27aac274b9
FossilOrigin-Name: 47dbfadb994814c9349d4c9c113b862c2e97c01a
5600 lines
171 KiB
C
5600 lines
171 KiB
C
/*
|
|
** 2014 May 31
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
******************************************************************************
|
|
**
|
|
** Low level access to the FTS index stored in the database file. The
|
|
** routines in this file file implement all read and write access to the
|
|
** %_data table. Other parts of the system access this functionality via
|
|
** the interface defined in fts5Int.h.
|
|
*/
|
|
|
|
#ifdef SQLITE_ENABLE_FTS5
|
|
|
|
#include "fts5Int.h"
|
|
|
|
/*
|
|
** Overview:
|
|
**
|
|
** The %_data table contains all the FTS indexes for an FTS5 virtual table.
|
|
** As well as the main term index, there may be up to 31 prefix indexes.
|
|
** The format is similar to FTS3/4, except that:
|
|
**
|
|
** * all segment b-tree leaf data is stored in fixed size page records
|
|
** (e.g. 1000 bytes). A single doclist may span multiple pages. Care is
|
|
** taken to ensure it is possible to iterate in either direction through
|
|
** the entries in a doclist, or to seek to a specific entry within a
|
|
** doclist, without loading it into memory.
|
|
**
|
|
** * large doclists that span many pages have associated "doclist index"
|
|
** records that contain a copy of the first docid on each page spanned by
|
|
** the doclist. This is used to speed up seek operations, and merges of
|
|
** large doclists with very small doclists.
|
|
**
|
|
** * extra fields in the "structure record" record the state of ongoing
|
|
** incremental merge operations.
|
|
**
|
|
*/
|
|
|
|
|
|
#define FTS5_OPT_WORK_UNIT 1000 /* Number of leaf pages per optimize step */
|
|
#define FTS5_WORK_UNIT 64 /* Number of leaf pages in unit of work */
|
|
|
|
#define FTS5_MIN_DLIDX_SIZE 4 /* Add dlidx if this many empty pages */
|
|
|
|
#define FTS5_MAIN_PREFIX '0'
|
|
|
|
#if FTS5_MAX_PREFIX_INDEXES > 31
|
|
# error "FTS5_MAX_PREFIX_INDEXES is too large"
|
|
#endif
|
|
|
|
/*
|
|
** Details:
|
|
**
|
|
** The %_data table managed by this module,
|
|
**
|
|
** CREATE TABLE %_data(id INTEGER PRIMARY KEY, block BLOB);
|
|
**
|
|
** , contains the following 5 types of records. See the comments surrounding
|
|
** the FTS5_*_ROWID macros below for a description of how %_data rowids are
|
|
** assigned to each fo them.
|
|
**
|
|
** 1. Structure Records:
|
|
**
|
|
** The set of segments that make up an index - the index structure - are
|
|
** recorded in a single record within the %_data table. The record consists
|
|
** of a single 32-bit configuration cookie value followed by a list of
|
|
** SQLite varints. If the FTS table features more than one index (because
|
|
** there are one or more prefix indexes), it is guaranteed that all share
|
|
** the same cookie value.
|
|
**
|
|
** Immediately following the configuration cookie, the record begins with
|
|
** three varints:
|
|
**
|
|
** + number of levels,
|
|
** + total number of segments on all levels,
|
|
** + value of write counter.
|
|
**
|
|
** Then, for each level from 0 to nMax:
|
|
**
|
|
** + number of input segments in ongoing merge.
|
|
** + total number of segments in level.
|
|
** + for each segment from oldest to newest:
|
|
** + segment id (always > 0)
|
|
** + b-tree height (1 -> root is leaf, 2 -> root is parent of leaf etc.)
|
|
** + first leaf page number (often 1, always greater than 0)
|
|
** + final leaf page number
|
|
**
|
|
** 2. The Averages Record:
|
|
**
|
|
** A single record within the %_data table. The data is a list of varints.
|
|
** The first value is the number of rows in the index. Then, for each column
|
|
** from left to right, the total number of tokens in the column for all
|
|
** rows of the table.
|
|
**
|
|
** 3. Segment leaves:
|
|
**
|
|
** TERM DOCLIST FORMAT:
|
|
**
|
|
** Most of each segment leaf is taken up by term/doclist data. The
|
|
** general format of the term/doclist data is:
|
|
**
|
|
** varint : size of first term
|
|
** blob: first term data
|
|
** doclist: first doclist
|
|
** zero-or-more {
|
|
** varint: number of bytes in common with previous term
|
|
** varint: number of bytes of new term data (nNew)
|
|
** blob: nNew bytes of new term data
|
|
** doclist: next doclist
|
|
** }
|
|
**
|
|
** doclist format:
|
|
**
|
|
** varint: first rowid
|
|
** poslist: first poslist
|
|
** zero-or-more {
|
|
** varint: rowid delta (always > 0)
|
|
** poslist: next poslist
|
|
** }
|
|
** 0x00 byte
|
|
**
|
|
** poslist format:
|
|
**
|
|
** varint: size of poslist in bytes multiplied by 2, not including
|
|
** this field. Plus 1 if this entry carries the "delete" flag.
|
|
** collist: collist for column 0
|
|
** zero-or-more {
|
|
** 0x01 byte
|
|
** varint: column number (I)
|
|
** collist: collist for column I
|
|
** }
|
|
**
|
|
** collist format:
|
|
**
|
|
** varint: first offset + 2
|
|
** zero-or-more {
|
|
** varint: offset delta + 2
|
|
** }
|
|
**
|
|
** PAGINATION
|
|
**
|
|
** The format described above is only accurate if the entire term/doclist
|
|
** data fits on a single leaf page. If this is not the case, the format
|
|
** is changed in two ways:
|
|
**
|
|
** + if the first rowid on a page occurs before the first term, it
|
|
** is stored as a literal value:
|
|
**
|
|
** varint: first rowid
|
|
**
|
|
** + the first term on each page is stored in the same way as the
|
|
** very first term of the segment:
|
|
**
|
|
** varint : size of first term
|
|
** blob: first term data
|
|
**
|
|
** Each leaf page begins with:
|
|
**
|
|
** + 2-byte unsigned containing offset to first rowid (or 0).
|
|
** + 2-byte unsigned containing offset to first term (or 0).
|
|
**
|
|
** Followed by term/doclist data.
|
|
**
|
|
** 4. Segment interior nodes:
|
|
**
|
|
** The interior nodes turn the list of leaves into a b+tree.
|
|
**
|
|
** Each interior node begins with a varint - the page number of the left
|
|
** most child node. Following this, for each leaf page except the first,
|
|
** the interior nodes contain:
|
|
**
|
|
** a) If the leaf page contains at least one term, then a term-prefix that
|
|
** is greater than all previous terms, and less than or equal to the
|
|
** first term on the leaf page.
|
|
**
|
|
** b) If the leaf page no terms, a record indicating how many consecutive
|
|
** leaves contain no terms, and whether or not there is an associated
|
|
** by-rowid index record.
|
|
**
|
|
** By definition, there is never more than one type (b) record in a row.
|
|
** Type (b) records only ever appear on height=1 pages - immediate parents
|
|
** of leaves. Only type (a) records are pushed to higher levels.
|
|
**
|
|
** Term format:
|
|
**
|
|
** * Number of bytes in common with previous term plus 2, as a varint.
|
|
** * Number of bytes of new term data, as a varint.
|
|
** * new term data.
|
|
**
|
|
** No-term format:
|
|
**
|
|
** * either an 0x00 or 0x01 byte. If the value 0x01 is used, then there
|
|
** is an associated index-by-rowid record.
|
|
** * the number of zero-term leaves as a varint.
|
|
**
|
|
** 5. Segment doclist indexes:
|
|
**
|
|
** Doclist indexes are themselves b-trees, however they usually consist of
|
|
** a single leaf record only. The format of each doclist index leaf page
|
|
** is:
|
|
**
|
|
** * Flags byte. Bits are:
|
|
** 0x01: Clear if leaf is also the root page, otherwise set.
|
|
**
|
|
** * Page number of fts index leaf page. As a varint.
|
|
**
|
|
** * First docid on page indicated by previous field. As a varint.
|
|
**
|
|
** * A list of varints, one for each subsequent termless page. A
|
|
** positive delta if the termless page contains at least one docid,
|
|
** or an 0x00 byte otherwise.
|
|
**
|
|
** Internal doclist index nodes are:
|
|
**
|
|
** * Flags byte. Bits are:
|
|
** 0x01: Clear for root page, otherwise set.
|
|
**
|
|
** * Page number of first child page. As a varint.
|
|
**
|
|
** * Copy of first docid on page indicated by previous field. As a varint.
|
|
**
|
|
** * A list of delta-encoded varints - the first docid on each subsequent
|
|
** child page.
|
|
**
|
|
*/
|
|
|
|
/*
|
|
** Rowids for the averages and structure records in the %_data table.
|
|
*/
|
|
#define FTS5_AVERAGES_ROWID 1 /* Rowid used for the averages record */
|
|
#define FTS5_STRUCTURE_ROWID 10 /* The structure record */
|
|
|
|
/*
|
|
** Macros determining the rowids used by segment nodes. All nodes in all
|
|
** segments for all indexes (the regular FTS index and any prefix indexes)
|
|
** are stored in the %_data table with large positive rowids.
|
|
**
|
|
** The %_data table may contain up to (1<<FTS5_SEGMENT_INDEX_BITS)
|
|
** indexes - one regular term index and zero or more prefix indexes.
|
|
**
|
|
** Each segment in an index has a unique id greater than zero.
|
|
**
|
|
** Each node in a segment b-tree is assigned a "page number" that is unique
|
|
** within nodes of its height within the segment (leaf nodes have a height
|
|
** of 0, parents 1, etc.). Page numbers are allocated sequentially so that
|
|
** a nodes page number is always one more than its left sibling.
|
|
**
|
|
** The rowid for a node is then found using the FTS5_SEGMENT_ROWID() macro
|
|
** below. The FTS5_SEGMENT_*_BITS macros define the number of bits used
|
|
** to encode the three FTS5_SEGMENT_ROWID() arguments. This module returns
|
|
** SQLITE_FULL and fails the current operation if they ever prove too small.
|
|
*/
|
|
#define FTS5_DATA_ID_B 16 /* Max seg id number 65535 */
|
|
#define FTS5_DATA_DLI_B 1 /* Doclist-index flag (1 bit) */
|
|
#define FTS5_DATA_HEIGHT_B 5 /* Max b-tree height of 32 */
|
|
#define FTS5_DATA_PAGE_B 31 /* Max page number of 2147483648 */
|
|
|
|
#define fts5_dri(segid, dlidx, height, pgno) ( \
|
|
((i64)(segid) << (FTS5_DATA_PAGE_B+FTS5_DATA_HEIGHT_B+FTS5_DATA_DLI_B)) + \
|
|
((i64)(dlidx) << (FTS5_DATA_PAGE_B + FTS5_DATA_HEIGHT_B)) + \
|
|
((i64)(height) << (FTS5_DATA_PAGE_B)) + \
|
|
((i64)(pgno)) \
|
|
)
|
|
|
|
#define FTS5_SEGMENT_ROWID(segid, height, pgno) fts5_dri(segid, 0, height, pgno)
|
|
#define FTS5_DLIDX_ROWID(segid, height, pgno) fts5_dri(segid, 1, height, pgno)
|
|
|
|
#if 0
|
|
/*
|
|
** The height of segment b-trees is actually limited to one less than
|
|
** (1<<HEIGHT_BITS). This is because the rowid address space for nodes
|
|
** with such a height is used by doclist indexes.
|
|
*/
|
|
#define FTS5_SEGMENT_MAX_HEIGHT ((1 << FTS5_DATA_HEIGHT_B)-1)
|
|
#endif
|
|
|
|
/*
|
|
** Maximum segments permitted in a single index
|
|
*/
|
|
#define FTS5_MAX_SEGMENT 2000
|
|
|
|
#if 0
|
|
/*
|
|
** The rowid for the doclist index associated with leaf page pgno of segment
|
|
** segid in index idx.
|
|
*/
|
|
#define FTS5_DOCLIST_IDX_ROWID(segid, height, pgno) \
|
|
FTS5_SEGMENT_ROWID(segid, FTS5_SEGMENT_MAX_HEIGHT, pgno)
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
int sqlite3Fts5Corrupt() { return SQLITE_CORRUPT_VTAB; }
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Each time a blob is read from the %_data table, it is padded with this
|
|
** many zero bytes. This makes it easier to decode the various record formats
|
|
** without overreading if the records are corrupt.
|
|
*/
|
|
#define FTS5_DATA_ZERO_PADDING 8
|
|
|
|
typedef struct Fts5BtreeIter Fts5BtreeIter;
|
|
typedef struct Fts5BtreeIterLevel Fts5BtreeIterLevel;
|
|
typedef struct Fts5ChunkIter Fts5ChunkIter;
|
|
typedef struct Fts5Data Fts5Data;
|
|
typedef struct Fts5DlidxIter Fts5DlidxIter;
|
|
typedef struct Fts5DlidxLvl Fts5DlidxLvl;
|
|
typedef struct Fts5DlidxWriter Fts5DlidxWriter;
|
|
typedef struct Fts5MultiSegIter Fts5MultiSegIter;
|
|
typedef struct Fts5NodeIter Fts5NodeIter;
|
|
typedef struct Fts5PageWriter Fts5PageWriter;
|
|
typedef struct Fts5PosIter Fts5PosIter;
|
|
typedef struct Fts5SegIter Fts5SegIter;
|
|
typedef struct Fts5DoclistIter Fts5DoclistIter;
|
|
typedef struct Fts5SegWriter Fts5SegWriter;
|
|
typedef struct Fts5Structure Fts5Structure;
|
|
typedef struct Fts5StructureLevel Fts5StructureLevel;
|
|
typedef struct Fts5StructureSegment Fts5StructureSegment;
|
|
|
|
struct Fts5Data {
|
|
u8 *p; /* Pointer to buffer containing record */
|
|
int n; /* Size of record in bytes */
|
|
int nRef; /* Ref count */
|
|
};
|
|
|
|
/*
|
|
** One object per %_data table.
|
|
*/
|
|
struct Fts5Index {
|
|
Fts5Config *pConfig; /* Virtual table configuration */
|
|
char *zDataTbl; /* Name of %_data table */
|
|
int nWorkUnit; /* Leaf pages in a "unit" of work */
|
|
|
|
/*
|
|
** Variables related to the accumulation of tokens and doclists within the
|
|
** in-memory hash tables before they are flushed to disk.
|
|
*/
|
|
Fts5Hash *pHash; /* Hash table for in-memory data */
|
|
int nMaxPendingData; /* Max pending data before flush to disk */
|
|
int nPendingData; /* Current bytes of pending data */
|
|
i64 iWriteRowid; /* Rowid for current doc being written */
|
|
Fts5Buffer scratch;
|
|
|
|
/* Error state. */
|
|
int rc; /* Current error code */
|
|
|
|
/* State used by the fts5DataXXX() functions. */
|
|
sqlite3_blob *pReader; /* RO incr-blob open on %_data table */
|
|
sqlite3_stmt *pWriter; /* "INSERT ... %_data VALUES(?,?)" */
|
|
sqlite3_stmt *pDeleter; /* "DELETE FROM %_data ... id>=? AND id<=?" */
|
|
int nRead; /* Total number of blocks read */
|
|
};
|
|
|
|
struct Fts5DoclistIter {
|
|
int bDesc; /* True for DESC order, false for ASC */
|
|
u8 *a;
|
|
int n;
|
|
int i;
|
|
|
|
/* Output variables. aPoslist==0 at EOF */
|
|
i64 iRowid;
|
|
u8 *aPoslist;
|
|
int nPoslist;
|
|
};
|
|
|
|
/*
|
|
** Each iterator used by external modules is an instance of this type.
|
|
*/
|
|
struct Fts5IndexIter {
|
|
Fts5Index *pIndex;
|
|
Fts5Structure *pStruct;
|
|
Fts5MultiSegIter *pMulti;
|
|
Fts5DoclistIter *pDoclist;
|
|
Fts5Buffer poslist; /* Buffer containing current poslist */
|
|
};
|
|
|
|
/*
|
|
** The contents of the "structure" record for each index are represented
|
|
** using an Fts5Structure record in memory. Which uses instances of the
|
|
** other Fts5StructureXXX types as components.
|
|
*/
|
|
struct Fts5StructureSegment {
|
|
int iSegid; /* Segment id */
|
|
int nHeight; /* Height of segment b-tree */
|
|
int pgnoFirst; /* First leaf page number in segment */
|
|
int pgnoLast; /* Last leaf page number in segment */
|
|
};
|
|
struct Fts5StructureLevel {
|
|
int nMerge; /* Number of segments in incr-merge */
|
|
int nSeg; /* Total number of segments on level */
|
|
Fts5StructureSegment *aSeg; /* Array of segments. aSeg[0] is oldest. */
|
|
};
|
|
struct Fts5Structure {
|
|
u64 nWriteCounter; /* Total leaves written to level 0 */
|
|
int nSegment; /* Total segments in this structure */
|
|
int nLevel; /* Number of levels in this index */
|
|
Fts5StructureLevel aLevel[0]; /* Array of nLevel level objects */
|
|
};
|
|
|
|
/*
|
|
** An object of type Fts5SegWriter is used to write to segments.
|
|
*/
|
|
struct Fts5PageWriter {
|
|
int pgno; /* Page number for this page */
|
|
Fts5Buffer buf; /* Buffer containing page data */
|
|
Fts5Buffer term; /* Buffer containing previous term on page */
|
|
};
|
|
struct Fts5DlidxWriter {
|
|
int pgno; /* Page number for this page */
|
|
int bPrevValid; /* True if iPrev is valid */
|
|
i64 iPrev; /* Previous docid value written to page */
|
|
Fts5Buffer buf; /* Buffer containing page data */
|
|
};
|
|
struct Fts5SegWriter {
|
|
int iSegid; /* Segid to write to */
|
|
int nWriter; /* Number of entries in aWriter */
|
|
Fts5PageWriter *aWriter; /* Array of PageWriter objects */
|
|
i64 iPrevRowid; /* Previous docid written to current leaf */
|
|
u8 bFirstRowidInDoclist; /* True if next rowid is first in doclist */
|
|
u8 bFirstRowidInPage; /* True if next rowid is first in page */
|
|
u8 bFirstTermInPage; /* True if next term will be first in leaf */
|
|
int nLeafWritten; /* Number of leaf pages written */
|
|
int nEmpty; /* Number of contiguous term-less nodes */
|
|
|
|
int nDlidx; /* Allocated size of aDlidx[] array */
|
|
Fts5DlidxWriter *aDlidx; /* Array of Fts5DlidxWriter objects */
|
|
};
|
|
|
|
/*
|
|
** Object for iterating through the merged results of one or more segments,
|
|
** visiting each term/docid pair in the merged data.
|
|
**
|
|
** nSeg is always a power of two greater than or equal to the number of
|
|
** segments that this object is merging data from. Both the aSeg[] and
|
|
** aFirst[] arrays are sized at nSeg entries. The aSeg[] array is padded
|
|
** with zeroed objects - these are handled as if they were iterators opened
|
|
** on empty segments.
|
|
**
|
|
** The results of comparing segments aSeg[N] and aSeg[N+1], where N is an
|
|
** even number, is stored in aFirst[(nSeg+N)/2]. The "result" of the
|
|
** comparison in this context is the index of the iterator that currently
|
|
** points to the smaller term/rowid combination. Iterators at EOF are
|
|
** considered to be greater than all other iterators.
|
|
**
|
|
** aFirst[1] contains the index in aSeg[] of the iterator that points to
|
|
** the smallest key overall. aFirst[0] is unused.
|
|
*/
|
|
|
|
typedef struct Fts5CResult Fts5CResult;
|
|
struct Fts5CResult {
|
|
u16 iFirst; /* aSeg[] index of firstest iterator */
|
|
u8 bTermEq; /* True if the terms are equal */
|
|
};
|
|
|
|
struct Fts5MultiSegIter {
|
|
int nSeg; /* Size of aSeg[] array */
|
|
int bRev; /* True to iterate in reverse order */
|
|
int bSkipEmpty; /* True to skip deleted entries */
|
|
Fts5SegIter *aSeg; /* Array of segment iterators */
|
|
Fts5CResult *aFirst; /* Current merge state (see above) */
|
|
};
|
|
|
|
/*
|
|
** Object for iterating through a single segment, visiting each term/docid
|
|
** pair in the segment.
|
|
**
|
|
** pSeg:
|
|
** The segment to iterate through.
|
|
**
|
|
** iLeafPgno:
|
|
** Current leaf page number within segment.
|
|
**
|
|
** iLeafOffset:
|
|
** Byte offset within the current leaf that is the first byte of the
|
|
** position list data (one byte passed the position-list size field).
|
|
** rowid field of the current entry. Usually this is the size field of the
|
|
** position list data. The exception is if the rowid for the current entry
|
|
** is the last thing on the leaf page.
|
|
**
|
|
** pLeaf:
|
|
** Buffer containing current leaf page data. Set to NULL at EOF.
|
|
**
|
|
** iTermLeafPgno, iTermLeafOffset:
|
|
** Leaf page number containing the last term read from the segment. And
|
|
** the offset immediately following the term data.
|
|
**
|
|
** flags:
|
|
** Mask of FTS5_SEGITER_XXX values. Interpreted as follows:
|
|
**
|
|
** FTS5_SEGITER_ONETERM:
|
|
** If set, set the iterator to point to EOF after the current doclist
|
|
** has been exhausted. Do not proceed to the next term in the segment.
|
|
**
|
|
** FTS5_SEGITER_REVERSE:
|
|
** This flag is only ever set if FTS5_SEGITER_ONETERM is also set. If
|
|
** it is set, iterate through docids in descending order instead of the
|
|
** default ascending order.
|
|
**
|
|
** iRowidOffset/nRowidOffset/aRowidOffset:
|
|
** These are used if the FTS5_SEGITER_REVERSE flag is set.
|
|
**
|
|
** For each rowid on the page corresponding to the current term, the
|
|
** corresponding aRowidOffset[] entry is set to the byte offset of the
|
|
** start of the "position-list-size" field within the page.
|
|
*/
|
|
struct Fts5SegIter {
|
|
Fts5StructureSegment *pSeg; /* Segment to iterate through */
|
|
int flags; /* Mask of configuration flags */
|
|
int iLeafPgno; /* Current leaf page number */
|
|
Fts5Data *pLeaf; /* Current leaf data */
|
|
int iLeafOffset; /* Byte offset within current leaf */
|
|
|
|
/* The page and offset from which the current term was read. The offset
|
|
** is the offset of the first rowid in the current doclist. */
|
|
int iTermLeafPgno;
|
|
int iTermLeafOffset;
|
|
|
|
/* The following are only used if the FTS5_SEGITER_REVERSE flag is set. */
|
|
int iRowidOffset; /* Current entry in aRowidOffset[] */
|
|
int nRowidOffset; /* Allocated size of aRowidOffset[] array */
|
|
int *aRowidOffset; /* Array of offset to rowid fields */
|
|
|
|
Fts5DlidxIter *pDlidx; /* If there is a doclist-index */
|
|
|
|
/* Variables populated based on current entry. */
|
|
Fts5Buffer term; /* Current term */
|
|
i64 iRowid; /* Current rowid */
|
|
int nPos; /* Number of bytes in current position list */
|
|
int bDel; /* True if the delete flag is set */
|
|
};
|
|
|
|
#define FTS5_SEGITER_ONETERM 0x01
|
|
#define FTS5_SEGITER_REVERSE 0x02
|
|
|
|
|
|
/*
|
|
** Object for iterating through paginated data.
|
|
*/
|
|
struct Fts5ChunkIter {
|
|
Fts5Data *pLeaf; /* Current leaf data. NULL -> EOF. */
|
|
i64 iLeafRowid; /* Absolute rowid of current leaf */
|
|
int nRem; /* Remaining bytes of data to read */
|
|
|
|
/* Output parameters */
|
|
u8 *p; /* Pointer to chunk of data */
|
|
int n; /* Size of buffer p in bytes */
|
|
};
|
|
|
|
/*
|
|
** Object for iterating through a single position list on disk.
|
|
*/
|
|
struct Fts5PosIter {
|
|
Fts5ChunkIter chunk; /* Current chunk of data */
|
|
int iOff; /* Offset within chunk data */
|
|
|
|
int iCol;
|
|
int iPos;
|
|
};
|
|
|
|
/*
|
|
** Object for iterating through the conents of a single internal node in
|
|
** memory.
|
|
*/
|
|
struct Fts5NodeIter {
|
|
/* Internal. Set and managed by fts5NodeIterXXX() functions. Except,
|
|
** the EOF test for the iterator is (Fts5NodeIter.aData==0). */
|
|
const u8 *aData;
|
|
int nData;
|
|
int iOff;
|
|
|
|
/* Output variables */
|
|
Fts5Buffer term;
|
|
int nEmpty;
|
|
int iChild;
|
|
int bDlidx;
|
|
};
|
|
|
|
/*
|
|
** An instance of the following type is used to iterate through the contents
|
|
** of a doclist-index record.
|
|
**
|
|
** pData:
|
|
** Record containing the doclist-index data.
|
|
**
|
|
** bEof:
|
|
** Set to true once iterator has reached EOF.
|
|
**
|
|
** iOff:
|
|
** Set to the current offset within record pData.
|
|
*/
|
|
struct Fts5DlidxLvl {
|
|
Fts5Data *pData; /* Data for current page of this level */
|
|
int iOff; /* Current offset into pData */
|
|
int bEof; /* At EOF already */
|
|
int iFirstOff; /* Used by reverse iterators */
|
|
|
|
/* Output variables */
|
|
int iLeafPgno; /* Page number of current leaf page */
|
|
i64 iRowid; /* First rowid on leaf iLeafPgno */
|
|
};
|
|
struct Fts5DlidxIter {
|
|
int nLvl;
|
|
int iSegid;
|
|
Fts5DlidxLvl aLvl[1];
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
** An Fts5BtreeIter object is used to iterate through all entries in the
|
|
** b-tree hierarchy belonging to a single fts5 segment. In this case the
|
|
** "b-tree hierarchy" is all b-tree nodes except leaves. Each entry in the
|
|
** b-tree hierarchy consists of the following:
|
|
**
|
|
** iLeaf: The page number of the leaf page the entry points to.
|
|
**
|
|
** term: A split-key that all terms on leaf page $iLeaf must be greater
|
|
** than or equal to. The "term" associated with the first b-tree
|
|
** hierarchy entry (the one that points to leaf page 1) is always
|
|
** an empty string.
|
|
**
|
|
** nEmpty: The number of empty (termless) leaf pages that immediately
|
|
** following iLeaf.
|
|
**
|
|
** The Fts5BtreeIter object is only used as part of the integrity-check code.
|
|
*/
|
|
struct Fts5BtreeIterLevel {
|
|
Fts5NodeIter s; /* Iterator for the current node */
|
|
Fts5Data *pData; /* Data for the current node */
|
|
};
|
|
struct Fts5BtreeIter {
|
|
Fts5Index *p; /* FTS5 backend object */
|
|
Fts5StructureSegment *pSeg; /* Iterate through this segment's b-tree */
|
|
int nLvl; /* Size of aLvl[] array */
|
|
Fts5BtreeIterLevel *aLvl; /* Level for each tier of b-tree */
|
|
|
|
/* Output variables */
|
|
Fts5Buffer term; /* Current term */
|
|
int iLeaf; /* Leaf containing terms >= current term */
|
|
int nEmpty; /* Number of "empty" leaves following iLeaf */
|
|
int bEof; /* Set to true at EOF */
|
|
int bDlidx; /* True if there exists a dlidx */
|
|
};
|
|
|
|
|
|
static void fts5PutU16(u8 *aOut, u16 iVal){
|
|
aOut[0] = (iVal>>8);
|
|
aOut[1] = (iVal&0xFF);
|
|
}
|
|
|
|
static u16 fts5GetU16(const u8 *aIn){
|
|
return ((u16)aIn[0] << 8) + aIn[1];
|
|
}
|
|
|
|
/*
|
|
** This is a copy of the sqlite3GetVarint32() routine from the SQLite core.
|
|
** Except, this version does handle the single byte case that the core
|
|
** version depends on being handled before its function is called.
|
|
*/
|
|
int sqlite3Fts5GetVarint32(const unsigned char *p, u32 *v){
|
|
u32 a,b;
|
|
|
|
/* The 1-byte case. Overwhelmingly the most common. */
|
|
a = *p;
|
|
/* a: p0 (unmasked) */
|
|
if (!(a&0x80))
|
|
{
|
|
/* Values between 0 and 127 */
|
|
*v = a;
|
|
return 1;
|
|
}
|
|
|
|
/* The 2-byte case */
|
|
p++;
|
|
b = *p;
|
|
/* b: p1 (unmasked) */
|
|
if (!(b&0x80))
|
|
{
|
|
/* Values between 128 and 16383 */
|
|
a &= 0x7f;
|
|
a = a<<7;
|
|
*v = a | b;
|
|
return 2;
|
|
}
|
|
|
|
/* The 3-byte case */
|
|
p++;
|
|
a = a<<14;
|
|
a |= *p;
|
|
/* a: p0<<14 | p2 (unmasked) */
|
|
if (!(a&0x80))
|
|
{
|
|
/* Values between 16384 and 2097151 */
|
|
a &= (0x7f<<14)|(0x7f);
|
|
b &= 0x7f;
|
|
b = b<<7;
|
|
*v = a | b;
|
|
return 3;
|
|
}
|
|
|
|
/* A 32-bit varint is used to store size information in btrees.
|
|
** Objects are rarely larger than 2MiB limit of a 3-byte varint.
|
|
** A 3-byte varint is sufficient, for example, to record the size
|
|
** of a 1048569-byte BLOB or string.
|
|
**
|
|
** We only unroll the first 1-, 2-, and 3- byte cases. The very
|
|
** rare larger cases can be handled by the slower 64-bit varint
|
|
** routine.
|
|
*/
|
|
{
|
|
u64 v64;
|
|
u8 n;
|
|
p -= 2;
|
|
n = sqlite3GetVarint(p, &v64);
|
|
*v = (u32)v64;
|
|
assert( n>3 && n<=9 );
|
|
return n;
|
|
}
|
|
}
|
|
|
|
int sqlite3Fts5GetVarintLen(u32 iVal){
|
|
if( iVal<(1 << 7 ) ) return 1;
|
|
if( iVal<(1 << 14) ) return 2;
|
|
if( iVal<(1 << 21) ) return 3;
|
|
if( iVal<(1 << 28) ) return 4;
|
|
return 5;
|
|
}
|
|
|
|
/*
|
|
** Allocate and return a buffer at least nByte bytes in size.
|
|
**
|
|
** If an OOM error is encountered, return NULL and set the error code in
|
|
** the Fts5Index handle passed as the first argument.
|
|
*/
|
|
static void *fts5IdxMalloc(Fts5Index *p, int nByte){
|
|
return sqlite3Fts5MallocZero(&p->rc, nByte);
|
|
}
|
|
|
|
/*
|
|
** Compare the contents of the pLeft buffer with the pRight/nRight blob.
|
|
**
|
|
** Return -ve if pLeft is smaller than pRight, 0 if they are equal or
|
|
** +ve if pRight is smaller than pLeft. In other words:
|
|
**
|
|
** res = *pLeft - *pRight
|
|
*/
|
|
static int fts5BufferCompareBlob(
|
|
Fts5Buffer *pLeft, /* Left hand side of comparison */
|
|
const u8 *pRight, int nRight /* Right hand side of comparison */
|
|
){
|
|
int nCmp = MIN(pLeft->n, nRight);
|
|
int res = memcmp(pLeft->p, pRight, nCmp);
|
|
return (res==0 ? (pLeft->n - nRight) : res);
|
|
}
|
|
|
|
|
|
/*
|
|
** Compare the contents of the two buffers using memcmp(). If one buffer
|
|
** is a prefix of the other, it is considered the lesser.
|
|
**
|
|
** Return -ve if pLeft is smaller than pRight, 0 if they are equal or
|
|
** +ve if pRight is smaller than pLeft. In other words:
|
|
**
|
|
** res = *pLeft - *pRight
|
|
*/
|
|
static int fts5BufferCompare(Fts5Buffer *pLeft, Fts5Buffer *pRight){
|
|
int nCmp = MIN(pLeft->n, pRight->n);
|
|
int res = memcmp(pLeft->p, pRight->p, nCmp);
|
|
return (res==0 ? (pLeft->n - pRight->n) : res);
|
|
}
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
static int fts5BlobCompare(
|
|
const u8 *pLeft, int nLeft,
|
|
const u8 *pRight, int nRight
|
|
){
|
|
int nCmp = MIN(nLeft, nRight);
|
|
int res = memcmp(pLeft, pRight, nCmp);
|
|
return (res==0 ? (nLeft - nRight) : res);
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Close the read-only blob handle, if it is open.
|
|
*/
|
|
static void fts5CloseReader(Fts5Index *p){
|
|
if( p->pReader ){
|
|
sqlite3_blob *pReader = p->pReader;
|
|
p->pReader = 0;
|
|
sqlite3_blob_close(pReader);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Check if row iRowid exists in the %_data table, and that it contains
|
|
** a blob value. If so, return SQLITE_ERROR (yes - SQLITE_ERROR, not
|
|
** SQLITE_OK). If not, return SQLITE_CORRUPT_VTAB.
|
|
**
|
|
** If an error occurs (e.g. OOM or IOERR), return the relevant error code.
|
|
**
|
|
** This function does not need to be efficient. It is part of vary rarely
|
|
** invoked error handling code only.
|
|
*/
|
|
#if 0
|
|
static int fts5CheckMissingRowid(Fts5Index *p, i64 iRowid){
|
|
const char *zFmt = "SELECT typeof(block)=='blob' FROM '%q'.%Q WHERE id=%lld";
|
|
int bOk = 0;
|
|
int rc;
|
|
char *zSql;
|
|
|
|
zSql = sqlite3_mprintf(zFmt, p->pConfig->zDb, p->zDataTbl, iRowid);
|
|
if( zSql==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
sqlite3_stmt *pStmt;
|
|
rc = sqlite3_prepare_v2(p->pConfig->db, zSql, -1, &pStmt, 0);
|
|
if( rc==SQLITE_OK ){
|
|
if( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
bOk = sqlite3_column_int(pStmt, 0);
|
|
}
|
|
rc = sqlite3_finalize(pStmt);
|
|
}
|
|
sqlite3_free(zSql);
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
rc = bOk ? SQLITE_ERROR : FTS5_CORRUPT;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
#endif
|
|
|
|
static Fts5Data *fts5DataReadOrBuffer(
|
|
Fts5Index *p,
|
|
Fts5Buffer *pBuf,
|
|
i64 iRowid
|
|
){
|
|
Fts5Data *pRet = 0;
|
|
if( p->rc==SQLITE_OK ){
|
|
int rc = SQLITE_OK;
|
|
|
|
if( p->pReader ){
|
|
/* This call may return SQLITE_ABORT if there has been a savepoint
|
|
** rollback since it was last used. In this case a new blob handle
|
|
** is required. */
|
|
sqlite3_blob *pBlob = p->pReader;
|
|
p->pReader = 0;
|
|
rc = sqlite3_blob_reopen(pBlob, iRowid);
|
|
assert( p->pReader==0 );
|
|
p->pReader = pBlob;
|
|
if( rc!=SQLITE_OK ){
|
|
fts5CloseReader(p);
|
|
}
|
|
if( rc==SQLITE_ABORT ) rc = SQLITE_OK;
|
|
}
|
|
|
|
/* If the blob handle is not yet open, open and seek it. Otherwise, use
|
|
** the blob_reopen() API to reseek the existing blob handle. */
|
|
if( p->pReader==0 && rc==SQLITE_OK ){
|
|
Fts5Config *pConfig = p->pConfig;
|
|
rc = sqlite3_blob_open(pConfig->db,
|
|
pConfig->zDb, p->zDataTbl, "block", iRowid, 0, &p->pReader
|
|
);
|
|
}
|
|
|
|
/* If either of the sqlite3_blob_open() or sqlite3_blob_reopen() calls
|
|
** above returned SQLITE_ERROR, return SQLITE_CORRUPT_VTAB instead.
|
|
** All the reasons those functions might return SQLITE_ERROR - missing
|
|
** table, missing row, non-blob/text in block column - indicate
|
|
** backing store corruption. */
|
|
if( rc==SQLITE_ERROR ) rc = FTS5_CORRUPT;
|
|
|
|
if( rc==SQLITE_OK ){
|
|
u8 *aOut; /* Read blob data into this buffer */
|
|
int nByte = sqlite3_blob_bytes(p->pReader);
|
|
if( pBuf ){
|
|
fts5BufferZero(pBuf);
|
|
fts5BufferGrow(&rc, pBuf, nByte);
|
|
aOut = pBuf->p;
|
|
pBuf->n = nByte;
|
|
}else{
|
|
int nSpace = nByte + FTS5_DATA_ZERO_PADDING;
|
|
pRet = (Fts5Data*)sqlite3Fts5MallocZero(&rc, nSpace+sizeof(Fts5Data));
|
|
if( pRet ){
|
|
pRet->n = nByte;
|
|
aOut = pRet->p = (u8*)&pRet[1];
|
|
pRet->nRef = 1;
|
|
}
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3_blob_read(p->pReader, aOut, nByte, 0);
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3_free(pRet);
|
|
pRet = 0;
|
|
}
|
|
}
|
|
p->rc = rc;
|
|
p->nRead++;
|
|
}
|
|
|
|
return pRet;
|
|
}
|
|
|
|
/*
|
|
** Retrieve a record from the %_data table.
|
|
**
|
|
** If an error occurs, NULL is returned and an error left in the
|
|
** Fts5Index object.
|
|
*/
|
|
static Fts5Data *fts5DataRead(Fts5Index *p, i64 iRowid){
|
|
Fts5Data *pRet = fts5DataReadOrBuffer(p, 0, iRowid);
|
|
assert( (pRet==0)==(p->rc!=SQLITE_OK) );
|
|
return pRet;
|
|
}
|
|
|
|
/*
|
|
** Read a record from the %_data table into the buffer supplied as the
|
|
** second argument.
|
|
**
|
|
** If an error occurs, an error is left in the Fts5Index object. If an
|
|
** error has already occurred when this function is called, it is a
|
|
** no-op.
|
|
*/
|
|
static void fts5DataBuffer(Fts5Index *p, Fts5Buffer *pBuf, i64 iRowid){
|
|
(void)fts5DataReadOrBuffer(p, pBuf, iRowid);
|
|
}
|
|
|
|
/*
|
|
** Release a reference to data record returned by an earlier call to
|
|
** fts5DataRead().
|
|
*/
|
|
static void fts5DataRelease(Fts5Data *pData){
|
|
if( pData ){
|
|
assert( pData->nRef>0 );
|
|
pData->nRef--;
|
|
if( pData->nRef==0 ) sqlite3_free(pData);
|
|
}
|
|
}
|
|
|
|
static void fts5DataReference(Fts5Data *pData){
|
|
pData->nRef++;
|
|
}
|
|
|
|
/*
|
|
** INSERT OR REPLACE a record into the %_data table.
|
|
*/
|
|
static void fts5DataWrite(Fts5Index *p, i64 iRowid, const u8 *pData, int nData){
|
|
if( p->rc!=SQLITE_OK ) return;
|
|
|
|
if( p->pWriter==0 ){
|
|
int rc;
|
|
Fts5Config *pConfig = p->pConfig;
|
|
char *zSql = sqlite3_mprintf(
|
|
"REPLACE INTO '%q'.%Q(id, block) VALUES(?,?)", pConfig->zDb, p->zDataTbl
|
|
);
|
|
if( zSql==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &p->pWriter, 0);
|
|
sqlite3_free(zSql);
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
p->rc = rc;
|
|
return;
|
|
}
|
|
}
|
|
|
|
sqlite3_bind_int64(p->pWriter, 1, iRowid);
|
|
sqlite3_bind_blob(p->pWriter, 2, pData, nData, SQLITE_STATIC);
|
|
sqlite3_step(p->pWriter);
|
|
p->rc = sqlite3_reset(p->pWriter);
|
|
}
|
|
|
|
/*
|
|
** Execute the following SQL:
|
|
**
|
|
** DELETE FROM %_data WHERE id BETWEEN $iFirst AND $iLast
|
|
*/
|
|
static void fts5DataDelete(Fts5Index *p, i64 iFirst, i64 iLast){
|
|
if( p->rc!=SQLITE_OK ) return;
|
|
|
|
if( p->pDeleter==0 ){
|
|
int rc;
|
|
Fts5Config *pConfig = p->pConfig;
|
|
char *zSql = sqlite3_mprintf(
|
|
"DELETE FROM '%q'.%Q WHERE id>=? AND id<=?", pConfig->zDb, p->zDataTbl
|
|
);
|
|
if( zSql==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &p->pDeleter, 0);
|
|
sqlite3_free(zSql);
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
p->rc = rc;
|
|
return;
|
|
}
|
|
}
|
|
|
|
sqlite3_bind_int64(p->pDeleter, 1, iFirst);
|
|
sqlite3_bind_int64(p->pDeleter, 2, iLast);
|
|
sqlite3_step(p->pDeleter);
|
|
p->rc = sqlite3_reset(p->pDeleter);
|
|
}
|
|
|
|
/*
|
|
** Close the sqlite3_blob handle used to read records from the %_data table.
|
|
** And discard any cached reads. This function is called at the end of
|
|
** a read transaction or when any sub-transaction is rolled back.
|
|
*/
|
|
#if 0
|
|
static void fts5DataReset(Fts5Index *p){
|
|
if( p->pReader ){
|
|
sqlite3_blob_close(p->pReader);
|
|
p->pReader = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Remove all records associated with segment iSegid.
|
|
*/
|
|
static void fts5DataRemoveSegment(Fts5Index *p, int iSegid){
|
|
i64 iFirst = FTS5_SEGMENT_ROWID(iSegid, 0, 0);
|
|
i64 iLast = FTS5_SEGMENT_ROWID(iSegid+1, 0, 0)-1;
|
|
fts5DataDelete(p, iFirst, iLast);
|
|
}
|
|
|
|
/*
|
|
** Release a reference to an Fts5Structure object returned by an earlier
|
|
** call to fts5StructureRead() or fts5StructureDecode().
|
|
*/
|
|
static void fts5StructureRelease(Fts5Structure *pStruct){
|
|
if( pStruct ){
|
|
int i;
|
|
for(i=0; i<pStruct->nLevel; i++){
|
|
sqlite3_free(pStruct->aLevel[i].aSeg);
|
|
}
|
|
sqlite3_free(pStruct);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Deserialize and return the structure record currently stored in serialized
|
|
** form within buffer pData/nData.
|
|
**
|
|
** The Fts5Structure.aLevel[] and each Fts5StructureLevel.aSeg[] array
|
|
** are over-allocated by one slot. This allows the structure contents
|
|
** to be more easily edited.
|
|
**
|
|
** If an error occurs, *ppOut is set to NULL and an SQLite error code
|
|
** returned. Otherwise, *ppOut is set to point to the new object and
|
|
** SQLITE_OK returned.
|
|
*/
|
|
static int fts5StructureDecode(
|
|
const u8 *pData, /* Buffer containing serialized structure */
|
|
int nData, /* Size of buffer pData in bytes */
|
|
int *piCookie, /* Configuration cookie value */
|
|
Fts5Structure **ppOut /* OUT: Deserialized object */
|
|
){
|
|
int rc = SQLITE_OK;
|
|
int i = 0;
|
|
int iLvl;
|
|
int nLevel = 0;
|
|
int nSegment = 0;
|
|
int nByte; /* Bytes of space to allocate at pRet */
|
|
Fts5Structure *pRet = 0; /* Structure object to return */
|
|
|
|
/* Grab the cookie value */
|
|
if( piCookie ) *piCookie = sqlite3Fts5Get32(pData);
|
|
i = 4;
|
|
|
|
/* Read the total number of levels and segments from the start of the
|
|
** structure record. */
|
|
i += fts5GetVarint32(&pData[i], nLevel);
|
|
i += fts5GetVarint32(&pData[i], nSegment);
|
|
nByte = (
|
|
sizeof(Fts5Structure) + /* Main structure */
|
|
sizeof(Fts5StructureLevel) * (nLevel) /* aLevel[] array */
|
|
);
|
|
pRet = (Fts5Structure*)sqlite3Fts5MallocZero(&rc, nByte);
|
|
|
|
if( pRet ){
|
|
pRet->nLevel = nLevel;
|
|
pRet->nSegment = nSegment;
|
|
i += sqlite3GetVarint(&pData[i], &pRet->nWriteCounter);
|
|
|
|
for(iLvl=0; rc==SQLITE_OK && iLvl<nLevel; iLvl++){
|
|
Fts5StructureLevel *pLvl = &pRet->aLevel[iLvl];
|
|
int nTotal;
|
|
int iSeg;
|
|
|
|
i += fts5GetVarint32(&pData[i], pLvl->nMerge);
|
|
i += fts5GetVarint32(&pData[i], nTotal);
|
|
assert( nTotal>=pLvl->nMerge );
|
|
pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(&rc,
|
|
nTotal * sizeof(Fts5StructureSegment)
|
|
);
|
|
|
|
if( rc==SQLITE_OK ){
|
|
pLvl->nSeg = nTotal;
|
|
for(iSeg=0; iSeg<nTotal; iSeg++){
|
|
i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].iSegid);
|
|
i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].nHeight);
|
|
i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].pgnoFirst);
|
|
i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].pgnoLast);
|
|
}
|
|
}else{
|
|
fts5StructureRelease(pRet);
|
|
pRet = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
*ppOut = pRet;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
**
|
|
*/
|
|
static void fts5StructureAddLevel(int *pRc, Fts5Structure **ppStruct){
|
|
if( *pRc==SQLITE_OK ){
|
|
Fts5Structure *pStruct = *ppStruct;
|
|
int nLevel = pStruct->nLevel;
|
|
int nByte = (
|
|
sizeof(Fts5Structure) + /* Main structure */
|
|
sizeof(Fts5StructureLevel) * (nLevel+1) /* aLevel[] array */
|
|
);
|
|
|
|
pStruct = sqlite3_realloc(pStruct, nByte);
|
|
if( pStruct ){
|
|
memset(&pStruct->aLevel[nLevel], 0, sizeof(Fts5StructureLevel));
|
|
pStruct->nLevel++;
|
|
*ppStruct = pStruct;
|
|
}else{
|
|
*pRc = SQLITE_NOMEM;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Extend level iLvl so that there is room for at least nExtra more
|
|
** segments.
|
|
*/
|
|
static void fts5StructureExtendLevel(
|
|
int *pRc,
|
|
Fts5Structure *pStruct,
|
|
int iLvl,
|
|
int nExtra,
|
|
int bInsert
|
|
){
|
|
if( *pRc==SQLITE_OK ){
|
|
Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
|
|
Fts5StructureSegment *aNew;
|
|
int nByte;
|
|
|
|
nByte = (pLvl->nSeg + nExtra) * sizeof(Fts5StructureSegment);
|
|
aNew = sqlite3_realloc(pLvl->aSeg, nByte);
|
|
if( aNew ){
|
|
if( bInsert==0 ){
|
|
memset(&aNew[pLvl->nSeg], 0, sizeof(Fts5StructureSegment) * nExtra);
|
|
}else{
|
|
int nMove = pLvl->nSeg * sizeof(Fts5StructureSegment);
|
|
memmove(&aNew[nExtra], aNew, nMove);
|
|
memset(aNew, 0, sizeof(Fts5StructureSegment) * nExtra);
|
|
}
|
|
pLvl->aSeg = aNew;
|
|
}else{
|
|
*pRc = SQLITE_NOMEM;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Read, deserialize and return the structure record.
|
|
**
|
|
** The Fts5Structure.aLevel[] and each Fts5StructureLevel.aSeg[] array
|
|
** are over-allocated as described for function fts5StructureDecode()
|
|
** above.
|
|
**
|
|
** If an error occurs, NULL is returned and an error code left in the
|
|
** Fts5Index handle. If an error has already occurred when this function
|
|
** is called, it is a no-op.
|
|
*/
|
|
static Fts5Structure *fts5StructureRead(Fts5Index *p){
|
|
Fts5Config *pConfig = p->pConfig;
|
|
Fts5Structure *pRet = 0; /* Object to return */
|
|
Fts5Data *pData; /* %_data entry containing structure record */
|
|
int iCookie; /* Configuration cookie */
|
|
|
|
pData = fts5DataRead(p, FTS5_STRUCTURE_ROWID);
|
|
if( !pData ) return 0;
|
|
p->rc = fts5StructureDecode(pData->p, pData->n, &iCookie, &pRet);
|
|
|
|
if( p->rc==SQLITE_OK && pConfig->iCookie!=iCookie ){
|
|
p->rc = sqlite3Fts5ConfigLoad(pConfig, iCookie);
|
|
}
|
|
|
|
fts5DataRelease(pData);
|
|
if( p->rc!=SQLITE_OK ){
|
|
fts5StructureRelease(pRet);
|
|
pRet = 0;
|
|
}
|
|
return pRet;
|
|
}
|
|
|
|
/*
|
|
** Return the total number of segments in index structure pStruct. This
|
|
** function is only ever used as part of assert() conditions.
|
|
*/
|
|
#ifdef SQLITE_DEBUG
|
|
static int fts5StructureCountSegments(Fts5Structure *pStruct){
|
|
int nSegment = 0; /* Total number of segments */
|
|
if( pStruct ){
|
|
int iLvl; /* Used to iterate through levels */
|
|
for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
|
|
nSegment += pStruct->aLevel[iLvl].nSeg;
|
|
}
|
|
}
|
|
|
|
return nSegment;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Serialize and store the "structure" record.
|
|
**
|
|
** If an error occurs, leave an error code in the Fts5Index object. If an
|
|
** error has already occurred, this function is a no-op.
|
|
*/
|
|
static void fts5StructureWrite(Fts5Index *p, Fts5Structure *pStruct){
|
|
if( p->rc==SQLITE_OK ){
|
|
Fts5Buffer buf; /* Buffer to serialize record into */
|
|
int iLvl; /* Used to iterate through levels */
|
|
int iCookie; /* Cookie value to store */
|
|
|
|
assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) );
|
|
memset(&buf, 0, sizeof(Fts5Buffer));
|
|
|
|
/* Append the current configuration cookie */
|
|
iCookie = p->pConfig->iCookie;
|
|
if( iCookie<0 ) iCookie = 0;
|
|
fts5BufferAppend32(&p->rc, &buf, iCookie);
|
|
|
|
fts5BufferAppendVarint(&p->rc, &buf, pStruct->nLevel);
|
|
fts5BufferAppendVarint(&p->rc, &buf, pStruct->nSegment);
|
|
fts5BufferAppendVarint(&p->rc, &buf, (i64)pStruct->nWriteCounter);
|
|
|
|
for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
|
|
int iSeg; /* Used to iterate through segments */
|
|
Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
|
|
fts5BufferAppendVarint(&p->rc, &buf, pLvl->nMerge);
|
|
fts5BufferAppendVarint(&p->rc, &buf, pLvl->nSeg);
|
|
assert( pLvl->nMerge<=pLvl->nSeg );
|
|
|
|
for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){
|
|
fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].iSegid);
|
|
fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].nHeight);
|
|
fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].pgnoFirst);
|
|
fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].pgnoLast);
|
|
}
|
|
}
|
|
|
|
fts5DataWrite(p, FTS5_STRUCTURE_ROWID, buf.p, buf.n);
|
|
fts5BufferFree(&buf);
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
static void fts5DebugStructure(int*,Fts5Buffer*,Fts5Structure*);
|
|
static void fts5PrintStructure(const char *zCaption, Fts5Structure *pStruct){
|
|
int rc = SQLITE_OK;
|
|
Fts5Buffer buf;
|
|
memset(&buf, 0, sizeof(buf));
|
|
fts5DebugStructure(&rc, &buf, pStruct);
|
|
fprintf(stdout, "%s: %s\n", zCaption, buf.p);
|
|
fflush(stdout);
|
|
fts5BufferFree(&buf);
|
|
}
|
|
#else
|
|
# define fts5PrintStructure(x,y)
|
|
#endif
|
|
|
|
static int fts5SegmentSize(Fts5StructureSegment *pSeg){
|
|
return 1 + pSeg->pgnoLast - pSeg->pgnoFirst;
|
|
}
|
|
|
|
/*
|
|
** Return a copy of index structure pStruct. Except, promote as many
|
|
** segments as possible to level iPromote. If an OOM occurs, NULL is
|
|
** returned.
|
|
*/
|
|
static void fts5StructurePromoteTo(
|
|
Fts5Index *p,
|
|
int iPromote,
|
|
int szPromote,
|
|
Fts5Structure *pStruct
|
|
){
|
|
int il, is;
|
|
Fts5StructureLevel *pOut = &pStruct->aLevel[iPromote];
|
|
|
|
if( pOut->nMerge==0 ){
|
|
for(il=iPromote+1; il<pStruct->nLevel; il++){
|
|
Fts5StructureLevel *pLvl = &pStruct->aLevel[il];
|
|
if( pLvl->nMerge ) return;
|
|
for(is=pLvl->nSeg-1; is>=0; is--){
|
|
int sz = fts5SegmentSize(&pLvl->aSeg[is]);
|
|
if( sz>szPromote ) return;
|
|
fts5StructureExtendLevel(&p->rc, pStruct, iPromote, 1, 1);
|
|
if( p->rc ) return;
|
|
memcpy(pOut->aSeg, &pLvl->aSeg[is], sizeof(Fts5StructureSegment));
|
|
pOut->nSeg++;
|
|
pLvl->nSeg--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** A new segment has just been written to level iLvl of index structure
|
|
** pStruct. This function determines if any segments should be promoted
|
|
** as a result. Segments are promoted in two scenarios:
|
|
**
|
|
** a) If the segment just written is smaller than one or more segments
|
|
** within the previous populated level, it is promoted to the previous
|
|
** populated level.
|
|
**
|
|
** b) If the segment just written is larger than the newest segment on
|
|
** the next populated level, then that segment, and any other adjacent
|
|
** segments that are also smaller than the one just written, are
|
|
** promoted.
|
|
**
|
|
** If one or more segments are promoted, the structure object is updated
|
|
** to reflect this.
|
|
*/
|
|
static void fts5StructurePromote(
|
|
Fts5Index *p, /* FTS5 backend object */
|
|
int iLvl, /* Index level just updated */
|
|
Fts5Structure *pStruct /* Index structure */
|
|
){
|
|
if( p->rc==SQLITE_OK ){
|
|
int iTst;
|
|
int iPromote = -1;
|
|
int szPromote; /* Promote anything this size or smaller */
|
|
Fts5StructureSegment *pSeg; /* Segment just written */
|
|
int szSeg; /* Size of segment just written */
|
|
|
|
|
|
pSeg = &pStruct->aLevel[iLvl].aSeg[pStruct->aLevel[iLvl].nSeg-1];
|
|
szSeg = (1 + pSeg->pgnoLast - pSeg->pgnoFirst);
|
|
|
|
/* Check for condition (a) */
|
|
for(iTst=iLvl-1; iTst>=0 && pStruct->aLevel[iTst].nSeg==0; iTst--);
|
|
if( iTst>=0 ){
|
|
int i;
|
|
int szMax = 0;
|
|
Fts5StructureLevel *pTst = &pStruct->aLevel[iTst];
|
|
assert( pTst->nMerge==0 );
|
|
for(i=0; i<pTst->nSeg; i++){
|
|
int sz = pTst->aSeg[i].pgnoLast - pTst->aSeg[i].pgnoFirst + 1;
|
|
if( sz>szMax ) szMax = sz;
|
|
}
|
|
if( szMax>=szSeg ){
|
|
/* Condition (a) is true. Promote the newest segment on level
|
|
** iLvl to level iTst. */
|
|
iPromote = iTst;
|
|
szPromote = szMax;
|
|
}
|
|
}
|
|
|
|
/* If condition (a) is not met, assume (b) is true. StructurePromoteTo()
|
|
** is a no-op if it is not. */
|
|
if( iPromote<0 ){
|
|
iPromote = iLvl;
|
|
szPromote = szSeg;
|
|
}
|
|
fts5StructurePromoteTo(p, iPromote, szPromote, pStruct);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** If the pIter->iOff offset currently points to an entry indicating one
|
|
** or more term-less nodes, advance past it and set pIter->nEmpty to
|
|
** the number of empty child nodes.
|
|
*/
|
|
static void fts5NodeIterGobbleNEmpty(Fts5NodeIter *pIter){
|
|
if( pIter->iOff<pIter->nData && 0==(pIter->aData[pIter->iOff] & 0xfe) ){
|
|
pIter->bDlidx = pIter->aData[pIter->iOff] & 0x01;
|
|
pIter->iOff++;
|
|
pIter->iOff += fts5GetVarint32(&pIter->aData[pIter->iOff], pIter->nEmpty);
|
|
}else{
|
|
pIter->nEmpty = 0;
|
|
pIter->bDlidx = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Advance to the next entry within the node.
|
|
*/
|
|
static void fts5NodeIterNext(int *pRc, Fts5NodeIter *pIter){
|
|
if( pIter->iOff>=pIter->nData ){
|
|
pIter->aData = 0;
|
|
pIter->iChild += pIter->nEmpty;
|
|
}else{
|
|
int nPre, nNew;
|
|
pIter->iOff += fts5GetVarint32(&pIter->aData[pIter->iOff], nPre);
|
|
pIter->iOff += fts5GetVarint32(&pIter->aData[pIter->iOff], nNew);
|
|
pIter->term.n = nPre-2;
|
|
fts5BufferAppendBlob(pRc, &pIter->term, nNew, pIter->aData+pIter->iOff);
|
|
pIter->iOff += nNew;
|
|
pIter->iChild += (1 + pIter->nEmpty);
|
|
fts5NodeIterGobbleNEmpty(pIter);
|
|
if( *pRc ) pIter->aData = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Initialize the iterator object pIter to iterate through the internal
|
|
** segment node in pData.
|
|
*/
|
|
static void fts5NodeIterInit(const u8 *aData, int nData, Fts5NodeIter *pIter){
|
|
memset(pIter, 0, sizeof(*pIter));
|
|
pIter->aData = aData;
|
|
pIter->nData = nData;
|
|
pIter->iOff = fts5GetVarint32(aData, pIter->iChild);
|
|
fts5NodeIterGobbleNEmpty(pIter);
|
|
}
|
|
|
|
/*
|
|
** Free any memory allocated by the iterator object.
|
|
*/
|
|
static void fts5NodeIterFree(Fts5NodeIter *pIter){
|
|
fts5BufferFree(&pIter->term);
|
|
}
|
|
|
|
/*
|
|
** Advance the iterator passed as the only argument. If the end of the
|
|
** doclist-index page is reached, return non-zero.
|
|
*/
|
|
static int fts5DlidxLvlNext(Fts5DlidxLvl *pLvl){
|
|
Fts5Data *pData = pLvl->pData;
|
|
|
|
if( pLvl->iOff==0 ){
|
|
assert( pLvl->bEof==0 );
|
|
pLvl->iOff = 1;
|
|
pLvl->iOff += fts5GetVarint32(&pData->p[1], pLvl->iLeafPgno);
|
|
pLvl->iOff += getVarint(&pData->p[pLvl->iOff], (u64*)&pLvl->iRowid);
|
|
pLvl->iFirstOff = pLvl->iOff;
|
|
}else{
|
|
int iOff;
|
|
for(iOff=pLvl->iOff; iOff<pData->n; iOff++){
|
|
if( pData->p[iOff] ) break;
|
|
}
|
|
|
|
if( iOff<pData->n ){
|
|
i64 iVal;
|
|
pLvl->iLeafPgno += (iOff - pLvl->iOff) + 1;
|
|
iOff += getVarint(&pData->p[iOff], (u64*)&iVal);
|
|
pLvl->iRowid += iVal;
|
|
pLvl->iOff = iOff;
|
|
}else{
|
|
pLvl->bEof = 1;
|
|
}
|
|
}
|
|
|
|
return pLvl->bEof;
|
|
}
|
|
|
|
/*
|
|
** Advance the iterator passed as the only argument.
|
|
*/
|
|
static int fts5DlidxIterNextR(Fts5Index *p, Fts5DlidxIter *pIter, int iLvl){
|
|
Fts5DlidxLvl *pLvl = &pIter->aLvl[iLvl];
|
|
|
|
assert( iLvl<pIter->nLvl );
|
|
if( fts5DlidxLvlNext(pLvl) ){
|
|
if( (iLvl+1) < pIter->nLvl ){
|
|
fts5DlidxIterNextR(p, pIter, iLvl+1);
|
|
if( pLvl[1].bEof==0 ){
|
|
fts5DataRelease(pLvl->pData);
|
|
memset(pLvl, 0, sizeof(Fts5DlidxLvl));
|
|
pLvl->pData = fts5DataRead(p,
|
|
FTS5_DLIDX_ROWID(pIter->iSegid, iLvl, pLvl[1].iLeafPgno)
|
|
);
|
|
if( pLvl->pData ) fts5DlidxLvlNext(pLvl);
|
|
}
|
|
}
|
|
}
|
|
|
|
return pIter->aLvl[0].bEof;
|
|
}
|
|
static int fts5DlidxIterNext(Fts5Index *p, Fts5DlidxIter *pIter){
|
|
return fts5DlidxIterNextR(p, pIter, 0);
|
|
}
|
|
|
|
/*
|
|
** The iterator passed as the first argument has the following fields set
|
|
** as follows. This function sets up the rest of the iterator so that it
|
|
** points to the first rowid in the doclist-index.
|
|
**
|
|
** pData:
|
|
** pointer to doclist-index record,
|
|
**
|
|
** When this function is called pIter->iLeafPgno is the page number the
|
|
** doclist is associated with (the one featuring the term).
|
|
*/
|
|
static int fts5DlidxIterFirst(Fts5DlidxIter *pIter){
|
|
int i;
|
|
for(i=0; i<pIter->nLvl; i++){
|
|
fts5DlidxLvlNext(&pIter->aLvl[i]);
|
|
}
|
|
return pIter->aLvl[0].bEof;
|
|
}
|
|
|
|
|
|
static int fts5DlidxIterEof(Fts5Index *p, Fts5DlidxIter *pIter){
|
|
return p->rc!=SQLITE_OK || pIter->aLvl[0].bEof;
|
|
}
|
|
|
|
static void fts5DlidxIterLast(Fts5Index *p, Fts5DlidxIter *pIter){
|
|
int i;
|
|
|
|
/* Advance each level to the last entry on the last page */
|
|
for(i=pIter->nLvl-1; p->rc==SQLITE_OK && i>=0; i--){
|
|
Fts5DlidxLvl *pLvl = &pIter->aLvl[i];
|
|
while( fts5DlidxLvlNext(pLvl)==0 );
|
|
pLvl->bEof = 0;
|
|
|
|
if( i>0 ){
|
|
Fts5DlidxLvl *pChild = &pLvl[-1];
|
|
fts5DataRelease(pChild->pData);
|
|
memset(pChild, 0, sizeof(Fts5DlidxLvl));
|
|
pChild->pData = fts5DataRead(p,
|
|
FTS5_DLIDX_ROWID(pIter->iSegid, i-1, pLvl->iLeafPgno)
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Move the iterator passed as the only argument to the previous entry.
|
|
*/
|
|
static int fts5DlidxLvlPrev(Fts5DlidxLvl *pLvl){
|
|
int iOff = pLvl->iOff;
|
|
|
|
assert( pLvl->bEof==0 );
|
|
if( iOff<=pLvl->iFirstOff ){
|
|
pLvl->bEof = 1;
|
|
}else{
|
|
u8 *a = pLvl->pData->p;
|
|
i64 iVal;
|
|
int iLimit;
|
|
int ii;
|
|
int nZero = 0;
|
|
|
|
/* Currently iOff points to the first byte of a varint. This block
|
|
** decrements iOff until it points to the first byte of the previous
|
|
** varint. Taking care not to read any memory locations that occur
|
|
** before the buffer in memory. */
|
|
iLimit = (iOff>9 ? iOff-9 : 0);
|
|
for(iOff--; iOff>iLimit; iOff--){
|
|
if( (a[iOff-1] & 0x80)==0 ) break;
|
|
}
|
|
|
|
getVarint(&a[iOff], (u64*)&iVal);
|
|
pLvl->iRowid -= iVal;
|
|
pLvl->iLeafPgno--;
|
|
|
|
/* Skip backwards past any 0x00 varints. */
|
|
for(ii=iOff-1; ii>=pLvl->iFirstOff && a[ii]==0x00; ii--){
|
|
nZero++;
|
|
}
|
|
if( ii>=pLvl->iFirstOff && (a[ii] & 0x80) ){
|
|
/* The byte immediately before the last 0x00 byte has the 0x80 bit
|
|
** set. So the last 0x00 is only a varint 0 if there are 8 more 0x80
|
|
** bytes before a[ii]. */
|
|
int bZero = 0; /* True if last 0x00 counts */
|
|
if( (ii-8)>=pLvl->iFirstOff ){
|
|
int j;
|
|
for(j=1; j<=8 && (a[ii-j] & 0x80); j++);
|
|
bZero = (j>8);
|
|
}
|
|
if( bZero==0 ) nZero--;
|
|
}
|
|
pLvl->iLeafPgno -= nZero;
|
|
pLvl->iOff = iOff - nZero;
|
|
}
|
|
|
|
return pLvl->bEof;
|
|
}
|
|
|
|
static int fts5DlidxIterPrevR(Fts5Index *p, Fts5DlidxIter *pIter, int iLvl){
|
|
Fts5DlidxLvl *pLvl = &pIter->aLvl[iLvl];
|
|
|
|
assert( iLvl<pIter->nLvl );
|
|
if( fts5DlidxLvlPrev(pLvl) ){
|
|
if( (iLvl+1) < pIter->nLvl ){
|
|
fts5DlidxIterPrevR(p, pIter, iLvl+1);
|
|
if( pLvl[1].bEof==0 ){
|
|
fts5DataRelease(pLvl->pData);
|
|
memset(pLvl, 0, sizeof(Fts5DlidxLvl));
|
|
pLvl->pData = fts5DataRead(p,
|
|
FTS5_DLIDX_ROWID(pIter->iSegid, iLvl, pLvl[1].iLeafPgno)
|
|
);
|
|
if( pLvl->pData ){
|
|
while( fts5DlidxLvlNext(pLvl)==0 );
|
|
pLvl->bEof = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return pIter->aLvl[0].bEof;
|
|
}
|
|
static int fts5DlidxIterPrev(Fts5Index *p, Fts5DlidxIter *pIter){
|
|
return fts5DlidxIterPrevR(p, pIter, 0);
|
|
}
|
|
|
|
/*
|
|
** Free a doclist-index iterator object allocated by fts5DlidxIterInit().
|
|
*/
|
|
static void fts5DlidxIterFree(Fts5DlidxIter *pIter){
|
|
if( pIter ){
|
|
int i;
|
|
for(i=0; i<pIter->nLvl; i++){
|
|
fts5DataRelease(pIter->aLvl[i].pData);
|
|
}
|
|
sqlite3_free(pIter);
|
|
}
|
|
}
|
|
|
|
static Fts5DlidxIter *fts5DlidxIterInit(
|
|
Fts5Index *p, /* Fts5 Backend to iterate within */
|
|
int bRev, /* True for ORDER BY ASC */
|
|
int iSegid, /* Segment id */
|
|
int iLeafPg /* Leaf page number to load dlidx for */
|
|
){
|
|
Fts5DlidxIter *pIter = 0;
|
|
int i;
|
|
int bDone = 0;
|
|
|
|
for(i=0; p->rc==SQLITE_OK && bDone==0; i++){
|
|
int nByte = sizeof(Fts5DlidxIter) + i * sizeof(Fts5DlidxLvl);
|
|
Fts5DlidxIter *pNew;
|
|
|
|
pNew = (Fts5DlidxIter*)sqlite3_realloc(pIter, nByte);
|
|
if( pNew==0 ){
|
|
p->rc = SQLITE_NOMEM;
|
|
}else{
|
|
i64 iRowid = FTS5_DLIDX_ROWID(iSegid, i, iLeafPg);
|
|
Fts5DlidxLvl *pLvl = &pNew->aLvl[i];
|
|
pIter = pNew;
|
|
memset(pLvl, 0, sizeof(Fts5DlidxLvl));
|
|
pLvl->pData = fts5DataRead(p, iRowid);
|
|
if( pLvl->pData && (pLvl->pData->p[0] & 0x0001)==0 ){
|
|
bDone = 1;
|
|
}
|
|
pIter->nLvl = i+1;
|
|
}
|
|
}
|
|
|
|
if( p->rc==SQLITE_OK ){
|
|
pIter->iSegid = iSegid;
|
|
if( bRev==0 ){
|
|
fts5DlidxIterFirst(pIter);
|
|
}else{
|
|
fts5DlidxIterLast(p, pIter);
|
|
}
|
|
}
|
|
|
|
if( p->rc!=SQLITE_OK ){
|
|
fts5DlidxIterFree(pIter);
|
|
pIter = 0;
|
|
}
|
|
|
|
return pIter;
|
|
}
|
|
|
|
static i64 fts5DlidxIterRowid(Fts5DlidxIter *pIter){
|
|
return pIter->aLvl[0].iRowid;
|
|
}
|
|
static int fts5DlidxIterPgno(Fts5DlidxIter *pIter){
|
|
return pIter->aLvl[0].iLeafPgno;
|
|
}
|
|
|
|
static void fts5LeafHeader(Fts5Data *pLeaf, int *piRowid, int *piTerm){
|
|
*piRowid = (int)fts5GetU16(&pLeaf->p[0]);
|
|
*piTerm = (int)fts5GetU16(&pLeaf->p[2]);
|
|
}
|
|
|
|
/*
|
|
** Load the next leaf page into the segment iterator.
|
|
*/
|
|
static void fts5SegIterNextPage(
|
|
Fts5Index *p, /* FTS5 backend object */
|
|
Fts5SegIter *pIter /* Iterator to advance to next page */
|
|
){
|
|
Fts5StructureSegment *pSeg = pIter->pSeg;
|
|
fts5DataRelease(pIter->pLeaf);
|
|
pIter->iLeafPgno++;
|
|
if( pIter->iLeafPgno<=pSeg->pgnoLast ){
|
|
pIter->pLeaf = fts5DataRead(p,
|
|
FTS5_SEGMENT_ROWID(pSeg->iSegid, 0, pIter->iLeafPgno)
|
|
);
|
|
}else{
|
|
pIter->pLeaf = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Argument p points to a buffer containing a varint to be interpreted as a
|
|
** position list size field. Read the varint and return the number of bytes
|
|
** read. Before returning, set *pnSz to the number of bytes in the position
|
|
** list, and *pbDel to true if the delete flag is set, or false otherwise.
|
|
*/
|
|
static int fts5GetPoslistSize(const u8 *p, int *pnSz, int *pbDel){
|
|
int nSz;
|
|
int n = fts5GetVarint32(p, nSz);
|
|
assert_nc( nSz>=0 );
|
|
*pnSz = nSz/2;
|
|
*pbDel = nSz & 0x0001;
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Fts5SegIter.iLeafOffset currently points to the first byte of a
|
|
** position-list size field. Read the value of the field and store it
|
|
** in the following variables:
|
|
**
|
|
** Fts5SegIter.nPos
|
|
** Fts5SegIter.bDel
|
|
**
|
|
** Leave Fts5SegIter.iLeafOffset pointing to the first byte of the
|
|
** position list content (if any).
|
|
*/
|
|
static void fts5SegIterLoadNPos(Fts5Index *p, Fts5SegIter *pIter){
|
|
if( p->rc==SQLITE_OK ){
|
|
int iOff = pIter->iLeafOffset; /* Offset to read at */
|
|
if( iOff>=pIter->pLeaf->n ){
|
|
p->rc = FTS5_CORRUPT;
|
|
}else{
|
|
const u8 *a = &pIter->pLeaf->p[iOff];
|
|
pIter->iLeafOffset += fts5GetPoslistSize(a, &pIter->nPos, &pIter->bDel);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Fts5SegIter.iLeafOffset currently points to the first byte of the
|
|
** "nSuffix" field of a term. Function parameter nKeep contains the value
|
|
** of the "nPrefix" field (if there was one - it is passed 0 if this is
|
|
** the first term in the segment).
|
|
**
|
|
** This function populates:
|
|
**
|
|
** Fts5SegIter.term
|
|
** Fts5SegIter.rowid
|
|
**
|
|
** accordingly and leaves (Fts5SegIter.iLeafOffset) set to the content of
|
|
** the first position list. The position list belonging to document
|
|
** (Fts5SegIter.iRowid).
|
|
*/
|
|
static void fts5SegIterLoadTerm(Fts5Index *p, Fts5SegIter *pIter, int nKeep){
|
|
u8 *a = pIter->pLeaf->p; /* Buffer to read data from */
|
|
int iOff = pIter->iLeafOffset; /* Offset to read at */
|
|
int nNew; /* Bytes of new data */
|
|
|
|
iOff += fts5GetVarint32(&a[iOff], nNew);
|
|
pIter->term.n = nKeep;
|
|
fts5BufferAppendBlob(&p->rc, &pIter->term, nNew, &a[iOff]);
|
|
iOff += nNew;
|
|
pIter->iTermLeafOffset = iOff;
|
|
pIter->iTermLeafPgno = pIter->iLeafPgno;
|
|
if( iOff>=pIter->pLeaf->n ){
|
|
fts5SegIterNextPage(p, pIter);
|
|
if( pIter->pLeaf==0 ){
|
|
if( p->rc==SQLITE_OK ) p->rc = FTS5_CORRUPT;
|
|
return;
|
|
}
|
|
iOff = 4;
|
|
a = pIter->pLeaf->p;
|
|
}
|
|
iOff += sqlite3GetVarint(&a[iOff], (u64*)&pIter->iRowid);
|
|
pIter->iLeafOffset = iOff;
|
|
}
|
|
|
|
/*
|
|
** Initialize the iterator object pIter to iterate through the entries in
|
|
** segment pSeg. The iterator is left pointing to the first entry when
|
|
** this function returns.
|
|
**
|
|
** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
|
|
** an error has already occurred when this function is called, it is a no-op.
|
|
*/
|
|
static void fts5SegIterInit(
|
|
Fts5Index *p, /* FTS index object */
|
|
Fts5StructureSegment *pSeg, /* Description of segment */
|
|
Fts5SegIter *pIter /* Object to populate */
|
|
){
|
|
if( pSeg->pgnoFirst==0 ){
|
|
/* This happens if the segment is being used as an input to an incremental
|
|
** merge and all data has already been "trimmed". See function
|
|
** fts5TrimSegments() for details. In this case leave the iterator empty.
|
|
** The caller will see the (pIter->pLeaf==0) and assume the iterator is
|
|
** at EOF already. */
|
|
assert( pIter->pLeaf==0 );
|
|
return;
|
|
}
|
|
|
|
if( p->rc==SQLITE_OK ){
|
|
memset(pIter, 0, sizeof(*pIter));
|
|
pIter->pSeg = pSeg;
|
|
pIter->iLeafPgno = pSeg->pgnoFirst-1;
|
|
fts5SegIterNextPage(p, pIter);
|
|
}
|
|
|
|
if( p->rc==SQLITE_OK ){
|
|
u8 *a = pIter->pLeaf->p;
|
|
pIter->iLeafOffset = fts5GetU16(&a[2]);
|
|
fts5SegIterLoadTerm(p, pIter, 0);
|
|
fts5SegIterLoadNPos(p, pIter);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This function is only ever called on iterators created by calls to
|
|
** Fts5IndexQuery() with the FTS5INDEX_QUERY_DESC flag set.
|
|
**
|
|
** The iterator is in an unusual state when this function is called: the
|
|
** Fts5SegIter.iLeafOffset variable is set to the offset of the start of
|
|
** the position-list size field for the first relevant rowid on the page.
|
|
** Fts5SegIter.rowid is set, but nPos and bDel are not.
|
|
**
|
|
** This function advances the iterator so that it points to the last
|
|
** relevant rowid on the page and, if necessary, initializes the
|
|
** aRowidOffset[] and iRowidOffset variables. At this point the iterator
|
|
** is in its regular state - Fts5SegIter.iLeafOffset points to the first
|
|
** byte of the position list content associated with said rowid.
|
|
*/
|
|
static void fts5SegIterReverseInitPage(Fts5Index *p, Fts5SegIter *pIter){
|
|
int n = pIter->pLeaf->n;
|
|
int i = pIter->iLeafOffset;
|
|
u8 *a = pIter->pLeaf->p;
|
|
int iRowidOffset = 0;
|
|
|
|
while( 1 ){
|
|
i64 iDelta = 0;
|
|
int nPos;
|
|
int bDummy;
|
|
|
|
i += fts5GetPoslistSize(&a[i], &nPos, &bDummy);
|
|
i += nPos;
|
|
if( i>=n ) break;
|
|
i += getVarint(&a[i], (u64*)&iDelta);
|
|
if( iDelta==0 ) break;
|
|
pIter->iRowid += iDelta;
|
|
|
|
if( iRowidOffset>=pIter->nRowidOffset ){
|
|
int nNew = pIter->nRowidOffset + 8;
|
|
int *aNew = (int*)sqlite3_realloc(pIter->aRowidOffset, nNew*sizeof(int));
|
|
if( aNew==0 ){
|
|
p->rc = SQLITE_NOMEM;
|
|
break;
|
|
}
|
|
pIter->aRowidOffset = aNew;
|
|
pIter->nRowidOffset = nNew;
|
|
}
|
|
|
|
pIter->aRowidOffset[iRowidOffset++] = pIter->iLeafOffset;
|
|
pIter->iLeafOffset = i;
|
|
}
|
|
pIter->iRowidOffset = iRowidOffset;
|
|
fts5SegIterLoadNPos(p, pIter);
|
|
}
|
|
|
|
/*
|
|
**
|
|
*/
|
|
static void fts5SegIterReverseNewPage(Fts5Index *p, Fts5SegIter *pIter){
|
|
assert( pIter->flags & FTS5_SEGITER_REVERSE );
|
|
assert( pIter->flags & FTS5_SEGITER_ONETERM );
|
|
|
|
fts5DataRelease(pIter->pLeaf);
|
|
pIter->pLeaf = 0;
|
|
while( p->rc==SQLITE_OK && pIter->iLeafPgno>pIter->iTermLeafPgno ){
|
|
Fts5Data *pNew;
|
|
pIter->iLeafPgno--;
|
|
pNew = fts5DataRead(p, FTS5_SEGMENT_ROWID(
|
|
pIter->pSeg->iSegid, 0, pIter->iLeafPgno
|
|
));
|
|
if( pNew ){
|
|
if( pIter->iLeafPgno==pIter->iTermLeafPgno ){
|
|
if( pIter->iTermLeafOffset<pNew->n ){
|
|
pIter->pLeaf = pNew;
|
|
pIter->iLeafOffset = pIter->iTermLeafOffset;
|
|
}
|
|
}else{
|
|
int iRowidOff, dummy;
|
|
fts5LeafHeader(pNew, &iRowidOff, &dummy);
|
|
if( iRowidOff ){
|
|
pIter->pLeaf = pNew;
|
|
pIter->iLeafOffset = iRowidOff;
|
|
}
|
|
}
|
|
|
|
if( pIter->pLeaf ){
|
|
u8 *a = &pIter->pLeaf->p[pIter->iLeafOffset];
|
|
pIter->iLeafOffset += getVarint(a, (u64*)&pIter->iRowid);
|
|
break;
|
|
}else{
|
|
fts5DataRelease(pNew);
|
|
}
|
|
}
|
|
}
|
|
|
|
if( pIter->pLeaf ){
|
|
fts5SegIterReverseInitPage(p, pIter);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return true if the iterator passed as the second argument currently
|
|
** points to a delete marker. A delete marker is an entry with a 0 byte
|
|
** position-list.
|
|
*/
|
|
static int fts5MultiIterIsEmpty(Fts5Index *p, Fts5MultiSegIter *pIter){
|
|
Fts5SegIter *pSeg = &pIter->aSeg[pIter->aFirst[1].iFirst];
|
|
return (p->rc==SQLITE_OK && pSeg->pLeaf && pSeg->nPos==0);
|
|
}
|
|
|
|
/*
|
|
** Advance iterator pIter to the next entry.
|
|
**
|
|
** If an error occurs, Fts5Index.rc is set to an appropriate error code. It
|
|
** is not considered an error if the iterator reaches EOF. If an error has
|
|
** already occurred when this function is called, it is a no-op.
|
|
*/
|
|
static void fts5SegIterNext(
|
|
Fts5Index *p, /* FTS5 backend object */
|
|
Fts5SegIter *pIter, /* Iterator to advance */
|
|
int *pbNewTerm /* OUT: Set for new term */
|
|
){
|
|
assert( pbNewTerm==0 || *pbNewTerm==0 );
|
|
if( p->rc==SQLITE_OK ){
|
|
if( pIter->flags & FTS5_SEGITER_REVERSE ){
|
|
|
|
if( pIter->iRowidOffset>0 ){
|
|
u8 *a = pIter->pLeaf->p;
|
|
int iOff;
|
|
int nPos;
|
|
int bDummy;
|
|
i64 iDelta;
|
|
|
|
pIter->iRowidOffset--;
|
|
pIter->iLeafOffset = iOff = pIter->aRowidOffset[pIter->iRowidOffset];
|
|
iOff += fts5GetPoslistSize(&a[iOff], &nPos, &bDummy);
|
|
iOff += nPos;
|
|
getVarint(&a[iOff], (u64*)&iDelta);
|
|
pIter->iRowid -= iDelta;
|
|
fts5SegIterLoadNPos(p, pIter);
|
|
}else{
|
|
fts5SegIterReverseNewPage(p, pIter);
|
|
}
|
|
}else{
|
|
Fts5Data *pLeaf = pIter->pLeaf;
|
|
int iOff;
|
|
int bNewTerm = 0;
|
|
int nKeep = 0;
|
|
|
|
/* Search for the end of the position list within the current page. */
|
|
u8 *a = pLeaf->p;
|
|
int n = pLeaf->n;
|
|
|
|
iOff = pIter->iLeafOffset + pIter->nPos;
|
|
|
|
if( iOff<n ){
|
|
/* The next entry is on the current page */
|
|
u64 iDelta;
|
|
iOff += sqlite3GetVarint(&a[iOff], &iDelta);
|
|
pIter->iLeafOffset = iOff;
|
|
if( iDelta==0 ){
|
|
bNewTerm = 1;
|
|
if( iOff>=n ){
|
|
fts5SegIterNextPage(p, pIter);
|
|
pIter->iLeafOffset = 4;
|
|
}else if( iOff!=fts5GetU16(&a[2]) ){
|
|
pIter->iLeafOffset += fts5GetVarint32(&a[iOff], nKeep);
|
|
}
|
|
}else{
|
|
pIter->iRowid += iDelta;
|
|
}
|
|
}else if( pIter->pSeg==0 ){
|
|
const u8 *pList = 0;
|
|
const char *zTerm;
|
|
int nList;
|
|
if( 0==(pIter->flags & FTS5_SEGITER_ONETERM) ){
|
|
sqlite3Fts5HashScanNext(p->pHash);
|
|
sqlite3Fts5HashScanEntry(p->pHash, &zTerm, &pList, &nList);
|
|
}
|
|
if( pList==0 ){
|
|
fts5DataRelease(pIter->pLeaf);
|
|
pIter->pLeaf = 0;
|
|
}else{
|
|
pIter->pLeaf->p = (u8*)pList;
|
|
pIter->pLeaf->n = nList;
|
|
sqlite3Fts5BufferSet(&p->rc, &pIter->term, strlen(zTerm), (u8*)zTerm);
|
|
pIter->iLeafOffset = getVarint(pList, (u64*)&pIter->iRowid);
|
|
}
|
|
}else{
|
|
iOff = 0;
|
|
/* Next entry is not on the current page */
|
|
while( iOff==0 ){
|
|
fts5SegIterNextPage(p, pIter);
|
|
pLeaf = pIter->pLeaf;
|
|
if( pLeaf==0 ) break;
|
|
if( (iOff = fts5GetU16(&pLeaf->p[0])) ){
|
|
iOff += sqlite3GetVarint(&pLeaf->p[iOff], (u64*)&pIter->iRowid);
|
|
pIter->iLeafOffset = iOff;
|
|
}
|
|
else if( (iOff = fts5GetU16(&pLeaf->p[2])) ){
|
|
pIter->iLeafOffset = iOff;
|
|
bNewTerm = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check if the iterator is now at EOF. If so, return early. */
|
|
if( pIter->pLeaf ){
|
|
if( bNewTerm ){
|
|
if( pIter->flags & FTS5_SEGITER_ONETERM ){
|
|
fts5DataRelease(pIter->pLeaf);
|
|
pIter->pLeaf = 0;
|
|
}else{
|
|
fts5SegIterLoadTerm(p, pIter, nKeep);
|
|
fts5SegIterLoadNPos(p, pIter);
|
|
if( pbNewTerm ) *pbNewTerm = 1;
|
|
}
|
|
}else{
|
|
fts5SegIterLoadNPos(p, pIter);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#define SWAPVAL(T, a, b) { T tmp; tmp=a; a=b; b=tmp; }
|
|
|
|
/*
|
|
** Iterator pIter currently points to the first rowid in a doclist. This
|
|
** function sets the iterator up so that iterates in reverse order through
|
|
** the doclist.
|
|
*/
|
|
static void fts5SegIterReverse(Fts5Index *p, Fts5SegIter *pIter){
|
|
Fts5DlidxIter *pDlidx = pIter->pDlidx;
|
|
Fts5Data *pLast = 0;
|
|
int pgnoLast = 0;
|
|
|
|
if( pDlidx ){
|
|
int iSegid = pIter->pSeg->iSegid;
|
|
pgnoLast = fts5DlidxIterPgno(pDlidx);
|
|
pLast = fts5DataRead(p, FTS5_SEGMENT_ROWID(iSegid, 0, pgnoLast));
|
|
}else{
|
|
int iOff; /* Byte offset within pLeaf */
|
|
Fts5Data *pLeaf = pIter->pLeaf; /* Current leaf data */
|
|
|
|
/* Currently, Fts5SegIter.iLeafOffset (and iOff) points to the first
|
|
** byte of position-list content for the current rowid. Back it up
|
|
** so that it points to the start of the position-list size field. */
|
|
pIter->iLeafOffset -= sqlite3Fts5GetVarintLen(pIter->nPos*2+pIter->bDel);
|
|
iOff = pIter->iLeafOffset;
|
|
assert( iOff>=4 );
|
|
|
|
/* Search for a new term within the current leaf. If one can be found,
|
|
** then this page contains the largest rowid for the current term. */
|
|
while( iOff<pLeaf->n ){
|
|
int nPos;
|
|
i64 iDelta;
|
|
int bDummy;
|
|
|
|
/* Read the position-list size field */
|
|
iOff += fts5GetPoslistSize(&pLeaf->p[iOff], &nPos, &bDummy);
|
|
iOff += nPos;
|
|
if( iOff>=pLeaf->n ) break;
|
|
|
|
/* Rowid delta. Or, if 0x00, the end of doclist marker. */
|
|
nPos = getVarint(&pLeaf->p[iOff], (u64*)&iDelta);
|
|
if( iDelta==0 ) break;
|
|
iOff += nPos;
|
|
}
|
|
|
|
/* If this condition is true then the largest rowid for the current
|
|
** term may not be stored on the current page. So search forward to
|
|
** see where said rowid really is. */
|
|
if( iOff>=pLeaf->n ){
|
|
int pgno;
|
|
Fts5StructureSegment *pSeg = pIter->pSeg;
|
|
|
|
/* The last rowid in the doclist may not be on the current page. Search
|
|
** forward to find the page containing the last rowid. */
|
|
for(pgno=pIter->iLeafPgno+1; !p->rc && pgno<=pSeg->pgnoLast; pgno++){
|
|
i64 iAbs = FTS5_SEGMENT_ROWID(pSeg->iSegid, 0, pgno);
|
|
Fts5Data *pNew = fts5DataRead(p, iAbs);
|
|
if( pNew ){
|
|
int iRowid, iTerm;
|
|
fts5LeafHeader(pNew, &iRowid, &iTerm);
|
|
if( iRowid ){
|
|
SWAPVAL(Fts5Data*, pNew, pLast);
|
|
pgnoLast = pgno;
|
|
}
|
|
fts5DataRelease(pNew);
|
|
if( iTerm ) break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If pLast is NULL at this point, then the last rowid for this doclist
|
|
** lies on the page currently indicated by the iterator. In this case
|
|
** pIter->iLeafOffset is already set to point to the position-list size
|
|
** field associated with the first relevant rowid on the page.
|
|
**
|
|
** Or, if pLast is non-NULL, then it is the page that contains the last
|
|
** rowid. In this case configure the iterator so that it points to the
|
|
** first rowid on this page.
|
|
*/
|
|
if( pLast ){
|
|
int dummy;
|
|
int iOff;
|
|
fts5DataRelease(pIter->pLeaf);
|
|
pIter->pLeaf = pLast;
|
|
pIter->iLeafPgno = pgnoLast;
|
|
fts5LeafHeader(pLast, &iOff, &dummy);
|
|
iOff += getVarint(&pLast->p[iOff], (u64*)&pIter->iRowid);
|
|
pIter->iLeafOffset = iOff;
|
|
}
|
|
|
|
fts5SegIterReverseInitPage(p, pIter);
|
|
}
|
|
|
|
/*
|
|
** Iterator pIter currently points to the first rowid of a doclist.
|
|
** There is a doclist-index associated with the final term on the current
|
|
** page. If the current term is the last term on the page, load the
|
|
** doclist-index from disk and initialize an iterator at (pIter->pDlidx).
|
|
*/
|
|
static void fts5SegIterLoadDlidx(Fts5Index *p, Fts5SegIter *pIter){
|
|
int iSeg = pIter->pSeg->iSegid;
|
|
int bRev = (pIter->flags & FTS5_SEGITER_REVERSE);
|
|
Fts5Data *pLeaf = pIter->pLeaf; /* Current leaf data */
|
|
|
|
assert( pIter->flags & FTS5_SEGITER_ONETERM );
|
|
assert( pIter->pDlidx==0 );
|
|
|
|
/* Check if the current doclist ends on this page. If it does, return
|
|
** early without loading the doclist-index (as it belongs to a different
|
|
** term. */
|
|
if( pIter->iTermLeafPgno==pIter->iLeafPgno ){
|
|
int iOff = pIter->iLeafOffset + pIter->nPos;
|
|
while( iOff<pLeaf->n ){
|
|
int bDummy;
|
|
int nPos;
|
|
i64 iDelta;
|
|
|
|
/* iOff is currently the offset of the start of position list data */
|
|
iOff += getVarint(&pLeaf->p[iOff], (u64*)&iDelta);
|
|
if( iDelta==0 ) return;
|
|
assert_nc( iOff<pLeaf->n );
|
|
iOff += fts5GetPoslistSize(&pLeaf->p[iOff], &nPos, &bDummy);
|
|
iOff += nPos;
|
|
}
|
|
}
|
|
|
|
pIter->pDlidx = fts5DlidxIterInit(p, bRev, iSeg, pIter->iTermLeafPgno);
|
|
}
|
|
|
|
/*
|
|
** Initialize the object pIter to point to term pTerm/nTerm within segment
|
|
** pSeg. If there is no such term in the index, the iterator is set to EOF.
|
|
**
|
|
** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
|
|
** an error has already occurred when this function is called, it is a no-op.
|
|
*/
|
|
static void fts5SegIterSeekInit(
|
|
Fts5Index *p, /* FTS5 backend */
|
|
const u8 *pTerm, int nTerm, /* Term to seek to */
|
|
int flags, /* Mask of FTS5INDEX_XXX flags */
|
|
Fts5StructureSegment *pSeg, /* Description of segment */
|
|
Fts5SegIter *pIter /* Object to populate */
|
|
){
|
|
int iPg = 1;
|
|
int h;
|
|
int bGe = (flags & FTS5INDEX_QUERY_SCAN);
|
|
int bDlidx = 0; /* True if there is a doclist-index */
|
|
|
|
assert( bGe==0 || (flags & FTS5INDEX_QUERY_DESC)==0 );
|
|
assert( pTerm && nTerm );
|
|
memset(pIter, 0, sizeof(*pIter));
|
|
pIter->pSeg = pSeg;
|
|
|
|
/* This block sets stack variable iPg to the leaf page number that may
|
|
** contain term (pTerm/nTerm), if it is present in the segment. */
|
|
for(h=pSeg->nHeight-1; h>0; h--){
|
|
Fts5NodeIter node; /* For iterating through internal nodes */
|
|
i64 iRowid = FTS5_SEGMENT_ROWID(pSeg->iSegid, h, iPg);
|
|
Fts5Data *pNode = fts5DataRead(p, iRowid);
|
|
if( pNode==0 ) break;
|
|
|
|
fts5NodeIterInit(pNode->p, pNode->n, &node);
|
|
assert( node.term.n==0 );
|
|
|
|
iPg = node.iChild;
|
|
bDlidx = node.bDlidx;
|
|
for(fts5NodeIterNext(&p->rc, &node);
|
|
node.aData && fts5BufferCompareBlob(&node.term, pTerm, nTerm)<=0;
|
|
fts5NodeIterNext(&p->rc, &node)
|
|
){
|
|
iPg = node.iChild;
|
|
bDlidx = node.bDlidx;
|
|
}
|
|
fts5NodeIterFree(&node);
|
|
fts5DataRelease(pNode);
|
|
}
|
|
|
|
if( iPg<pSeg->pgnoFirst ){
|
|
iPg = pSeg->pgnoFirst;
|
|
bDlidx = 0;
|
|
}
|
|
|
|
pIter->iLeafPgno = iPg - 1;
|
|
fts5SegIterNextPage(p, pIter);
|
|
|
|
if( pIter->pLeaf ){
|
|
int res;
|
|
pIter->iLeafOffset = fts5GetU16(&pIter->pLeaf->p[2]);
|
|
fts5SegIterLoadTerm(p, pIter, 0);
|
|
fts5SegIterLoadNPos(p, pIter);
|
|
do {
|
|
res = fts5BufferCompareBlob(&pIter->term, pTerm, nTerm);
|
|
if( res>=0 ) break;
|
|
fts5SegIterNext(p, pIter, 0);
|
|
}while( pIter->pLeaf && p->rc==SQLITE_OK );
|
|
|
|
if( bGe==0 && res ){
|
|
/* Set iterator to point to EOF */
|
|
fts5DataRelease(pIter->pLeaf);
|
|
pIter->pLeaf = 0;
|
|
}
|
|
}
|
|
|
|
if( p->rc==SQLITE_OK && bGe==0 ){
|
|
pIter->flags |= FTS5_SEGITER_ONETERM;
|
|
if( pIter->pLeaf ){
|
|
if( flags & FTS5INDEX_QUERY_DESC ){
|
|
pIter->flags |= FTS5_SEGITER_REVERSE;
|
|
}
|
|
if( bDlidx ){
|
|
fts5SegIterLoadDlidx(p, pIter);
|
|
}
|
|
if( flags & FTS5INDEX_QUERY_DESC ){
|
|
fts5SegIterReverse(p, pIter);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Initialize the object pIter to point to term pTerm/nTerm within the
|
|
** in-memory hash table. If there is no such term in the hash-table, the
|
|
** iterator is set to EOF.
|
|
**
|
|
** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
|
|
** an error has already occurred when this function is called, it is a no-op.
|
|
*/
|
|
static void fts5SegIterHashInit(
|
|
Fts5Index *p, /* FTS5 backend */
|
|
const u8 *pTerm, int nTerm, /* Term to seek to */
|
|
int flags, /* Mask of FTS5INDEX_XXX flags */
|
|
Fts5SegIter *pIter /* Object to populate */
|
|
){
|
|
const u8 *pList = 0;
|
|
int nList = 0;
|
|
const u8 *z = 0;
|
|
int n = 0;
|
|
|
|
assert( p->pHash );
|
|
assert( p->rc==SQLITE_OK );
|
|
|
|
if( pTerm==0 || (flags & FTS5INDEX_QUERY_SCAN) ){
|
|
p->rc = sqlite3Fts5HashScanInit(p->pHash, (const char*)pTerm, nTerm);
|
|
sqlite3Fts5HashScanEntry(p->pHash, (const char**)&z, &pList, &nList);
|
|
n = (z ? strlen((const char*)z) : 0);
|
|
}else{
|
|
pIter->flags |= FTS5_SEGITER_ONETERM;
|
|
sqlite3Fts5HashQuery(p->pHash, (const char*)pTerm, nTerm, &pList, &nList);
|
|
z = pTerm;
|
|
n = nTerm;
|
|
}
|
|
|
|
if( pList ){
|
|
Fts5Data *pLeaf;
|
|
sqlite3Fts5BufferSet(&p->rc, &pIter->term, n, z);
|
|
pLeaf = fts5IdxMalloc(p, sizeof(Fts5Data));
|
|
if( pLeaf==0 ) return;
|
|
pLeaf->nRef = 1;
|
|
pLeaf->p = (u8*)pList;
|
|
pLeaf->n = nList;
|
|
pIter->pLeaf = pLeaf;
|
|
pIter->iLeafOffset = getVarint(pLeaf->p, (u64*)&pIter->iRowid);
|
|
|
|
if( flags & FTS5INDEX_QUERY_DESC ){
|
|
pIter->flags |= FTS5_SEGITER_REVERSE;
|
|
fts5SegIterReverseInitPage(p, pIter);
|
|
}else{
|
|
fts5SegIterLoadNPos(p, pIter);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Zero the iterator passed as the only argument.
|
|
*/
|
|
static void fts5SegIterClear(Fts5SegIter *pIter){
|
|
fts5BufferFree(&pIter->term);
|
|
fts5DataRelease(pIter->pLeaf);
|
|
fts5DlidxIterFree(pIter->pDlidx);
|
|
sqlite3_free(pIter->aRowidOffset);
|
|
memset(pIter, 0, sizeof(Fts5SegIter));
|
|
}
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
|
|
/*
|
|
** This function is used as part of the big assert() procedure implemented by
|
|
** fts5AssertMultiIterSetup(). It ensures that the result currently stored
|
|
** in *pRes is the correct result of comparing the current positions of the
|
|
** two iterators.
|
|
*/
|
|
static void fts5AssertComparisonResult(
|
|
Fts5MultiSegIter *pIter,
|
|
Fts5SegIter *p1,
|
|
Fts5SegIter *p2,
|
|
Fts5CResult *pRes
|
|
){
|
|
int i1 = p1 - pIter->aSeg;
|
|
int i2 = p2 - pIter->aSeg;
|
|
|
|
if( p1->pLeaf || p2->pLeaf ){
|
|
if( p1->pLeaf==0 ){
|
|
assert( pRes->iFirst==i2 );
|
|
}else if( p2->pLeaf==0 ){
|
|
assert( pRes->iFirst==i1 );
|
|
}else{
|
|
int nMin = MIN(p1->term.n, p2->term.n);
|
|
int res = memcmp(p1->term.p, p2->term.p, nMin);
|
|
if( res==0 ) res = p1->term.n - p2->term.n;
|
|
|
|
if( res==0 ){
|
|
assert( pRes->bTermEq==1 );
|
|
assert( p1->iRowid!=p2->iRowid );
|
|
res = ((p1->iRowid > p2->iRowid)==pIter->bRev) ? -1 : 1;
|
|
}else{
|
|
assert( pRes->bTermEq==0 );
|
|
}
|
|
|
|
if( res<0 ){
|
|
assert( pRes->iFirst==i1 );
|
|
}else{
|
|
assert( pRes->iFirst==i2 );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This function is a no-op unless SQLITE_DEBUG is defined when this module
|
|
** is compiled. In that case, this function is essentially an assert()
|
|
** statement used to verify that the contents of the pIter->aFirst[] array
|
|
** are correct.
|
|
*/
|
|
static void fts5AssertMultiIterSetup(Fts5Index *p, Fts5MultiSegIter *pIter){
|
|
if( p->rc==SQLITE_OK ){
|
|
int i;
|
|
for(i=0; i<pIter->nSeg; i+=2){
|
|
Fts5SegIter *p1 = &pIter->aSeg[i];
|
|
Fts5SegIter *p2 = &pIter->aSeg[i+1];
|
|
Fts5CResult *pRes = &pIter->aFirst[(pIter->nSeg + i) / 2];
|
|
fts5AssertComparisonResult(pIter, p1, p2, pRes);
|
|
}
|
|
|
|
for(i=1; i<(pIter->nSeg / 2); i+=2){
|
|
Fts5CResult *pRes = &pIter->aFirst[i];
|
|
Fts5SegIter *p1 = &pIter->aSeg[ pIter->aFirst[i*2].iFirst ];
|
|
Fts5SegIter *p2 = &pIter->aSeg[ pIter->aFirst[i*2+1].iFirst ];
|
|
|
|
fts5AssertComparisonResult(pIter, p1, p2, pRes);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
# define fts5AssertMultiIterSetup(x,y)
|
|
#endif
|
|
|
|
/*
|
|
** Do the comparison necessary to populate pIter->aFirst[iOut].
|
|
**
|
|
** If the returned value is non-zero, then it is the index of an entry
|
|
** in the pIter->aSeg[] array that is (a) not at EOF, and (b) pointing
|
|
** to a key that is a duplicate of another, higher priority,
|
|
** segment-iterator in the pSeg->aSeg[] array.
|
|
*/
|
|
static int fts5MultiIterDoCompare(Fts5MultiSegIter *pIter, int iOut){
|
|
int i1; /* Index of left-hand Fts5SegIter */
|
|
int i2; /* Index of right-hand Fts5SegIter */
|
|
int iRes;
|
|
Fts5SegIter *p1; /* Left-hand Fts5SegIter */
|
|
Fts5SegIter *p2; /* Right-hand Fts5SegIter */
|
|
Fts5CResult *pRes = &pIter->aFirst[iOut];
|
|
|
|
assert( iOut<pIter->nSeg && iOut>0 );
|
|
assert( pIter->bRev==0 || pIter->bRev==1 );
|
|
|
|
if( iOut>=(pIter->nSeg/2) ){
|
|
i1 = (iOut - pIter->nSeg/2) * 2;
|
|
i2 = i1 + 1;
|
|
}else{
|
|
i1 = pIter->aFirst[iOut*2].iFirst;
|
|
i2 = pIter->aFirst[iOut*2+1].iFirst;
|
|
}
|
|
p1 = &pIter->aSeg[i1];
|
|
p2 = &pIter->aSeg[i2];
|
|
|
|
pRes->bTermEq = 0;
|
|
if( p1->pLeaf==0 ){ /* If p1 is at EOF */
|
|
iRes = i2;
|
|
}else if( p2->pLeaf==0 ){ /* If p2 is at EOF */
|
|
iRes = i1;
|
|
}else{
|
|
int res = fts5BufferCompare(&p1->term, &p2->term);
|
|
if( res==0 ){
|
|
assert( i2>i1 );
|
|
assert( i2!=0 );
|
|
pRes->bTermEq = 1;
|
|
if( p1->iRowid==p2->iRowid ){
|
|
p1->bDel = p2->bDel;
|
|
return i2;
|
|
}
|
|
res = ((p1->iRowid > p2->iRowid)==pIter->bRev) ? -1 : +1;
|
|
}
|
|
assert( res!=0 );
|
|
if( res<0 ){
|
|
iRes = i1;
|
|
}else{
|
|
iRes = i2;
|
|
}
|
|
}
|
|
|
|
pRes->iFirst = iRes;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Move the seg-iter so that it points to the first rowid on page iLeafPgno.
|
|
** It is an error if leaf iLeafPgno does not exist or contains no rowids.
|
|
*/
|
|
static void fts5SegIterGotoPage(
|
|
Fts5Index *p, /* FTS5 backend object */
|
|
Fts5SegIter *pIter, /* Iterator to advance */
|
|
int iLeafPgno
|
|
){
|
|
assert( iLeafPgno>pIter->iLeafPgno );
|
|
if( iLeafPgno>pIter->pSeg->pgnoLast ){
|
|
p->rc = FTS5_CORRUPT;
|
|
}else{
|
|
pIter->iLeafPgno = iLeafPgno-1;
|
|
fts5SegIterNextPage(p, pIter);
|
|
assert( p->rc!=SQLITE_OK || pIter->iLeafPgno==iLeafPgno );
|
|
|
|
if( p->rc==SQLITE_OK ){
|
|
int iOff;
|
|
u8 *a = pIter->pLeaf->p;
|
|
int n = pIter->pLeaf->n;
|
|
|
|
iOff = fts5GetU16(&a[0]);
|
|
if( iOff<4 || iOff>=n ){
|
|
p->rc = FTS5_CORRUPT;
|
|
}else{
|
|
iOff += getVarint(&a[iOff], (u64*)&pIter->iRowid);
|
|
pIter->iLeafOffset = iOff;
|
|
fts5SegIterLoadNPos(p, pIter);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Advance the iterator passed as the second argument until it is at or
|
|
** past rowid iFrom. Regardless of the value of iFrom, the iterator is
|
|
** always advanced at least once.
|
|
*/
|
|
static void fts5SegIterNextFrom(
|
|
Fts5Index *p, /* FTS5 backend object */
|
|
Fts5SegIter *pIter, /* Iterator to advance */
|
|
i64 iMatch /* Advance iterator at least this far */
|
|
){
|
|
int bRev = (pIter->flags & FTS5_SEGITER_REVERSE);
|
|
Fts5DlidxIter *pDlidx = pIter->pDlidx;
|
|
int iLeafPgno = pIter->iLeafPgno;
|
|
int bMove = 1;
|
|
|
|
assert( pIter->flags & FTS5_SEGITER_ONETERM );
|
|
assert( pIter->pDlidx );
|
|
assert( pIter->pLeaf );
|
|
|
|
if( bRev==0 ){
|
|
while( !fts5DlidxIterEof(p, pDlidx) && iMatch>fts5DlidxIterRowid(pDlidx) ){
|
|
iLeafPgno = fts5DlidxIterPgno(pDlidx);
|
|
fts5DlidxIterNext(p, pDlidx);
|
|
}
|
|
assert_nc( iLeafPgno>=pIter->iLeafPgno || p->rc );
|
|
if( iLeafPgno>pIter->iLeafPgno ){
|
|
fts5SegIterGotoPage(p, pIter, iLeafPgno);
|
|
bMove = 0;
|
|
}
|
|
}else{
|
|
assert( iMatch<pIter->iRowid );
|
|
while( !fts5DlidxIterEof(p, pDlidx) && iMatch<fts5DlidxIterRowid(pDlidx) ){
|
|
fts5DlidxIterPrev(p, pDlidx);
|
|
}
|
|
iLeafPgno = fts5DlidxIterPgno(pDlidx);
|
|
|
|
assert( fts5DlidxIterEof(p, pDlidx) || iLeafPgno<=pIter->iLeafPgno );
|
|
|
|
if( iLeafPgno<pIter->iLeafPgno ){
|
|
pIter->iLeafPgno = iLeafPgno+1;
|
|
fts5SegIterReverseNewPage(p, pIter);
|
|
bMove = 0;
|
|
}
|
|
}
|
|
|
|
while( p->rc==SQLITE_OK ){
|
|
if( bMove ) fts5SegIterNext(p, pIter, 0);
|
|
if( pIter->pLeaf==0 ) break;
|
|
if( bRev==0 && pIter->iRowid>=iMatch ) break;
|
|
if( bRev!=0 && pIter->iRowid<=iMatch ) break;
|
|
bMove = 1;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Free the iterator object passed as the second argument.
|
|
*/
|
|
static void fts5MultiIterFree(Fts5Index *p, Fts5MultiSegIter *pIter){
|
|
if( pIter ){
|
|
int i;
|
|
for(i=0; i<pIter->nSeg; i++){
|
|
fts5SegIterClear(&pIter->aSeg[i]);
|
|
}
|
|
sqlite3_free(pIter);
|
|
}
|
|
}
|
|
|
|
static void fts5MultiIterAdvanced(
|
|
Fts5Index *p, /* FTS5 backend to iterate within */
|
|
Fts5MultiSegIter *pIter, /* Iterator to update aFirst[] array for */
|
|
int iChanged, /* Index of sub-iterator just advanced */
|
|
int iMinset /* Minimum entry in aFirst[] to set */
|
|
){
|
|
int i;
|
|
for(i=(pIter->nSeg+iChanged)/2; i>=iMinset && p->rc==SQLITE_OK; i=i/2){
|
|
int iEq;
|
|
if( (iEq = fts5MultiIterDoCompare(pIter, i)) ){
|
|
fts5SegIterNext(p, &pIter->aSeg[iEq], 0);
|
|
i = pIter->nSeg + iEq;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int fts5MultiIterAdvanceRowid(
|
|
Fts5Index *p, /* FTS5 backend to iterate within */
|
|
Fts5MultiSegIter *pIter, /* Iterator to update aFirst[] array for */
|
|
int iChanged /* Index of sub-iterator just advanced */
|
|
){
|
|
int i;
|
|
Fts5SegIter *pNew = &pIter->aSeg[iChanged];
|
|
Fts5SegIter *pOther = &pIter->aSeg[iChanged ^ 0x0001];
|
|
|
|
for(i=(pIter->nSeg+iChanged)/2; p->rc==SQLITE_OK; i=i/2){
|
|
Fts5CResult *pRes = &pIter->aFirst[i];
|
|
|
|
assert( pNew->pLeaf );
|
|
assert( pRes->bTermEq==0 || pOther->pLeaf );
|
|
|
|
if( pRes->bTermEq ){
|
|
if( pNew->iRowid==pOther->iRowid ){
|
|
return 1;
|
|
}else if( (pOther->iRowid>pNew->iRowid)==pIter->bRev ){
|
|
pNew = pOther;
|
|
}
|
|
}
|
|
pRes->iFirst = (pNew - pIter->aSeg);
|
|
if( i==1 ) break;
|
|
|
|
pOther = &pIter->aSeg[ pIter->aFirst[i ^ 0x0001].iFirst ];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Move the iterator to the next entry.
|
|
**
|
|
** If an error occurs, an error code is left in Fts5Index.rc. It is not
|
|
** considered an error if the iterator reaches EOF, or if it is already at
|
|
** EOF when this function is called.
|
|
*/
|
|
static void fts5MultiIterNext(
|
|
Fts5Index *p,
|
|
Fts5MultiSegIter *pIter,
|
|
int bFrom, /* True if argument iFrom is valid */
|
|
i64 iFrom /* Advance at least as far as this */
|
|
){
|
|
if( p->rc==SQLITE_OK ){
|
|
int bUseFrom = bFrom;
|
|
do {
|
|
int iFirst = pIter->aFirst[1].iFirst;
|
|
int bNewTerm = 0;
|
|
Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
|
|
assert( p->rc==SQLITE_OK );
|
|
if( bUseFrom && pSeg->pDlidx ){
|
|
fts5SegIterNextFrom(p, pSeg, iFrom);
|
|
}else{
|
|
fts5SegIterNext(p, pSeg, &bNewTerm);
|
|
}
|
|
|
|
if( pSeg->pLeaf==0 || bNewTerm
|
|
|| fts5MultiIterAdvanceRowid(p, pIter, iFirst)
|
|
){
|
|
fts5MultiIterAdvanced(p, pIter, iFirst, 1);
|
|
}
|
|
fts5AssertMultiIterSetup(p, pIter);
|
|
|
|
bUseFrom = 0;
|
|
}while( pIter->bSkipEmpty && fts5MultiIterIsEmpty(p, pIter) );
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Allocate a new Fts5MultiSegIter object.
|
|
**
|
|
** The new object will be used to iterate through data in structure pStruct.
|
|
** If iLevel is -ve, then all data in all segments is merged. Or, if iLevel
|
|
** is zero or greater, data from the first nSegment segments on level iLevel
|
|
** is merged.
|
|
**
|
|
** The iterator initially points to the first term/rowid entry in the
|
|
** iterated data.
|
|
*/
|
|
static void fts5MultiIterNew(
|
|
Fts5Index *p, /* FTS5 backend to iterate within */
|
|
Fts5Structure *pStruct, /* Structure of specific index */
|
|
int bSkipEmpty, /* True to ignore delete-keys */
|
|
int flags, /* FTS5INDEX_QUERY_XXX flags */
|
|
const u8 *pTerm, int nTerm, /* Term to seek to (or NULL/0) */
|
|
int iLevel, /* Level to iterate (-1 for all) */
|
|
int nSegment, /* Number of segments to merge (iLevel>=0) */
|
|
Fts5MultiSegIter **ppOut /* New object */
|
|
){
|
|
int nSeg; /* Number of segment-iters in use */
|
|
int nSlot = 0; /* Power of two >= nSeg */
|
|
int iIter = 0; /* */
|
|
int iSeg; /* Used to iterate through segments */
|
|
Fts5StructureLevel *pLvl;
|
|
Fts5MultiSegIter *pNew;
|
|
|
|
assert( (pTerm==0 && nTerm==0) || iLevel<0 );
|
|
|
|
/* Allocate space for the new multi-seg-iterator. */
|
|
if( p->rc==SQLITE_OK ){
|
|
if( iLevel<0 ){
|
|
assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) );
|
|
nSeg = pStruct->nSegment;
|
|
nSeg += (p->pHash ? 1 : 0);
|
|
}else{
|
|
nSeg = MIN(pStruct->aLevel[iLevel].nSeg, nSegment);
|
|
}
|
|
for(nSlot=2; nSlot<nSeg; nSlot=nSlot*2);
|
|
}
|
|
|
|
*ppOut = pNew = fts5IdxMalloc(p,
|
|
sizeof(Fts5MultiSegIter) + /* pNew */
|
|
sizeof(Fts5SegIter) * nSlot + /* pNew->aSeg[] */
|
|
sizeof(Fts5CResult) * nSlot /* pNew->aFirst[] */
|
|
);
|
|
if( pNew==0 ) return;
|
|
pNew->nSeg = nSlot;
|
|
pNew->aSeg = (Fts5SegIter*)&pNew[1];
|
|
pNew->aFirst = (Fts5CResult*)&pNew->aSeg[nSlot];
|
|
pNew->bRev = (0!=(flags & FTS5INDEX_QUERY_DESC));
|
|
pNew->bSkipEmpty = bSkipEmpty;
|
|
|
|
/* Initialize each of the component segment iterators. */
|
|
if( iLevel<0 ){
|
|
Fts5StructureLevel *pEnd = &pStruct->aLevel[pStruct->nLevel];
|
|
if( p->pHash ){
|
|
/* Add a segment iterator for the current contents of the hash table. */
|
|
Fts5SegIter *pIter = &pNew->aSeg[iIter++];
|
|
fts5SegIterHashInit(p, pTerm, nTerm, flags, pIter);
|
|
}
|
|
for(pLvl=&pStruct->aLevel[0]; pLvl<pEnd; pLvl++){
|
|
for(iSeg=pLvl->nSeg-1; iSeg>=0; iSeg--){
|
|
Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
|
|
Fts5SegIter *pIter = &pNew->aSeg[iIter++];
|
|
if( pTerm==0 ){
|
|
fts5SegIterInit(p, pSeg, pIter);
|
|
}else{
|
|
fts5SegIterSeekInit(p, pTerm, nTerm, flags, pSeg, pIter);
|
|
}
|
|
}
|
|
}
|
|
}else{
|
|
pLvl = &pStruct->aLevel[iLevel];
|
|
for(iSeg=nSeg-1; iSeg>=0; iSeg--){
|
|
fts5SegIterInit(p, &pLvl->aSeg[iSeg], &pNew->aSeg[iIter++]);
|
|
}
|
|
}
|
|
assert( iIter==nSeg );
|
|
|
|
/* If the above was successful, each component iterators now points
|
|
** to the first entry in its segment. In this case initialize the
|
|
** aFirst[] array. Or, if an error has occurred, free the iterator
|
|
** object and set the output variable to NULL. */
|
|
if( p->rc==SQLITE_OK ){
|
|
for(iIter=nSlot-1; iIter>0; iIter--){
|
|
int iEq;
|
|
if( (iEq = fts5MultiIterDoCompare(pNew, iIter)) ){
|
|
fts5SegIterNext(p, &pNew->aSeg[iEq], 0);
|
|
fts5MultiIterAdvanced(p, pNew, iEq, iIter);
|
|
}
|
|
}
|
|
fts5AssertMultiIterSetup(p, pNew);
|
|
|
|
if( pNew->bSkipEmpty && fts5MultiIterIsEmpty(p, pNew) ){
|
|
fts5MultiIterNext(p, pNew, 0, 0);
|
|
}
|
|
}else{
|
|
fts5MultiIterFree(p, pNew);
|
|
*ppOut = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return true if the iterator is at EOF or if an error has occurred.
|
|
** False otherwise.
|
|
*/
|
|
static int fts5MultiIterEof(Fts5Index *p, Fts5MultiSegIter *pIter){
|
|
return (p->rc || pIter->aSeg[ pIter->aFirst[1].iFirst ].pLeaf==0);
|
|
}
|
|
|
|
/*
|
|
** Return the rowid of the entry that the iterator currently points
|
|
** to. If the iterator points to EOF when this function is called the
|
|
** results are undefined.
|
|
*/
|
|
static i64 fts5MultiIterRowid(Fts5MultiSegIter *pIter){
|
|
assert( pIter->aSeg[ pIter->aFirst[1].iFirst ].pLeaf );
|
|
return pIter->aSeg[ pIter->aFirst[1].iFirst ].iRowid;
|
|
}
|
|
|
|
/*
|
|
** Move the iterator to the next entry at or following iMatch.
|
|
*/
|
|
static void fts5MultiIterNextFrom(
|
|
Fts5Index *p,
|
|
Fts5MultiSegIter *pIter,
|
|
i64 iMatch
|
|
){
|
|
while( 1 ){
|
|
i64 iRowid;
|
|
fts5MultiIterNext(p, pIter, 1, iMatch);
|
|
if( fts5MultiIterEof(p, pIter) ) break;
|
|
iRowid = fts5MultiIterRowid(pIter);
|
|
if( pIter->bRev==0 && iRowid>=iMatch ) break;
|
|
if( pIter->bRev!=0 && iRowid<=iMatch ) break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to a buffer containing the term associated with the
|
|
** entry that the iterator currently points to.
|
|
*/
|
|
static const u8 *fts5MultiIterTerm(Fts5MultiSegIter *pIter, int *pn){
|
|
Fts5SegIter *p = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
|
|
*pn = p->term.n;
|
|
return p->term.p;
|
|
}
|
|
|
|
/*
|
|
** Return true if the chunk iterator passed as the second argument is
|
|
** at EOF. Or if an error has already occurred. Otherwise, return false.
|
|
*/
|
|
static int fts5ChunkIterEof(Fts5Index *p, Fts5ChunkIter *pIter){
|
|
return (p->rc || pIter->pLeaf==0);
|
|
}
|
|
|
|
/*
|
|
** Advance the chunk-iterator to the next chunk of data to read.
|
|
*/
|
|
static void fts5ChunkIterNext(Fts5Index *p, Fts5ChunkIter *pIter){
|
|
assert( pIter->nRem>=pIter->n );
|
|
pIter->nRem -= pIter->n;
|
|
fts5DataRelease(pIter->pLeaf);
|
|
pIter->pLeaf = 0;
|
|
pIter->p = 0;
|
|
if( pIter->nRem>0 ){
|
|
Fts5Data *pLeaf;
|
|
pIter->iLeafRowid++;
|
|
pLeaf = pIter->pLeaf = fts5DataRead(p, pIter->iLeafRowid);
|
|
if( pLeaf ){
|
|
pIter->n = MIN(pIter->nRem, pLeaf->n-4);
|
|
pIter->p = pLeaf->p+4;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Intialize the chunk iterator to read the position list data for which
|
|
** the size field is at offset iOff of leaf pLeaf.
|
|
*/
|
|
static void fts5ChunkIterInit(
|
|
Fts5Index *p, /* FTS5 backend object */
|
|
Fts5SegIter *pSeg, /* Segment iterator to read poslist from */
|
|
Fts5ChunkIter *pIter /* Initialize this object */
|
|
){
|
|
Fts5Data *pLeaf = pSeg->pLeaf;
|
|
int iOff = pSeg->iLeafOffset;
|
|
|
|
memset(pIter, 0, sizeof(*pIter));
|
|
/* If Fts5SegIter.pSeg is NULL, then this iterator iterates through data
|
|
** currently stored in a hash table. In this case there is no leaf-rowid
|
|
** to calculate. */
|
|
if( pSeg->pSeg ){
|
|
i64 rowid = FTS5_SEGMENT_ROWID(pSeg->pSeg->iSegid, 0, pSeg->iLeafPgno);
|
|
pIter->iLeafRowid = rowid;
|
|
}
|
|
|
|
fts5DataReference(pLeaf);
|
|
pIter->pLeaf = pLeaf;
|
|
pIter->nRem = pSeg->nPos;
|
|
pIter->n = MIN(pLeaf->n - iOff, pIter->nRem);
|
|
pIter->p = pLeaf->p + iOff;
|
|
if( pIter->n==0 ){
|
|
fts5ChunkIterNext(p, pIter);
|
|
}
|
|
}
|
|
|
|
static void fts5ChunkIterRelease(Fts5ChunkIter *pIter){
|
|
fts5DataRelease(pIter->pLeaf);
|
|
pIter->pLeaf = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
** Allocate a new segment-id for the structure pStruct. The new segment
|
|
** id must be between 1 and 65335 inclusive, and must not be used by
|
|
** any currently existing segment. If a free segment id cannot be found,
|
|
** SQLITE_FULL is returned.
|
|
**
|
|
** If an error has already occurred, this function is a no-op. 0 is
|
|
** returned in this case.
|
|
*/
|
|
static int fts5AllocateSegid(Fts5Index *p, Fts5Structure *pStruct){
|
|
u32 iSegid = 0;
|
|
|
|
if( p->rc==SQLITE_OK ){
|
|
if( pStruct->nSegment>=FTS5_MAX_SEGMENT ){
|
|
p->rc = SQLITE_FULL;
|
|
}else{
|
|
while( iSegid==0 ){
|
|
int iLvl, iSeg;
|
|
sqlite3_randomness(sizeof(u32), (void*)&iSegid);
|
|
iSegid = (iSegid % ((1 << FTS5_DATA_ID_B) - 2)) + 1;
|
|
assert( iSegid>0 && iSegid<=65535 );
|
|
for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
|
|
for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
|
|
if( iSegid==pStruct->aLevel[iLvl].aSeg[iSeg].iSegid ){
|
|
iSegid = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return (int)iSegid;
|
|
}
|
|
|
|
/*
|
|
** Discard all data currently cached in the hash-tables.
|
|
*/
|
|
static void fts5IndexDiscardData(Fts5Index *p){
|
|
assert( p->pHash || p->nPendingData==0 );
|
|
if( p->pHash ){
|
|
sqlite3Fts5HashClear(p->pHash);
|
|
p->nPendingData = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the size of the prefix, in bytes, that buffer (nNew/pNew) shares
|
|
** with buffer (nOld/pOld).
|
|
*/
|
|
static int fts5PrefixCompress(
|
|
int nOld, const u8 *pOld,
|
|
int nNew, const u8 *pNew
|
|
){
|
|
int i;
|
|
assert( fts5BlobCompare(pOld, nOld, pNew, nNew)<0 );
|
|
for(i=0; i<nOld; i++){
|
|
if( pOld[i]!=pNew[i] ) break;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
static void fts5WriteDlidxClear(
|
|
Fts5Index *p,
|
|
Fts5SegWriter *pWriter,
|
|
int bFlush /* If true, write dlidx to disk */
|
|
){
|
|
int i;
|
|
assert( bFlush==0 || (pWriter->nDlidx>0 && pWriter->aDlidx[0].buf.n>0) );
|
|
for(i=0; i<pWriter->nDlidx; i++){
|
|
Fts5DlidxWriter *pDlidx = &pWriter->aDlidx[i];
|
|
if( pDlidx->buf.n==0 ) break;
|
|
if( bFlush ){
|
|
assert( pDlidx->pgno!=0 );
|
|
fts5DataWrite(p,
|
|
FTS5_DLIDX_ROWID(pWriter->iSegid, i, pDlidx->pgno),
|
|
pDlidx->buf.p, pDlidx->buf.n
|
|
);
|
|
}
|
|
sqlite3Fts5BufferZero(&pDlidx->buf);
|
|
pDlidx->bPrevValid = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Grow the pWriter->aDlidx[] array to at least nLvl elements in size.
|
|
** Any new array elements are zeroed before returning.
|
|
*/
|
|
static int fts5WriteDlidxGrow(
|
|
Fts5Index *p,
|
|
Fts5SegWriter *pWriter,
|
|
int nLvl
|
|
){
|
|
if( p->rc==SQLITE_OK && nLvl>=pWriter->nDlidx ){
|
|
Fts5DlidxWriter *aDlidx = (Fts5DlidxWriter*)sqlite3_realloc(
|
|
pWriter->aDlidx, sizeof(Fts5DlidxWriter) * nLvl
|
|
);
|
|
if( aDlidx==0 ){
|
|
p->rc = SQLITE_NOMEM;
|
|
}else{
|
|
int nByte = sizeof(Fts5DlidxWriter) * (nLvl - pWriter->nDlidx);
|
|
memset(&aDlidx[pWriter->nDlidx], 0, nByte);
|
|
pWriter->aDlidx = aDlidx;
|
|
pWriter->nDlidx = nLvl;
|
|
}
|
|
}
|
|
return p->rc;
|
|
}
|
|
|
|
/*
|
|
** If an "nEmpty" record must be written to the b-tree before the next
|
|
** term, write it now.
|
|
*/
|
|
static void fts5WriteBtreeNEmpty(Fts5Index *p, Fts5SegWriter *pWriter){
|
|
if( pWriter->nEmpty ){
|
|
int bFlag = 0;
|
|
Fts5PageWriter *pPg;
|
|
pPg = &pWriter->aWriter[1];
|
|
|
|
/* If there were FTS5_MIN_DLIDX_SIZE or more empty leaf pages written
|
|
** to the database, also write the doclist-index to disk. */
|
|
if( pWriter->aDlidx[0].buf.n>0 && pWriter->nEmpty>=FTS5_MIN_DLIDX_SIZE ){
|
|
bFlag = 1;
|
|
}
|
|
fts5WriteDlidxClear(p, pWriter, bFlag);
|
|
fts5BufferAppendVarint(&p->rc, &pPg->buf, bFlag);
|
|
fts5BufferAppendVarint(&p->rc, &pPg->buf, pWriter->nEmpty);
|
|
pWriter->nEmpty = 0;
|
|
}else{
|
|
fts5WriteDlidxClear(p, pWriter, 0);
|
|
}
|
|
|
|
assert( pWriter->nDlidx==0 || pWriter->aDlidx[0].buf.n==0 );
|
|
assert( pWriter->nDlidx==0 || pWriter->aDlidx[0].bPrevValid==0 );
|
|
}
|
|
|
|
static void fts5WriteBtreeGrow(Fts5Index *p, Fts5SegWriter *pWriter){
|
|
if( p->rc==SQLITE_OK ){
|
|
Fts5PageWriter *aNew;
|
|
Fts5PageWriter *pNew;
|
|
int nNew = sizeof(Fts5PageWriter) * (pWriter->nWriter+1);
|
|
|
|
aNew = (Fts5PageWriter*)sqlite3_realloc(pWriter->aWriter, nNew);
|
|
if( aNew==0 ){
|
|
p->rc = SQLITE_NOMEM;
|
|
return;
|
|
}
|
|
|
|
pNew = &aNew[pWriter->nWriter];
|
|
memset(pNew, 0, sizeof(Fts5PageWriter));
|
|
pNew->pgno = 1;
|
|
fts5BufferAppendVarint(&p->rc, &pNew->buf, 1);
|
|
|
|
pWriter->nWriter++;
|
|
pWriter->aWriter = aNew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This is called once for each leaf page except the first that contains
|
|
** at least one term. Argument (nTerm/pTerm) is the split-key - a term that
|
|
** is larger than all terms written to earlier leaves, and equal to or
|
|
** smaller than the first term on the new leaf.
|
|
**
|
|
** If an error occurs, an error code is left in Fts5Index.rc. If an error
|
|
** has already occurred when this function is called, it is a no-op.
|
|
*/
|
|
static void fts5WriteBtreeTerm(
|
|
Fts5Index *p, /* FTS5 backend object */
|
|
Fts5SegWriter *pWriter, /* Writer object */
|
|
int nTerm, const u8 *pTerm /* First term on new page */
|
|
){
|
|
int iHeight;
|
|
for(iHeight=1; 1; iHeight++){
|
|
Fts5PageWriter *pPage;
|
|
|
|
if( iHeight>=pWriter->nWriter ){
|
|
fts5WriteBtreeGrow(p, pWriter);
|
|
if( p->rc ) return;
|
|
}
|
|
pPage = &pWriter->aWriter[iHeight];
|
|
|
|
fts5WriteBtreeNEmpty(p, pWriter);
|
|
|
|
if( pPage->buf.n>=p->pConfig->pgsz ){
|
|
/* pPage will be written to disk. The term will be written into the
|
|
** parent of pPage. */
|
|
i64 iRowid = FTS5_SEGMENT_ROWID(pWriter->iSegid, iHeight, pPage->pgno);
|
|
fts5DataWrite(p, iRowid, pPage->buf.p, pPage->buf.n);
|
|
fts5BufferZero(&pPage->buf);
|
|
fts5BufferZero(&pPage->term);
|
|
fts5BufferAppendVarint(&p->rc, &pPage->buf, pPage[-1].pgno);
|
|
pPage->pgno++;
|
|
}else{
|
|
int nPre = fts5PrefixCompress(pPage->term.n, pPage->term.p, nTerm, pTerm);
|
|
fts5BufferAppendVarint(&p->rc, &pPage->buf, nPre+2);
|
|
fts5BufferAppendVarint(&p->rc, &pPage->buf, nTerm-nPre);
|
|
fts5BufferAppendBlob(&p->rc, &pPage->buf, nTerm-nPre, pTerm+nPre);
|
|
fts5BufferSet(&p->rc, &pPage->term, nTerm, pTerm);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This function is called when flushing a leaf page that contains no
|
|
** terms at all to disk.
|
|
*/
|
|
static void fts5WriteBtreeNoTerm(
|
|
Fts5Index *p, /* FTS5 backend object */
|
|
Fts5SegWriter *pWriter /* Writer object */
|
|
){
|
|
/* If there were no rowids on the leaf page either and the doclist-index
|
|
** has already been started, append an 0x00 byte to it. */
|
|
if( pWriter->bFirstRowidInPage && pWriter->aDlidx[0].buf.n>0 ){
|
|
Fts5DlidxWriter *pDlidx = &pWriter->aDlidx[0];
|
|
assert( pDlidx->bPrevValid );
|
|
sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx->buf, 0);
|
|
}
|
|
|
|
/* Increment the "number of sequential leaves without a term" counter. */
|
|
pWriter->nEmpty++;
|
|
}
|
|
|
|
static i64 fts5DlidxExtractFirstRowid(Fts5Buffer *pBuf){
|
|
i64 iRowid;
|
|
int iOff;
|
|
|
|
iOff = 1 + getVarint(&pBuf->p[1], (u64*)&iRowid);
|
|
getVarint(&pBuf->p[iOff], (u64*)&iRowid);
|
|
return iRowid;
|
|
}
|
|
|
|
/*
|
|
** Rowid iRowid has just been appended to the current leaf page. It is the
|
|
** first on the page. This function appends an appropriate entry to the current
|
|
** doclist-index.
|
|
*/
|
|
static void fts5WriteDlidxAppend(
|
|
Fts5Index *p,
|
|
Fts5SegWriter *pWriter,
|
|
i64 iRowid
|
|
){
|
|
int i;
|
|
int bDone = 0;
|
|
|
|
for(i=0; p->rc==SQLITE_OK && bDone==0; i++){
|
|
i64 iVal;
|
|
Fts5DlidxWriter *pDlidx = &pWriter->aDlidx[i];
|
|
|
|
if( pDlidx->buf.n>=p->pConfig->pgsz ){
|
|
/* The current doclist-index page is full. Write it to disk and push
|
|
** a copy of iRowid (which will become the first rowid on the next
|
|
** doclist-index leaf page) up into the next level of the b-tree
|
|
** hierarchy. If the node being flushed is currently the root node,
|
|
** also push its first rowid upwards. */
|
|
pDlidx->buf.p[0] = 0x01; /* Not the root node */
|
|
fts5DataWrite(p,
|
|
FTS5_DLIDX_ROWID(pWriter->iSegid, i, pDlidx->pgno),
|
|
pDlidx->buf.p, pDlidx->buf.n
|
|
);
|
|
fts5WriteDlidxGrow(p, pWriter, i+2);
|
|
pDlidx = &pWriter->aDlidx[i];
|
|
if( p->rc==SQLITE_OK && pDlidx[1].buf.n==0 ){
|
|
i64 iFirst = fts5DlidxExtractFirstRowid(&pDlidx->buf);
|
|
|
|
/* This was the root node. Push its first rowid up to the new root. */
|
|
pDlidx[1].pgno = pDlidx->pgno;
|
|
sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx[1].buf, 0);
|
|
sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx[1].buf, pDlidx->pgno);
|
|
sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx[1].buf, iFirst);
|
|
pDlidx[1].bPrevValid = 1;
|
|
pDlidx[1].iPrev = iFirst;
|
|
}
|
|
|
|
sqlite3Fts5BufferZero(&pDlidx->buf);
|
|
pDlidx->bPrevValid = 0;
|
|
pDlidx->pgno++;
|
|
}else{
|
|
bDone = 1;
|
|
}
|
|
|
|
if( pDlidx->bPrevValid ){
|
|
iVal = iRowid - pDlidx->iPrev;
|
|
}else{
|
|
i64 iPgno = (i==0 ? pWriter->aWriter[0].pgno : pDlidx[-1].pgno);
|
|
assert( pDlidx->buf.n==0 );
|
|
sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx->buf, !bDone);
|
|
sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx->buf, iPgno);
|
|
iVal = iRowid;
|
|
}
|
|
|
|
sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx->buf, iVal);
|
|
pDlidx->bPrevValid = 1;
|
|
pDlidx->iPrev = iRowid;
|
|
}
|
|
}
|
|
|
|
static void fts5WriteFlushLeaf(Fts5Index *p, Fts5SegWriter *pWriter){
|
|
static const u8 zero[] = { 0x00, 0x00, 0x00, 0x00 };
|
|
Fts5PageWriter *pPage = &pWriter->aWriter[0];
|
|
i64 iRowid;
|
|
|
|
if( pWriter->bFirstTermInPage ){
|
|
/* No term was written to this page. */
|
|
assert( 0==fts5GetU16(&pPage->buf.p[2]) );
|
|
fts5WriteBtreeNoTerm(p, pWriter);
|
|
}
|
|
|
|
/* Write the current page to the db. */
|
|
iRowid = FTS5_SEGMENT_ROWID(pWriter->iSegid, 0, pPage->pgno);
|
|
fts5DataWrite(p, iRowid, pPage->buf.p, pPage->buf.n);
|
|
|
|
/* Initialize the next page. */
|
|
fts5BufferZero(&pPage->buf);
|
|
fts5BufferAppendBlob(&p->rc, &pPage->buf, 4, zero);
|
|
pPage->pgno++;
|
|
|
|
/* Increase the leaves written counter */
|
|
pWriter->nLeafWritten++;
|
|
|
|
/* The new leaf holds no terms or rowids */
|
|
pWriter->bFirstTermInPage = 1;
|
|
pWriter->bFirstRowidInPage = 1;
|
|
}
|
|
|
|
/*
|
|
** Append term pTerm/nTerm to the segment being written by the writer passed
|
|
** as the second argument.
|
|
**
|
|
** If an error occurs, set the Fts5Index.rc error code. If an error has
|
|
** already occurred, this function is a no-op.
|
|
*/
|
|
static void fts5WriteAppendTerm(
|
|
Fts5Index *p,
|
|
Fts5SegWriter *pWriter,
|
|
int nTerm, const u8 *pTerm
|
|
){
|
|
int nPrefix; /* Bytes of prefix compression for term */
|
|
Fts5PageWriter *pPage = &pWriter->aWriter[0];
|
|
|
|
assert( pPage->buf.n==0 || pPage->buf.n>4 );
|
|
if( pPage->buf.n==0 ){
|
|
/* Zero the first term and first docid fields */
|
|
static const u8 zero[] = { 0x00, 0x00, 0x00, 0x00 };
|
|
fts5BufferAppendBlob(&p->rc, &pPage->buf, 4, zero);
|
|
assert( pWriter->bFirstTermInPage );
|
|
}
|
|
if( p->rc ) return;
|
|
|
|
if( pWriter->bFirstTermInPage ){
|
|
/* Update the "first term" field of the page header. */
|
|
assert( pPage->buf.p[2]==0 && pPage->buf.p[3]==0 );
|
|
fts5PutU16(&pPage->buf.p[2], pPage->buf.n);
|
|
nPrefix = 0;
|
|
if( pPage->pgno!=1 ){
|
|
/* This is the first term on a leaf that is not the leftmost leaf in
|
|
** the segment b-tree. In this case it is necessary to add a term to
|
|
** the b-tree hierarchy that is (a) larger than the largest term
|
|
** already written to the segment and (b) smaller than or equal to
|
|
** this term. In other words, a prefix of (pTerm/nTerm) that is one
|
|
** byte longer than the longest prefix (pTerm/nTerm) shares with the
|
|
** previous term.
|
|
**
|
|
** Usually, the previous term is available in pPage->term. The exception
|
|
** is if this is the first term written in an incremental-merge step.
|
|
** In this case the previous term is not available, so just write a
|
|
** copy of (pTerm/nTerm) into the parent node. This is slightly
|
|
** inefficient, but still correct. */
|
|
int n = nTerm;
|
|
if( pPage->term.n ){
|
|
n = 1 + fts5PrefixCompress(pPage->term.n, pPage->term.p, nTerm, pTerm);
|
|
}
|
|
fts5WriteBtreeTerm(p, pWriter, n, pTerm);
|
|
pPage = &pWriter->aWriter[0];
|
|
}
|
|
}else{
|
|
nPrefix = fts5PrefixCompress(pPage->term.n, pPage->term.p, nTerm, pTerm);
|
|
fts5BufferAppendVarint(&p->rc, &pPage->buf, nPrefix);
|
|
}
|
|
|
|
/* Append the number of bytes of new data, then the term data itself
|
|
** to the page. */
|
|
fts5BufferAppendVarint(&p->rc, &pPage->buf, nTerm - nPrefix);
|
|
fts5BufferAppendBlob(&p->rc, &pPage->buf, nTerm - nPrefix, &pTerm[nPrefix]);
|
|
|
|
/* Update the Fts5PageWriter.term field. */
|
|
fts5BufferSet(&p->rc, &pPage->term, nTerm, pTerm);
|
|
pWriter->bFirstTermInPage = 0;
|
|
|
|
pWriter->bFirstRowidInPage = 0;
|
|
pWriter->bFirstRowidInDoclist = 1;
|
|
|
|
assert( p->rc || (pWriter->nDlidx>0 && pWriter->aDlidx[0].buf.n==0) );
|
|
pWriter->aDlidx[0].pgno = pPage->pgno;
|
|
|
|
/* If the current leaf page is full, flush it to disk. */
|
|
if( pPage->buf.n>=p->pConfig->pgsz ){
|
|
fts5WriteFlushLeaf(p, pWriter);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Append a docid and position-list size field to the writers output.
|
|
*/
|
|
static void fts5WriteAppendRowid(
|
|
Fts5Index *p,
|
|
Fts5SegWriter *pWriter,
|
|
i64 iRowid,
|
|
int nPos
|
|
){
|
|
if( p->rc==SQLITE_OK ){
|
|
Fts5PageWriter *pPage = &pWriter->aWriter[0];
|
|
|
|
/* If this is to be the first docid written to the page, set the
|
|
** docid-pointer in the page-header. Also append a value to the dlidx
|
|
** buffer, in case a doclist-index is required. */
|
|
if( pWriter->bFirstRowidInPage ){
|
|
fts5PutU16(pPage->buf.p, pPage->buf.n);
|
|
fts5WriteDlidxAppend(p, pWriter, iRowid);
|
|
}
|
|
|
|
/* Write the docid. */
|
|
if( pWriter->bFirstRowidInDoclist || pWriter->bFirstRowidInPage ){
|
|
fts5BufferAppendVarint(&p->rc, &pPage->buf, iRowid);
|
|
}else{
|
|
assert( p->rc || iRowid>pWriter->iPrevRowid );
|
|
fts5BufferAppendVarint(&p->rc, &pPage->buf, iRowid - pWriter->iPrevRowid);
|
|
}
|
|
pWriter->iPrevRowid = iRowid;
|
|
pWriter->bFirstRowidInDoclist = 0;
|
|
pWriter->bFirstRowidInPage = 0;
|
|
|
|
fts5BufferAppendVarint(&p->rc, &pPage->buf, nPos);
|
|
|
|
if( pPage->buf.n>=p->pConfig->pgsz ){
|
|
fts5WriteFlushLeaf(p, pWriter);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
static void fts5WriteAppendPoslistInt(
|
|
Fts5Index *p,
|
|
Fts5SegWriter *pWriter,
|
|
int iVal
|
|
){
|
|
if( p->rc==SQLITE_OK ){
|
|
Fts5PageWriter *pPage = &pWriter->aWriter[0];
|
|
fts5BufferAppendVarint(&p->rc, &pPage->buf, iVal);
|
|
if( pPage->buf.n>=p->pConfig->pgsz ){
|
|
fts5WriteFlushLeaf(p, pWriter);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void fts5WriteAppendPoslistData(
|
|
Fts5Index *p,
|
|
Fts5SegWriter *pWriter,
|
|
const u8 *aData,
|
|
int nData
|
|
){
|
|
Fts5PageWriter *pPage = &pWriter->aWriter[0];
|
|
const u8 *a = aData;
|
|
int n = nData;
|
|
|
|
assert( p->pConfig->pgsz>0 );
|
|
while( p->rc==SQLITE_OK && (pPage->buf.n + n)>=p->pConfig->pgsz ){
|
|
int nReq = p->pConfig->pgsz - pPage->buf.n;
|
|
int nCopy = 0;
|
|
while( nCopy<nReq ){
|
|
i64 dummy;
|
|
nCopy += getVarint(&a[nCopy], (u64*)&dummy);
|
|
}
|
|
fts5BufferAppendBlob(&p->rc, &pPage->buf, nCopy, a);
|
|
a += nCopy;
|
|
n -= nCopy;
|
|
fts5WriteFlushLeaf(p, pWriter);
|
|
}
|
|
if( n>0 ){
|
|
fts5BufferAppendBlob(&p->rc, &pPage->buf, n, a);
|
|
}
|
|
}
|
|
|
|
static void fts5WriteAppendZerobyte(Fts5Index *p, Fts5SegWriter *pWriter){
|
|
fts5BufferAppendVarint(&p->rc, &pWriter->aWriter[0].buf, 0);
|
|
}
|
|
|
|
/*
|
|
** Flush any data cached by the writer object to the database. Free any
|
|
** allocations associated with the writer.
|
|
*/
|
|
static void fts5WriteFinish(
|
|
Fts5Index *p,
|
|
Fts5SegWriter *pWriter, /* Writer object */
|
|
int *pnHeight, /* OUT: Height of the b-tree */
|
|
int *pnLeaf /* OUT: Number of leaf pages in b-tree */
|
|
){
|
|
int i;
|
|
if( p->rc==SQLITE_OK ){
|
|
Fts5PageWriter *pLeaf = &pWriter->aWriter[0];
|
|
if( pLeaf->pgno==1 && pLeaf->buf.n==0 ){
|
|
*pnLeaf = 0;
|
|
*pnHeight = 0;
|
|
}else{
|
|
if( pLeaf->buf.n>4 ){
|
|
fts5WriteFlushLeaf(p, pWriter);
|
|
}
|
|
*pnLeaf = pLeaf->pgno-1;
|
|
if( pWriter->nWriter==1 && pWriter->nEmpty>=FTS5_MIN_DLIDX_SIZE ){
|
|
fts5WriteBtreeGrow(p, pWriter);
|
|
}
|
|
if( pWriter->nWriter>1 ){
|
|
fts5WriteBtreeNEmpty(p, pWriter);
|
|
}
|
|
*pnHeight = pWriter->nWriter;
|
|
|
|
for(i=1; i<pWriter->nWriter; i++){
|
|
Fts5PageWriter *pPg = &pWriter->aWriter[i];
|
|
fts5DataWrite(p,
|
|
FTS5_SEGMENT_ROWID(pWriter->iSegid, i, pPg->pgno),
|
|
pPg->buf.p, pPg->buf.n
|
|
);
|
|
}
|
|
}
|
|
}
|
|
for(i=0; i<pWriter->nWriter; i++){
|
|
Fts5PageWriter *pPg = &pWriter->aWriter[i];
|
|
fts5BufferFree(&pPg->term);
|
|
fts5BufferFree(&pPg->buf);
|
|
}
|
|
sqlite3_free(pWriter->aWriter);
|
|
|
|
for(i=0; i<pWriter->nDlidx; i++){
|
|
sqlite3Fts5BufferFree(&pWriter->aDlidx[i].buf);
|
|
}
|
|
sqlite3_free(pWriter->aDlidx);
|
|
}
|
|
|
|
static void fts5WriteInit(
|
|
Fts5Index *p,
|
|
Fts5SegWriter *pWriter,
|
|
int iSegid
|
|
){
|
|
memset(pWriter, 0, sizeof(Fts5SegWriter));
|
|
pWriter->iSegid = iSegid;
|
|
|
|
pWriter->aWriter = (Fts5PageWriter*)fts5IdxMalloc(p, sizeof(Fts5PageWriter));
|
|
if( fts5WriteDlidxGrow(p, pWriter, 1) ) return;
|
|
pWriter->nWriter = 1;
|
|
pWriter->nDlidx = 1;
|
|
pWriter->aWriter[0].pgno = 1;
|
|
pWriter->bFirstTermInPage = 1;
|
|
}
|
|
|
|
static void fts5WriteInitForAppend(
|
|
Fts5Index *p, /* FTS5 backend object */
|
|
Fts5SegWriter *pWriter, /* Writer to initialize */
|
|
Fts5StructureSegment *pSeg /* Segment object to append to */
|
|
){
|
|
int nByte = pSeg->nHeight * sizeof(Fts5PageWriter);
|
|
memset(pWriter, 0, sizeof(Fts5SegWriter));
|
|
pWriter->iSegid = pSeg->iSegid;
|
|
pWriter->aWriter = (Fts5PageWriter*)fts5IdxMalloc(p, nByte);
|
|
pWriter->aDlidx = (Fts5DlidxWriter*)fts5IdxMalloc(p, sizeof(Fts5DlidxWriter));
|
|
|
|
if( p->rc==SQLITE_OK ){
|
|
int pgno = 1;
|
|
int i;
|
|
pWriter->nDlidx = 1;
|
|
pWriter->nWriter = pSeg->nHeight;
|
|
pWriter->aWriter[0].pgno = pSeg->pgnoLast+1;
|
|
for(i=pSeg->nHeight-1; i>0; i--){
|
|
i64 iRowid = FTS5_SEGMENT_ROWID(pWriter->iSegid, i, pgno);
|
|
Fts5PageWriter *pPg = &pWriter->aWriter[i];
|
|
pPg->pgno = pgno;
|
|
fts5DataBuffer(p, &pPg->buf, iRowid);
|
|
if( p->rc==SQLITE_OK ){
|
|
Fts5NodeIter ss;
|
|
fts5NodeIterInit(pPg->buf.p, pPg->buf.n, &ss);
|
|
while( ss.aData ) fts5NodeIterNext(&p->rc, &ss);
|
|
fts5BufferSet(&p->rc, &pPg->term, ss.term.n, ss.term.p);
|
|
pgno = ss.iChild;
|
|
fts5NodeIterFree(&ss);
|
|
}
|
|
}
|
|
assert( p->rc!=SQLITE_OK || (pgno+pWriter->nEmpty)==pSeg->pgnoLast );
|
|
pWriter->bFirstTermInPage = 1;
|
|
assert( pWriter->aWriter[0].term.n==0 );
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Iterator pIter was used to iterate through the input segments of on an
|
|
** incremental merge operation. This function is called if the incremental
|
|
** merge step has finished but the input has not been completely exhausted.
|
|
*/
|
|
static void fts5TrimSegments(Fts5Index *p, Fts5MultiSegIter *pIter){
|
|
int i;
|
|
Fts5Buffer buf;
|
|
memset(&buf, 0, sizeof(Fts5Buffer));
|
|
for(i=0; i<pIter->nSeg; i++){
|
|
Fts5SegIter *pSeg = &pIter->aSeg[i];
|
|
if( pSeg->pSeg==0 ){
|
|
/* no-op */
|
|
}else if( pSeg->pLeaf==0 ){
|
|
/* All keys from this input segment have been transfered to the output.
|
|
** Set both the first and last page-numbers to 0 to indicate that the
|
|
** segment is now empty. */
|
|
pSeg->pSeg->pgnoLast = 0;
|
|
pSeg->pSeg->pgnoFirst = 0;
|
|
}else{
|
|
int iOff = pSeg->iTermLeafOffset; /* Offset on new first leaf page */
|
|
i64 iLeafRowid;
|
|
Fts5Data *pData;
|
|
int iId = pSeg->pSeg->iSegid;
|
|
u8 aHdr[4] = {0x00, 0x00, 0x00, 0x04};
|
|
|
|
iLeafRowid = FTS5_SEGMENT_ROWID(iId, 0, pSeg->iTermLeafPgno);
|
|
pData = fts5DataRead(p, iLeafRowid);
|
|
if( pData ){
|
|
fts5BufferZero(&buf);
|
|
fts5BufferAppendBlob(&p->rc, &buf, sizeof(aHdr), aHdr);
|
|
fts5BufferAppendVarint(&p->rc, &buf, pSeg->term.n);
|
|
fts5BufferAppendBlob(&p->rc, &buf, pSeg->term.n, pSeg->term.p);
|
|
fts5BufferAppendBlob(&p->rc, &buf, pData->n - iOff, &pData->p[iOff]);
|
|
fts5DataRelease(pData);
|
|
pSeg->pSeg->pgnoFirst = pSeg->iTermLeafPgno;
|
|
fts5DataDelete(p, FTS5_SEGMENT_ROWID(iId, 0, 1),iLeafRowid);
|
|
fts5DataWrite(p, iLeafRowid, buf.p, buf.n);
|
|
}
|
|
}
|
|
}
|
|
fts5BufferFree(&buf);
|
|
}
|
|
|
|
/*
|
|
**
|
|
*/
|
|
static void fts5IndexMergeLevel(
|
|
Fts5Index *p, /* FTS5 backend object */
|
|
Fts5Structure **ppStruct, /* IN/OUT: Stucture of index */
|
|
int iLvl, /* Level to read input from */
|
|
int *pnRem /* Write up to this many output leaves */
|
|
){
|
|
Fts5Structure *pStruct = *ppStruct;
|
|
Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
|
|
Fts5StructureLevel *pLvlOut;
|
|
Fts5MultiSegIter *pIter = 0; /* Iterator to read input data */
|
|
int nRem = pnRem ? *pnRem : 0; /* Output leaf pages left to write */
|
|
int nInput; /* Number of input segments */
|
|
Fts5SegWriter writer; /* Writer object */
|
|
Fts5StructureSegment *pSeg; /* Output segment */
|
|
Fts5Buffer term;
|
|
int bRequireDoclistTerm = 0; /* Doclist terminator (0x00) required */
|
|
int bOldest; /* True if the output segment is the oldest */
|
|
|
|
assert( iLvl<pStruct->nLevel );
|
|
assert( pLvl->nMerge<=pLvl->nSeg );
|
|
|
|
memset(&writer, 0, sizeof(Fts5SegWriter));
|
|
memset(&term, 0, sizeof(Fts5Buffer));
|
|
if( pLvl->nMerge ){
|
|
pLvlOut = &pStruct->aLevel[iLvl+1];
|
|
assert( pLvlOut->nSeg>0 );
|
|
nInput = pLvl->nMerge;
|
|
fts5WriteInitForAppend(p, &writer, &pLvlOut->aSeg[pLvlOut->nSeg-1]);
|
|
pSeg = &pLvlOut->aSeg[pLvlOut->nSeg-1];
|
|
}else{
|
|
int iSegid = fts5AllocateSegid(p, pStruct);
|
|
|
|
/* Extend the Fts5Structure object as required to ensure the output
|
|
** segment exists. */
|
|
if( iLvl==pStruct->nLevel-1 ){
|
|
fts5StructureAddLevel(&p->rc, ppStruct);
|
|
pStruct = *ppStruct;
|
|
}
|
|
fts5StructureExtendLevel(&p->rc, pStruct, iLvl+1, 1, 0);
|
|
if( p->rc ) return;
|
|
pLvl = &pStruct->aLevel[iLvl];
|
|
pLvlOut = &pStruct->aLevel[iLvl+1];
|
|
|
|
fts5WriteInit(p, &writer, iSegid);
|
|
|
|
/* Add the new segment to the output level */
|
|
pSeg = &pLvlOut->aSeg[pLvlOut->nSeg];
|
|
pLvlOut->nSeg++;
|
|
pSeg->pgnoFirst = 1;
|
|
pSeg->iSegid = iSegid;
|
|
pStruct->nSegment++;
|
|
|
|
/* Read input from all segments in the input level */
|
|
nInput = pLvl->nSeg;
|
|
}
|
|
bOldest = (pLvlOut->nSeg==1 && pStruct->nLevel==iLvl+2);
|
|
|
|
#if 0
|
|
fprintf(stdout, "merging %d segments from level %d!", nInput, iLvl);
|
|
fflush(stdout);
|
|
#endif
|
|
|
|
assert( iLvl>=0 );
|
|
for(fts5MultiIterNew(p, pStruct, 0, 0, 0, 0, iLvl, nInput, &pIter);
|
|
fts5MultiIterEof(p, pIter)==0;
|
|
fts5MultiIterNext(p, pIter, 0, 0)
|
|
){
|
|
Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
|
|
Fts5ChunkIter sPos; /* Used to iterate through position list */
|
|
int nPos; /* position-list size field value */
|
|
int nTerm;
|
|
const u8 *pTerm;
|
|
|
|
/* Check for key annihilation. */
|
|
if( pSeg->nPos==0 && (bOldest || pSeg->bDel==0) ) continue;
|
|
|
|
fts5ChunkIterInit(p, pSeg, &sPos);
|
|
|
|
pTerm = fts5MultiIterTerm(pIter, &nTerm);
|
|
if( nTerm!=term.n || memcmp(pTerm, term.p, nTerm) ){
|
|
if( pnRem && writer.nLeafWritten>nRem ){
|
|
fts5ChunkIterRelease(&sPos);
|
|
break;
|
|
}
|
|
|
|
/* This is a new term. Append a term to the output segment. */
|
|
if( bRequireDoclistTerm ){
|
|
fts5WriteAppendZerobyte(p, &writer);
|
|
}
|
|
fts5WriteAppendTerm(p, &writer, nTerm, pTerm);
|
|
fts5BufferSet(&p->rc, &term, nTerm, pTerm);
|
|
bRequireDoclistTerm = 1;
|
|
}
|
|
|
|
/* Append the rowid to the output */
|
|
/* WRITEPOSLISTSIZE */
|
|
nPos = pSeg->nPos*2 + pSeg->bDel;
|
|
fts5WriteAppendRowid(p, &writer, fts5MultiIterRowid(pIter), nPos);
|
|
|
|
for(/* noop */; !fts5ChunkIterEof(p, &sPos); fts5ChunkIterNext(p, &sPos)){
|
|
fts5WriteAppendPoslistData(p, &writer, sPos.p, sPos.n);
|
|
}
|
|
|
|
fts5ChunkIterRelease(&sPos);
|
|
}
|
|
|
|
/* Flush the last leaf page to disk. Set the output segment b-tree height
|
|
** and last leaf page number at the same time. */
|
|
fts5WriteFinish(p, &writer, &pSeg->nHeight, &pSeg->pgnoLast);
|
|
|
|
if( fts5MultiIterEof(p, pIter) ){
|
|
int i;
|
|
|
|
/* Remove the redundant segments from the %_data table */
|
|
for(i=0; i<nInput; i++){
|
|
fts5DataRemoveSegment(p, pLvl->aSeg[i].iSegid);
|
|
}
|
|
|
|
/* Remove the redundant segments from the input level */
|
|
if( pLvl->nSeg!=nInput ){
|
|
int nMove = (pLvl->nSeg - nInput) * sizeof(Fts5StructureSegment);
|
|
memmove(pLvl->aSeg, &pLvl->aSeg[nInput], nMove);
|
|
}
|
|
pStruct->nSegment -= nInput;
|
|
pLvl->nSeg -= nInput;
|
|
pLvl->nMerge = 0;
|
|
if( pSeg->pgnoLast==0 ){
|
|
pLvlOut->nSeg--;
|
|
pStruct->nSegment--;
|
|
}
|
|
}else{
|
|
assert( pSeg->nHeight>0 && pSeg->pgnoLast>0 );
|
|
fts5TrimSegments(p, pIter);
|
|
pLvl->nMerge = nInput;
|
|
}
|
|
|
|
fts5MultiIterFree(p, pIter);
|
|
fts5BufferFree(&term);
|
|
if( pnRem ) *pnRem -= writer.nLeafWritten;
|
|
}
|
|
|
|
/*
|
|
** Do up to nPg pages of automerge work on the index.
|
|
*/
|
|
static void fts5IndexMerge(
|
|
Fts5Index *p, /* FTS5 backend object */
|
|
Fts5Structure **ppStruct, /* IN/OUT: Current structure of index */
|
|
int nPg /* Pages of work to do */
|
|
){
|
|
int nRem = nPg;
|
|
Fts5Structure *pStruct = *ppStruct;
|
|
while( nRem>0 && p->rc==SQLITE_OK ){
|
|
int iLvl; /* To iterate through levels */
|
|
int iBestLvl = 0; /* Level offering the most input segments */
|
|
int nBest = 0; /* Number of input segments on best level */
|
|
|
|
/* Set iBestLvl to the level to read input segments from. */
|
|
assert( pStruct->nLevel>0 );
|
|
for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
|
|
Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
|
|
if( pLvl->nMerge ){
|
|
if( pLvl->nMerge>nBest ){
|
|
iBestLvl = iLvl;
|
|
nBest = pLvl->nMerge;
|
|
}
|
|
break;
|
|
}
|
|
if( pLvl->nSeg>nBest ){
|
|
nBest = pLvl->nSeg;
|
|
iBestLvl = iLvl;
|
|
}
|
|
}
|
|
|
|
/* If nBest is still 0, then the index must be empty. */
|
|
#ifdef SQLITE_DEBUG
|
|
for(iLvl=0; nBest==0 && iLvl<pStruct->nLevel; iLvl++){
|
|
assert( pStruct->aLevel[iLvl].nSeg==0 );
|
|
}
|
|
#endif
|
|
|
|
if( nBest<p->pConfig->nAutomerge
|
|
&& pStruct->aLevel[iBestLvl].nMerge==0
|
|
){
|
|
break;
|
|
}
|
|
fts5IndexMergeLevel(p, &pStruct, iBestLvl, &nRem);
|
|
if( p->rc==SQLITE_OK && pStruct->aLevel[iBestLvl].nMerge==0 ){
|
|
fts5StructurePromote(p, iBestLvl+1, pStruct);
|
|
}
|
|
}
|
|
*ppStruct = pStruct;
|
|
}
|
|
|
|
/*
|
|
** A total of nLeaf leaf pages of data has just been flushed to a level-0
|
|
** segment. This function updates the write-counter accordingly and, if
|
|
** necessary, performs incremental merge work.
|
|
**
|
|
** If an error occurs, set the Fts5Index.rc error code. If an error has
|
|
** already occurred, this function is a no-op.
|
|
*/
|
|
static void fts5IndexAutomerge(
|
|
Fts5Index *p, /* FTS5 backend object */
|
|
Fts5Structure **ppStruct, /* IN/OUT: Current structure of index */
|
|
int nLeaf /* Number of output leaves just written */
|
|
){
|
|
if( p->rc==SQLITE_OK && p->pConfig->nAutomerge>0 ){
|
|
Fts5Structure *pStruct = *ppStruct;
|
|
i64 nWrite; /* Initial value of write-counter */
|
|
int nWork; /* Number of work-quanta to perform */
|
|
int nRem; /* Number of leaf pages left to write */
|
|
|
|
/* Update the write-counter. While doing so, set nWork. */
|
|
nWrite = pStruct->nWriteCounter;
|
|
nWork = ((nWrite + nLeaf) / p->nWorkUnit) - (nWrite / p->nWorkUnit);
|
|
pStruct->nWriteCounter += nLeaf;
|
|
nRem = p->nWorkUnit * nWork * pStruct->nLevel;
|
|
|
|
fts5IndexMerge(p, ppStruct, nRem);
|
|
}
|
|
}
|
|
|
|
static void fts5IndexCrisismerge(
|
|
Fts5Index *p, /* FTS5 backend object */
|
|
Fts5Structure **ppStruct /* IN/OUT: Current structure of index */
|
|
){
|
|
const int nCrisis = p->pConfig->nCrisisMerge;
|
|
Fts5Structure *pStruct = *ppStruct;
|
|
int iLvl = 0;
|
|
|
|
assert( p->rc!=SQLITE_OK || pStruct->nLevel>0 );
|
|
while( p->rc==SQLITE_OK && pStruct->aLevel[iLvl].nSeg>=nCrisis ){
|
|
fts5IndexMergeLevel(p, &pStruct, iLvl, 0);
|
|
fts5StructurePromote(p, iLvl+1, pStruct);
|
|
iLvl++;
|
|
}
|
|
*ppStruct = pStruct;
|
|
}
|
|
|
|
static int fts5IndexReturn(Fts5Index *p){
|
|
int rc = p->rc;
|
|
p->rc = SQLITE_OK;
|
|
return rc;
|
|
}
|
|
|
|
typedef struct Fts5FlushCtx Fts5FlushCtx;
|
|
struct Fts5FlushCtx {
|
|
Fts5Index *pIdx;
|
|
Fts5SegWriter writer;
|
|
};
|
|
|
|
/*
|
|
** Buffer aBuf[] contains a list of varints, all small enough to fit
|
|
** in a 32-bit integer. Return the size of the largest prefix of this
|
|
** list nMax bytes or less in size.
|
|
*/
|
|
static int fts5PoslistPrefix(const u8 *aBuf, int nMax){
|
|
int ret;
|
|
u32 dummy;
|
|
ret = fts5GetVarint32(aBuf, dummy);
|
|
while( 1 ){
|
|
int i = fts5GetVarint32(&aBuf[ret], dummy);
|
|
if( (ret + i) > nMax ) break;
|
|
ret += i;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#define fts5BufferSafeAppendBlob(pBuf, pBlob, nBlob) { \
|
|
assert( pBuf->nSpace>=(pBuf->n+nBlob) ); \
|
|
memcpy(&pBuf->p[pBuf->n], pBlob, nBlob); \
|
|
pBuf->n += nBlob; \
|
|
}
|
|
|
|
/*
|
|
** Flush the contents of in-memory hash table iHash to a new level-0
|
|
** segment on disk. Also update the corresponding structure record.
|
|
**
|
|
** If an error occurs, set the Fts5Index.rc error code. If an error has
|
|
** already occurred, this function is a no-op.
|
|
*/
|
|
static void fts5FlushOneHash(Fts5Index *p){
|
|
Fts5Hash *pHash = p->pHash;
|
|
Fts5Structure *pStruct;
|
|
int iSegid;
|
|
int pgnoLast = 0; /* Last leaf page number in segment */
|
|
|
|
/* Obtain a reference to the index structure and allocate a new segment-id
|
|
** for the new level-0 segment. */
|
|
pStruct = fts5StructureRead(p);
|
|
iSegid = fts5AllocateSegid(p, pStruct);
|
|
|
|
if( iSegid ){
|
|
const int pgsz = p->pConfig->pgsz;
|
|
|
|
Fts5StructureSegment *pSeg; /* New segment within pStruct */
|
|
int nHeight; /* Height of new segment b-tree */
|
|
Fts5Buffer *pBuf; /* Buffer in which to assemble leaf page */
|
|
const u8 *zPrev = 0;
|
|
|
|
Fts5SegWriter writer;
|
|
fts5WriteInit(p, &writer, iSegid);
|
|
|
|
/* Pre-allocate the buffer used to assemble leaf pages to the target
|
|
** page size. */
|
|
assert( pgsz>0 );
|
|
pBuf = &writer.aWriter[0].buf;
|
|
fts5BufferGrow(&p->rc, pBuf, pgsz + 20);
|
|
|
|
/* Begin scanning through hash table entries. This loop runs once for each
|
|
** term/doclist currently stored within the hash table. */
|
|
if( p->rc==SQLITE_OK ){
|
|
memset(pBuf->p, 0, 4);
|
|
pBuf->n = 4;
|
|
p->rc = sqlite3Fts5HashScanInit(pHash, 0, 0);
|
|
}
|
|
while( p->rc==SQLITE_OK && 0==sqlite3Fts5HashScanEof(pHash) ){
|
|
const char *zTerm; /* Buffer containing term */
|
|
int nTerm; /* Size of zTerm in bytes */
|
|
const u8 *pDoclist; /* Pointer to doclist for this term */
|
|
int nDoclist; /* Size of doclist in bytes */
|
|
int nSuffix; /* Size of term suffix */
|
|
|
|
sqlite3Fts5HashScanEntry(pHash, &zTerm, &pDoclist, &nDoclist);
|
|
nTerm = strlen(zTerm);
|
|
|
|
/* Decide if the term will fit on the current leaf. If it will not,
|
|
** flush the leaf to disk here. */
|
|
if( (pBuf->n + nTerm + 2) > pgsz ){
|
|
fts5WriteFlushLeaf(p, &writer);
|
|
pBuf = &writer.aWriter[0].buf;
|
|
if( (nTerm + 32) > pBuf->nSpace ){
|
|
fts5BufferGrow(&p->rc, pBuf, nTerm + 32 - pBuf->n);
|
|
if( p->rc ) break;
|
|
}
|
|
}
|
|
|
|
/* Write the term to the leaf. And if it is the first on the leaf, and
|
|
** the leaf is not page number 1, push it up into the b-tree hierarchy
|
|
** as well. */
|
|
if( writer.bFirstTermInPage==0 ){
|
|
int nPre = fts5PrefixCompress(nTerm, zPrev, nTerm, (const u8*)zTerm);
|
|
pBuf->n += sqlite3PutVarint(&pBuf->p[pBuf->n], nPre);
|
|
nSuffix = nTerm - nPre;
|
|
}else{
|
|
fts5PutU16(&pBuf->p[2], pBuf->n);
|
|
writer.bFirstTermInPage = 0;
|
|
if( writer.aWriter[0].pgno!=1 ){
|
|
int nPre = fts5PrefixCompress(nTerm, zPrev, nTerm, (const u8*)zTerm);
|
|
fts5WriteBtreeTerm(p, &writer, nPre+1, (const u8*)zTerm);
|
|
pBuf = &writer.aWriter[0].buf;
|
|
assert( nPre<nTerm );
|
|
}
|
|
nSuffix = nTerm;
|
|
}
|
|
pBuf->n += sqlite3PutVarint(&pBuf->p[pBuf->n], nSuffix);
|
|
fts5BufferSafeAppendBlob(pBuf, (const u8*)&zTerm[nTerm-nSuffix], nSuffix);
|
|
|
|
/* We just wrote a term into page writer.aWriter[0].pgno. If a
|
|
** doclist-index is to be generated for this doclist, it will be
|
|
** associated with this page. */
|
|
assert( writer.nDlidx>0 && writer.aDlidx[0].buf.n==0 );
|
|
writer.aDlidx[0].pgno = writer.aWriter[0].pgno;
|
|
|
|
if( pgsz>=(pBuf->n + nDoclist + 1) ){
|
|
/* The entire doclist will fit on the current leaf. */
|
|
fts5BufferSafeAppendBlob(pBuf, pDoclist, nDoclist);
|
|
}else{
|
|
i64 iRowid = 0;
|
|
i64 iDelta = 0;
|
|
int iOff = 0;
|
|
|
|
writer.bFirstRowidInPage = 0;
|
|
|
|
/* The entire doclist will not fit on this leaf. The following
|
|
** loop iterates through the poslists that make up the current
|
|
** doclist. */
|
|
while( p->rc==SQLITE_OK && iOff<nDoclist ){
|
|
int nPos;
|
|
int nCopy;
|
|
int bDummy;
|
|
iOff += getVarint(&pDoclist[iOff], (u64*)&iDelta);
|
|
nCopy = fts5GetPoslistSize(&pDoclist[iOff], &nPos, &bDummy);
|
|
nCopy += nPos;
|
|
iRowid += iDelta;
|
|
|
|
if( writer.bFirstRowidInPage ){
|
|
fts5PutU16(&pBuf->p[0], pBuf->n); /* first docid on page */
|
|
pBuf->n += sqlite3PutVarint(&pBuf->p[pBuf->n], iRowid);
|
|
writer.bFirstRowidInPage = 0;
|
|
fts5WriteDlidxAppend(p, &writer, iRowid);
|
|
}else{
|
|
pBuf->n += sqlite3PutVarint(&pBuf->p[pBuf->n], iDelta);
|
|
}
|
|
assert( pBuf->n<=pBuf->nSpace );
|
|
|
|
if( (pBuf->n + nCopy) <= pgsz ){
|
|
/* The entire poslist will fit on the current leaf. So copy
|
|
** it in one go. */
|
|
fts5BufferSafeAppendBlob(pBuf, &pDoclist[iOff], nCopy);
|
|
}else{
|
|
/* The entire poslist will not fit on this leaf. So it needs
|
|
** to be broken into sections. The only qualification being
|
|
** that each varint must be stored contiguously. */
|
|
const u8 *pPoslist = &pDoclist[iOff];
|
|
int iPos = 0;
|
|
while( p->rc==SQLITE_OK ){
|
|
int nSpace = pgsz - pBuf->n;
|
|
int n = 0;
|
|
if( (nCopy - iPos)<=nSpace ){
|
|
n = nCopy - iPos;
|
|
}else{
|
|
n = fts5PoslistPrefix(&pPoslist[iPos], nSpace);
|
|
}
|
|
assert( n>0 );
|
|
fts5BufferSafeAppendBlob(pBuf, &pPoslist[iPos], n);
|
|
iPos += n;
|
|
if( pBuf->n>=pgsz ){
|
|
fts5WriteFlushLeaf(p, &writer);
|
|
pBuf = &writer.aWriter[0].buf;
|
|
}
|
|
if( iPos>=nCopy ) break;
|
|
}
|
|
}
|
|
iOff += nCopy;
|
|
}
|
|
}
|
|
|
|
pBuf->p[pBuf->n++] = '\0';
|
|
assert( pBuf->n<=pBuf->nSpace );
|
|
zPrev = (const u8*)zTerm;
|
|
sqlite3Fts5HashScanNext(pHash);
|
|
}
|
|
sqlite3Fts5HashClear(pHash);
|
|
fts5WriteFinish(p, &writer, &nHeight, &pgnoLast);
|
|
|
|
/* Update the Fts5Structure. It is written back to the database by the
|
|
** fts5StructureRelease() call below. */
|
|
if( pStruct->nLevel==0 ){
|
|
fts5StructureAddLevel(&p->rc, &pStruct);
|
|
}
|
|
fts5StructureExtendLevel(&p->rc, pStruct, 0, 1, 0);
|
|
if( p->rc==SQLITE_OK ){
|
|
pSeg = &pStruct->aLevel[0].aSeg[ pStruct->aLevel[0].nSeg++ ];
|
|
pSeg->iSegid = iSegid;
|
|
pSeg->nHeight = nHeight;
|
|
pSeg->pgnoFirst = 1;
|
|
pSeg->pgnoLast = pgnoLast;
|
|
pStruct->nSegment++;
|
|
}
|
|
fts5StructurePromote(p, 0, pStruct);
|
|
}
|
|
|
|
|
|
fts5IndexAutomerge(p, &pStruct, pgnoLast);
|
|
fts5IndexCrisismerge(p, &pStruct);
|
|
fts5StructureWrite(p, pStruct);
|
|
fts5StructureRelease(pStruct);
|
|
}
|
|
|
|
/*
|
|
** Flush any data stored in the in-memory hash tables to the database.
|
|
*/
|
|
static void fts5IndexFlush(Fts5Index *p){
|
|
/* Unless it is empty, flush the hash table to disk */
|
|
if( p->nPendingData ){
|
|
assert( p->pHash );
|
|
p->nPendingData = 0;
|
|
fts5FlushOneHash(p);
|
|
}
|
|
}
|
|
|
|
|
|
int sqlite3Fts5IndexOptimize(Fts5Index *p){
|
|
Fts5Structure *pStruct;
|
|
Fts5Structure *pNew = 0;
|
|
int nSeg = 0;
|
|
|
|
assert( p->rc==SQLITE_OK );
|
|
fts5IndexFlush(p);
|
|
pStruct = fts5StructureRead(p);
|
|
|
|
if( pStruct ){
|
|
assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) );
|
|
nSeg = pStruct->nSegment;
|
|
if( nSeg>1 ){
|
|
int nByte = sizeof(Fts5Structure);
|
|
nByte += (pStruct->nLevel+1) * sizeof(Fts5StructureLevel);
|
|
pNew = (Fts5Structure*)sqlite3Fts5MallocZero(&p->rc, nByte);
|
|
}
|
|
}
|
|
if( pNew ){
|
|
Fts5StructureLevel *pLvl;
|
|
int nByte = nSeg * sizeof(Fts5StructureSegment);
|
|
pNew->nLevel = pStruct->nLevel+1;
|
|
pNew->nWriteCounter = pStruct->nWriteCounter;
|
|
pLvl = &pNew->aLevel[pStruct->nLevel];
|
|
pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(&p->rc, nByte);
|
|
if( pLvl->aSeg ){
|
|
int iLvl, iSeg;
|
|
int iSegOut = 0;
|
|
for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
|
|
for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
|
|
pLvl->aSeg[iSegOut] = pStruct->aLevel[iLvl].aSeg[iSeg];
|
|
iSegOut++;
|
|
}
|
|
}
|
|
pNew->nSegment = pLvl->nSeg = nSeg;
|
|
}else{
|
|
sqlite3_free(pNew);
|
|
pNew = 0;
|
|
}
|
|
}
|
|
|
|
if( pNew ){
|
|
int iLvl = pNew->nLevel-1;
|
|
while( p->rc==SQLITE_OK && pNew->aLevel[iLvl].nSeg>0 ){
|
|
int nRem = FTS5_OPT_WORK_UNIT;
|
|
fts5IndexMergeLevel(p, &pNew, iLvl, &nRem);
|
|
}
|
|
|
|
fts5StructureWrite(p, pNew);
|
|
fts5StructureRelease(pNew);
|
|
}
|
|
|
|
fts5StructureRelease(pStruct);
|
|
return fts5IndexReturn(p);
|
|
}
|
|
|
|
int sqlite3Fts5IndexMerge(Fts5Index *p, int nMerge){
|
|
Fts5Structure *pStruct;
|
|
|
|
pStruct = fts5StructureRead(p);
|
|
if( pStruct && pStruct->nLevel ){
|
|
fts5IndexMerge(p, &pStruct, nMerge);
|
|
fts5StructureWrite(p, pStruct);
|
|
}
|
|
fts5StructureRelease(pStruct);
|
|
|
|
return fts5IndexReturn(p);
|
|
}
|
|
|
|
|
|
/*
|
|
** Iterator pMulti currently points to a valid entry (not EOF). This
|
|
** function appends a copy of the position-list of the entry pMulti
|
|
** currently points to to buffer pBuf.
|
|
**
|
|
** If an error occurs, an error code is left in p->rc. It is assumed
|
|
** no error has already occurred when this function is called.
|
|
*/
|
|
static void fts5MultiIterPoslist(
|
|
Fts5Index *p,
|
|
Fts5MultiSegIter *pMulti,
|
|
int bSz,
|
|
Fts5Buffer *pBuf
|
|
){
|
|
if( p->rc==SQLITE_OK ){
|
|
Fts5ChunkIter iter;
|
|
Fts5SegIter *pSeg = &pMulti->aSeg[ pMulti->aFirst[1].iFirst ];
|
|
assert( fts5MultiIterEof(p, pMulti)==0 );
|
|
|
|
fts5ChunkIterInit(p, pSeg, &iter);
|
|
|
|
if( fts5ChunkIterEof(p, &iter)==0 ){
|
|
if( bSz ){
|
|
/* WRITEPOSLISTSIZE */
|
|
fts5BufferAppendVarint(&p->rc, pBuf, iter.nRem * 2);
|
|
}
|
|
while( fts5ChunkIterEof(p, &iter)==0 ){
|
|
fts5BufferAppendBlob(&p->rc, pBuf, iter.n, iter.p);
|
|
fts5ChunkIterNext(p, &iter);
|
|
}
|
|
}
|
|
fts5ChunkIterRelease(&iter);
|
|
}
|
|
}
|
|
|
|
static void fts5DoclistIterNext(Fts5DoclistIter *pIter){
|
|
if( pIter->i<pIter->n ){
|
|
int bDummy;
|
|
if( pIter->i ){
|
|
i64 iDelta;
|
|
pIter->i += getVarint(&pIter->a[pIter->i], (u64*)&iDelta);
|
|
if( pIter->bDesc ){
|
|
pIter->iRowid -= iDelta;
|
|
}else{
|
|
pIter->iRowid += iDelta;
|
|
}
|
|
}else{
|
|
pIter->i += getVarint(&pIter->a[pIter->i], (u64*)&pIter->iRowid);
|
|
}
|
|
pIter->i += fts5GetPoslistSize(
|
|
&pIter->a[pIter->i], &pIter->nPoslist, &bDummy
|
|
);
|
|
pIter->aPoslist = &pIter->a[pIter->i];
|
|
pIter->i += pIter->nPoslist;
|
|
}else{
|
|
pIter->aPoslist = 0;
|
|
}
|
|
}
|
|
|
|
static void fts5DoclistIterInit(
|
|
Fts5Buffer *pBuf,
|
|
int bDesc,
|
|
Fts5DoclistIter *pIter
|
|
){
|
|
memset(pIter, 0, sizeof(*pIter));
|
|
pIter->a = pBuf->p;
|
|
pIter->n = pBuf->n;
|
|
pIter->bDesc = bDesc;
|
|
fts5DoclistIterNext(pIter);
|
|
}
|
|
|
|
/*
|
|
** Append a doclist to buffer pBuf.
|
|
*/
|
|
static void fts5MergeAppendDocid(
|
|
int *pRc, /* IN/OUT: Error code */
|
|
int bDesc,
|
|
Fts5Buffer *pBuf, /* Buffer to write to */
|
|
i64 *piLastRowid, /* IN/OUT: Previous rowid written (if any) */
|
|
i64 iRowid /* Rowid to append */
|
|
){
|
|
if( pBuf->n==0 ){
|
|
fts5BufferAppendVarint(pRc, pBuf, iRowid);
|
|
}else if( bDesc ){
|
|
fts5BufferAppendVarint(pRc, pBuf, *piLastRowid - iRowid);
|
|
}else{
|
|
fts5BufferAppendVarint(pRc, pBuf, iRowid - *piLastRowid);
|
|
}
|
|
*piLastRowid = iRowid;
|
|
}
|
|
|
|
/*
|
|
** Buffers p1 and p2 contain doclists. This function merges the content
|
|
** of the two doclists together and sets buffer p1 to the result before
|
|
** returning.
|
|
**
|
|
** If an error occurs, an error code is left in p->rc. If an error has
|
|
** already occurred, this function is a no-op.
|
|
*/
|
|
static void fts5MergePrefixLists(
|
|
Fts5Index *p, /* FTS5 backend object */
|
|
int bDesc,
|
|
Fts5Buffer *p1, /* First list to merge */
|
|
Fts5Buffer *p2 /* Second list to merge */
|
|
){
|
|
if( p2->n ){
|
|
i64 iLastRowid = 0;
|
|
Fts5DoclistIter i1;
|
|
Fts5DoclistIter i2;
|
|
Fts5Buffer out;
|
|
Fts5Buffer tmp;
|
|
memset(&out, 0, sizeof(out));
|
|
memset(&tmp, 0, sizeof(tmp));
|
|
|
|
fts5DoclistIterInit(p1, bDesc, &i1);
|
|
fts5DoclistIterInit(p2, bDesc, &i2);
|
|
while( p->rc==SQLITE_OK && (i1.aPoslist!=0 || i2.aPoslist!=0) ){
|
|
if( i2.aPoslist==0 || (i1.aPoslist &&
|
|
( (bDesc && i1.iRowid>i2.iRowid) || (!bDesc && i1.iRowid<i2.iRowid) )
|
|
)){
|
|
/* Copy entry from i1 */
|
|
fts5MergeAppendDocid(&p->rc, bDesc, &out, &iLastRowid, i1.iRowid);
|
|
/* WRITEPOSLISTSIZE */
|
|
fts5BufferAppendVarint(&p->rc, &out, i1.nPoslist * 2);
|
|
fts5BufferAppendBlob(&p->rc, &out, i1.nPoslist, i1.aPoslist);
|
|
fts5DoclistIterNext(&i1);
|
|
}
|
|
else if( i1.aPoslist==0 || i2.iRowid!=i1.iRowid ){
|
|
/* Copy entry from i2 */
|
|
fts5MergeAppendDocid(&p->rc, bDesc, &out, &iLastRowid, i2.iRowid);
|
|
/* WRITEPOSLISTSIZE */
|
|
fts5BufferAppendVarint(&p->rc, &out, i2.nPoslist * 2);
|
|
fts5BufferAppendBlob(&p->rc, &out, i2.nPoslist, i2.aPoslist);
|
|
fts5DoclistIterNext(&i2);
|
|
}
|
|
else{
|
|
Fts5PoslistReader r1;
|
|
Fts5PoslistReader r2;
|
|
Fts5PoslistWriter writer;
|
|
|
|
memset(&writer, 0, sizeof(writer));
|
|
|
|
/* Merge the two position lists. */
|
|
fts5MergeAppendDocid(&p->rc, bDesc, &out, &iLastRowid, i2.iRowid);
|
|
fts5BufferZero(&tmp);
|
|
sqlite3Fts5PoslistReaderInit(-1, i1.aPoslist, i1.nPoslist, &r1);
|
|
sqlite3Fts5PoslistReaderInit(-1, i2.aPoslist, i2.nPoslist, &r2);
|
|
while( p->rc==SQLITE_OK && (r1.bEof==0 || r2.bEof==0) ){
|
|
i64 iNew;
|
|
if( r2.bEof || (r1.bEof==0 && r1.iPos<r2.iPos) ){
|
|
iNew = r1.iPos;
|
|
sqlite3Fts5PoslistReaderNext(&r1);
|
|
}else{
|
|
iNew = r2.iPos;
|
|
sqlite3Fts5PoslistReaderNext(&r2);
|
|
if( r1.iPos==r2.iPos ) sqlite3Fts5PoslistReaderNext(&r1);
|
|
}
|
|
p->rc = sqlite3Fts5PoslistWriterAppend(&tmp, &writer, iNew);
|
|
}
|
|
|
|
/* WRITEPOSLISTSIZE */
|
|
fts5BufferAppendVarint(&p->rc, &out, tmp.n * 2);
|
|
fts5BufferAppendBlob(&p->rc, &out, tmp.n, tmp.p);
|
|
fts5DoclistIterNext(&i1);
|
|
fts5DoclistIterNext(&i2);
|
|
}
|
|
}
|
|
|
|
fts5BufferSet(&p->rc, p1, out.n, out.p);
|
|
fts5BufferFree(&tmp);
|
|
fts5BufferFree(&out);
|
|
}
|
|
}
|
|
|
|
static void fts5BufferSwap(Fts5Buffer *p1, Fts5Buffer *p2){
|
|
Fts5Buffer tmp = *p1;
|
|
*p1 = *p2;
|
|
*p2 = tmp;
|
|
}
|
|
|
|
static void fts5SetupPrefixIter(
|
|
Fts5Index *p, /* Index to read from */
|
|
int bDesc, /* True for "ORDER BY rowid DESC" */
|
|
const u8 *pToken, /* Buffer containing prefix to match */
|
|
int nToken, /* Size of buffer pToken in bytes */
|
|
Fts5IndexIter *pIter /* Populate this object */
|
|
){
|
|
Fts5Structure *pStruct;
|
|
Fts5Buffer *aBuf;
|
|
const int nBuf = 32;
|
|
|
|
aBuf = (Fts5Buffer*)fts5IdxMalloc(p, sizeof(Fts5Buffer)*nBuf);
|
|
pStruct = fts5StructureRead(p);
|
|
|
|
if( aBuf && pStruct ){
|
|
const int flags = FTS5INDEX_QUERY_SCAN;
|
|
Fts5DoclistIter *pDoclist;
|
|
int i;
|
|
i64 iLastRowid = 0;
|
|
Fts5MultiSegIter *p1 = 0; /* Iterator used to gather data from index */
|
|
Fts5Buffer doclist;
|
|
|
|
memset(&doclist, 0, sizeof(doclist));
|
|
for(fts5MultiIterNew(p, pStruct, 1, flags, pToken, nToken, -1, 0, &p1);
|
|
fts5MultiIterEof(p, p1)==0;
|
|
fts5MultiIterNext(p, p1, 0, 0)
|
|
){
|
|
i64 iRowid = fts5MultiIterRowid(p1);
|
|
int nTerm;
|
|
const u8 *pTerm = fts5MultiIterTerm(p1, &nTerm);
|
|
assert( memcmp(pToken, pTerm, MIN(nToken, nTerm))<=0 );
|
|
if( nTerm<nToken || memcmp(pToken, pTerm, nToken) ) break;
|
|
|
|
if( doclist.n>0
|
|
&& ((!bDesc && iRowid<=iLastRowid) || (bDesc && iRowid>=iLastRowid))
|
|
){
|
|
|
|
for(i=0; p->rc==SQLITE_OK && doclist.n; i++){
|
|
assert( i<nBuf );
|
|
if( aBuf[i].n==0 ){
|
|
fts5BufferSwap(&doclist, &aBuf[i]);
|
|
fts5BufferZero(&doclist);
|
|
}else{
|
|
fts5MergePrefixLists(p, bDesc, &doclist, &aBuf[i]);
|
|
fts5BufferZero(&aBuf[i]);
|
|
}
|
|
}
|
|
}
|
|
if( doclist.n==0 ){
|
|
fts5BufferAppendVarint(&p->rc, &doclist, iRowid);
|
|
}else if( bDesc ){
|
|
fts5BufferAppendVarint(&p->rc, &doclist, iLastRowid - iRowid);
|
|
}else{
|
|
fts5BufferAppendVarint(&p->rc, &doclist, iRowid - iLastRowid);
|
|
}
|
|
iLastRowid = iRowid;
|
|
fts5MultiIterPoslist(p, p1, 1, &doclist);
|
|
}
|
|
|
|
for(i=0; i<nBuf; i++){
|
|
fts5MergePrefixLists(p, bDesc, &doclist, &aBuf[i]);
|
|
fts5BufferFree(&aBuf[i]);
|
|
}
|
|
fts5MultiIterFree(p, p1);
|
|
|
|
pDoclist = (Fts5DoclistIter*)fts5IdxMalloc(p, sizeof(Fts5DoclistIter));
|
|
if( !pDoclist ){
|
|
fts5BufferFree(&doclist);
|
|
}else{
|
|
pIter->pDoclist = pDoclist;
|
|
fts5DoclistIterInit(&doclist, bDesc, pIter->pDoclist);
|
|
}
|
|
}
|
|
|
|
fts5StructureRelease(pStruct);
|
|
sqlite3_free(aBuf);
|
|
}
|
|
|
|
|
|
/*
|
|
** Indicate that all subsequent calls to sqlite3Fts5IndexWrite() pertain
|
|
** to the document with rowid iRowid.
|
|
*/
|
|
int sqlite3Fts5IndexBeginWrite(Fts5Index *p, i64 iRowid){
|
|
assert( p->rc==SQLITE_OK );
|
|
|
|
/* Allocate the hash table if it has not already been allocated */
|
|
if( p->pHash==0 ){
|
|
p->rc = sqlite3Fts5HashNew(&p->pHash, &p->nPendingData);
|
|
}
|
|
|
|
/* Flush the hash table to disk if required */
|
|
if( iRowid<=p->iWriteRowid || (p->nPendingData > p->nMaxPendingData) ){
|
|
fts5IndexFlush(p);
|
|
}
|
|
p->iWriteRowid = iRowid;
|
|
return fts5IndexReturn(p);
|
|
}
|
|
|
|
/*
|
|
** Commit data to disk.
|
|
*/
|
|
int sqlite3Fts5IndexSync(Fts5Index *p, int bCommit){
|
|
assert( p->rc==SQLITE_OK );
|
|
fts5IndexFlush(p);
|
|
if( bCommit ) fts5CloseReader(p);
|
|
return fts5IndexReturn(p);
|
|
}
|
|
|
|
/*
|
|
** Discard any data stored in the in-memory hash tables. Do not write it
|
|
** to the database. Additionally, assume that the contents of the %_data
|
|
** table may have changed on disk. So any in-memory caches of %_data
|
|
** records must be invalidated.
|
|
*/
|
|
int sqlite3Fts5IndexRollback(Fts5Index *p){
|
|
fts5CloseReader(p);
|
|
fts5IndexDiscardData(p);
|
|
assert( p->rc==SQLITE_OK );
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** The %_data table is completely empty when this function is called. This
|
|
** function populates it with the initial structure objects for each index,
|
|
** and the initial version of the "averages" record (a zero-byte blob).
|
|
*/
|
|
int sqlite3Fts5IndexReinit(Fts5Index *p){
|
|
Fts5Structure s;
|
|
|
|
assert( p->rc==SQLITE_OK );
|
|
p->rc = sqlite3Fts5IndexSetAverages(p, (const u8*)"", 0);
|
|
|
|
memset(&s, 0, sizeof(Fts5Structure));
|
|
fts5StructureWrite(p, &s);
|
|
|
|
return fts5IndexReturn(p);
|
|
}
|
|
|
|
/*
|
|
** Open a new Fts5Index handle. If the bCreate argument is true, create
|
|
** and initialize the underlying %_data table.
|
|
**
|
|
** If successful, set *pp to point to the new object and return SQLITE_OK.
|
|
** Otherwise, set *pp to NULL and return an SQLite error code.
|
|
*/
|
|
int sqlite3Fts5IndexOpen(
|
|
Fts5Config *pConfig,
|
|
int bCreate,
|
|
Fts5Index **pp,
|
|
char **pzErr
|
|
){
|
|
int rc = SQLITE_OK;
|
|
Fts5Index *p; /* New object */
|
|
|
|
*pp = p = (Fts5Index*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Index));
|
|
if( rc==SQLITE_OK ){
|
|
p->pConfig = pConfig;
|
|
p->nWorkUnit = FTS5_WORK_UNIT;
|
|
p->nMaxPendingData = 1024*1024;
|
|
p->zDataTbl = sqlite3_mprintf("%s_data", pConfig->zName);
|
|
if( p->zDataTbl==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
}else if( bCreate ){
|
|
rc = sqlite3Fts5CreateTable(
|
|
pConfig, "data", "id INTEGER PRIMARY KEY, block BLOB", 0, pzErr
|
|
);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3Fts5IndexReinit(p);
|
|
}
|
|
}
|
|
}
|
|
|
|
assert( rc!=SQLITE_OK || p->rc==SQLITE_OK );
|
|
if( rc ){
|
|
sqlite3Fts5IndexClose(p);
|
|
*pp = 0;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Close a handle opened by an earlier call to sqlite3Fts5IndexOpen().
|
|
*/
|
|
int sqlite3Fts5IndexClose(Fts5Index *p){
|
|
int rc = SQLITE_OK;
|
|
if( p ){
|
|
assert( p->pReader==0 );
|
|
sqlite3_finalize(p->pWriter);
|
|
sqlite3_finalize(p->pDeleter);
|
|
sqlite3Fts5HashFree(p->pHash);
|
|
sqlite3Fts5BufferFree(&p->scratch);
|
|
sqlite3_free(p->zDataTbl);
|
|
sqlite3_free(p);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Argument p points to a buffer containing utf-8 text that is n bytes in
|
|
** size. Return the number of bytes in the nChar character prefix of the
|
|
** buffer, or 0 if there are less than nChar characters in total.
|
|
*/
|
|
static int fts5IndexCharlenToBytelen(const char *p, int nByte, int nChar){
|
|
int n = 0;
|
|
int i;
|
|
for(i=0; i<nChar; i++){
|
|
if( n>=nByte ) return 0; /* Input contains fewer than nChar chars */
|
|
if( (unsigned char)p[n++]>=0xc0 ){
|
|
while( (p[n] & 0xc0)==0x80 ) n++;
|
|
}
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** pIn is a UTF-8 encoded string, nIn bytes in size. Return the number of
|
|
** unicode characters in the string.
|
|
*/
|
|
int fts5IndexCharlen(const char *pIn, int nIn){
|
|
int nChar = 0;
|
|
int i = 0;
|
|
while( i<nIn ){
|
|
if( (unsigned char)pIn[i++]>=0xc0 ){
|
|
while( i<nIn && (pIn[i] & 0xc0)==0x80 ) i++;
|
|
}
|
|
nChar++;
|
|
}
|
|
return nChar;
|
|
}
|
|
|
|
/*
|
|
** Insert or remove data to or from the index. Each time a document is
|
|
** added to or removed from the index, this function is called one or more
|
|
** times.
|
|
**
|
|
** For an insert, it must be called once for each token in the new document.
|
|
** If the operation is a delete, it must be called (at least) once for each
|
|
** unique token in the document with an iCol value less than zero. The iPos
|
|
** argument is ignored for a delete.
|
|
*/
|
|
int sqlite3Fts5IndexWrite(
|
|
Fts5Index *p, /* Index to write to */
|
|
int iCol, /* Column token appears in (-ve -> delete) */
|
|
int iPos, /* Position of token within column */
|
|
const char *pToken, int nToken /* Token to add or remove to or from index */
|
|
){
|
|
int i; /* Used to iterate through indexes */
|
|
int rc = SQLITE_OK; /* Return code */
|
|
Fts5Config *pConfig = p->pConfig;
|
|
|
|
assert( p->rc==SQLITE_OK );
|
|
|
|
/* Add the entry to the main terms index. */
|
|
rc = sqlite3Fts5HashWrite(
|
|
p->pHash, p->iWriteRowid, iCol, iPos, FTS5_MAIN_PREFIX, pToken, nToken
|
|
);
|
|
|
|
for(i=0; i<pConfig->nPrefix && rc==SQLITE_OK; i++){
|
|
int nByte = fts5IndexCharlenToBytelen(pToken, nToken, pConfig->aPrefix[i]);
|
|
if( nByte ){
|
|
rc = sqlite3Fts5HashWrite(p->pHash,
|
|
p->iWriteRowid, iCol, iPos, FTS5_MAIN_PREFIX+i+1, pToken, nByte
|
|
);
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Open a new iterator to iterate though all docids that match the
|
|
** specified token or token prefix.
|
|
*/
|
|
int sqlite3Fts5IndexQuery(
|
|
Fts5Index *p, /* FTS index to query */
|
|
const char *pToken, int nToken, /* Token (or prefix) to query for */
|
|
int flags, /* Mask of FTS5INDEX_QUERY_X flags */
|
|
Fts5IndexIter **ppIter /* OUT: New iterator object */
|
|
){
|
|
Fts5Config *pConfig = p->pConfig;
|
|
Fts5IndexIter *pRet;
|
|
int iIdx = 0;
|
|
Fts5Buffer buf = {0, 0, 0};
|
|
|
|
/* If the QUERY_SCAN flag is set, all other flags must be clear. */
|
|
assert( (flags & FTS5INDEX_QUERY_SCAN)==0
|
|
|| (flags & FTS5INDEX_QUERY_SCAN)==FTS5INDEX_QUERY_SCAN
|
|
);
|
|
|
|
if( sqlite3Fts5BufferGrow(&p->rc, &buf, nToken+1)==0 ){
|
|
memcpy(&buf.p[1], pToken, nToken);
|
|
}
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
if( flags & FTS5INDEX_QUERY_TEST_NOIDX ){
|
|
assert( flags & FTS5INDEX_QUERY_PREFIX );
|
|
iIdx = 1+pConfig->nPrefix;
|
|
}else
|
|
#endif
|
|
if( flags & FTS5INDEX_QUERY_PREFIX ){
|
|
int nChar = fts5IndexCharlen(pToken, nToken);
|
|
for(iIdx=1; iIdx<=pConfig->nPrefix; iIdx++){
|
|
if( pConfig->aPrefix[iIdx-1]==nChar ) break;
|
|
}
|
|
}
|
|
|
|
pRet = (Fts5IndexIter*)sqlite3Fts5MallocZero(&p->rc, sizeof(Fts5IndexIter));
|
|
if( pRet ){
|
|
pRet->pIndex = p;
|
|
if( iIdx<=pConfig->nPrefix ){
|
|
buf.p[0] = FTS5_MAIN_PREFIX + iIdx;
|
|
pRet->pStruct = fts5StructureRead(p);
|
|
if( pRet->pStruct ){
|
|
fts5MultiIterNew(
|
|
p, pRet->pStruct, 1, flags, buf.p, nToken+1, -1, 0, &pRet->pMulti
|
|
);
|
|
}
|
|
}else{
|
|
int bDesc = (flags & FTS5INDEX_QUERY_DESC)!=0;
|
|
buf.p[0] = FTS5_MAIN_PREFIX;
|
|
fts5SetupPrefixIter(p, bDesc, buf.p, nToken+1, pRet);
|
|
}
|
|
}
|
|
|
|
if( p->rc ){
|
|
sqlite3Fts5IterClose(pRet);
|
|
pRet = 0;
|
|
}
|
|
*ppIter = pRet;
|
|
sqlite3Fts5BufferFree(&buf);
|
|
return fts5IndexReturn(p);
|
|
}
|
|
|
|
/*
|
|
** Return true if the iterator passed as the only argument is at EOF.
|
|
*/
|
|
int sqlite3Fts5IterEof(Fts5IndexIter *pIter){
|
|
assert( pIter->pIndex->rc==SQLITE_OK );
|
|
if( pIter->pDoclist ){
|
|
return pIter->pDoclist->aPoslist==0;
|
|
}else{
|
|
return fts5MultiIterEof(pIter->pIndex, pIter->pMulti);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Move to the next matching rowid.
|
|
*/
|
|
int sqlite3Fts5IterNext(Fts5IndexIter *pIter){
|
|
assert( pIter->pIndex->rc==SQLITE_OK );
|
|
if( pIter->pDoclist ){
|
|
fts5DoclistIterNext(pIter->pDoclist);
|
|
}else{
|
|
fts5BufferZero(&pIter->poslist);
|
|
fts5MultiIterNext(pIter->pIndex, pIter->pMulti, 0, 0);
|
|
}
|
|
return fts5IndexReturn(pIter->pIndex);
|
|
}
|
|
|
|
/*
|
|
** Move to the next matching term/rowid. Used by the fts5vocab module.
|
|
*/
|
|
int sqlite3Fts5IterNextScan(Fts5IndexIter *pIter){
|
|
Fts5Index *p = pIter->pIndex;
|
|
Fts5MultiSegIter *pMulti = pIter->pMulti;
|
|
|
|
assert( pIter->pIndex->rc==SQLITE_OK );
|
|
assert( pMulti );
|
|
|
|
fts5BufferZero(&pIter->poslist);
|
|
fts5MultiIterNext(p, pMulti, 0, 0);
|
|
if( p->rc==SQLITE_OK ){
|
|
Fts5SegIter *pSeg = &pMulti->aSeg[ pMulti->aFirst[1].iFirst ];
|
|
if( pSeg->pLeaf && pSeg->term.p[0]!=FTS5_MAIN_PREFIX ){
|
|
fts5DataRelease(pSeg->pLeaf);
|
|
pSeg->pLeaf = 0;
|
|
}
|
|
}
|
|
|
|
return fts5IndexReturn(pIter->pIndex);
|
|
}
|
|
|
|
/*
|
|
** Move the doclist-iter passed as the first argument to the next
|
|
** matching rowid that occurs at or after iMatch. The definition of "at
|
|
** or after" depends on whether this iterator iterates in ascending or
|
|
** descending rowid order.
|
|
*/
|
|
static void fts5DoclistIterNextFrom(Fts5DoclistIter *p, i64 iMatch){
|
|
do{
|
|
i64 iRowid = p->iRowid;
|
|
if( p->bDesc==0 && iRowid>=iMatch ) break;
|
|
if( p->bDesc!=0 && iRowid<=iMatch ) break;
|
|
fts5DoclistIterNext(p);
|
|
}while( p->aPoslist );
|
|
}
|
|
|
|
/*
|
|
** Move to the next matching rowid that occurs at or after iMatch. The
|
|
** definition of "at or after" depends on whether this iterator iterates
|
|
** in ascending or descending rowid order.
|
|
*/
|
|
int sqlite3Fts5IterNextFrom(Fts5IndexIter *pIter, i64 iMatch){
|
|
if( pIter->pDoclist ){
|
|
fts5DoclistIterNextFrom(pIter->pDoclist, iMatch);
|
|
}else{
|
|
fts5MultiIterNextFrom(pIter->pIndex, pIter->pMulti, iMatch);
|
|
}
|
|
return fts5IndexReturn(pIter->pIndex);
|
|
}
|
|
|
|
/*
|
|
** Return the current rowid.
|
|
*/
|
|
i64 sqlite3Fts5IterRowid(Fts5IndexIter *pIter){
|
|
if( pIter->pDoclist ){
|
|
return pIter->pDoclist->iRowid;
|
|
}else{
|
|
return fts5MultiIterRowid(pIter->pMulti);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the current term.
|
|
*/
|
|
const char *sqlite3Fts5IterTerm(Fts5IndexIter *pIter, int *pn){
|
|
int n;
|
|
const char *z = (const char*)fts5MultiIterTerm(pIter->pMulti, &n);
|
|
*pn = n-1;
|
|
return &z[1];
|
|
}
|
|
|
|
|
|
/*
|
|
** Return a pointer to a buffer containing a copy of the position list for
|
|
** the current entry. Output variable *pn is set to the size of the buffer
|
|
** in bytes before returning.
|
|
**
|
|
** The returned position list does not include the "number of bytes" varint
|
|
** field that starts the position list on disk.
|
|
*/
|
|
int sqlite3Fts5IterPoslist(Fts5IndexIter *pIter, const u8 **pp, int *pn){
|
|
assert( pIter->pIndex->rc==SQLITE_OK );
|
|
if( pIter->pDoclist ){
|
|
*pn = pIter->pDoclist->nPoslist;
|
|
*pp = pIter->pDoclist->aPoslist;
|
|
}else{
|
|
Fts5Index *p = pIter->pIndex;
|
|
fts5BufferZero(&pIter->poslist);
|
|
fts5MultiIterPoslist(p, pIter->pMulti, 0, &pIter->poslist);
|
|
*pn = pIter->poslist.n;
|
|
*pp = pIter->poslist.p;
|
|
}
|
|
return fts5IndexReturn(pIter->pIndex);
|
|
}
|
|
|
|
/*
|
|
** Close an iterator opened by an earlier call to sqlite3Fts5IndexQuery().
|
|
*/
|
|
void sqlite3Fts5IterClose(Fts5IndexIter *pIter){
|
|
if( pIter ){
|
|
if( pIter->pDoclist ){
|
|
sqlite3_free(pIter->pDoclist->a);
|
|
sqlite3_free(pIter->pDoclist);
|
|
}else{
|
|
fts5MultiIterFree(pIter->pIndex, pIter->pMulti);
|
|
fts5StructureRelease(pIter->pStruct);
|
|
fts5BufferFree(&pIter->poslist);
|
|
}
|
|
fts5CloseReader(pIter->pIndex);
|
|
sqlite3_free(pIter);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Read the "averages" record into the buffer supplied as the second
|
|
** argument. Return SQLITE_OK if successful, or an SQLite error code
|
|
** if an error occurs.
|
|
*/
|
|
int sqlite3Fts5IndexGetAverages(Fts5Index *p, Fts5Buffer *pBuf){
|
|
assert( p->rc==SQLITE_OK );
|
|
fts5DataReadOrBuffer(p, pBuf, FTS5_AVERAGES_ROWID);
|
|
return fts5IndexReturn(p);
|
|
}
|
|
|
|
/*
|
|
** Replace the current "averages" record with the contents of the buffer
|
|
** supplied as the second argument.
|
|
*/
|
|
int sqlite3Fts5IndexSetAverages(Fts5Index *p, const u8 *pData, int nData){
|
|
assert( p->rc==SQLITE_OK );
|
|
fts5DataWrite(p, FTS5_AVERAGES_ROWID, pData, nData);
|
|
return fts5IndexReturn(p);
|
|
}
|
|
|
|
/*
|
|
** Return the total number of blocks this module has read from the %_data
|
|
** table since it was created.
|
|
*/
|
|
int sqlite3Fts5IndexReads(Fts5Index *p){
|
|
return p->nRead;
|
|
}
|
|
|
|
/*
|
|
** Set the 32-bit cookie value stored at the start of all structure
|
|
** records to the value passed as the second argument.
|
|
**
|
|
** Return SQLITE_OK if successful, or an SQLite error code if an error
|
|
** occurs.
|
|
*/
|
|
int sqlite3Fts5IndexSetCookie(Fts5Index *p, int iNew){
|
|
int rc; /* Return code */
|
|
Fts5Config *pConfig = p->pConfig; /* Configuration object */
|
|
u8 aCookie[4]; /* Binary representation of iNew */
|
|
|
|
assert( p->rc==SQLITE_OK );
|
|
|
|
sqlite3Fts5Put32(aCookie, iNew);
|
|
sqlite3_blob *pBlob = 0;
|
|
rc = sqlite3_blob_open(pConfig->db, pConfig->zDb, p->zDataTbl,
|
|
"block", FTS5_STRUCTURE_ROWID, 1, &pBlob
|
|
);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_blob_write(pBlob, aCookie, 4, 0);
|
|
rc = sqlite3_blob_close(pBlob);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int sqlite3Fts5IndexLoadConfig(Fts5Index *p){
|
|
Fts5Structure *pStruct;
|
|
pStruct = fts5StructureRead(p);
|
|
fts5StructureRelease(pStruct);
|
|
return fts5IndexReturn(p);
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
**************************************************************************
|
|
** Below this point is the implementation of the integrity-check
|
|
** functionality.
|
|
*/
|
|
|
|
/*
|
|
** Return a simple checksum value based on the arguments.
|
|
*/
|
|
static u64 fts5IndexEntryCksum(
|
|
i64 iRowid,
|
|
int iCol,
|
|
int iPos,
|
|
int iIdx,
|
|
const char *pTerm,
|
|
int nTerm
|
|
){
|
|
int i;
|
|
u64 ret = iRowid;
|
|
ret += (ret<<3) + iCol;
|
|
ret += (ret<<3) + iPos;
|
|
if( iIdx>=0 ) ret += (ret<<3) + (FTS5_MAIN_PREFIX + iIdx);
|
|
for(i=0; i<nTerm; i++) ret += (ret<<3) + pTerm[i];
|
|
return ret;
|
|
}
|
|
|
|
static void fts5BtreeIterInit(
|
|
Fts5Index *p,
|
|
Fts5StructureSegment *pSeg,
|
|
Fts5BtreeIter *pIter
|
|
){
|
|
int nByte;
|
|
int i;
|
|
nByte = sizeof(pIter->aLvl[0]) * (pSeg->nHeight-1);
|
|
memset(pIter, 0, sizeof(*pIter));
|
|
if( nByte ){
|
|
pIter->aLvl = (Fts5BtreeIterLevel*)fts5IdxMalloc(p, nByte);
|
|
}
|
|
if( p->rc==SQLITE_OK ){
|
|
pIter->nLvl = pSeg->nHeight-1;
|
|
pIter->p = p;
|
|
pIter->pSeg = pSeg;
|
|
}
|
|
for(i=0; p->rc==SQLITE_OK && i<pIter->nLvl; i++){
|
|
i64 iRowid = FTS5_SEGMENT_ROWID(pSeg->iSegid, i+1, 1);
|
|
Fts5Data *pData;
|
|
pIter->aLvl[i].pData = pData = fts5DataRead(p, iRowid);
|
|
if( pData ){
|
|
fts5NodeIterInit(pData->p, pData->n, &pIter->aLvl[i].s);
|
|
}
|
|
}
|
|
|
|
if( pIter->nLvl==0 || p->rc ){
|
|
pIter->bEof = 1;
|
|
pIter->iLeaf = pSeg->pgnoLast;
|
|
}else{
|
|
pIter->nEmpty = pIter->aLvl[0].s.nEmpty;
|
|
pIter->iLeaf = pIter->aLvl[0].s.iChild;
|
|
pIter->bDlidx = pIter->aLvl[0].s.bDlidx;
|
|
}
|
|
}
|
|
|
|
static void fts5BtreeIterNext(Fts5BtreeIter *pIter){
|
|
Fts5Index *p = pIter->p;
|
|
int i;
|
|
|
|
assert( pIter->bEof==0 && pIter->aLvl[0].s.aData );
|
|
for(i=0; i<pIter->nLvl && p->rc==SQLITE_OK; i++){
|
|
Fts5BtreeIterLevel *pLvl = &pIter->aLvl[i];
|
|
fts5NodeIterNext(&p->rc, &pLvl->s);
|
|
if( pLvl->s.aData ){
|
|
fts5BufferSet(&p->rc, &pIter->term, pLvl->s.term.n, pLvl->s.term.p);
|
|
break;
|
|
}else{
|
|
fts5NodeIterFree(&pLvl->s);
|
|
fts5DataRelease(pLvl->pData);
|
|
pLvl->pData = 0;
|
|
}
|
|
}
|
|
if( i==pIter->nLvl || p->rc ){
|
|
pIter->bEof = 1;
|
|
}else{
|
|
int iSegid = pIter->pSeg->iSegid;
|
|
for(i--; i>=0; i--){
|
|
Fts5BtreeIterLevel *pLvl = &pIter->aLvl[i];
|
|
i64 iRowid = FTS5_SEGMENT_ROWID(iSegid, i+1, pLvl[1].s.iChild);
|
|
pLvl->pData = fts5DataRead(p, iRowid);
|
|
if( pLvl->pData ){
|
|
fts5NodeIterInit(pLvl->pData->p, pLvl->pData->n, &pLvl->s);
|
|
}
|
|
}
|
|
}
|
|
|
|
pIter->nEmpty = pIter->aLvl[0].s.nEmpty;
|
|
pIter->bDlidx = pIter->aLvl[0].s.bDlidx;
|
|
pIter->iLeaf = pIter->aLvl[0].s.iChild;
|
|
}
|
|
|
|
static void fts5BtreeIterFree(Fts5BtreeIter *pIter){
|
|
int i;
|
|
for(i=0; i<pIter->nLvl; i++){
|
|
Fts5BtreeIterLevel *pLvl = &pIter->aLvl[i];
|
|
fts5NodeIterFree(&pLvl->s);
|
|
if( pLvl->pData ){
|
|
fts5DataRelease(pLvl->pData);
|
|
pLvl->pData = 0;
|
|
}
|
|
}
|
|
sqlite3_free(pIter->aLvl);
|
|
fts5BufferFree(&pIter->term);
|
|
}
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** This function is purely an internal test. It does not contribute to
|
|
** FTS functionality, or even the integrity-check, in any way.
|
|
**
|
|
** Instead, it tests that the same set of pgno/rowid combinations are
|
|
** visited regardless of whether the doclist-index identified by parameters
|
|
** iSegid/iLeaf is iterated in forwards or reverse order.
|
|
*/
|
|
static void fts5TestDlidxReverse(
|
|
Fts5Index *p,
|
|
int iSegid, /* Segment id to load from */
|
|
int iLeaf /* Load doclist-index for this leaf */
|
|
){
|
|
Fts5DlidxIter *pDlidx = 0;
|
|
u64 cksum1 = 13;
|
|
u64 cksum2 = 13;
|
|
|
|
for(pDlidx=fts5DlidxIterInit(p, 0, iSegid, iLeaf);
|
|
fts5DlidxIterEof(p, pDlidx)==0;
|
|
fts5DlidxIterNext(p, pDlidx)
|
|
){
|
|
i64 iRowid = fts5DlidxIterRowid(pDlidx);
|
|
int pgno = fts5DlidxIterPgno(pDlidx);
|
|
assert( pgno>iLeaf );
|
|
cksum1 += iRowid + ((i64)pgno<<32);
|
|
}
|
|
fts5DlidxIterFree(pDlidx);
|
|
pDlidx = 0;
|
|
|
|
for(pDlidx=fts5DlidxIterInit(p, 1, iSegid, iLeaf);
|
|
fts5DlidxIterEof(p, pDlidx)==0;
|
|
fts5DlidxIterPrev(p, pDlidx)
|
|
){
|
|
i64 iRowid = fts5DlidxIterRowid(pDlidx);
|
|
int pgno = fts5DlidxIterPgno(pDlidx);
|
|
assert( fts5DlidxIterPgno(pDlidx)>iLeaf );
|
|
cksum2 += iRowid + ((i64)pgno<<32);
|
|
}
|
|
fts5DlidxIterFree(pDlidx);
|
|
pDlidx = 0;
|
|
|
|
if( p->rc==SQLITE_OK && cksum1!=cksum2 ) p->rc = FTS5_CORRUPT;
|
|
}
|
|
|
|
static int fts5QueryCksum(
|
|
Fts5Index *p, /* Fts5 index object */
|
|
int iIdx,
|
|
const char *z, /* Index key to query for */
|
|
int n, /* Size of index key in bytes */
|
|
int flags, /* Flags for Fts5IndexQuery */
|
|
u64 *pCksum /* IN/OUT: Checksum value */
|
|
){
|
|
u64 cksum = *pCksum;
|
|
Fts5IndexIter *pIdxIter = 0;
|
|
int rc = sqlite3Fts5IndexQuery(p, z, n, flags, &pIdxIter);
|
|
|
|
while( rc==SQLITE_OK && 0==sqlite3Fts5IterEof(pIdxIter) ){
|
|
const u8 *pPos;
|
|
int nPos;
|
|
i64 rowid = sqlite3Fts5IterRowid(pIdxIter);
|
|
rc = sqlite3Fts5IterPoslist(pIdxIter, &pPos, &nPos);
|
|
if( rc==SQLITE_OK ){
|
|
Fts5PoslistReader sReader;
|
|
for(sqlite3Fts5PoslistReaderInit(-1, pPos, nPos, &sReader);
|
|
sReader.bEof==0;
|
|
sqlite3Fts5PoslistReaderNext(&sReader)
|
|
){
|
|
int iCol = FTS5_POS2COLUMN(sReader.iPos);
|
|
int iOff = FTS5_POS2OFFSET(sReader.iPos);
|
|
cksum ^= fts5IndexEntryCksum(rowid, iCol, iOff, iIdx, z, n);
|
|
}
|
|
rc = sqlite3Fts5IterNext(pIdxIter);
|
|
}
|
|
}
|
|
sqlite3Fts5IterClose(pIdxIter);
|
|
|
|
*pCksum = cksum;
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** This function is also purely an internal test. It does not contribute to
|
|
** FTS functionality, or even the integrity-check, in any way.
|
|
*/
|
|
static void fts5TestTerm(
|
|
Fts5Index *p,
|
|
Fts5Buffer *pPrev, /* Previous term */
|
|
const char *z, int n, /* Possibly new term to test */
|
|
u64 expected,
|
|
u64 *pCksum
|
|
){
|
|
int rc = p->rc;
|
|
if( pPrev->n==0 ){
|
|
fts5BufferSet(&rc, pPrev, n, (const u8*)z);
|
|
}else
|
|
if( rc==SQLITE_OK && (pPrev->n!=n || memcmp(pPrev->p, z, n)) ){
|
|
u32 cksum3 = *pCksum;
|
|
const char *zTerm = &pPrev->p[1]; /* The term without the prefix-byte */
|
|
int nTerm = pPrev->n-1; /* Size of zTerm in bytes */
|
|
int iIdx = (pPrev->p[0] - FTS5_MAIN_PREFIX);
|
|
int flags = (iIdx==0 ? 0 : FTS5INDEX_QUERY_PREFIX);
|
|
int rc;
|
|
u64 ck1 = 0;
|
|
u64 ck2 = 0;
|
|
|
|
/* Check that the results returned for ASC and DESC queries are
|
|
** the same. If not, call this corruption. */
|
|
rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, flags, &ck1);
|
|
if( rc==SQLITE_OK ){
|
|
int f = flags|FTS5INDEX_QUERY_DESC;
|
|
rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, f, &ck2);
|
|
}
|
|
if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT;
|
|
|
|
/* If this is a prefix query, check that the results returned if the
|
|
** the index is disabled are the same. In both ASC and DESC order. */
|
|
if( iIdx>0 && rc==SQLITE_OK ){
|
|
int f = flags|FTS5INDEX_QUERY_TEST_NOIDX;
|
|
ck2 = 0;
|
|
rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, f, &ck2);
|
|
if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT;
|
|
}
|
|
if( iIdx>0 && rc==SQLITE_OK ){
|
|
int f = flags|FTS5INDEX_QUERY_TEST_NOIDX|FTS5INDEX_QUERY_DESC;
|
|
ck2 = 0;
|
|
rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, f, &ck2);
|
|
if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT;
|
|
}
|
|
|
|
cksum3 ^= ck1;
|
|
fts5BufferSet(&rc, pPrev, n, (const u8*)z);
|
|
|
|
if( rc==SQLITE_OK && cksum3!=expected ){
|
|
rc = FTS5_CORRUPT;
|
|
}
|
|
*pCksum = cksum3;
|
|
}
|
|
p->rc = rc;
|
|
}
|
|
|
|
#else
|
|
# define fts5TestDlidxReverse(x,y,z)
|
|
# define fts5TestTerm(u,v,w,x,y,z)
|
|
#endif
|
|
|
|
static void fts5IndexIntegrityCheckSegment(
|
|
Fts5Index *p, /* FTS5 backend object */
|
|
Fts5StructureSegment *pSeg /* Segment to check internal consistency */
|
|
){
|
|
Fts5BtreeIter iter; /* Used to iterate through b-tree hierarchy */
|
|
|
|
if( pSeg->pgnoFirst==0 ) return;
|
|
|
|
/* Iterate through the b-tree hierarchy. */
|
|
for(fts5BtreeIterInit(p, pSeg, &iter);
|
|
p->rc==SQLITE_OK && iter.bEof==0;
|
|
fts5BtreeIterNext(&iter)
|
|
){
|
|
i64 iRow; /* Rowid for this leaf */
|
|
Fts5Data *pLeaf; /* Data for this leaf */
|
|
int iOff; /* Offset of first term on leaf */
|
|
int i; /* Used to iterate through empty leaves */
|
|
|
|
/* If the leaf in question has already been trimmed from the segment,
|
|
** ignore this b-tree entry. Otherwise, load it into memory. */
|
|
if( iter.iLeaf<pSeg->pgnoFirst ) continue;
|
|
iRow = FTS5_SEGMENT_ROWID(pSeg->iSegid, 0, iter.iLeaf);
|
|
pLeaf = fts5DataRead(p, iRow);
|
|
if( pLeaf==0 ) break;
|
|
|
|
/* Check that the leaf contains at least one term, and that it is equal
|
|
** to or larger than the split-key in iter.term. Also check that if there
|
|
** is also a rowid pointer within the leaf page header, it points to a
|
|
** location before the term. */
|
|
iOff = fts5GetU16(&pLeaf->p[2]);
|
|
if( iOff==0 ){
|
|
p->rc = FTS5_CORRUPT;
|
|
}else{
|
|
int iRowidOff;
|
|
int nTerm; /* Size of term on leaf in bytes */
|
|
int res; /* Comparison of term and split-key */
|
|
|
|
iRowidOff = fts5GetU16(&pLeaf->p[0]);
|
|
if( iRowidOff>=iOff ){
|
|
p->rc = FTS5_CORRUPT;
|
|
}else{
|
|
iOff += fts5GetVarint32(&pLeaf->p[iOff], nTerm);
|
|
res = memcmp(&pLeaf->p[iOff], iter.term.p, MIN(nTerm, iter.term.n));
|
|
if( res==0 ) res = nTerm - iter.term.n;
|
|
if( res<0 ) p->rc = FTS5_CORRUPT;
|
|
}
|
|
}
|
|
fts5DataRelease(pLeaf);
|
|
if( p->rc ) break;
|
|
|
|
|
|
/* Now check that the iter.nEmpty leaves following the current leaf
|
|
** (a) exist and (b) contain no terms. */
|
|
for(i=1; p->rc==SQLITE_OK && i<=iter.nEmpty; i++){
|
|
pLeaf = fts5DataRead(p, iRow+i);
|
|
if( pLeaf && 0!=fts5GetU16(&pLeaf->p[2]) ){
|
|
p->rc = FTS5_CORRUPT;
|
|
}
|
|
fts5DataRelease(pLeaf);
|
|
}
|
|
|
|
/* If there is a doclist-index, check that it looks right. */
|
|
if( iter.bDlidx ){
|
|
Fts5DlidxIter *pDlidx = 0; /* For iterating through doclist index */
|
|
int iPrevLeaf = iter.iLeaf;
|
|
int iSegid = pSeg->iSegid;
|
|
int iPg;
|
|
i64 iKey;
|
|
|
|
for(pDlidx=fts5DlidxIterInit(p, 0, iSegid, iter.iLeaf);
|
|
fts5DlidxIterEof(p, pDlidx)==0;
|
|
fts5DlidxIterNext(p, pDlidx)
|
|
){
|
|
|
|
/* Check any rowid-less pages that occur before the current leaf. */
|
|
for(iPg=iPrevLeaf+1; iPg<fts5DlidxIterPgno(pDlidx); iPg++){
|
|
iKey = FTS5_SEGMENT_ROWID(iSegid, 0, iPg);
|
|
pLeaf = fts5DataRead(p, iKey);
|
|
if( pLeaf ){
|
|
if( fts5GetU16(&pLeaf->p[0])!=0 ) p->rc = FTS5_CORRUPT;
|
|
fts5DataRelease(pLeaf);
|
|
}
|
|
}
|
|
iPrevLeaf = fts5DlidxIterPgno(pDlidx);
|
|
|
|
/* Check that the leaf page indicated by the iterator really does
|
|
** contain the rowid suggested by the same. */
|
|
iKey = FTS5_SEGMENT_ROWID(iSegid, 0, iPrevLeaf);
|
|
pLeaf = fts5DataRead(p, iKey);
|
|
if( pLeaf ){
|
|
i64 iRowid;
|
|
int iRowidOff = fts5GetU16(&pLeaf->p[0]);
|
|
getVarint(&pLeaf->p[iRowidOff], (u64*)&iRowid);
|
|
if( iRowid!=fts5DlidxIterRowid(pDlidx) ) p->rc = FTS5_CORRUPT;
|
|
fts5DataRelease(pLeaf);
|
|
}
|
|
}
|
|
|
|
for(iPg=iPrevLeaf+1; iPg<=(iter.iLeaf + iter.nEmpty); iPg++){
|
|
iKey = FTS5_SEGMENT_ROWID(iSegid, 0, iPg);
|
|
pLeaf = fts5DataRead(p, iKey);
|
|
if( pLeaf ){
|
|
if( fts5GetU16(&pLeaf->p[0])!=0 ) p->rc = FTS5_CORRUPT;
|
|
fts5DataRelease(pLeaf);
|
|
}
|
|
}
|
|
|
|
fts5DlidxIterFree(pDlidx);
|
|
fts5TestDlidxReverse(p, iSegid, iter.iLeaf);
|
|
}
|
|
}
|
|
|
|
/* Page iter.iLeaf must now be the rightmost leaf-page in the segment */
|
|
if( p->rc==SQLITE_OK && iter.iLeaf!=pSeg->pgnoLast ){
|
|
p->rc = FTS5_CORRUPT;
|
|
}
|
|
|
|
fts5BtreeIterFree(&iter);
|
|
}
|
|
|
|
|
|
/*
|
|
** Run internal checks to ensure that the FTS index (a) is internally
|
|
** consistent and (b) contains entries for which the XOR of the checksums
|
|
** as calculated by fts5IndexEntryCksum() is cksum.
|
|
**
|
|
** Return SQLITE_CORRUPT if any of the internal checks fail, or if the
|
|
** checksum does not match. Return SQLITE_OK if all checks pass without
|
|
** error, or some other SQLite error code if another error (e.g. OOM)
|
|
** occurs.
|
|
*/
|
|
int sqlite3Fts5IndexIntegrityCheck(Fts5Index *p, u64 cksum){
|
|
u64 cksum2 = 0; /* Checksum based on contents of indexes */
|
|
Fts5Buffer poslist = {0,0,0}; /* Buffer used to hold a poslist */
|
|
Fts5MultiSegIter *pIter; /* Used to iterate through entire index */
|
|
Fts5Structure *pStruct; /* Index structure */
|
|
|
|
/* Used by extra internal tests only run if NDEBUG is not defined */
|
|
u64 cksum3 = 0; /* Checksum based on contents of indexes */
|
|
Fts5Buffer term = {0,0,0}; /* Buffer used to hold most recent term */
|
|
|
|
/* Load the FTS index structure */
|
|
pStruct = fts5StructureRead(p);
|
|
|
|
/* Check that the internal nodes of each segment match the leaves */
|
|
if( pStruct ){
|
|
int iLvl, iSeg;
|
|
for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
|
|
for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
|
|
Fts5StructureSegment *pSeg = &pStruct->aLevel[iLvl].aSeg[iSeg];
|
|
fts5IndexIntegrityCheckSegment(p, pSeg);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The cksum argument passed to this function is a checksum calculated
|
|
** based on all expected entries in the FTS index (including prefix index
|
|
** entries). This block checks that a checksum calculated based on the
|
|
** actual contents of FTS index is identical.
|
|
**
|
|
** Two versions of the same checksum are calculated. The first (stack
|
|
** variable cksum2) based on entries extracted from the full-text index
|
|
** while doing a linear scan of each individual index in turn.
|
|
**
|
|
** As each term visited by the linear scans, a separate query for the
|
|
** same term is performed. cksum3 is calculated based on the entries
|
|
** extracted by these queries.
|
|
*/
|
|
for(fts5MultiIterNew(p, pStruct, 0, 0, 0, 0, -1, 0, &pIter);
|
|
fts5MultiIterEof(p, pIter)==0;
|
|
fts5MultiIterNext(p, pIter, 0, 0)
|
|
){
|
|
int n; /* Size of term in bytes */
|
|
i64 iPos = 0; /* Position read from poslist */
|
|
int iOff = 0; /* Offset within poslist */
|
|
i64 iRowid = fts5MultiIterRowid(pIter);
|
|
char *z = (char*)fts5MultiIterTerm(pIter, &n);
|
|
|
|
poslist.n = 0;
|
|
fts5MultiIterPoslist(p, pIter, 0, &poslist);
|
|
while( 0==sqlite3Fts5PoslistNext64(poslist.p, poslist.n, &iOff, &iPos) ){
|
|
int iCol = FTS5_POS2COLUMN(iPos);
|
|
int iTokOff = FTS5_POS2OFFSET(iPos);
|
|
cksum2 ^= fts5IndexEntryCksum(iRowid, iCol, iTokOff, -1, z, n);
|
|
}
|
|
|
|
/* If this is a new term, query for it. Update cksum3 with the results. */
|
|
fts5TestTerm(p, &term, z, n, cksum2, &cksum3);
|
|
}
|
|
fts5TestTerm(p, &term, 0, 0, cksum2, &cksum3);
|
|
|
|
fts5MultiIterFree(p, pIter);
|
|
if( p->rc==SQLITE_OK && cksum!=cksum2 ) p->rc = FTS5_CORRUPT;
|
|
|
|
fts5StructureRelease(pStruct);
|
|
fts5BufferFree(&term);
|
|
fts5BufferFree(&poslist);
|
|
return fts5IndexReturn(p);
|
|
}
|
|
|
|
|
|
/*
|
|
** Calculate and return a checksum that is the XOR of the index entry
|
|
** checksum of all entries that would be generated by the token specified
|
|
** by the final 5 arguments.
|
|
*/
|
|
u64 sqlite3Fts5IndexCksum(
|
|
Fts5Config *pConfig, /* Configuration object */
|
|
i64 iRowid, /* Document term appears in */
|
|
int iCol, /* Column term appears in */
|
|
int iPos, /* Position term appears in */
|
|
const char *pTerm, int nTerm /* Term at iPos */
|
|
){
|
|
u64 ret = 0; /* Return value */
|
|
int iIdx; /* For iterating through indexes */
|
|
|
|
ret = fts5IndexEntryCksum(iRowid, iCol, iPos, 0, pTerm, nTerm);
|
|
|
|
for(iIdx=0; iIdx<pConfig->nPrefix; iIdx++){
|
|
int nByte = fts5IndexCharlenToBytelen(pTerm, nTerm, pConfig->aPrefix[iIdx]);
|
|
if( nByte ){
|
|
ret ^= fts5IndexEntryCksum(iRowid, iCol, iPos, iIdx+1, pTerm, nByte);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*************************************************************************
|
|
**************************************************************************
|
|
** Below this point is the implementation of the fts5_decode() scalar
|
|
** function only.
|
|
*/
|
|
|
|
/*
|
|
** Decode a segment-data rowid from the %_data table. This function is
|
|
** the opposite of macro FTS5_SEGMENT_ROWID().
|
|
*/
|
|
static void fts5DecodeRowid(
|
|
i64 iRowid, /* Rowid from %_data table */
|
|
int *piSegid, /* OUT: Segment id */
|
|
int *pbDlidx, /* OUT: Dlidx flag */
|
|
int *piHeight, /* OUT: Height */
|
|
int *piPgno /* OUT: Page number */
|
|
){
|
|
*piPgno = (int)(iRowid & (((i64)1 << FTS5_DATA_PAGE_B) - 1));
|
|
iRowid >>= FTS5_DATA_PAGE_B;
|
|
|
|
*piHeight = (int)(iRowid & (((i64)1 << FTS5_DATA_HEIGHT_B) - 1));
|
|
iRowid >>= FTS5_DATA_HEIGHT_B;
|
|
|
|
*pbDlidx = (int)(iRowid & 0x0001);
|
|
iRowid >>= FTS5_DATA_DLI_B;
|
|
|
|
*piSegid = (int)(iRowid & (((i64)1 << FTS5_DATA_ID_B) - 1));
|
|
}
|
|
|
|
static void fts5DebugRowid(int *pRc, Fts5Buffer *pBuf, i64 iKey){
|
|
int iSegid, iHeight, iPgno, bDlidx; /* Rowid compenents */
|
|
fts5DecodeRowid(iKey, &iSegid, &bDlidx, &iHeight, &iPgno);
|
|
|
|
if( iSegid==0 ){
|
|
if( iKey==FTS5_AVERAGES_ROWID ){
|
|
sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "(averages) ");
|
|
}else{
|
|
sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "(structure)");
|
|
}
|
|
}
|
|
else{
|
|
sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "(%ssegid=%d h=%d pgno=%d)",
|
|
bDlidx ? "dlidx " : "", iSegid, iHeight, iPgno
|
|
);
|
|
}
|
|
}
|
|
|
|
static void fts5DebugStructure(
|
|
int *pRc, /* IN/OUT: error code */
|
|
Fts5Buffer *pBuf,
|
|
Fts5Structure *p
|
|
){
|
|
int iLvl, iSeg; /* Iterate through levels, segments */
|
|
|
|
for(iLvl=0; iLvl<p->nLevel; iLvl++){
|
|
Fts5StructureLevel *pLvl = &p->aLevel[iLvl];
|
|
sqlite3Fts5BufferAppendPrintf(pRc, pBuf,
|
|
" {lvl=%d nMerge=%d", iLvl, pLvl->nMerge
|
|
);
|
|
for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){
|
|
Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
|
|
sqlite3Fts5BufferAppendPrintf(pRc, pBuf,
|
|
" {id=%d h=%d leaves=%d..%d}", pSeg->iSegid, pSeg->nHeight,
|
|
pSeg->pgnoFirst, pSeg->pgnoLast
|
|
);
|
|
}
|
|
sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "}");
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This is part of the fts5_decode() debugging aid.
|
|
**
|
|
** Arguments pBlob/nBlob contain a serialized Fts5Structure object. This
|
|
** function appends a human-readable representation of the same object
|
|
** to the buffer passed as the second argument.
|
|
*/
|
|
static void fts5DecodeStructure(
|
|
int *pRc, /* IN/OUT: error code */
|
|
Fts5Buffer *pBuf,
|
|
const u8 *pBlob, int nBlob
|
|
){
|
|
int rc; /* Return code */
|
|
Fts5Structure *p = 0; /* Decoded structure object */
|
|
|
|
rc = fts5StructureDecode(pBlob, nBlob, 0, &p);
|
|
if( rc!=SQLITE_OK ){
|
|
*pRc = rc;
|
|
return;
|
|
}
|
|
|
|
fts5DebugStructure(pRc, pBuf, p);
|
|
fts5StructureRelease(p);
|
|
}
|
|
|
|
/*
|
|
** Buffer (a/n) is assumed to contain a list of serialized varints. Read
|
|
** each varint and append its string representation to buffer pBuf. Return
|
|
** after either the input buffer is exhausted or a 0 value is read.
|
|
**
|
|
** The return value is the number of bytes read from the input buffer.
|
|
*/
|
|
static int fts5DecodePoslist(int *pRc, Fts5Buffer *pBuf, const u8 *a, int n){
|
|
int iOff = 0;
|
|
while( iOff<n ){
|
|
int iVal;
|
|
iOff += fts5GetVarint32(&a[iOff], iVal);
|
|
sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " %d", iVal);
|
|
}
|
|
return iOff;
|
|
}
|
|
|
|
/*
|
|
** The start of buffer (a/n) contains the start of a doclist. The doclist
|
|
** may or may not finish within the buffer. This function appends a text
|
|
** representation of the part of the doclist that is present to buffer
|
|
** pBuf.
|
|
**
|
|
** The return value is the number of bytes read from the input buffer.
|
|
*/
|
|
static int fts5DecodeDoclist(int *pRc, Fts5Buffer *pBuf, const u8 *a, int n){
|
|
i64 iDocid;
|
|
int iOff = 0;
|
|
|
|
iOff = sqlite3GetVarint(&a[iOff], (u64*)&iDocid);
|
|
sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " rowid=%lld", iDocid);
|
|
while( iOff<n ){
|
|
int nPos;
|
|
int bDummy;
|
|
iOff += fts5GetPoslistSize(&a[iOff], &nPos, &bDummy);
|
|
iOff += fts5DecodePoslist(pRc, pBuf, &a[iOff], MIN(n-iOff, nPos));
|
|
if( iOff<n ){
|
|
i64 iDelta;
|
|
iOff += sqlite3GetVarint(&a[iOff], (u64*)&iDelta);
|
|
if( iDelta==0 ) return iOff;
|
|
iDocid += iDelta;
|
|
sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " rowid=%lld", iDocid);
|
|
}
|
|
}
|
|
|
|
return iOff;
|
|
}
|
|
|
|
/*
|
|
** The implementation of user-defined scalar function fts5_decode().
|
|
*/
|
|
static void fts5DecodeFunction(
|
|
sqlite3_context *pCtx, /* Function call context */
|
|
int nArg, /* Number of args (always 2) */
|
|
sqlite3_value **apVal /* Function arguments */
|
|
){
|
|
i64 iRowid; /* Rowid for record being decoded */
|
|
int iSegid,iHeight,iPgno,bDlidx;/* Rowid components */
|
|
const u8 *aBlob; int n; /* Record to decode */
|
|
u8 *a = 0;
|
|
Fts5Buffer s; /* Build up text to return here */
|
|
int rc = SQLITE_OK; /* Return code */
|
|
int nSpace = 0;
|
|
|
|
assert( nArg==2 );
|
|
memset(&s, 0, sizeof(Fts5Buffer));
|
|
iRowid = sqlite3_value_int64(apVal[0]);
|
|
n = sqlite3_value_bytes(apVal[1]);
|
|
aBlob = sqlite3_value_blob(apVal[1]);
|
|
|
|
nSpace = n + FTS5_DATA_ZERO_PADDING;
|
|
a = (u8*)sqlite3Fts5MallocZero(&rc, nSpace);
|
|
if( a==0 ) goto decode_out;
|
|
memcpy(a, aBlob, n);
|
|
fts5DecodeRowid(iRowid, &iSegid, &bDlidx, &iHeight, &iPgno);
|
|
|
|
fts5DebugRowid(&rc, &s, iRowid);
|
|
if( bDlidx ){
|
|
Fts5Data dlidx;
|
|
Fts5DlidxLvl lvl;
|
|
|
|
dlidx.p = a;
|
|
dlidx.n = n;
|
|
dlidx.nRef = 2;
|
|
|
|
memset(&lvl, 0, sizeof(Fts5DlidxLvl));
|
|
lvl.pData = &dlidx;
|
|
lvl.iLeafPgno = iPgno;
|
|
|
|
for(fts5DlidxLvlNext(&lvl); lvl.bEof==0; fts5DlidxLvlNext(&lvl)){
|
|
sqlite3Fts5BufferAppendPrintf(&rc, &s,
|
|
" %d(%lld)", lvl.iLeafPgno, lvl.iRowid
|
|
);
|
|
}
|
|
}else if( iSegid==0 ){
|
|
if( iRowid==FTS5_AVERAGES_ROWID ){
|
|
/* todo */
|
|
}else{
|
|
fts5DecodeStructure(&rc, &s, a, n);
|
|
}
|
|
}else{
|
|
|
|
Fts5Buffer term;
|
|
memset(&term, 0, sizeof(Fts5Buffer));
|
|
|
|
if( iHeight==0 ){
|
|
int iTermOff = 0;
|
|
int iRowidOff = 0;
|
|
int iOff;
|
|
int nKeep = 0;
|
|
|
|
if( n>=4 ){
|
|
iRowidOff = fts5GetU16(&a[0]);
|
|
iTermOff = fts5GetU16(&a[2]);
|
|
}else{
|
|
sqlite3Fts5BufferSet(&rc, &s, 8, (const u8*)"corrupt");
|
|
goto decode_out;
|
|
}
|
|
|
|
if( iRowidOff ){
|
|
iOff = iRowidOff;
|
|
}else if( iTermOff ){
|
|
iOff = iTermOff;
|
|
}else{
|
|
iOff = n;
|
|
}
|
|
fts5DecodePoslist(&rc, &s, &a[4], iOff-4);
|
|
|
|
assert( iRowidOff==0 || iOff==iRowidOff );
|
|
if( iRowidOff ){
|
|
iOff += fts5DecodeDoclist(&rc, &s, &a[iOff], n-iOff);
|
|
}
|
|
|
|
assert( iTermOff==0 || iOff==iTermOff );
|
|
while( iOff<n ){
|
|
int nByte;
|
|
iOff += fts5GetVarint32(&a[iOff], nByte);
|
|
term.n= nKeep;
|
|
fts5BufferAppendBlob(&rc, &term, nByte, &a[iOff]);
|
|
iOff += nByte;
|
|
|
|
sqlite3Fts5BufferAppendPrintf(
|
|
&rc, &s, " term=%.*s", term.n, (const char*)term.p
|
|
);
|
|
iOff += fts5DecodeDoclist(&rc, &s, &a[iOff], n-iOff);
|
|
if( iOff<n ){
|
|
iOff += fts5GetVarint32(&a[iOff], nKeep);
|
|
}
|
|
}
|
|
fts5BufferFree(&term);
|
|
}else{
|
|
Fts5NodeIter ss;
|
|
for(fts5NodeIterInit(a, n, &ss); ss.aData; fts5NodeIterNext(&rc, &ss)){
|
|
if( ss.term.n==0 ){
|
|
sqlite3Fts5BufferAppendPrintf(&rc, &s, " left=%d", ss.iChild);
|
|
}else{
|
|
sqlite3Fts5BufferAppendPrintf(&rc,&s, " \"%.*s\"",
|
|
ss.term.n, ss.term.p
|
|
);
|
|
}
|
|
if( ss.nEmpty ){
|
|
sqlite3Fts5BufferAppendPrintf(&rc, &s, " empty=%d%s", ss.nEmpty,
|
|
ss.bDlidx ? "*" : ""
|
|
);
|
|
}
|
|
}
|
|
fts5NodeIterFree(&ss);
|
|
}
|
|
}
|
|
|
|
decode_out:
|
|
sqlite3_free(a);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_result_text(pCtx, (const char*)s.p, s.n, SQLITE_TRANSIENT);
|
|
}else{
|
|
sqlite3_result_error_code(pCtx, rc);
|
|
}
|
|
fts5BufferFree(&s);
|
|
}
|
|
|
|
/*
|
|
** The implementation of user-defined scalar function fts5_rowid().
|
|
*/
|
|
static void fts5RowidFunction(
|
|
sqlite3_context *pCtx, /* Function call context */
|
|
int nArg, /* Number of args (always 2) */
|
|
sqlite3_value **apVal /* Function arguments */
|
|
){
|
|
const char *zArg;
|
|
if( nArg==0 ){
|
|
sqlite3_result_error(pCtx, "should be: fts5_rowid(subject, ....)", -1);
|
|
}else{
|
|
zArg = (const char*)sqlite3_value_text(apVal[0]);
|
|
if( 0==sqlite3_stricmp(zArg, "segment") ){
|
|
i64 iRowid;
|
|
int segid, height, pgno;
|
|
if( nArg!=4 ){
|
|
sqlite3_result_error(pCtx,
|
|
"should be: fts5_rowid('segment', segid, height, pgno))", -1
|
|
);
|
|
}else{
|
|
segid = sqlite3_value_int(apVal[1]);
|
|
height = sqlite3_value_int(apVal[2]);
|
|
pgno = sqlite3_value_int(apVal[3]);
|
|
iRowid = FTS5_SEGMENT_ROWID(segid, height, pgno);
|
|
sqlite3_result_int64(pCtx, iRowid);
|
|
}
|
|
}else {
|
|
sqlite3_result_error(pCtx,
|
|
"first arg to fts5_rowid() must be 'segment' "
|
|
"or 'start-of-index'"
|
|
, -1
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This is called as part of registering the FTS5 module with database
|
|
** connection db. It registers several user-defined scalar functions useful
|
|
** with FTS5.
|
|
**
|
|
** If successful, SQLITE_OK is returned. If an error occurs, some other
|
|
** SQLite error code is returned instead.
|
|
*/
|
|
int sqlite3Fts5IndexInit(sqlite3 *db){
|
|
int rc = sqlite3_create_function(
|
|
db, "fts5_decode", 2, SQLITE_UTF8, 0, fts5DecodeFunction, 0, 0
|
|
);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3_create_function(
|
|
db, "fts5_rowid", -1, SQLITE_UTF8, 0, fts5RowidFunction, 0, 0
|
|
);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
#endif /* SQLITE_ENABLE_FTS5 */
|