![drh](/assets/img/avatar_default.png)
is an index with the appropriate collating sequence and even if the default collating sequence of the column is different. Ticket [4711020446da7d93d99]. FossilOrigin-Name: 9f932655f9eb9fdab16d7deed98b7cad414e0ca6
1372 lines
48 KiB
Plaintext
1372 lines
48 KiB
Plaintext
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains SQLite's grammar for SQL. Process this file
|
|
** using the lemon parser generator to generate C code that runs
|
|
** the parser. Lemon will also generate a header file containing
|
|
** numeric codes for all of the tokens.
|
|
*/
|
|
|
|
// All token codes are small integers with #defines that begin with "TK_"
|
|
%token_prefix TK_
|
|
|
|
// The type of the data attached to each token is Token. This is also the
|
|
// default type for non-terminals.
|
|
//
|
|
%token_type {Token}
|
|
%default_type {Token}
|
|
|
|
// The generated parser function takes a 4th argument as follows:
|
|
%extra_argument {Parse *pParse}
|
|
|
|
// This code runs whenever there is a syntax error
|
|
//
|
|
%syntax_error {
|
|
UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */
|
|
assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */
|
|
sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
|
|
pParse->parseError = 1;
|
|
}
|
|
%stack_overflow {
|
|
UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */
|
|
sqlite3ErrorMsg(pParse, "parser stack overflow");
|
|
pParse->parseError = 1;
|
|
}
|
|
|
|
// The name of the generated procedure that implements the parser
|
|
// is as follows:
|
|
%name sqlite3Parser
|
|
|
|
// The following text is included near the beginning of the C source
|
|
// code file that implements the parser.
|
|
//
|
|
%include {
|
|
#include "sqliteInt.h"
|
|
|
|
/*
|
|
** Disable all error recovery processing in the parser push-down
|
|
** automaton.
|
|
*/
|
|
#define YYNOERRORRECOVERY 1
|
|
|
|
/*
|
|
** Make yytestcase() the same as testcase()
|
|
*/
|
|
#define yytestcase(X) testcase(X)
|
|
|
|
/*
|
|
** An instance of this structure holds information about the
|
|
** LIMIT clause of a SELECT statement.
|
|
*/
|
|
struct LimitVal {
|
|
Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */
|
|
Expr *pOffset; /* The OFFSET expression. NULL if there is none */
|
|
};
|
|
|
|
/*
|
|
** An instance of this structure is used to store the LIKE,
|
|
** GLOB, NOT LIKE, and NOT GLOB operators.
|
|
*/
|
|
struct LikeOp {
|
|
Token eOperator; /* "like" or "glob" or "regexp" */
|
|
int not; /* True if the NOT keyword is present */
|
|
};
|
|
|
|
/*
|
|
** An instance of the following structure describes the event of a
|
|
** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT,
|
|
** TK_DELETE, or TK_INSTEAD. If the event is of the form
|
|
**
|
|
** UPDATE ON (a,b,c)
|
|
**
|
|
** Then the "b" IdList records the list "a,b,c".
|
|
*/
|
|
struct TrigEvent { int a; IdList * b; };
|
|
|
|
/*
|
|
** An instance of this structure holds the ATTACH key and the key type.
|
|
*/
|
|
struct AttachKey { int type; Token key; };
|
|
|
|
} // end %include
|
|
|
|
// Input is a single SQL command
|
|
input ::= cmdlist.
|
|
cmdlist ::= cmdlist ecmd.
|
|
cmdlist ::= ecmd.
|
|
ecmd ::= SEMI.
|
|
ecmd ::= explain cmdx SEMI.
|
|
explain ::= . { sqlite3BeginParse(pParse, 0); }
|
|
%ifndef SQLITE_OMIT_EXPLAIN
|
|
explain ::= EXPLAIN. { sqlite3BeginParse(pParse, 1); }
|
|
explain ::= EXPLAIN QUERY PLAN. { sqlite3BeginParse(pParse, 2); }
|
|
%endif SQLITE_OMIT_EXPLAIN
|
|
cmdx ::= cmd. { sqlite3FinishCoding(pParse); }
|
|
|
|
///////////////////// Begin and end transactions. ////////////////////////////
|
|
//
|
|
|
|
cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);}
|
|
trans_opt ::= .
|
|
trans_opt ::= TRANSACTION.
|
|
trans_opt ::= TRANSACTION nm.
|
|
%type transtype {int}
|
|
transtype(A) ::= . {A = TK_DEFERRED;}
|
|
transtype(A) ::= DEFERRED(X). {A = @X;}
|
|
transtype(A) ::= IMMEDIATE(X). {A = @X;}
|
|
transtype(A) ::= EXCLUSIVE(X). {A = @X;}
|
|
cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);}
|
|
cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);}
|
|
cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);}
|
|
|
|
savepoint_opt ::= SAVEPOINT.
|
|
savepoint_opt ::= .
|
|
cmd ::= SAVEPOINT nm(X). {
|
|
sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X);
|
|
}
|
|
cmd ::= RELEASE savepoint_opt nm(X). {
|
|
sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X);
|
|
}
|
|
cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). {
|
|
sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X);
|
|
}
|
|
|
|
///////////////////// The CREATE TABLE statement ////////////////////////////
|
|
//
|
|
cmd ::= create_table create_table_args.
|
|
create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). {
|
|
sqlite3StartTable(pParse,&Y,&Z,T,0,0,E);
|
|
}
|
|
createkw(A) ::= CREATE(X). {
|
|
pParse->db->lookaside.bEnabled = 0;
|
|
A = X;
|
|
}
|
|
%type ifnotexists {int}
|
|
ifnotexists(A) ::= . {A = 0;}
|
|
ifnotexists(A) ::= IF NOT EXISTS. {A = 1;}
|
|
%type temp {int}
|
|
%ifndef SQLITE_OMIT_TEMPDB
|
|
temp(A) ::= TEMP. {A = 1;}
|
|
%endif SQLITE_OMIT_TEMPDB
|
|
temp(A) ::= . {A = 0;}
|
|
create_table_args ::= LP columnlist conslist_opt(X) RP(Y). {
|
|
sqlite3EndTable(pParse,&X,&Y,0);
|
|
}
|
|
create_table_args ::= AS select(S). {
|
|
sqlite3EndTable(pParse,0,0,S);
|
|
sqlite3SelectDelete(pParse->db, S);
|
|
}
|
|
columnlist ::= columnlist COMMA column.
|
|
columnlist ::= column.
|
|
|
|
// A "column" is a complete description of a single column in a
|
|
// CREATE TABLE statement. This includes the column name, its
|
|
// datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES,
|
|
// NOT NULL and so forth.
|
|
//
|
|
column(A) ::= columnid(X) type carglist. {
|
|
A.z = X.z;
|
|
A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n;
|
|
}
|
|
columnid(A) ::= nm(X). {
|
|
sqlite3AddColumn(pParse,&X);
|
|
A = X;
|
|
}
|
|
|
|
|
|
// An IDENTIFIER can be a generic identifier, or one of several
|
|
// keywords. Any non-standard keyword can also be an identifier.
|
|
//
|
|
%type id {Token}
|
|
id(A) ::= ID(X). {A = X;}
|
|
id(A) ::= INDEXED(X). {A = X;}
|
|
|
|
// The following directive causes tokens ABORT, AFTER, ASC, etc. to
|
|
// fallback to ID if they will not parse as their original value.
|
|
// This obviates the need for the "id" nonterminal.
|
|
//
|
|
%fallback ID
|
|
ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW
|
|
CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR
|
|
IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN
|
|
QUERY KEY OF OFFSET PRAGMA RAISE RELEASE REPLACE RESTRICT ROW ROLLBACK
|
|
SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL
|
|
%ifdef SQLITE_OMIT_COMPOUND_SELECT
|
|
EXCEPT INTERSECT UNION
|
|
%endif SQLITE_OMIT_COMPOUND_SELECT
|
|
REINDEX RENAME CTIME_KW IF
|
|
.
|
|
%wildcard ANY.
|
|
|
|
// Define operator precedence early so that this is the first occurance
|
|
// of the operator tokens in the grammer. Keeping the operators together
|
|
// causes them to be assigned integer values that are close together,
|
|
// which keeps parser tables smaller.
|
|
//
|
|
// The token values assigned to these symbols is determined by the order
|
|
// in which lemon first sees them. It must be the case that ISNULL/NOTNULL,
|
|
// NE/EQ, GT/LE, and GE/LT are separated by only a single value. See
|
|
// the sqlite3ExprIfFalse() routine for additional information on this
|
|
// constraint.
|
|
//
|
|
%left OR.
|
|
%left AND.
|
|
%right NOT.
|
|
%left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
|
|
%left GT LE LT GE.
|
|
%right ESCAPE.
|
|
%left BITAND BITOR LSHIFT RSHIFT.
|
|
%left PLUS MINUS.
|
|
%left STAR SLASH REM.
|
|
%left CONCAT.
|
|
%left COLLATE.
|
|
%right BITNOT.
|
|
|
|
// And "ids" is an identifer-or-string.
|
|
//
|
|
%type ids {Token}
|
|
ids(A) ::= ID|STRING(X). {A = X;}
|
|
|
|
// The name of a column or table can be any of the following:
|
|
//
|
|
%type nm {Token}
|
|
nm(A) ::= id(X). {A = X;}
|
|
nm(A) ::= STRING(X). {A = X;}
|
|
nm(A) ::= JOIN_KW(X). {A = X;}
|
|
|
|
// A typetoken is really one or more tokens that form a type name such
|
|
// as can be found after the column name in a CREATE TABLE statement.
|
|
// Multiple tokens are concatenated to form the value of the typetoken.
|
|
//
|
|
%type typetoken {Token}
|
|
type ::= .
|
|
type ::= typetoken(X). {sqlite3AddColumnType(pParse,&X);}
|
|
typetoken(A) ::= typename(X). {A = X;}
|
|
typetoken(A) ::= typename(X) LP signed RP(Y). {
|
|
A.z = X.z;
|
|
A.n = (int)(&Y.z[Y.n] - X.z);
|
|
}
|
|
typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). {
|
|
A.z = X.z;
|
|
A.n = (int)(&Y.z[Y.n] - X.z);
|
|
}
|
|
%type typename {Token}
|
|
typename(A) ::= ids(X). {A = X;}
|
|
typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);}
|
|
signed ::= plus_num.
|
|
signed ::= minus_num.
|
|
|
|
// "carglist" is a list of additional constraints that come after the
|
|
// column name and column type in a CREATE TABLE statement.
|
|
//
|
|
carglist ::= carglist carg.
|
|
carglist ::= .
|
|
carg ::= CONSTRAINT nm ccons.
|
|
carg ::= ccons.
|
|
ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);}
|
|
ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);}
|
|
ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);}
|
|
ccons ::= DEFAULT MINUS(A) term(X). {
|
|
ExprSpan v;
|
|
v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0);
|
|
v.zStart = A.z;
|
|
v.zEnd = X.zEnd;
|
|
sqlite3AddDefaultValue(pParse,&v);
|
|
}
|
|
ccons ::= DEFAULT id(X). {
|
|
ExprSpan v;
|
|
spanExpr(&v, pParse, TK_STRING, &X);
|
|
sqlite3AddDefaultValue(pParse,&v);
|
|
}
|
|
|
|
// In addition to the type name, we also care about the primary key and
|
|
// UNIQUE constraints.
|
|
//
|
|
ccons ::= NULL onconf.
|
|
ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);}
|
|
ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I).
|
|
{sqlite3AddPrimaryKey(pParse,0,R,I,Z);}
|
|
ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);}
|
|
ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);}
|
|
ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R).
|
|
{sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
|
|
ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);}
|
|
ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);}
|
|
|
|
// The optional AUTOINCREMENT keyword
|
|
%type autoinc {int}
|
|
autoinc(X) ::= . {X = 0;}
|
|
autoinc(X) ::= AUTOINCR. {X = 1;}
|
|
|
|
// The next group of rules parses the arguments to a REFERENCES clause
|
|
// that determine if the referential integrity checking is deferred or
|
|
// or immediate and which determine what action to take if a ref-integ
|
|
// check fails.
|
|
//
|
|
%type refargs {int}
|
|
refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */}
|
|
refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; }
|
|
%type refarg {struct {int value; int mask;}}
|
|
refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; }
|
|
refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; }
|
|
refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; }
|
|
refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; }
|
|
%type refact {int}
|
|
refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */}
|
|
refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */}
|
|
refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */}
|
|
refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */}
|
|
refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */}
|
|
%type defer_subclause {int}
|
|
defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;}
|
|
defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;}
|
|
%type init_deferred_pred_opt {int}
|
|
init_deferred_pred_opt(A) ::= . {A = 0;}
|
|
init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;}
|
|
init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;}
|
|
|
|
// For the time being, the only constraint we care about is the primary
|
|
// key and UNIQUE. Both create indices.
|
|
//
|
|
conslist_opt(A) ::= . {A.n = 0; A.z = 0;}
|
|
conslist_opt(A) ::= COMMA(X) conslist. {A = X;}
|
|
conslist ::= conslist COMMA tcons.
|
|
conslist ::= conslist tcons.
|
|
conslist ::= tcons.
|
|
tcons ::= CONSTRAINT nm.
|
|
tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R).
|
|
{sqlite3AddPrimaryKey(pParse,X,R,I,0);}
|
|
tcons ::= UNIQUE LP idxlist(X) RP onconf(R).
|
|
{sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);}
|
|
tcons ::= CHECK LP expr(E) RP onconf.
|
|
{sqlite3AddCheckConstraint(pParse,E.pExpr);}
|
|
tcons ::= FOREIGN KEY LP idxlist(FA) RP
|
|
REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). {
|
|
sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
|
|
sqlite3DeferForeignKey(pParse, D);
|
|
}
|
|
%type defer_subclause_opt {int}
|
|
defer_subclause_opt(A) ::= . {A = 0;}
|
|
defer_subclause_opt(A) ::= defer_subclause(X). {A = X;}
|
|
|
|
// The following is a non-standard extension that allows us to declare the
|
|
// default behavior when there is a constraint conflict.
|
|
//
|
|
%type onconf {int}
|
|
%type orconf {u8}
|
|
%type resolvetype {int}
|
|
onconf(A) ::= . {A = OE_Default;}
|
|
onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;}
|
|
orconf(A) ::= . {A = OE_Default;}
|
|
orconf(A) ::= OR resolvetype(X). {A = (u8)X;}
|
|
resolvetype(A) ::= raisetype(X). {A = X;}
|
|
resolvetype(A) ::= IGNORE. {A = OE_Ignore;}
|
|
resolvetype(A) ::= REPLACE. {A = OE_Replace;}
|
|
|
|
////////////////////////// The DROP TABLE /////////////////////////////////////
|
|
//
|
|
cmd ::= DROP TABLE ifexists(E) fullname(X). {
|
|
sqlite3DropTable(pParse, X, 0, E);
|
|
}
|
|
%type ifexists {int}
|
|
ifexists(A) ::= IF EXISTS. {A = 1;}
|
|
ifexists(A) ::= . {A = 0;}
|
|
|
|
///////////////////// The CREATE VIEW statement /////////////////////////////
|
|
//
|
|
%ifndef SQLITE_OMIT_VIEW
|
|
cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) AS select(S). {
|
|
sqlite3CreateView(pParse, &X, &Y, &Z, S, T, E);
|
|
}
|
|
cmd ::= DROP VIEW ifexists(E) fullname(X). {
|
|
sqlite3DropTable(pParse, X, 1, E);
|
|
}
|
|
%endif SQLITE_OMIT_VIEW
|
|
|
|
//////////////////////// The SELECT statement /////////////////////////////////
|
|
//
|
|
cmd ::= select(X). {
|
|
SelectDest dest = {SRT_Output, 0, 0, 0, 0};
|
|
sqlite3Select(pParse, X, &dest);
|
|
sqlite3SelectDelete(pParse->db, X);
|
|
}
|
|
|
|
%type select {Select*}
|
|
%destructor select {sqlite3SelectDelete(pParse->db, $$);}
|
|
%type oneselect {Select*}
|
|
%destructor oneselect {sqlite3SelectDelete(pParse->db, $$);}
|
|
|
|
select(A) ::= oneselect(X). {A = X;}
|
|
%ifndef SQLITE_OMIT_COMPOUND_SELECT
|
|
select(A) ::= select(X) multiselect_op(Y) oneselect(Z). {
|
|
if( Z ){
|
|
Z->op = (u8)Y;
|
|
Z->pPrior = X;
|
|
}else{
|
|
sqlite3SelectDelete(pParse->db, X);
|
|
}
|
|
A = Z;
|
|
}
|
|
%type multiselect_op {int}
|
|
multiselect_op(A) ::= UNION(OP). {A = @OP;}
|
|
multiselect_op(A) ::= UNION ALL. {A = TK_ALL;}
|
|
multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP;}
|
|
%endif SQLITE_OMIT_COMPOUND_SELECT
|
|
oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
|
|
groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
|
|
A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset);
|
|
}
|
|
|
|
// The "distinct" nonterminal is true (1) if the DISTINCT keyword is
|
|
// present and false (0) if it is not.
|
|
//
|
|
%type distinct {int}
|
|
distinct(A) ::= DISTINCT. {A = 1;}
|
|
distinct(A) ::= ALL. {A = 0;}
|
|
distinct(A) ::= . {A = 0;}
|
|
|
|
// selcollist is a list of expressions that are to become the return
|
|
// values of the SELECT statement. The "*" in statements like
|
|
// "SELECT * FROM ..." is encoded as a special expression with an
|
|
// opcode of TK_ALL.
|
|
//
|
|
%type selcollist {ExprList*}
|
|
%destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);}
|
|
%type sclp {ExprList*}
|
|
%destructor sclp {sqlite3ExprListDelete(pParse->db, $$);}
|
|
sclp(A) ::= selcollist(X) COMMA. {A = X;}
|
|
sclp(A) ::= . {A = 0;}
|
|
selcollist(A) ::= sclp(P) expr(X) as(Y). {
|
|
A = sqlite3ExprListAppend(pParse, P, X.pExpr);
|
|
if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1);
|
|
sqlite3ExprListSetSpan(pParse,A,&X);
|
|
}
|
|
selcollist(A) ::= sclp(P) STAR. {
|
|
Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0);
|
|
A = sqlite3ExprListAppend(pParse, P, p);
|
|
}
|
|
selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). {
|
|
Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y);
|
|
Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
|
|
Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
|
|
A = sqlite3ExprListAppend(pParse,P, pDot);
|
|
}
|
|
|
|
// An option "AS <id>" phrase that can follow one of the expressions that
|
|
// define the result set, or one of the tables in the FROM clause.
|
|
//
|
|
%type as {Token}
|
|
as(X) ::= AS nm(Y). {X = Y;}
|
|
as(X) ::= ids(Y). {X = Y;}
|
|
as(X) ::= . {X.n = 0;}
|
|
|
|
|
|
%type seltablist {SrcList*}
|
|
%destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);}
|
|
%type stl_prefix {SrcList*}
|
|
%destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);}
|
|
%type from {SrcList*}
|
|
%destructor from {sqlite3SrcListDelete(pParse->db, $$);}
|
|
|
|
// A complete FROM clause.
|
|
//
|
|
from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));}
|
|
from(A) ::= FROM seltablist(X). {
|
|
A = X;
|
|
sqlite3SrcListShiftJoinType(A);
|
|
}
|
|
|
|
// "seltablist" is a "Select Table List" - the content of the FROM clause
|
|
// in a SELECT statement. "stl_prefix" is a prefix of this list.
|
|
//
|
|
stl_prefix(A) ::= seltablist(X) joinop(Y). {
|
|
A = X;
|
|
if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y;
|
|
}
|
|
stl_prefix(A) ::= . {A = 0;}
|
|
seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) on_opt(N) using_opt(U). {
|
|
A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U);
|
|
sqlite3SrcListIndexedBy(pParse, A, &I);
|
|
}
|
|
%ifndef SQLITE_OMIT_SUBQUERY
|
|
seltablist(A) ::= stl_prefix(X) LP select(S) RP
|
|
as(Z) on_opt(N) using_opt(U). {
|
|
A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U);
|
|
}
|
|
seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP
|
|
as(Z) on_opt(N) using_opt(U). {
|
|
if( X==0 && Z.n==0 && N==0 && U==0 ){
|
|
A = F;
|
|
}else{
|
|
Select *pSubquery;
|
|
sqlite3SrcListShiftJoinType(F);
|
|
pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0);
|
|
A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U);
|
|
}
|
|
}
|
|
|
|
// A seltablist_paren nonterminal represents anything in a FROM that
|
|
// is contained inside parentheses. This can be either a subquery or
|
|
// a grouping of table and subqueries.
|
|
//
|
|
// %type seltablist_paren {Select*}
|
|
// %destructor seltablist_paren {sqlite3SelectDelete(pParse->db, $$);}
|
|
// seltablist_paren(A) ::= select(S). {A = S;}
|
|
// seltablist_paren(A) ::= seltablist(F). {
|
|
// sqlite3SrcListShiftJoinType(F);
|
|
// A = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0);
|
|
// }
|
|
%endif SQLITE_OMIT_SUBQUERY
|
|
|
|
%type dbnm {Token}
|
|
dbnm(A) ::= . {A.z=0; A.n=0;}
|
|
dbnm(A) ::= DOT nm(X). {A = X;}
|
|
|
|
%type fullname {SrcList*}
|
|
%destructor fullname {sqlite3SrcListDelete(pParse->db, $$);}
|
|
fullname(A) ::= nm(X) dbnm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);}
|
|
|
|
%type joinop {int}
|
|
%type joinop2 {int}
|
|
joinop(X) ::= COMMA|JOIN. { X = JT_INNER; }
|
|
joinop(X) ::= JOIN_KW(A) JOIN. { X = sqlite3JoinType(pParse,&A,0,0); }
|
|
joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqlite3JoinType(pParse,&A,&B,0); }
|
|
joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
|
|
{ X = sqlite3JoinType(pParse,&A,&B,&C); }
|
|
|
|
%type on_opt {Expr*}
|
|
%destructor on_opt {sqlite3ExprDelete(pParse->db, $$);}
|
|
on_opt(N) ::= ON expr(E). {N = E.pExpr;}
|
|
on_opt(N) ::= . {N = 0;}
|
|
|
|
// Note that this block abuses the Token type just a little. If there is
|
|
// no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If
|
|
// there is an INDEXED BY clause, then the token is populated as per normal,
|
|
// with z pointing to the token data and n containing the number of bytes
|
|
// in the token.
|
|
//
|
|
// If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is
|
|
// normally illegal. The sqlite3SrcListIndexedBy() function
|
|
// recognizes and interprets this as a special case.
|
|
//
|
|
%type indexed_opt {Token}
|
|
indexed_opt(A) ::= . {A.z=0; A.n=0;}
|
|
indexed_opt(A) ::= INDEXED BY nm(X). {A = X;}
|
|
indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;}
|
|
|
|
%type using_opt {IdList*}
|
|
%destructor using_opt {sqlite3IdListDelete(pParse->db, $$);}
|
|
using_opt(U) ::= USING LP inscollist(L) RP. {U = L;}
|
|
using_opt(U) ::= . {U = 0;}
|
|
|
|
|
|
%type orderby_opt {ExprList*}
|
|
%destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);}
|
|
%type sortlist {ExprList*}
|
|
%destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);}
|
|
%type sortitem {Expr*}
|
|
%destructor sortitem {sqlite3ExprDelete(pParse->db, $$);}
|
|
|
|
orderby_opt(A) ::= . {A = 0;}
|
|
orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;}
|
|
sortlist(A) ::= sortlist(X) COMMA sortitem(Y) sortorder(Z). {
|
|
A = sqlite3ExprListAppend(pParse,X,Y);
|
|
if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
|
|
}
|
|
sortlist(A) ::= sortitem(Y) sortorder(Z). {
|
|
A = sqlite3ExprListAppend(pParse,0,Y);
|
|
if( A && ALWAYS(A->a) ) A->a[0].sortOrder = (u8)Z;
|
|
}
|
|
sortitem(A) ::= expr(X). {A = X.pExpr;}
|
|
|
|
%type sortorder {int}
|
|
|
|
sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;}
|
|
sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;}
|
|
sortorder(A) ::= . {A = SQLITE_SO_ASC;}
|
|
|
|
%type groupby_opt {ExprList*}
|
|
%destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);}
|
|
groupby_opt(A) ::= . {A = 0;}
|
|
groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;}
|
|
|
|
%type having_opt {Expr*}
|
|
%destructor having_opt {sqlite3ExprDelete(pParse->db, $$);}
|
|
having_opt(A) ::= . {A = 0;}
|
|
having_opt(A) ::= HAVING expr(X). {A = X.pExpr;}
|
|
|
|
%type limit_opt {struct LimitVal}
|
|
|
|
// The destructor for limit_opt will never fire in the current grammar.
|
|
// The limit_opt non-terminal only occurs at the end of a single production
|
|
// rule for SELECT statements. As soon as the rule that create the
|
|
// limit_opt non-terminal reduces, the SELECT statement rule will also
|
|
// reduce. So there is never a limit_opt non-terminal on the stack
|
|
// except as a transient. So there is never anything to destroy.
|
|
//
|
|
//%destructor limit_opt {
|
|
// sqlite3ExprDelete(pParse->db, $$.pLimit);
|
|
// sqlite3ExprDelete(pParse->db, $$.pOffset);
|
|
//}
|
|
limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;}
|
|
limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;}
|
|
limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y).
|
|
{A.pLimit = X.pExpr; A.pOffset = Y.pExpr;}
|
|
limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y).
|
|
{A.pOffset = X.pExpr; A.pLimit = Y.pExpr;}
|
|
|
|
/////////////////////////// The DELETE statement /////////////////////////////
|
|
//
|
|
%ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
|
|
cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W)
|
|
orderby_opt(O) limit_opt(L). {
|
|
sqlite3SrcListIndexedBy(pParse, X, &I);
|
|
W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE");
|
|
sqlite3DeleteFrom(pParse,X,W);
|
|
}
|
|
%endif
|
|
%ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
|
|
cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W). {
|
|
sqlite3SrcListIndexedBy(pParse, X, &I);
|
|
sqlite3DeleteFrom(pParse,X,W);
|
|
}
|
|
%endif
|
|
|
|
%type where_opt {Expr*}
|
|
%destructor where_opt {sqlite3ExprDelete(pParse->db, $$);}
|
|
|
|
where_opt(A) ::= . {A = 0;}
|
|
where_opt(A) ::= WHERE expr(X). {A = X.pExpr;}
|
|
|
|
////////////////////////// The UPDATE command ////////////////////////////////
|
|
//
|
|
%ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
|
|
cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W) orderby_opt(O) limit_opt(L). {
|
|
sqlite3SrcListIndexedBy(pParse, X, &I);
|
|
sqlite3ExprListCheckLength(pParse,Y,"set list");
|
|
W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE");
|
|
sqlite3Update(pParse,X,Y,W,R);
|
|
}
|
|
%endif
|
|
%ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
|
|
cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W). {
|
|
sqlite3SrcListIndexedBy(pParse, X, &I);
|
|
sqlite3ExprListCheckLength(pParse,Y,"set list");
|
|
sqlite3Update(pParse,X,Y,W,R);
|
|
}
|
|
%endif
|
|
|
|
%type setlist {ExprList*}
|
|
%destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}
|
|
|
|
setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). {
|
|
A = sqlite3ExprListAppend(pParse, Z, Y.pExpr);
|
|
sqlite3ExprListSetName(pParse, A, &X, 1);
|
|
}
|
|
setlist(A) ::= nm(X) EQ expr(Y). {
|
|
A = sqlite3ExprListAppend(pParse, 0, Y.pExpr);
|
|
sqlite3ExprListSetName(pParse, A, &X, 1);
|
|
}
|
|
|
|
////////////////////////// The INSERT command /////////////////////////////////
|
|
//
|
|
cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F)
|
|
VALUES LP itemlist(Y) RP.
|
|
{sqlite3Insert(pParse, X, Y, 0, F, R);}
|
|
cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S).
|
|
{sqlite3Insert(pParse, X, 0, S, F, R);}
|
|
cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) DEFAULT VALUES.
|
|
{sqlite3Insert(pParse, X, 0, 0, F, R);}
|
|
|
|
%type insert_cmd {u8}
|
|
insert_cmd(A) ::= INSERT orconf(R). {A = R;}
|
|
insert_cmd(A) ::= REPLACE. {A = OE_Replace;}
|
|
|
|
|
|
%type itemlist {ExprList*}
|
|
%destructor itemlist {sqlite3ExprListDelete(pParse->db, $$);}
|
|
|
|
itemlist(A) ::= itemlist(X) COMMA expr(Y).
|
|
{A = sqlite3ExprListAppend(pParse,X,Y.pExpr);}
|
|
itemlist(A) ::= expr(X).
|
|
{A = sqlite3ExprListAppend(pParse,0,X.pExpr);}
|
|
|
|
%type inscollist_opt {IdList*}
|
|
%destructor inscollist_opt {sqlite3IdListDelete(pParse->db, $$);}
|
|
%type inscollist {IdList*}
|
|
%destructor inscollist {sqlite3IdListDelete(pParse->db, $$);}
|
|
|
|
inscollist_opt(A) ::= . {A = 0;}
|
|
inscollist_opt(A) ::= LP inscollist(X) RP. {A = X;}
|
|
inscollist(A) ::= inscollist(X) COMMA nm(Y).
|
|
{A = sqlite3IdListAppend(pParse->db,X,&Y);}
|
|
inscollist(A) ::= nm(Y).
|
|
{A = sqlite3IdListAppend(pParse->db,0,&Y);}
|
|
|
|
/////////////////////////// Expression Processing /////////////////////////////
|
|
//
|
|
|
|
%type expr {ExprSpan}
|
|
%destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);}
|
|
%type term {ExprSpan}
|
|
%destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);}
|
|
|
|
%include {
|
|
/* This is a utility routine used to set the ExprSpan.zStart and
|
|
** ExprSpan.zEnd values of pOut so that the span covers the complete
|
|
** range of text beginning with pStart and going to the end of pEnd.
|
|
*/
|
|
static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){
|
|
pOut->zStart = pStart->z;
|
|
pOut->zEnd = &pEnd->z[pEnd->n];
|
|
}
|
|
|
|
/* Construct a new Expr object from a single identifier. Use the
|
|
** new Expr to populate pOut. Set the span of pOut to be the identifier
|
|
** that created the expression.
|
|
*/
|
|
static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){
|
|
pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue);
|
|
pOut->zStart = pValue->z;
|
|
pOut->zEnd = &pValue->z[pValue->n];
|
|
}
|
|
}
|
|
|
|
expr(A) ::= term(X). {A = X;}
|
|
expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);}
|
|
term(A) ::= NULL(X). {spanExpr(&A, pParse, @X, &X);}
|
|
expr(A) ::= id(X). {spanExpr(&A, pParse, TK_ID, &X);}
|
|
expr(A) ::= JOIN_KW(X). {spanExpr(&A, pParse, TK_ID, &X);}
|
|
expr(A) ::= nm(X) DOT nm(Y). {
|
|
Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
|
|
Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y);
|
|
A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0);
|
|
spanSet(&A,&X,&Y);
|
|
}
|
|
expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
|
|
Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
|
|
Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y);
|
|
Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z);
|
|
Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
|
|
A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
|
|
spanSet(&A,&X,&Z);
|
|
}
|
|
term(A) ::= INTEGER|FLOAT|BLOB(X). {spanExpr(&A, pParse, @X, &X);}
|
|
term(A) ::= STRING(X). {spanExpr(&A, pParse, @X, &X);}
|
|
expr(A) ::= REGISTER(X). {
|
|
/* When doing a nested parse, one can include terms in an expression
|
|
** that look like this: #1 #2 ... These terms refer to registers
|
|
** in the virtual machine. #N is the N-th register. */
|
|
if( pParse->nested==0 ){
|
|
sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X);
|
|
A.pExpr = 0;
|
|
}else{
|
|
A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X);
|
|
if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable);
|
|
}
|
|
spanSet(&A, &X, &X);
|
|
}
|
|
expr(A) ::= VARIABLE(X). {
|
|
spanExpr(&A, pParse, TK_VARIABLE, &X);
|
|
sqlite3ExprAssignVarNumber(pParse, A.pExpr);
|
|
spanSet(&A, &X, &X);
|
|
}
|
|
expr(A) ::= expr(E) COLLATE ids(C). {
|
|
A.pExpr = sqlite3ExprSetCollByToken(pParse, E.pExpr, &C);
|
|
A.zStart = E.zStart;
|
|
A.zEnd = &C.z[C.n];
|
|
}
|
|
%ifndef SQLITE_OMIT_CAST
|
|
expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). {
|
|
A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T);
|
|
spanSet(&A,&X,&Y);
|
|
}
|
|
%endif SQLITE_OMIT_CAST
|
|
expr(A) ::= ID(X) LP distinct(D) exprlist(Y) RP(E). {
|
|
if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
|
|
sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X);
|
|
}
|
|
A.pExpr = sqlite3ExprFunction(pParse, Y, &X);
|
|
spanSet(&A,&X,&E);
|
|
if( D && A.pExpr ){
|
|
A.pExpr->flags |= EP_Distinct;
|
|
}
|
|
}
|
|
expr(A) ::= ID(X) LP STAR RP(E). {
|
|
A.pExpr = sqlite3ExprFunction(pParse, 0, &X);
|
|
spanSet(&A,&X,&E);
|
|
}
|
|
term(A) ::= CTIME_KW(OP). {
|
|
/* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are
|
|
** treated as functions that return constants */
|
|
A.pExpr = sqlite3ExprFunction(pParse, 0,&OP);
|
|
if( A.pExpr ){
|
|
A.pExpr->op = TK_CONST_FUNC;
|
|
}
|
|
spanSet(&A, &OP, &OP);
|
|
}
|
|
|
|
%include {
|
|
/* This routine constructs a binary expression node out of two ExprSpan
|
|
** objects and uses the result to populate a new ExprSpan object.
|
|
*/
|
|
static void spanBinaryExpr(
|
|
ExprSpan *pOut, /* Write the result here */
|
|
Parse *pParse, /* The parsing context. Errors accumulate here */
|
|
int op, /* The binary operation */
|
|
ExprSpan *pLeft, /* The left operand */
|
|
ExprSpan *pRight /* The right operand */
|
|
){
|
|
pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0);
|
|
pOut->zStart = pLeft->zStart;
|
|
pOut->zEnd = pRight->zEnd;
|
|
}
|
|
}
|
|
|
|
expr(A) ::= expr(X) AND(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
|
|
expr(A) ::= expr(X) OR(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
|
|
expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y).
|
|
{spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
|
|
expr(A) ::= expr(X) EQ|NE(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
|
|
expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).
|
|
{spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
|
|
expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y).
|
|
{spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
|
|
expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y).
|
|
{spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
|
|
expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
|
|
%type likeop {struct LikeOp}
|
|
likeop(A) ::= LIKE_KW(X). {A.eOperator = X; A.not = 0;}
|
|
likeop(A) ::= NOT LIKE_KW(X). {A.eOperator = X; A.not = 1;}
|
|
likeop(A) ::= MATCH(X). {A.eOperator = X; A.not = 0;}
|
|
likeop(A) ::= NOT MATCH(X). {A.eOperator = X; A.not = 1;}
|
|
expr(A) ::= expr(X) likeop(OP) expr(Y). [LIKE_KW] {
|
|
ExprList *pList;
|
|
pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
|
|
pList = sqlite3ExprListAppend(pParse,pList, X.pExpr);
|
|
A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator);
|
|
if( OP.not ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
|
|
A.zStart = X.zStart;
|
|
A.zEnd = Y.zEnd;
|
|
if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
|
|
}
|
|
expr(A) ::= expr(X) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] {
|
|
ExprList *pList;
|
|
pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
|
|
pList = sqlite3ExprListAppend(pParse,pList, X.pExpr);
|
|
pList = sqlite3ExprListAppend(pParse,pList, E.pExpr);
|
|
A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator);
|
|
if( OP.not ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
|
|
A.zStart = X.zStart;
|
|
A.zEnd = E.zEnd;
|
|
if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
|
|
}
|
|
|
|
%include {
|
|
/* Construct an expression node for a unary postfix operator
|
|
*/
|
|
static void spanUnaryPostfix(
|
|
ExprSpan *pOut, /* Write the new expression node here */
|
|
Parse *pParse, /* Parsing context to record errors */
|
|
int op, /* The operator */
|
|
ExprSpan *pOperand, /* The operand */
|
|
Token *pPostOp /* The operand token for setting the span */
|
|
){
|
|
pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
|
|
pOut->zStart = pOperand->zStart;
|
|
pOut->zEnd = &pPostOp->z[pPostOp->n];
|
|
}
|
|
}
|
|
|
|
expr(A) ::= expr(X) ISNULL|NOTNULL(E). {spanUnaryPostfix(&A,pParse,@E,&X,&E);}
|
|
expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);}
|
|
|
|
%include {
|
|
/* A routine to convert a binary TK_IS or TK_ISNOT expression into a
|
|
** unary TK_ISNULL or TK_NOTNULL expression. */
|
|
static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
|
|
sqlite3 *db = pParse->db;
|
|
if( db->mallocFailed==0 && pY->op==TK_NULL ){
|
|
pA->op = (u8)op;
|
|
sqlite3ExprDelete(db, pA->pRight);
|
|
pA->pRight = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// expr1 IS expr2
|
|
// expr1 IS NOT expr2
|
|
//
|
|
// If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2
|
|
// is any other expression, code as TK_IS or TK_ISNOT.
|
|
//
|
|
expr(A) ::= expr(X) IS expr(Y). {
|
|
spanBinaryExpr(&A,pParse,TK_IS,&X,&Y);
|
|
binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL);
|
|
}
|
|
expr(A) ::= expr(X) IS NOT expr(Y). {
|
|
spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y);
|
|
binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL);
|
|
}
|
|
|
|
%include {
|
|
/* Construct an expression node for a unary prefix operator
|
|
*/
|
|
static void spanUnaryPrefix(
|
|
ExprSpan *pOut, /* Write the new expression node here */
|
|
Parse *pParse, /* Parsing context to record errors */
|
|
int op, /* The operator */
|
|
ExprSpan *pOperand, /* The operand */
|
|
Token *pPreOp /* The operand token for setting the span */
|
|
){
|
|
pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
|
|
pOut->zStart = pPreOp->z;
|
|
pOut->zEnd = pOperand->zEnd;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
expr(A) ::= NOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);}
|
|
expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);}
|
|
expr(A) ::= MINUS(B) expr(X). [BITNOT]
|
|
{spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);}
|
|
expr(A) ::= PLUS(B) expr(X). [BITNOT]
|
|
{spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);}
|
|
|
|
%type between_op {int}
|
|
between_op(A) ::= BETWEEN. {A = 0;}
|
|
between_op(A) ::= NOT BETWEEN. {A = 1;}
|
|
expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] {
|
|
ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr);
|
|
pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr);
|
|
A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0);
|
|
if( A.pExpr ){
|
|
A.pExpr->x.pList = pList;
|
|
}else{
|
|
sqlite3ExprListDelete(pParse->db, pList);
|
|
}
|
|
if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
|
|
A.zStart = W.zStart;
|
|
A.zEnd = Y.zEnd;
|
|
}
|
|
%ifndef SQLITE_OMIT_SUBQUERY
|
|
%type in_op {int}
|
|
in_op(A) ::= IN. {A = 0;}
|
|
in_op(A) ::= NOT IN. {A = 1;}
|
|
expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] {
|
|
if( Y==0 ){
|
|
/* Expressions of the form
|
|
**
|
|
** expr1 IN ()
|
|
** expr1 NOT IN ()
|
|
**
|
|
** simplify to constants 0 (false) and 1 (true), respectively,
|
|
** regardless of the value of expr1.
|
|
*/
|
|
A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]);
|
|
sqlite3ExprDelete(pParse->db, X.pExpr);
|
|
}else{
|
|
A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
|
|
if( A.pExpr ){
|
|
A.pExpr->x.pList = Y;
|
|
sqlite3ExprSetHeight(pParse, A.pExpr);
|
|
}else{
|
|
sqlite3ExprListDelete(pParse->db, Y);
|
|
}
|
|
if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
|
|
}
|
|
A.zStart = X.zStart;
|
|
A.zEnd = &E.z[E.n];
|
|
}
|
|
expr(A) ::= LP(B) select(X) RP(E). {
|
|
A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
|
|
if( A.pExpr ){
|
|
A.pExpr->x.pSelect = X;
|
|
ExprSetProperty(A.pExpr, EP_xIsSelect);
|
|
sqlite3ExprSetHeight(pParse, A.pExpr);
|
|
}else{
|
|
sqlite3SelectDelete(pParse->db, X);
|
|
}
|
|
A.zStart = B.z;
|
|
A.zEnd = &E.z[E.n];
|
|
}
|
|
expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E). [IN] {
|
|
A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
|
|
if( A.pExpr ){
|
|
A.pExpr->x.pSelect = Y;
|
|
ExprSetProperty(A.pExpr, EP_xIsSelect);
|
|
sqlite3ExprSetHeight(pParse, A.pExpr);
|
|
}else{
|
|
sqlite3SelectDelete(pParse->db, Y);
|
|
}
|
|
if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
|
|
A.zStart = X.zStart;
|
|
A.zEnd = &E.z[E.n];
|
|
}
|
|
expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] {
|
|
SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z);
|
|
A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
|
|
if( A.pExpr ){
|
|
A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
|
|
ExprSetProperty(A.pExpr, EP_xIsSelect);
|
|
sqlite3ExprSetHeight(pParse, A.pExpr);
|
|
}else{
|
|
sqlite3SrcListDelete(pParse->db, pSrc);
|
|
}
|
|
if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
|
|
A.zStart = X.zStart;
|
|
A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n];
|
|
}
|
|
expr(A) ::= EXISTS(B) LP select(Y) RP(E). {
|
|
Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
|
|
if( p ){
|
|
p->x.pSelect = Y;
|
|
ExprSetProperty(p, EP_xIsSelect);
|
|
sqlite3ExprSetHeight(pParse, p);
|
|
}else{
|
|
sqlite3SelectDelete(pParse->db, Y);
|
|
}
|
|
A.zStart = B.z;
|
|
A.zEnd = &E.z[E.n];
|
|
}
|
|
%endif SQLITE_OMIT_SUBQUERY
|
|
|
|
/* CASE expressions */
|
|
expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). {
|
|
A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, Z, 0);
|
|
if( A.pExpr ){
|
|
A.pExpr->x.pList = Y;
|
|
sqlite3ExprSetHeight(pParse, A.pExpr);
|
|
}else{
|
|
sqlite3ExprListDelete(pParse->db, Y);
|
|
}
|
|
A.zStart = C.z;
|
|
A.zEnd = &E.z[E.n];
|
|
}
|
|
%type case_exprlist {ExprList*}
|
|
%destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
|
|
case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). {
|
|
A = sqlite3ExprListAppend(pParse,X, Y.pExpr);
|
|
A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
|
|
}
|
|
case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
|
|
A = sqlite3ExprListAppend(pParse,0, Y.pExpr);
|
|
A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
|
|
}
|
|
%type case_else {Expr*}
|
|
%destructor case_else {sqlite3ExprDelete(pParse->db, $$);}
|
|
case_else(A) ::= ELSE expr(X). {A = X.pExpr;}
|
|
case_else(A) ::= . {A = 0;}
|
|
%type case_operand {Expr*}
|
|
%destructor case_operand {sqlite3ExprDelete(pParse->db, $$);}
|
|
case_operand(A) ::= expr(X). {A = X.pExpr;}
|
|
case_operand(A) ::= . {A = 0;}
|
|
|
|
%type exprlist {ExprList*}
|
|
%destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);}
|
|
%type nexprlist {ExprList*}
|
|
%destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);}
|
|
|
|
exprlist(A) ::= nexprlist(X). {A = X;}
|
|
exprlist(A) ::= . {A = 0;}
|
|
nexprlist(A) ::= nexprlist(X) COMMA expr(Y).
|
|
{A = sqlite3ExprListAppend(pParse,X,Y.pExpr);}
|
|
nexprlist(A) ::= expr(Y).
|
|
{A = sqlite3ExprListAppend(pParse,0,Y.pExpr);}
|
|
|
|
|
|
///////////////////////////// The CREATE INDEX command ///////////////////////
|
|
//
|
|
cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D)
|
|
ON nm(Y) LP idxlist(Z) RP(E). {
|
|
sqlite3CreateIndex(pParse, &X, &D,
|
|
sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U,
|
|
&S, &E, SQLITE_SO_ASC, NE);
|
|
}
|
|
|
|
%type uniqueflag {int}
|
|
uniqueflag(A) ::= UNIQUE. {A = OE_Abort;}
|
|
uniqueflag(A) ::= . {A = OE_None;}
|
|
|
|
%type idxlist {ExprList*}
|
|
%destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);}
|
|
%type idxlist_opt {ExprList*}
|
|
%destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);}
|
|
|
|
idxlist_opt(A) ::= . {A = 0;}
|
|
idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;}
|
|
idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z). {
|
|
Expr *p = 0;
|
|
if( C.n>0 ){
|
|
p = sqlite3Expr(pParse->db, TK_COLUMN, 0);
|
|
sqlite3ExprSetCollByToken(pParse, p, &C);
|
|
}
|
|
A = sqlite3ExprListAppend(pParse,X, p);
|
|
sqlite3ExprListSetName(pParse,A,&Y,1);
|
|
sqlite3ExprListCheckLength(pParse, A, "index");
|
|
if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
|
|
}
|
|
idxlist(A) ::= nm(Y) collate(C) sortorder(Z). {
|
|
Expr *p = 0;
|
|
if( C.n>0 ){
|
|
p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
|
|
sqlite3ExprSetCollByToken(pParse, p, &C);
|
|
}
|
|
A = sqlite3ExprListAppend(pParse,0, p);
|
|
sqlite3ExprListSetName(pParse, A, &Y, 1);
|
|
sqlite3ExprListCheckLength(pParse, A, "index");
|
|
if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
|
|
}
|
|
|
|
%type collate {Token}
|
|
collate(C) ::= . {C.z = 0; C.n = 0;}
|
|
collate(C) ::= COLLATE ids(X). {C = X;}
|
|
|
|
|
|
///////////////////////////// The DROP INDEX command /////////////////////////
|
|
//
|
|
cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);}
|
|
|
|
///////////////////////////// The VACUUM command /////////////////////////////
|
|
//
|
|
%ifndef SQLITE_OMIT_VACUUM
|
|
%ifndef SQLITE_OMIT_ATTACH
|
|
cmd ::= VACUUM. {sqlite3Vacuum(pParse);}
|
|
cmd ::= VACUUM nm. {sqlite3Vacuum(pParse);}
|
|
%endif SQLITE_OMIT_ATTACH
|
|
%endif SQLITE_OMIT_VACUUM
|
|
|
|
///////////////////////////// The PRAGMA command /////////////////////////////
|
|
//
|
|
%ifndef SQLITE_OMIT_PRAGMA
|
|
cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);}
|
|
cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
|
|
cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
|
|
cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y).
|
|
{sqlite3Pragma(pParse,&X,&Z,&Y,1);}
|
|
cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP.
|
|
{sqlite3Pragma(pParse,&X,&Z,&Y,1);}
|
|
|
|
nmnum(A) ::= plus_num(X). {A = X;}
|
|
nmnum(A) ::= nm(X). {A = X;}
|
|
nmnum(A) ::= ON(X). {A = X;}
|
|
nmnum(A) ::= DELETE(X). {A = X;}
|
|
nmnum(A) ::= DEFAULT(X). {A = X;}
|
|
%endif SQLITE_OMIT_PRAGMA
|
|
plus_num(A) ::= plus_opt number(X). {A = X;}
|
|
minus_num(A) ::= MINUS number(X). {A = X;}
|
|
number(A) ::= INTEGER|FLOAT(X). {A = X;}
|
|
plus_opt ::= PLUS.
|
|
plus_opt ::= .
|
|
|
|
//////////////////////////// The CREATE TRIGGER command /////////////////////
|
|
|
|
%ifndef SQLITE_OMIT_TRIGGER
|
|
|
|
cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). {
|
|
Token all;
|
|
all.z = A.z;
|
|
all.n = (int)(Z.z - A.z) + Z.n;
|
|
sqlite3FinishTrigger(pParse, S, &all);
|
|
}
|
|
|
|
trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z)
|
|
trigger_time(C) trigger_event(D)
|
|
ON fullname(E) foreach_clause when_clause(G). {
|
|
sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR);
|
|
A = (Z.n==0?B:Z);
|
|
}
|
|
|
|
%type trigger_time {int}
|
|
trigger_time(A) ::= BEFORE. { A = TK_BEFORE; }
|
|
trigger_time(A) ::= AFTER. { A = TK_AFTER; }
|
|
trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;}
|
|
trigger_time(A) ::= . { A = TK_BEFORE; }
|
|
|
|
%type trigger_event {struct TrigEvent}
|
|
%destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);}
|
|
trigger_event(A) ::= DELETE|INSERT(OP). {A.a = @OP; A.b = 0;}
|
|
trigger_event(A) ::= UPDATE(OP). {A.a = @OP; A.b = 0;}
|
|
trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X;}
|
|
|
|
foreach_clause ::= .
|
|
foreach_clause ::= FOR EACH ROW.
|
|
|
|
%type when_clause {Expr*}
|
|
%destructor when_clause {sqlite3ExprDelete(pParse->db, $$);}
|
|
when_clause(A) ::= . { A = 0; }
|
|
when_clause(A) ::= WHEN expr(X). { A = X.pExpr; }
|
|
|
|
%type trigger_cmd_list {TriggerStep*}
|
|
%destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);}
|
|
trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. {
|
|
assert( Y!=0 );
|
|
Y->pLast->pNext = X;
|
|
Y->pLast = X;
|
|
A = Y;
|
|
}
|
|
trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. {
|
|
assert( X!=0 );
|
|
X->pLast = X;
|
|
A = X;
|
|
}
|
|
|
|
// Disallow qualified table names on INSERT, UPDATE, and DELETE statements
|
|
// within a trigger. The table to INSERT, UPDATE, or DELETE is always in
|
|
// the same database as the table that the trigger fires on.
|
|
//
|
|
%type trnm {Token}
|
|
trnm(A) ::= nm(X). {A = X;}
|
|
trnm(A) ::= nm DOT nm(X). {
|
|
A = X;
|
|
sqlite3ErrorMsg(pParse,
|
|
"qualified table names are not allowed on INSERT, UPDATE, and DELETE "
|
|
"statements within triggers");
|
|
}
|
|
|
|
// Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE
|
|
// statements within triggers. We make a specific error message for this
|
|
// since it is an exception to the default grammar rules.
|
|
//
|
|
tridxby ::= .
|
|
tridxby ::= INDEXED BY nm. {
|
|
sqlite3ErrorMsg(pParse,
|
|
"the INDEXED BY clause is not allowed on UPDATE or DELETE statements "
|
|
"within triggers");
|
|
}
|
|
tridxby ::= NOT INDEXED. {
|
|
sqlite3ErrorMsg(pParse,
|
|
"the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
|
|
"within triggers");
|
|
}
|
|
|
|
|
|
|
|
%type trigger_cmd {TriggerStep*}
|
|
%destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);}
|
|
// UPDATE
|
|
trigger_cmd(A) ::=
|
|
UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z).
|
|
{ A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); }
|
|
|
|
// INSERT
|
|
trigger_cmd(A) ::=
|
|
insert_cmd(R) INTO trnm(X) inscollist_opt(F) VALUES LP itemlist(Y) RP.
|
|
{A = sqlite3TriggerInsertStep(pParse->db, &X, F, Y, 0, R);}
|
|
|
|
trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) inscollist_opt(F) select(S).
|
|
{A = sqlite3TriggerInsertStep(pParse->db, &X, F, 0, S, R);}
|
|
|
|
// DELETE
|
|
trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y).
|
|
{A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);}
|
|
|
|
// SELECT
|
|
trigger_cmd(A) ::= select(X). {A = sqlite3TriggerSelectStep(pParse->db, X); }
|
|
|
|
// The special RAISE expression that may occur in trigger programs
|
|
expr(A) ::= RAISE(X) LP IGNORE RP(Y). {
|
|
A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0);
|
|
if( A.pExpr ){
|
|
A.pExpr->affinity = OE_Ignore;
|
|
}
|
|
A.zStart = X.z;
|
|
A.zEnd = &Y.z[Y.n];
|
|
}
|
|
expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). {
|
|
A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z);
|
|
if( A.pExpr ) {
|
|
A.pExpr->affinity = (char)T;
|
|
}
|
|
A.zStart = X.z;
|
|
A.zEnd = &Y.z[Y.n];
|
|
}
|
|
%endif !SQLITE_OMIT_TRIGGER
|
|
|
|
%type raisetype {int}
|
|
raisetype(A) ::= ROLLBACK. {A = OE_Rollback;}
|
|
raisetype(A) ::= ABORT. {A = OE_Abort;}
|
|
raisetype(A) ::= FAIL. {A = OE_Fail;}
|
|
|
|
|
|
//////////////////////// DROP TRIGGER statement //////////////////////////////
|
|
%ifndef SQLITE_OMIT_TRIGGER
|
|
cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). {
|
|
sqlite3DropTrigger(pParse,X,NOERR);
|
|
}
|
|
%endif !SQLITE_OMIT_TRIGGER
|
|
|
|
//////////////////////// ATTACH DATABASE file AS name /////////////////////////
|
|
%ifndef SQLITE_OMIT_ATTACH
|
|
cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). {
|
|
sqlite3Attach(pParse, F.pExpr, D.pExpr, K);
|
|
}
|
|
cmd ::= DETACH database_kw_opt expr(D). {
|
|
sqlite3Detach(pParse, D.pExpr);
|
|
}
|
|
|
|
%type key_opt {Expr*}
|
|
%destructor key_opt {sqlite3ExprDelete(pParse->db, $$);}
|
|
key_opt(A) ::= . { A = 0; }
|
|
key_opt(A) ::= KEY expr(X). { A = X.pExpr; }
|
|
|
|
database_kw_opt ::= DATABASE.
|
|
database_kw_opt ::= .
|
|
%endif SQLITE_OMIT_ATTACH
|
|
|
|
////////////////////////// REINDEX collation //////////////////////////////////
|
|
%ifndef SQLITE_OMIT_REINDEX
|
|
cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);}
|
|
cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);}
|
|
%endif SQLITE_OMIT_REINDEX
|
|
|
|
/////////////////////////////////// ANALYZE ///////////////////////////////////
|
|
%ifndef SQLITE_OMIT_ANALYZE
|
|
cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);}
|
|
cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);}
|
|
%endif
|
|
|
|
//////////////////////// ALTER TABLE table ... ////////////////////////////////
|
|
%ifndef SQLITE_OMIT_ALTERTABLE
|
|
cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). {
|
|
sqlite3AlterRenameTable(pParse,X,&Z);
|
|
}
|
|
cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). {
|
|
sqlite3AlterFinishAddColumn(pParse, &Y);
|
|
}
|
|
add_column_fullname ::= fullname(X). {
|
|
pParse->db->lookaside.bEnabled = 0;
|
|
sqlite3AlterBeginAddColumn(pParse, X);
|
|
}
|
|
kwcolumn_opt ::= .
|
|
kwcolumn_opt ::= COLUMNKW.
|
|
%endif SQLITE_OMIT_ALTERTABLE
|
|
|
|
//////////////////////// CREATE VIRTUAL TABLE ... /////////////////////////////
|
|
%ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);}
|
|
cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);}
|
|
create_vtab ::= createkw VIRTUAL TABLE nm(X) dbnm(Y) USING nm(Z). {
|
|
sqlite3VtabBeginParse(pParse, &X, &Y, &Z);
|
|
}
|
|
vtabarglist ::= vtabarg.
|
|
vtabarglist ::= vtabarglist COMMA vtabarg.
|
|
vtabarg ::= . {sqlite3VtabArgInit(pParse);}
|
|
vtabarg ::= vtabarg vtabargtoken.
|
|
vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);}
|
|
vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);}
|
|
lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);}
|
|
anylist ::= .
|
|
anylist ::= anylist LP anylist RP.
|
|
anylist ::= anylist ANY.
|
|
%endif SQLITE_OMIT_VIRTUALTABLE
|