7617e4a8a4
FossilOrigin-Name: f2f1323cc4d2ad2d6794dbfae8d50b747213e85d
512 lines
16 KiB
C
512 lines
16 KiB
C
/*
|
|
** 2010 August 28
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** Code for testing all sorts of SQLite interfaces. This code
|
|
** is not included in the SQLite library.
|
|
*/
|
|
|
|
#include "sqlite3.h"
|
|
#if defined(INCLUDE_SQLITE_TCL_H)
|
|
# include "sqlite_tcl.h"
|
|
#else
|
|
# include "tcl.h"
|
|
#endif
|
|
|
|
/* Solely for the UNUSED_PARAMETER() macro. */
|
|
#include "sqliteInt.h"
|
|
|
|
#ifdef SQLITE_ENABLE_RTREE
|
|
/*
|
|
** Type used to cache parameter information for the "circle" r-tree geometry
|
|
** callback.
|
|
*/
|
|
typedef struct Circle Circle;
|
|
struct Circle {
|
|
struct Box {
|
|
double xmin;
|
|
double xmax;
|
|
double ymin;
|
|
double ymax;
|
|
} aBox[2];
|
|
double centerx;
|
|
double centery;
|
|
double radius;
|
|
double mxArea;
|
|
int eScoreType;
|
|
};
|
|
|
|
/*
|
|
** Destructor function for Circle objects allocated by circle_geom().
|
|
*/
|
|
static void circle_del(void *p){
|
|
sqlite3_free(p);
|
|
}
|
|
|
|
/*
|
|
** Implementation of "circle" r-tree geometry callback.
|
|
*/
|
|
static int circle_geom(
|
|
sqlite3_rtree_geometry *p,
|
|
int nCoord,
|
|
sqlite3_rtree_dbl *aCoord,
|
|
int *pRes
|
|
){
|
|
int i; /* Iterator variable */
|
|
Circle *pCircle; /* Structure defining circular region */
|
|
double xmin, xmax; /* X dimensions of box being tested */
|
|
double ymin, ymax; /* X dimensions of box being tested */
|
|
|
|
xmin = aCoord[0];
|
|
xmax = aCoord[1];
|
|
ymin = aCoord[2];
|
|
ymax = aCoord[3];
|
|
pCircle = (Circle *)p->pUser;
|
|
if( pCircle==0 ){
|
|
/* If pUser is still 0, then the parameter values have not been tested
|
|
** for correctness or stored into a Circle structure yet. Do this now. */
|
|
|
|
/* This geometry callback is for use with a 2-dimensional r-tree table.
|
|
** Return an error if the table does not have exactly 2 dimensions. */
|
|
if( nCoord!=4 ) return SQLITE_ERROR;
|
|
|
|
/* Test that the correct number of parameters (3) have been supplied,
|
|
** and that the parameters are in range (that the radius of the circle
|
|
** radius is greater than zero). */
|
|
if( p->nParam!=3 || p->aParam[2]<0.0 ) return SQLITE_ERROR;
|
|
|
|
/* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM
|
|
** if the allocation fails. */
|
|
pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle)));
|
|
if( !pCircle ) return SQLITE_NOMEM;
|
|
p->xDelUser = circle_del;
|
|
|
|
/* Record the center and radius of the circular region. One way that
|
|
** tested bounding boxes that intersect the circular region are detected
|
|
** is by testing if each corner of the bounding box lies within radius
|
|
** units of the center of the circle. */
|
|
pCircle->centerx = p->aParam[0];
|
|
pCircle->centery = p->aParam[1];
|
|
pCircle->radius = p->aParam[2];
|
|
|
|
/* Define two bounding box regions. The first, aBox[0], extends to
|
|
** infinity in the X dimension. It covers the same range of the Y dimension
|
|
** as the circular region. The second, aBox[1], extends to infinity in
|
|
** the Y dimension and is constrained to the range of the circle in the
|
|
** X dimension.
|
|
**
|
|
** Then imagine each box is split in half along its short axis by a line
|
|
** that intersects the center of the circular region. A bounding box
|
|
** being tested can be said to intersect the circular region if it contains
|
|
** points from each half of either of the two infinite bounding boxes.
|
|
*/
|
|
pCircle->aBox[0].xmin = pCircle->centerx;
|
|
pCircle->aBox[0].xmax = pCircle->centerx;
|
|
pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius;
|
|
pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius;
|
|
pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius;
|
|
pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius;
|
|
pCircle->aBox[1].ymin = pCircle->centery;
|
|
pCircle->aBox[1].ymax = pCircle->centery;
|
|
pCircle->mxArea = (xmax - xmin)*(ymax - ymin) + 1.0;
|
|
}
|
|
|
|
/* Check if any of the 4 corners of the bounding-box being tested lie
|
|
** inside the circular region. If they do, then the bounding-box does
|
|
** intersect the region of interest. Set the output variable to true and
|
|
** return SQLITE_OK in this case. */
|
|
for(i=0; i<4; i++){
|
|
double x = (i&0x01) ? xmax : xmin;
|
|
double y = (i&0x02) ? ymax : ymin;
|
|
double d2;
|
|
|
|
d2 = (x-pCircle->centerx)*(x-pCircle->centerx);
|
|
d2 += (y-pCircle->centery)*(y-pCircle->centery);
|
|
if( d2<(pCircle->radius*pCircle->radius) ){
|
|
*pRes = 1;
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
|
|
/* Check if the bounding box covers any other part of the circular region.
|
|
** See comments above for a description of how this test works. If it does
|
|
** cover part of the circular region, set the output variable to true
|
|
** and return SQLITE_OK. */
|
|
for(i=0; i<2; i++){
|
|
if( xmin<=pCircle->aBox[i].xmin
|
|
&& xmax>=pCircle->aBox[i].xmax
|
|
&& ymin<=pCircle->aBox[i].ymin
|
|
&& ymax>=pCircle->aBox[i].ymax
|
|
){
|
|
*pRes = 1;
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
|
|
/* The specified bounding box does not intersect the circular region. Set
|
|
** the output variable to zero and return SQLITE_OK. */
|
|
*pRes = 0;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Implementation of "circle" r-tree geometry callback using the
|
|
** 2nd-generation interface that allows scoring.
|
|
**
|
|
** Two calling forms:
|
|
**
|
|
** Qcircle(X,Y,Radius,eType) -- All values are doubles
|
|
** Qcircle('x:X y:Y r:R e:ETYPE') -- Single string parameter
|
|
*/
|
|
static int circle_query_func(sqlite3_rtree_query_info *p){
|
|
int i; /* Iterator variable */
|
|
Circle *pCircle; /* Structure defining circular region */
|
|
double xmin, xmax; /* X dimensions of box being tested */
|
|
double ymin, ymax; /* X dimensions of box being tested */
|
|
int nWithin = 0; /* Number of corners inside the circle */
|
|
|
|
xmin = p->aCoord[0];
|
|
xmax = p->aCoord[1];
|
|
ymin = p->aCoord[2];
|
|
ymax = p->aCoord[3];
|
|
pCircle = (Circle *)p->pUser;
|
|
if( pCircle==0 ){
|
|
/* If pUser is still 0, then the parameter values have not been tested
|
|
** for correctness or stored into a Circle structure yet. Do this now. */
|
|
|
|
/* This geometry callback is for use with a 2-dimensional r-tree table.
|
|
** Return an error if the table does not have exactly 2 dimensions. */
|
|
if( p->nCoord!=4 ) return SQLITE_ERROR;
|
|
|
|
/* Test that the correct number of parameters (1 or 4) have been supplied.
|
|
*/
|
|
if( p->nParam!=4 && p->nParam!=1 ) return SQLITE_ERROR;
|
|
|
|
/* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM
|
|
** if the allocation fails. */
|
|
pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle)));
|
|
if( !pCircle ) return SQLITE_NOMEM;
|
|
p->xDelUser = circle_del;
|
|
|
|
/* Record the center and radius of the circular region. One way that
|
|
** tested bounding boxes that intersect the circular region are detected
|
|
** is by testing if each corner of the bounding box lies within radius
|
|
** units of the center of the circle. */
|
|
if( p->nParam==4 ){
|
|
pCircle->centerx = p->aParam[0];
|
|
pCircle->centery = p->aParam[1];
|
|
pCircle->radius = p->aParam[2];
|
|
pCircle->eScoreType = (int)p->aParam[3];
|
|
}else{
|
|
const char *z = (const char*)sqlite3_value_text(p->apSqlParam[0]);
|
|
pCircle->centerx = 0.0;
|
|
pCircle->centery = 0.0;
|
|
pCircle->radius = 0.0;
|
|
pCircle->eScoreType = 0;
|
|
while( z && z[0] ){
|
|
if( z[0]=='r' && z[1]==':' ){
|
|
pCircle->radius = atof(&z[2]);
|
|
}else if( z[0]=='x' && z[1]==':' ){
|
|
pCircle->centerx = atof(&z[2]);
|
|
}else if( z[0]=='y' && z[1]==':' ){
|
|
pCircle->centery = atof(&z[2]);
|
|
}else if( z[0]=='e' && z[1]==':' ){
|
|
pCircle->eScoreType = (int)atof(&z[2]);
|
|
}else if( z[0]==' ' ){
|
|
z++;
|
|
continue;
|
|
}
|
|
while( z[0]!=0 && z[0]!=' ' ) z++;
|
|
while( z[0]==' ' ) z++;
|
|
}
|
|
}
|
|
if( pCircle->radius<0.0 ){
|
|
sqlite3_free(pCircle);
|
|
return SQLITE_NOMEM;
|
|
}
|
|
|
|
/* Define two bounding box regions. The first, aBox[0], extends to
|
|
** infinity in the X dimension. It covers the same range of the Y dimension
|
|
** as the circular region. The second, aBox[1], extends to infinity in
|
|
** the Y dimension and is constrained to the range of the circle in the
|
|
** X dimension.
|
|
**
|
|
** Then imagine each box is split in half along its short axis by a line
|
|
** that intersects the center of the circular region. A bounding box
|
|
** being tested can be said to intersect the circular region if it contains
|
|
** points from each half of either of the two infinite bounding boxes.
|
|
*/
|
|
pCircle->aBox[0].xmin = pCircle->centerx;
|
|
pCircle->aBox[0].xmax = pCircle->centerx;
|
|
pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius;
|
|
pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius;
|
|
pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius;
|
|
pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius;
|
|
pCircle->aBox[1].ymin = pCircle->centery;
|
|
pCircle->aBox[1].ymax = pCircle->centery;
|
|
pCircle->mxArea = 200.0*200.0;
|
|
}
|
|
|
|
/* Check if any of the 4 corners of the bounding-box being tested lie
|
|
** inside the circular region. If they do, then the bounding-box does
|
|
** intersect the region of interest. Set the output variable to true and
|
|
** return SQLITE_OK in this case. */
|
|
for(i=0; i<4; i++){
|
|
double x = (i&0x01) ? xmax : xmin;
|
|
double y = (i&0x02) ? ymax : ymin;
|
|
double d2;
|
|
|
|
d2 = (x-pCircle->centerx)*(x-pCircle->centerx);
|
|
d2 += (y-pCircle->centery)*(y-pCircle->centery);
|
|
if( d2<(pCircle->radius*pCircle->radius) ) nWithin++;
|
|
}
|
|
|
|
/* Check if the bounding box covers any other part of the circular region.
|
|
** See comments above for a description of how this test works. If it does
|
|
** cover part of the circular region, set the output variable to true
|
|
** and return SQLITE_OK. */
|
|
if( nWithin==0 ){
|
|
for(i=0; i<2; i++){
|
|
if( xmin<=pCircle->aBox[i].xmin
|
|
&& xmax>=pCircle->aBox[i].xmax
|
|
&& ymin<=pCircle->aBox[i].ymin
|
|
&& ymax>=pCircle->aBox[i].ymax
|
|
){
|
|
nWithin = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( pCircle->eScoreType==1 ){
|
|
/* Depth first search */
|
|
p->rScore = p->iLevel;
|
|
}else if( pCircle->eScoreType==2 ){
|
|
/* Breadth first search */
|
|
p->rScore = 100 - p->iLevel;
|
|
}else if( pCircle->eScoreType==3 ){
|
|
/* Depth-first search, except sort the leaf nodes by area with
|
|
** the largest area first */
|
|
if( p->iLevel==1 ){
|
|
p->rScore = 1.0 - (xmax-xmin)*(ymax-ymin)/pCircle->mxArea;
|
|
if( p->rScore<0.01 ) p->rScore = 0.01;
|
|
}else{
|
|
p->rScore = 0.0;
|
|
}
|
|
}else if( pCircle->eScoreType==4 ){
|
|
/* Depth-first search, except exclude odd rowids */
|
|
p->rScore = p->iLevel;
|
|
if( p->iRowid&1 ) nWithin = 0;
|
|
}else{
|
|
/* Breadth-first search, except exclude odd rowids */
|
|
p->rScore = 100 - p->iLevel;
|
|
if( p->iRowid&1 ) nWithin = 0;
|
|
}
|
|
if( nWithin==0 ){
|
|
p->eWithin = NOT_WITHIN;
|
|
}else if( nWithin>=4 ){
|
|
p->eWithin = FULLY_WITHIN;
|
|
}else{
|
|
p->eWithin = PARTLY_WITHIN;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
/*
|
|
** Implementation of "breadthfirstsearch" r-tree geometry callback using the
|
|
** 2nd-generation interface that allows scoring.
|
|
**
|
|
** ... WHERE id MATCH breadthfirstsearch($x0,$x1,$y0,$y1) ...
|
|
**
|
|
** It returns all entries whose bounding boxes overlap with $x0,$x1,$y0,$y1.
|
|
*/
|
|
static int bfs_query_func(sqlite3_rtree_query_info *p){
|
|
double x0,x1,y0,y1; /* Dimensions of box being tested */
|
|
double bx0,bx1,by0,by1; /* Boundary of the query function */
|
|
|
|
if( p->nParam!=4 ) return SQLITE_ERROR;
|
|
x0 = p->aCoord[0];
|
|
x1 = p->aCoord[1];
|
|
y0 = p->aCoord[2];
|
|
y1 = p->aCoord[3];
|
|
bx0 = p->aParam[0];
|
|
bx1 = p->aParam[1];
|
|
by0 = p->aParam[2];
|
|
by1 = p->aParam[3];
|
|
p->rScore = 100 - p->iLevel;
|
|
if( p->eParentWithin==FULLY_WITHIN ){
|
|
p->eWithin = FULLY_WITHIN;
|
|
}else if( x0>=bx0 && x1<=bx1 && y0>=by0 && y1<=by1 ){
|
|
p->eWithin = FULLY_WITHIN;
|
|
}else if( x1>=bx0 && x0<=bx1 && y1>=by0 && y0<=by1 ){
|
|
p->eWithin = PARTLY_WITHIN;
|
|
}else{
|
|
p->eWithin = NOT_WITHIN;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* END of implementation of "circle" geometry callback.
|
|
**************************************************************************
|
|
*************************************************************************/
|
|
|
|
#include <assert.h>
|
|
#if defined(INCLUDE_SQLITE_TCL_H)
|
|
# include "sqlite_tcl.h"
|
|
#else
|
|
# include "tcl.h"
|
|
#endif
|
|
|
|
typedef struct Cube Cube;
|
|
struct Cube {
|
|
double x;
|
|
double y;
|
|
double z;
|
|
double width;
|
|
double height;
|
|
double depth;
|
|
};
|
|
|
|
static void cube_context_free(void *p){
|
|
sqlite3_free(p);
|
|
}
|
|
|
|
/*
|
|
** The context pointer registered along with the 'cube' callback is
|
|
** always ((void *)&gHere). This is just to facilitate testing, it is not
|
|
** actually used for anything.
|
|
*/
|
|
static int gHere = 42;
|
|
|
|
/*
|
|
** Implementation of a simple r-tree geom callback to test for intersection
|
|
** of r-tree rows with a "cube" shape. Cubes are defined by six scalar
|
|
** coordinates as follows:
|
|
**
|
|
** cube(x, y, z, width, height, depth)
|
|
**
|
|
** The width, height and depth parameters must all be greater than zero.
|
|
*/
|
|
static int cube_geom(
|
|
sqlite3_rtree_geometry *p,
|
|
int nCoord,
|
|
sqlite3_rtree_dbl *aCoord,
|
|
int *piRes
|
|
){
|
|
Cube *pCube = (Cube *)p->pUser;
|
|
|
|
assert( p->pContext==(void *)&gHere );
|
|
|
|
if( pCube==0 ){
|
|
if( p->nParam!=6 || nCoord!=6
|
|
|| p->aParam[3]<=0.0 || p->aParam[4]<=0.0 || p->aParam[5]<=0.0
|
|
){
|
|
return SQLITE_ERROR;
|
|
}
|
|
pCube = (Cube *)sqlite3_malloc(sizeof(Cube));
|
|
if( !pCube ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
pCube->x = p->aParam[0];
|
|
pCube->y = p->aParam[1];
|
|
pCube->z = p->aParam[2];
|
|
pCube->width = p->aParam[3];
|
|
pCube->height = p->aParam[4];
|
|
pCube->depth = p->aParam[5];
|
|
|
|
p->pUser = (void *)pCube;
|
|
p->xDelUser = cube_context_free;
|
|
}
|
|
|
|
assert( nCoord==6 );
|
|
*piRes = 0;
|
|
if( aCoord[0]<=(pCube->x+pCube->width)
|
|
&& aCoord[1]>=pCube->x
|
|
&& aCoord[2]<=(pCube->y+pCube->height)
|
|
&& aCoord[3]>=pCube->y
|
|
&& aCoord[4]<=(pCube->z+pCube->depth)
|
|
&& aCoord[5]>=pCube->z
|
|
){
|
|
*piRes = 1;
|
|
}
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
#endif /* SQLITE_ENABLE_RTREE */
|
|
|
|
static int SQLITE_TCLAPI register_cube_geom(
|
|
void * clientData,
|
|
Tcl_Interp *interp,
|
|
int objc,
|
|
Tcl_Obj *CONST objv[]
|
|
){
|
|
#ifndef SQLITE_ENABLE_RTREE
|
|
UNUSED_PARAMETER(clientData);
|
|
UNUSED_PARAMETER(interp);
|
|
UNUSED_PARAMETER(objc);
|
|
UNUSED_PARAMETER(objv);
|
|
#else
|
|
extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**);
|
|
extern const char *sqlite3ErrName(int);
|
|
sqlite3 *db;
|
|
int rc;
|
|
|
|
if( objc!=2 ){
|
|
Tcl_WrongNumArgs(interp, 1, objv, "DB");
|
|
return TCL_ERROR;
|
|
}
|
|
if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
|
|
rc = sqlite3_rtree_geometry_callback(db, "cube", cube_geom, (void *)&gHere);
|
|
Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC);
|
|
#endif
|
|
return TCL_OK;
|
|
}
|
|
|
|
static int SQLITE_TCLAPI register_circle_geom(
|
|
void * clientData,
|
|
Tcl_Interp *interp,
|
|
int objc,
|
|
Tcl_Obj *CONST objv[]
|
|
){
|
|
#ifndef SQLITE_ENABLE_RTREE
|
|
UNUSED_PARAMETER(clientData);
|
|
UNUSED_PARAMETER(interp);
|
|
UNUSED_PARAMETER(objc);
|
|
UNUSED_PARAMETER(objv);
|
|
#else
|
|
extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**);
|
|
extern const char *sqlite3ErrName(int);
|
|
sqlite3 *db;
|
|
int rc;
|
|
|
|
if( objc!=2 ){
|
|
Tcl_WrongNumArgs(interp, 1, objv, "DB");
|
|
return TCL_ERROR;
|
|
}
|
|
if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
|
|
rc = sqlite3_rtree_geometry_callback(db, "circle", circle_geom, 0);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3_rtree_query_callback(db, "Qcircle",
|
|
circle_query_func, 0, 0);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3_rtree_query_callback(db, "breadthfirstsearch",
|
|
bfs_query_func, 0, 0);
|
|
}
|
|
Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC);
|
|
#endif
|
|
return TCL_OK;
|
|
}
|
|
|
|
int Sqlitetestrtree_Init(Tcl_Interp *interp){
|
|
Tcl_CreateObjCommand(interp, "register_cube_geom", register_cube_geom, 0, 0);
|
|
Tcl_CreateObjCommand(interp, "register_circle_geom",register_circle_geom,0,0);
|
|
return TCL_OK;
|
|
}
|