsql { BEGIN; INSERT INTO t1 VALUES(3, 4); }
sql2 {SELECT * FROM t1}
} {1 2}
# Have [db] commit the transaction. Check that [db2] is now seeing the
# new, updated snapshot.
#
do_test wal-10.$tn.3 {
execsql { COMMIT }
sql2 {SELECT * FROM t1}
} {1 2 3 4}
# Have [db2] open a read transaction. Then write to the db via [db]. Check
# that [db2] is still seeing the original snapshot. Then read with [db3].
# [db3] should see the newly committed data.
#
do_test wal-10.$tn.4 {
sql2 { BEGIN ; SELECT * FROM t1}
} {1 2 3 4}
do_test wal-10.$tn.5 {
execsql { INSERT INTO t1 VALUES(5, 6); }
sql2 {SELECT * FROM t1}
} {1 2 3 4}
do_test wal-10.$tn.6 {
sql3 {SELECT * FROM t1}
} {1 2 3 4 5 6}
do_test wal-10.$tn.7 {
sql2 COMMIT
} {}
# Have [db2] open a write transaction. Then attempt to write to the
# database via [db]. This should fail (writer lock cannot be obtained).
#
# Then open a read-transaction with [db]. Commit the [db2] transaction
# to disk. Verify that [db] still cannot write to the database (because
# it is reading an old snapshot).
#
# Close the current [db] transaction. Open a new one. [db] can now write
# to the database (as it is not locked and [db] is reading the latest
# snapshot).
#
do_test wal-10.$tn.7 {
sql2 { BEGIN; INSERT INTO t1 VALUES(7, 8) ; }
catchsql { INSERT INTO t1 VALUES(9, 10) }
} {1 {database is locked}}
do_test wal-10.$tn.8 {
execsql { BEGIN ; SELECT * FROM t1 }
} {1 2 3 4 5 6}
do_test wal-10.$tn.9 {
sql2 COMMIT
catchsql { INSERT INTO t1 VALUES(9, 10) }
} {1 {database is locked}}
do_test wal-10.$tn.10 {
execsql { COMMIT }
execsql { BEGIN }
execsql { INSERT INTO t1 VALUES(9, 10) }
execsql { COMMIT }
execsql { SELECT * FROM t1 }
} {1 2 3 4 5 6 7 8 9 10}
# Open a read transaction with [db2]. Check that this prevents [db] from
# checkpointing the database. But not from writing to it.
#
do_test wal-10.$tn.11 {
sql2 { BEGIN; SELECT * FROM t1 }
} {1 2 3 4 5 6 7 8 9 10}
do_test wal-10.$tn.12 {
catchsql { PRAGMA wal_checkpoint }
} {0 {0 7 7}} ;# Reader no longer block checkpoints
do_test wal-10.$tn.13 {
execsql { INSERT INTO t1 VALUES(11, 12) }
sql2 {SELECT * FROM t1}
} {1 2 3 4 5 6 7 8 9 10}
# Writers do not block checkpoints any more either.
#
do_test wal-10.$tn.14 {
catchsql { PRAGMA wal_checkpoint }
} {0 {0 8 7}}
# The following series of test cases used to verify another blocking
# case in WAL - a case which no longer blocks.
#
do_test wal-10.$tn.15 {
sql2 { COMMIT; BEGIN; SELECT * FROM t1; }
} {1 2 3 4 5 6 7 8 9 10 11 12}
do_test wal-10.$tn.16 {
catchsql { PRAGMA wal_checkpoint }
} {0 {0 8 8}}
do_test wal-10.$tn.17 {
execsql { PRAGMA wal_checkpoint }
} {0 8 8}
do_test wal-10.$tn.18 {
sql3 { BEGIN; SELECT * FROM t1 }
} {1 2 3 4 5 6 7 8 9 10 11 12}
do_test wal-10.$tn.19 {
catchsql { INSERT INTO t1 VALUES(13, 14) }
} {0 {}}
do_test wal-10.$tn.20 {
execsql { SELECT * FROM t1 }
} {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
do_test wal-10.$tn.21 {
sql3 COMMIT
sql2 COMMIT
} {}
do_test wal-10.$tn.22 {
execsql { SELECT * FROM t1 }
} {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
# Another series of tests that used to demonstrate blocking behavior
# but which now work.
#
do_test wal-10.$tn.23 {
execsql { PRAGMA wal_checkpoint }
} {0 9 9}
do_test wal-10.$tn.24 {
sql2 { BEGIN; SELECT * FROM t1; }
} {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
do_test wal-10.$tn.25 {
execsql { PRAGMA wal_checkpoint }
} {0 9 9}
do_test wal-10.$tn.26 {
catchsql { INSERT INTO t1 VALUES(15, 16) }
} {0 {}}
do_test wal-10.$tn.27 {
sql3 { INSERT INTO t1 VALUES(17, 18) }
} {}
do_test wal-10.$tn.28 {
code3 {
set ::STMT [sqlite3_prepare db3 "SELECT * FROM t1" -1 TAIL]
sqlite3_step $::STMT
}
execsql { SELECT * FROM t1 }
} {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18}
do_test wal-10.$tn.29 {
execsql { INSERT INTO t1 VALUES(19, 20) }
catchsql { PRAGMA wal_checkpoint }
} {0 {0 3 0}}
do_test wal-10.$tn.30 {
code3 { sqlite3_finalize $::STMT }
execsql { PRAGMA wal_checkpoint }
} {0 3 0}
# At one point, if a reader failed to upgrade to a writer because it
# was reading an old snapshot, the write-locks were not being released.
# Test that this bug has been fixed.
#
do_test wal-10.$tn.31 {
sql2 COMMIT
execsql { BEGIN ; SELECT * FROM t1 }
sql2 { INSERT INTO t1 VALUES(21, 22) }
catchsql { INSERT INTO t1 VALUES(23, 24) }
} {1 {database is locked}}
do_test wal-10.$tn.32 {
# This statement would fail when the bug was present.
sql2 { INSERT INTO t1 VALUES(23, 24) }
} {}
do_test wal-10.$tn.33 {
execsql { SELECT * FROM t1 ; COMMIT }
} {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20}
do_test wal-10.$tn.34 {
execsql { SELECT * FROM t1 }
} {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24}
# Test that if a checkpointer cannot obtain the required locks, it
# releases all locks before returning a busy error.
#
do_test wal-10.$tn.35 {
execsql {
DELETE FROM t1;
INSERT INTO t1 VALUES('a', 'b');
INSERT INTO t1 VALUES('c', 'd');
}
sql2 {
BEGIN;
SELECT * FROM t1;
}
} {a b c d}
do_test wal-10.$tn.36 {
catchsql { PRAGMA wal_checkpoint }
} {0 {0 8 8}}
do_test wal-10.$tn.36 {
sql3 { INSERT INTO t1 VALUES('e', 'f') }
sql2 { SELECT * FROM t1 }
} {a b c d}
do_test wal-10.$tn.37 {
sql2 COMMIT
execsql { PRAGMA wal_checkpoint }
} {0 9 9}
}
#-------------------------------------------------------------------------
# This block of tests, wal-11.*, test that nothing goes terribly wrong
# if frames must be written to the log file before a transaction is
# committed (in order to free up memory).
#
do_test wal-11.1 {
reopen_db
execsql {
PRAGMA cache_size = 10;
PRAGMA page_size = 1024;
CREATE TABLE t1(x PRIMARY KEY);
}
list [expr [file size test.db]/1024] [expr [file size test.db-wal]/1044]
} {1 3}
do_test wal-11.2 {
execsql { PRAGMA wal_checkpoint }
list [expr [file size test.db]/1024] [file size test.db-wal]
} [list 3 [wal_file_size 3 1024]]
do_test wal-11.3 {
execsql { INSERT INTO t1 VALUES( blob(900) ) }
list [expr [file size test.db]/1024] [file size test.db-wal]
} [list 3 [wal_file_size 4 1024]]
do_test wal-11.4 {
execsql {
BEGIN;
INSERT INTO t1 SELECT blob(900) FROM t1; -- 2
INSERT INTO t1 SELECT blob(900) FROM t1; -- 4
INSERT INTO t1 SELECT blob(900) FROM t1; -- 8
INSERT INTO t1 SELECT blob(900) FROM t1; -- 16
}
list [expr [file size test.db]/1024] [file size test.db-wal]
} [list 3 [wal_file_size 32 1024]]
do_test wal-11.5 {
execsql {
SELECT count(*) FROM t1;
PRAGMA integrity_check;
}
} {16 ok}
do_test wal-11.6 {
execsql COMMIT
list [expr [file size test.db]/1024] [file size test.db-wal]
} [list 3 [wal_file_size 41 1024]]
do_test wal-11.7 {
execsql {
SELECT count(*) FROM t1;
PRAGMA integrity_check;
}
} {16 ok}
do_test wal-11.8 {
execsql { PRAGMA wal_checkpoint }
list [expr [file size test.db]/1024] [file size test.db-wal]
} [list 37 [wal_file_size 41 1024]]
do_test wal-11.9 {
db close
list [expr [file size test.db]/1024] [log_deleted test.db-wal]
} {37 1}
sqlite3_wal db test.db
do_test wal-11.10 {
execsql {
PRAGMA cache_size = 10;
BEGIN;
INSERT INTO t1 SELECT blob(900) FROM t1; -- 32
SELECT count(*) FROM t1;
}
list [expr [file size test.db]/1024] [file size test.db-wal]
} [list 37 [wal_file_size 37 1024]]
do_test wal-11.11 {
execsql {
SELECT count(*) FROM t1;
ROLLBACK;
SELECT count(*) FROM t1;
}
} {32 16}
do_test wal-11.12 {
list [expr [file size test.db]/1024] [file size test.db-wal]
} [list 37 [wal_file_size 37 1024]]
do_test wal-11.13 {
execsql {
INSERT INTO t1 VALUES( blob(900) );
SELECT count(*) FROM t1;
PRAGMA integrity_check;
}
} {17 ok}
do_test wal-11.14 {
list [expr [file size test.db]/1024] [file size test.db-wal]
} [list 37 [wal_file_size 37 1024]]
#-------------------------------------------------------------------------
# This block of tests, wal-12.*, tests the fix for a problem that
# could occur if a log that is a prefix of an older log is written
# into a reused log file.
#
reopen_db
do_test wal-12.1 {
execsql {
PRAGMA page_size = 1024;
CREATE TABLE t1(x, y);
CREATE TABLE t2(x, y);
INSERT INTO t1 VALUES('A', 1);
}
list [expr [file size test.db]/1024] [file size test.db-wal]
} [list 1 [wal_file_size 5 1024]]
do_test wal-12.2 {
db close
sqlite3 db test.db
execsql {
PRAGMA synchronous = normal;
UPDATE t1 SET y = 0 WHERE x = 'A';
}
list [expr [file size test.db]/1024] [expr [file size test.db-wal]/1044]
} {3 1}
do_test wal-12.3 {
execsql { INSERT INTO t2 VALUES('B', 1) }
list [expr [file size test.db]/1024] [expr [file size test.db-wal]/1044]
} {3 2}
do_test wal-12.4 {
forcecopy test.db test2.db
forcecopy test.db-wal test2.db-wal
sqlite3_wal db2 test2.db
execsql { SELECT * FROM t2 } db2
} {B 1}
db2 close
do_test wal-12.5 {
execsql {
PRAGMA wal_checkpoint;
UPDATE t2 SET y = 2 WHERE x = 'B';
PRAGMA wal_checkpoint;
UPDATE t1 SET y = 1 WHERE x = 'A';
PRAGMA wal_checkpoint;
UPDATE t1 SET y = 0 WHERE x = 'A';
}
execsql { SELECT * FROM t2 }
} {B 2}
do_test wal-12.6 {
forcecopy test.db test2.db
forcecopy test.db-wal test2.db-wal
sqlite3_wal db2 test2.db
execsql { SELECT * FROM t2 } db2
} {B 2}
db2 close
db close
#-------------------------------------------------------------------------
# Test large log summaries.
#
# In this case "large" usually means a log file that requires a wal-index
# mapping larger than 64KB (the default initial allocation). A 64KB wal-index
# is large enough for a log file that contains approximately 13100 frames.
# So the following tests create logs containing at least this many frames.
#
# wal-13.1.*: This test case creates a very large log file within the
# file-system (around 200MB). The log file does not contain
# any valid frames. Test that the database file can still be
# opened and queried, and that the invalid log file causes no
# problems.
#
# wal-13.2.*: Test that a process may create a large log file and query
# the database (including the log file that it itself created).
#
# wal-13.3.*: Test that if a very large log file is created, and then a
# second connection is opened on the database file, it is possible
# to query the database (and the very large log) using the
# second connection.
#
# wal-13.4.*: Same test as wal-13.3.*. Except in this case the second
# connection is opened by an external process.
#
do_test wal-13.1.1 {
list [file exists test.db] [file exists test.db-wal]
} {1 0}
do_test wal-13.1.2 {
set fd [open test.db-wal w]
seek $fd [expr 200*1024*1024]
puts $fd ""
close $fd
sqlite3 db test.db
execsql { SELECT * FROM t2 }
} {B 2}
breakpoint
do_test wal-13.1.3 {
db close
file exists test.db-wal
} {0}
do_test wal-13.2.1 {
sqlite3 db test.db
execsql { SELECT count(*) FROM t2 }
} {1}
do_test wal-13.2.2 {
db function blob blob
for {set i 0} {$i < 16} {incr i} {
execsql { INSERT INTO t2 SELECT blob(400), blob(400) FROM t2 }
}
execsql { SELECT count(*) FROM t2 }
} [expr int(pow(2, 16))]
do_test wal-13.2.3 {
expr [file size test.db-wal] > [wal_file_size 33000 1024]
} 1
do_multiclient_test tn {
incr tn 2
do_test wal-13.$tn.0 {
sql1 {
PRAGMA journal_mode = WAL;
CREATE TABLE t1(x);
INSERT INTO t1 SELECT randomblob(800);
}
sql1 { SELECT count(*) FROM t1 }
} {1}
for {set ii 1} {$ii<16} {incr ii} {
do_test wal-13.$tn.$ii.a {
sql2 { INSERT INTO t1 SELECT randomblob(800) FROM t1 }
sql2 { SELECT count(*) FROM t1 }
} [expr (1<<$ii)]
do_test wal-13.$tn.$ii.b {
sql1 { SELECT count(*) FROM t1 }
} [expr (1<<$ii)]
do_test wal-13.$tn.$ii.c {
sql1 { SELECT count(*) FROM t1 }
} [expr (1<<$ii)]
do_test wal-13.$tn.$ii.d {
sql1 { PRAGMA integrity_check }
} {ok}
}
}
#-------------------------------------------------------------------------
# Check a fun corruption case has been fixed.
#
# The problem was that after performing a checkpoint using a connection
# that had an out-of-date pager-cache, the next time the connection was
# used it did not realize the cache was out-of-date and proceeded to
# operate with an inconsistent cache. Leading to corruption.
#
catch { db close }
catch { db2 close }
catch { db3 close }
forcedelete test.db test.db-wal
sqlite3 db test.db
sqlite3 db2 test.db
do_test wal-14 {
execsql {
PRAGMA journal_mode = WAL;
CREATE TABLE t1(a PRIMARY KEY, b);
INSERT INTO t1 VALUES(randomblob(10), randomblob(100));
INSERT INTO t1 SELECT randomblob(10), randomblob(100) FROM t1;
INSERT INTO t1 SELECT randomblob(10), randomblob(100) FROM t1;
INSERT INTO t1 SELECT randomblob(10), randomblob(100) FROM t1;
}
db2 eval {
INSERT INTO t1 SELECT randomblob(10), randomblob(100);
INSERT INTO t1 SELECT randomblob(10), randomblob(100);
INSERT INTO t1 SELECT randomblob(10), randomblob(100);
INSERT INTO t1 SELECT randomblob(10), randomblob(100);
}
# After executing the "PRAGMA wal_checkpoint", connection [db] was being
# left with an inconsistent cache. Running the CREATE INDEX statement
# in this state led to database corruption.
catchsql {
PRAGMA wal_checkpoint;
CREATE INDEX i1 on t1(b);
}
db2 eval { PRAGMA integrity_check }
} {ok}
catch { db close }
catch { db2 close }
#-------------------------------------------------------------------------
# The following block of tests - wal-15.* - focus on testing the
# implementation of the sqlite3_wal_checkpoint() interface.
#
forcedelete test.db test.db-wal
sqlite3 db test.db
do_test wal-15.1 {
execsql {
PRAGMA auto_vacuum = 0;
PRAGMA page_size = 1024;
PRAGMA journal_mode = WAL;
}
execsql {
CREATE TABLE t1(a, b);
INSERT INTO t1 VALUES(1, 2);
}
} {}
# Test that an error is returned if the database name is not recognized
#
do_test wal-15.2.1 {
sqlite3_wal_checkpoint db aux
} {SQLITE_ERROR}
do_test wal-15.2.2 {
sqlite3_errcode db
} {SQLITE_ERROR}
do_test wal-15.2.3 {
sqlite3_errmsg db
} {unknown database: aux}
# Test that an error is returned if an attempt is made to checkpoint
# if a transaction is open on the database.
#
do_test wal-15.3.1 {
execsql {
BEGIN;
INSERT INTO t1 VALUES(3, 4);
}
sqlite3_wal_checkpoint db main
} {SQLITE_LOCKED}
do_test wal-15.3.2 {
sqlite3_errcode db
} {SQLITE_LOCKED}
do_test wal-15.3.3 {
sqlite3_errmsg db
} {database table is locked}
# Earlier versions returned an error is returned if the db cannot be
# checkpointed because of locks held by another connection. Check that
# this is no longer the case.
#
sqlite3 db2 test.db
do_test wal-15.4.1 {
execsql {
BEGIN;
SELECT * FROM t1;
} db2
} {1 2}
do_test wal-15.4.2 {
execsql { COMMIT }
sqlite3_wal_checkpoint db
} {SQLITE_OK}
do_test wal-15.4.3 {
sqlite3_errmsg db
} {not an error}
# After [db2] drops its lock, [db] may checkpoint the db.
#
do_test wal-15.4.4 {
execsql { COMMIT } db2
sqlite3_wal_checkpoint db
} {SQLITE_OK}
do_test wal-15.4.5 {
sqlite3_errmsg db
} {not an error}
do_test wal-15.4.6 {
file size test.db
} [expr 1024*2]
catch { db2 close }
catch { db close }
#-------------------------------------------------------------------------
# The following block of tests - wal-16.* - test that if a NULL pointer or
# an empty string is passed as the second argument of the wal_checkpoint()
# API, an attempt is made to checkpoint all attached databases.
#
foreach {tn ckpt_cmd ckpt_res ckpt_main ckpt_aux} {
1 {sqlite3_wal_checkpoint db} SQLITE_OK 1 1
2 {sqlite3_wal_checkpoint db ""} SQLITE_OK 1 1
3 {db eval "PRAGMA wal_checkpoint"} {0 10 10} 1 1
4 {sqlite3_wal_checkpoint db main} SQLITE_OK 1 0
5 {sqlite3_wal_checkpoint db aux} SQLITE_OK 0 1
6 {sqlite3_wal_checkpoint db temp} SQLITE_OK 0 0
7 {db eval "PRAGMA main.wal_checkpoint"} {0 10 10} 1 0
8 {db eval "PRAGMA aux.wal_checkpoint"} {0 13 13} 0 1
9 {db eval "PRAGMA temp.wal_checkpoint"} {0 -1 -1} 0 0
} {
do_test wal-16.$tn.1 {
forcedelete test2.db test2.db-wal test2.db-journal
forcedelete test.db test.db-wal test.db-journal
sqlite3 db test.db
execsql {
ATTACH 'test2.db' AS aux;
PRAGMA main.auto_vacuum = 0;
PRAGMA aux.auto_vacuum = 0;
PRAGMA main.journal_mode = WAL;
PRAGMA aux.journal_mode = WAL;
PRAGMA main.synchronous = NORMAL;
PRAGMA aux.synchronous = NORMAL;
}
} {wal wal}
do_test wal-16.$tn.2 {
execsql {
CREATE TABLE main.t1(a, b, PRIMARY KEY(a, b));
CREATE TABLE aux.t2(a, b, PRIMARY KEY(a, b));
INSERT INTO t2 VALUES(1, randomblob(1000));
INSERT INTO t2 VALUES(2, randomblob(1000));
INSERT INTO t1 SELECT * FROM t2;
}
list [file size test.db] [file size test.db-wal]
} [list [expr 1*1024] [wal_file_size 10 1024]]
do_test wal-16.$tn.3 {
list [file size test2.db] [file size test2.db-wal]
} [list [expr 1*1024] [wal_file_size 13 1024]]
do_test wal-16.$tn.4 [list eval $ckpt_cmd] $ckpt_res
do_test wal-16.$tn.5 {
list [file size test.db] [file size test.db-wal]
} [list [expr ($ckpt_main ? 7 : 1)*1024] [wal_file_size 10 1024]]
do_test wal-16.$tn.6 {
list [file size test2.db] [file size test2.db-wal]
} [list [expr ($ckpt_aux ? 7 : 1)*1024] [wal_file_size 13 1024]]
catch { db close }
}
#-------------------------------------------------------------------------
# The following tests - wal-17.* - attempt to verify that the correct
# number of "padding" frames are appended to the log file when a transaction
# is committed in synchronous=FULL mode.
#
# Do this by creating a database that uses 512 byte pages. Then writing
# a transaction that modifies 171 pages. In synchronous=NORMAL mode, this
# produces a log file of:
#
# 32 + (24+512)*171 = 90312 bytes.
#
# Slightly larger than 11*8192 = 90112 bytes.
#
# Run the test using various different sector-sizes. In each case, the
# WAL code should write the 90300 bytes of log file containing the
# transaction, then append as may frames as are required to extend the
# log file so that no part of the next transaction will be written into
# a disk-sector used by transaction just committed.
#
set old_pending_byte [sqlite3_test_control_pending_byte 0x10000000]
catch { db close }
foreach {tn sectorsize logsize} "
1 128 [wal_file_size 172 512]
2 256 [wal_file_size 172 512]
3 512 [wal_file_size 172 512]
4 1024 [wal_file_size 172 512]
5 2048 [wal_file_size 172 512]
6 4096 [wal_file_size 176 512]
7 8192 [wal_file_size 184 512]
" {
forcedelete test.db test.db-wal test.db-journal
sqlite3_simulate_device -sectorsize $sectorsize
sqlite3 db test.db -vfs devsym
do_test wal-17.$tn.1 {
execsql {
PRAGMA auto_vacuum = 0;
PRAGMA page_size = 512;
PRAGMA cache_size = -2000;
PRAGMA journal_mode = WAL;
PRAGMA synchronous = FULL;
}
execsql {
BEGIN;
CREATE TABLE t(x);
}
for {set i 0} {$i<166} {incr i} {
execsql { INSERT INTO t VALUES(randomblob(400)) }
}
execsql COMMIT
file size test.db-wal
} $logsize
do_test wal-17.$tn.2 {
file size test.db
} 512
do_test wal-17.$tn.3 {
db close
file size test.db
} [expr 512*171]
}
sqlite3_test_control_pending_byte $old_pending_byte
#-------------------------------------------------------------------------
# This test - wal-18.* - verifies a couple of specific conditions that
# may be encountered while recovering a log file are handled correctly:
#
# wal-18.1.* When the first 32-bits of a frame checksum is correct but
# the second 32-bits are false, and
#
# wal-18.2.* When the page-size field that occurs at the start of a log
# file is a power of 2 greater than 16384 or smaller than 512.
#
forcedelete test.db test.db-wal test.db-journal
do_test wal-18.0 {
sqlite3 db test.db
execsql {
PRAGMA page_size = 1024;
PRAGMA auto_vacuum = 0;
PRAGMA journal_mode = WAL;
PRAGMA synchronous = OFF;
CREATE TABLE t1(a, b, UNIQUE(a, b));
INSERT INTO t1 VALUES(0, 0);
PRAGMA wal_checkpoint;
INSERT INTO t1 VALUES(1, 2); -- frames 1 and 2
INSERT INTO t1 VALUES(3, 4); -- frames 3 and 4
INSERT INTO t1 VALUES(5, 6); -- frames 5 and 6
}
forcecopy test.db testX.db
forcecopy test.db-wal testX.db-wal
db close
list [file size testX.db] [file size testX.db-wal]
} [list [expr 3*1024] [wal_file_size 6 1024]]
unset -nocomplain nFrame result
foreach {nFrame result} {
0 {0 0}
1 {0 0}
2 {0 0 1 2}
3 {0 0 1 2}
4 {0 0 1 2 3 4}
5 {0 0 1 2 3 4}
6 {0 0 1 2 3 4 5 6}
} {
do_test wal-18.1.$nFrame {
forcecopy testX.db test.db
forcecopy testX.db-wal test.db-wal
hexio_write test.db-wal [expr 24 + $nFrame*(24+1024) + 20] 00000000
sqlite3 db test.db
execsql {
SELECT * FROM t1;
PRAGMA integrity_check;
}
} [concat $result ok]
db close
}
proc randomblob {pgsz} {
sqlite3 rbdb :memory:
set blob [rbdb one {SELECT randomblob($pgsz)}]
rbdb close
set blob
}
proc logcksum {ckv1 ckv2 blob} {
upvar $ckv1 c1
upvar $ckv2 c2
# Since the magic number at the start of the -wal file header is
# 931071618 that indicates that the content should always be read as
# little-endian.
#
set scanpattern i*
binary scan $blob $scanpattern values
foreach {v1 v2} $values {
set c1 [expr {($c1 + $v1 + $c2)&0xFFFFFFFF}]
set c2 [expr {($c2 + $v2 + $c1)&0xFFFFFFFF}]
}
}
forcecopy test.db testX.db
foreach {tn pgsz works} {
1 128 0
2 256 0
3 512 1
4 1024 1
5 2048 1
6 4096 1
7 8192 1
8 16384 1
9 32768 1
10 65536 1
11 131072 0
11 1016 0
} {
if {$::SQLITE_MAX_PAGE_SIZE < $pgsz} {
set works 0
}
for {set pg 1} {$pg <= 3} {incr pg} {
forcecopy testX.db test.db
forcedelete test.db-wal
# Check that the database now exists and consists of three pages. And
# that there is no associated wal file.
#
do_test wal-18.2.$tn.$pg.1 { file exists test.db-wal } 0
do_test wal-18.2.$tn.$pg.2 { file exists test.db } 1
do_test wal-18.2.$tn.$pg.3 { file size test.db } [expr 1024*3]
do_test wal-18.2.$tn.$pg.4 {
# Create a wal file that contains a single frame (database page
# number $pg) with the commit flag set. The frame checksum is
# correct, but the contents of the database page are corrupt.
#
# The page-size in the log file header is set to $pgsz. If the
# WAL code considers $pgsz to be a valid SQLite database file page-size,
# the database will be corrupt (because the garbage frame contents
# will be treated as valid content). If $pgsz is invalid (too small
# or too large), the db will not be corrupt as the log file will
# be ignored.
#
set walhdr [binary format IIIIII 931071618 3007000 $pgsz 1234 22 23]
set framebody [randomblob $pgsz]
set framehdr [binary format IIII $pg 5 22 23]
set c1 0
set c2 0
logcksum c1 c2 $walhdr
append walhdr [binary format II $c1 $c2]
logcksum c1 c2 [string range $framehdr 0 7]
logcksum c1 c2 $framebody
set framehdr [binary format IIIIII $pg 5 22 23 $c1 $c2]
set fd [open test.db-wal w]
fconfigure $fd -encoding binary -translation binary
puts -nonewline $fd $walhdr
puts -nonewline $fd $framehdr
puts -nonewline $fd $framebody
close $fd
file size test.db-wal
} [wal_file_size 1 $pgsz]
do_test wal-18.2.$tn.$pg.5 {
sqlite3 db test.db
set rc [catch { db one {PRAGMA integrity_check} } msg]
expr { $rc!=0 || $msg!="ok" }
} $works
db close
}
}
#-------------------------------------------------------------------------
# The following test - wal-19.* - fixes a bug that was present during
# development.
#
# When a database connection in WAL mode is closed, it attempts an
# EXCLUSIVE lock on the database file. If the lock is obtained, the
# connection knows that it is the last connection to disconnect from
# the database, so it runs a checkpoint operation. The bug was that
# the connection was not updating its private copy of the wal-index
# header before doing so, meaning that it could checkpoint an old
# snapshot.
#
do_test wal-19.1 {
forcedelete test.db test.db-wal test.db-journal
sqlite3 db test.db
sqlite3 db2 test.db
execsql {
PRAGMA journal_mode = WAL;
CREATE TABLE t1(a, b);
INSERT INTO t1 VALUES(1, 2);
INSERT INTO t1 VALUES(3, 4);
}
execsql { SELECT * FROM t1 } db2
} {1 2 3 4}
do_test wal-19.2 {
execsql {
INSERT INTO t1 VALUES(5, 6);
SELECT * FROM t1;
}
} {1 2 3 4 5 6}
do_test wal-19.3 {
db close
db2 close
file exists test.db-wal
} {0}
do_test wal-19.4 {
# When the bug was present, the following was returning {1 2 3 4} only,
# as [db2] had an out-of-date copy of the wal-index header when it was
# closed.
#
sqlite3 db test.db
execsql { SELECT * FROM t1 }
} {1 2 3 4 5 6}
#-------------------------------------------------------------------------
# This test - wal-20.* - uses two connections. One in this process and
# the other in an external process. The procedure is:
#
# 1. Using connection 1, create the database schema.
#
# 2. Using connection 2 (in an external process), add so much
# data to the database without checkpointing that a wal-index
# larger than 64KB is required.
#
# 3. Using connection 1, checkpoint the database. Make sure all
# the data is present and the database is not corrupt.
#
# At one point, SQLite was failing to grow the mapping of the wal-index
# file in step 3 and the checkpoint was corrupting the database file.
#
do_test wal-20.1 {
catch {db close}
forcedelete test.db test.db-wal test.db-journal
sqlite3 db test.db
execsql {
PRAGMA journal_mode = WAL;
CREATE TABLE t1(x);
INSERT INTO t1 VALUES(randomblob(900));
SELECT count(*) FROM t1;
}
} {wal 1}
do_test wal-20.2 {
set ::buddy [launch_testfixture]
testfixture $::buddy {
sqlite3 db test.db
db transaction { db eval {
PRAGMA wal_autocheckpoint = 0;
INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 2 */
INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 4 */
INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 8 */
INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 16 */
INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 32 */
INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 64 */
INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 128 */
INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 256 */
INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 512 */
INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 1024 */
INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 2048 */
INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 4096 */
INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 8192 */
INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 16384 */
} }
}
} {0}
do_test wal-20.3 {
close $::buddy
execsql { PRAGMA wal_checkpoint }
execsql { SELECT count(*) FROM t1 }
} {16384}
do_test wal-20.4 {
db close
sqlite3 db test.db
execsql { SELECT count(*) FROM t1 }
} {16384}
integrity_check wal-20.5
catch { db2 close }
catch { db close }
do_test wal-21.1 {
faultsim_delete_and_reopen
execsql {
PRAGMA journal_mode = WAL;
CREATE TABLE t1(a, b);
INSERT INTO t1 VALUES(1, 2);
INSERT INTO t1 VALUES(3, 4);
INSERT INTO t1 VALUES(5, 6);
INSERT INTO t1 VALUES(7, 8);
INSERT INTO t1 VALUES(9, 10);
INSERT INTO t1 VALUES(11, 12);
}
} {wal}
do_test wal-21.2 {
execsql {
PRAGMA cache_size = 10;
PRAGMA wal_checkpoint;
BEGIN;
SAVEPOINT s;
INSERT INTO t1 SELECT randomblob(900), randomblob(900) FROM t1;
ROLLBACK TO s;
COMMIT;
}
execsql { SELECT * FROM t1 }
} {1 2 3 4 5 6 7 8 9 10 11 12}
do_test wal-21.3 {
execsql { PRAGMA integrity_check }
} {ok}
#-------------------------------------------------------------------------
# Test reading and writing of databases with different page-sizes.
#
foreach pgsz {512 1024 2048 4096 8192 16384 32768 65536} {
do_multiclient_test tn [string map [list %PGSZ% $pgsz] {
do_test wal-22.%PGSZ%.$tn.1 {
sql1 {
PRAGMA main.page_size = %PGSZ%;
PRAGMA auto_vacuum = 0;
PRAGMA journal_mode = WAL;
CREATE TABLE t1(x UNIQUE);
INSERT INTO t1 SELECT randomblob(800);
INSERT INTO t1 SELECT randomblob(800);
INSERT INTO t1 SELECT randomblob(800);
}
} {wal}
do_test wal-22.%PGSZ%.$tn.2 { sql2 { PRAGMA integrity_check } } {ok}
do_test wal-22.%PGSZ%.$tn.3 {
sql1 {PRAGMA wal_checkpoint}
expr {[file size test.db] % %PGSZ%}
} {0}
}]
}
#-------------------------------------------------------------------------
# Test that when 1 or more pages are recovered from a WAL file,
# sqlite3_log() is invoked to report this to the user.
#
ifcapable curdir {
set walfile [file nativename [file join [get_pwd] test.db-wal]]
} else {
set walfile test.db-wal
}
catch {db close}
forcedelete test.db
do_test wal-23.1 {
faultsim_delete_and_reopen
execsql {
CREATE TABLE t1(a, b);
PRAGMA journal_mode = WAL;
INSERT INTO t1 VALUES(1, 2);
INSERT INTO t1 VALUES(3, 4);
}
faultsim_save_and_close
sqlite3_shutdown
test_sqlite3_log [list lappend ::log]
set ::log [list]
sqlite3 db test.db
execsql { SELECT * FROM t1 }
} {1 2 3 4}
do_test wal-23.2 { set ::log } {}
do_test wal-23.3 {
db close
set ::log [list]
faultsim_restore_and_reopen
execsql { SELECT * FROM t1 }
} {1 2 3 4}
set nPage [expr 2+$AUTOVACUUM]
do_test wal-23.4 {
set ::log
} [list SQLITE_OK "Recovered $nPage frames from WAL file $walfile"]
ifcapable autovacuum {
# This block tests that if the size of a database is reduced by a
# transaction (because of an incremental or auto-vacuum), that no
# data is written to the WAL file for the truncated pages as part
# of the commit. e.g. if a transaction reduces the size of a database
# to N pages, data for page N+1 should not be written to the WAL file
# when committing the transaction. At one point such data was being
# written.
#
catch {db close}
forcedelete test.db
sqlite3 db test.db
do_execsql_test 24.1 {
PRAGMA auto_vacuum = 2;
PRAGMA journal_mode = WAL;
PRAGMA page_size = 1024;
CREATE TABLE t1(x);
INSERT INTO t1 VALUES(randomblob(5000));
INSERT INTO t1 SELECT * FROM t1;
INSERT INTO t1 SELECT * FROM t1;
INSERT INTO t1 SELECT * FROM t1;
INSERT INTO t1 SELECT * FROM t1;
} {wal}
do_test 24.2 {
execsql {
DELETE FROM t1;
PRAGMA wal_checkpoint;
}
db close
sqlite3 db test.db
file exists test.db-wal
} 0
do_test 24.3 {
file size test.db
} [expr 84 * 1024]
do_test 24.4 {
execsql {
PRAGMA cache_size = 200;
PRAGMA incremental_vacuum;
PRAGMA wal_checkpoint;
}
file size test.db
} [expr 3 * 1024]
# WAL file now contains a single frame - the new root page for table t1.
# It would be two frames (the new root page and a padding frame) if the
# ZERO_DAMAGE flag were not set.
do_test 24.5 {
file size test.db-wal
} [wal_file_size 1 1024]
}
db close
sqlite3_shutdown
test_sqlite3_log
sqlite3_initialize
finish_test